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Unbiased Measurement of Feature Importance

in Tree-Based Methods
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We propose a modification that corrects for split-improvement variable importance measures in Random

Forests and other tree-based methods. These methods have been shown to be biased towards increasing

the importance of features with more potential splits. We show that by appropriately incorporating split-

improvement as measured on out of sample data, this bias can be corrected yielding better summaries and

screening tools.
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1 INTRODUCTION

This article examines split-improvement feature importance scores for tree-based methods. Start-
ing with Classification and Regression Trees (CART) [6] and C4.5 [34], decision trees have been
a workhorse of general machine learning, particularly within ensemble methods such as Random
Forests (RF) [5] and Gradient Boosting Trees [12]. They enjoy the benefits of computational speed,
few tuning parameters, and natural ways of handling missing values. Recent statistical theory for
ensemble methods [e.g., 9, 27, 36, 40, 43] has provided theoretical guarantees and allowed formal
statistical inference. Variants of these models have also been proposed such as Bernoulli RF [41,
42] and Random Survival Forests [20]. For all these reasons, tree-based methods have seen broad
applications including in protein interaction models [29] in product suggestions on Amazon [37]
and in financial risk management [21].
However, in commonwith other machine learning models, large ensembles of trees act as “black

boxes,” providing predictions but little insight as to how they were arrived at. There has thus been
considerable interest in providing tools either to explain the broad patterns that are modeled by
these methods, or to provide justifications for particular predictions. This article examines variable
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26:2 Z. Zhou and G. Hooker

or feature1 importance scores that provide global summaries of how influential a particular input
dimension is in the models’ predictions. These have been among the earliest diagnostic tools for
machine learning and have been put to practical use as screening tools, see for example Díaz-
Uriarte and De Andres [10] and Menze et al. [28]. Thus, it is crucial that these feature importance
measures reliably produce well-understood summaries.
Feature importance scores for tree-based models can be broadly split into two categories. Per-

mutation methods rely on measuring the change in value or accuracy when the values of one
feature are replaced by uninformative noise, often generated by a permutation. These have the
advantage of being applicable to any function, but have been critiqued by Hooker [15], Hooker
and Mentch [16], Strobl et al. [38] for forcing the model to extrapolate. By contrast, in this arti-
cle, we study the alternative split-improvement scores (also known as Gini importance, or mean
decrease impurity) that are specific to tree-based methods. These naturally aggregate the improve-
ment associated with each note split and can be readily recorded within the tree building process
[6, 12]. In Python, split-improvement is the default implementation for almost every tree-based
model, including RandomForestClassifier, RandomForestRegressor, GradientBoostingClassifier, and
GradientBoostingRegressor from scikit-learn [32].

Despite their common use, split-improvement measures are biased towards features that ex-
hibit more potential splits and in particular towards continuous features or features with large
numbers of categories. This weakness was already noticed in Breiman et al. [6] and Strobl et al.
[39] conducted thorough experiments followed by more discussions in Boulesteix et al. [3] and
Nicodemus [31].2 While this may not be concerning when all covariates are similarly configured,
in practice it is common to have a combination of categorical and continuous variables in which
emphasizing more complex features may mislead any subsequent analysis. For example, gender
will be a very important binary predictor in applications related to medical treatment; whether
the user is a paid subscriber is also central to some tasks such as in Amazon and Netflix. But each
of these may be rated as less relevant to age which is a more complex feature in either case. In the
task of ranking single nucleotide polymorphisms with respect to their ability to predict a target
phenotype, researchers may overlook rare variants as common ones are systematically favored by
the split-improvement measurement. [3].
We offer an intuitive rationale for this phenomenon and design a simple fix to solve the bias

problem. The observed bias is similar to overfitting in training machine learning models, where
we should not build the model and evaluate relevant performance using the same set of data.
To fix this, split-improvement calculated from a separate test set is taken into consideration. We
further demonstrate that this new measurement is unbiased in the sense that features with no
predictive power for the target variable will receive an importance score of zero in expectation.
These measures can be very readily implemented in tree-based software packages. We believe
the proposed measurement provides a more sensible means for evaluating feature importance in
practice.
In the following, we introduce some background and notation for tree-based methods in Sec-

tion 2. In Section 3, split-improvement is described in detail and its bias and limitations are pre-
sented. The proposed unbiased measurement is introduced in Section 4. Section 5 applies our idea
to a simulated example and three real-world datasets. We conclude with some discussions and
future directions in Section 6. Proofs and some additional simulation results are collected in Ap-
pendix A and B, respectively.

1We use “feature,” “variable,” and “covariate” interchangeably here to indicate individual measurements that act as inputs

to a machine learning model from which a prediction is made.
2See https://explained.ai/rf-importance/ for a popular demonstration of this.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 26. Publication date: December 2020.

https://explained.ai/rf-importance/


Unbiased Measurement of Feature Importance in Tree-Based Methods 26:3

2 TREE-BASED METHODS

In this section, we provide a brief introduction and mathematical formulation of tree-based models
that will also serve to introduce our notation. We refer readers to relevant chapters in Friedman
et al. [11] for a more detailed presentation.

2.1 Tree Building Process

Decision trees are a non-parametric machine learning tool for constructing predictionmodels from
data. They are obtained by recursively partitioning feature space by axis-aligned splits and fitting a
simple prediction function, usually constant, within each partition. The result of this partitioning
procedure is represented as a binary tree. Popular tree building algorithms, such as CART and
C4.5, may differ in how they choose splits or deal with categorical features. Our introduction in
this section mainly reflects how decision trees are implemented in scikit-learn.
Suppose our data consists of p inputs and a response, denoted by zi = (xi ,yi ) for i = 1, 2, . . . ,n,

with xi = (xi1,xi2, . . . ,xip ). For simplicity we assume our inputs are continuous.3 Labels can be
either continuous (regression trees) or categorical (classification trees). Let the data at a node m
represented byQ . Consider a splitting variable j and a splitting point s , which results in two child
nodes:

Ql = {(x ,y) |x j ≤ s}

Qr = {(x ,y) |x j > s}.
The impurity at nodem is computed by a function H , which acts as a measure for goodness-of-
fit and is invariant to sample size. Our loss function for split θ = (j, s ) is defined as the weighted
average of the impurity at two child nodes:

L(Q,θ ) =
nl
nm

H (Ql ) +
nr
nm

H (Qr ),

where nm ,nl ,nr are the number of training examples falling into node m, l , r , respectively. The
best split is chosen by minimizing the above loss function:

θ ∗ = argmin
θ

L(Q,θ ). (1)

The tree is built by recursively splitting child nodes until some stopping criterion is met. For exam-
ple, wemay want to limit tree depth, or keep the number of training samples above some threshold
within each node.
For regression trees, H is usually chosen to be mean squared error, using average values as

predictions within each node. At nodem with nm observations, H (m) is defined as:

ȳm =
1

nm

∑

xi ∈m
yi ,

H (m) =
1

nm

∑

xi ∈m
(yi − ȳm )2.

Mean absolute error can also be used depending on specific application.

3Libraries in different programming languages differ on how to handle categorical inputs. rpart and randomForest libraries

in R search over every possible subsets when dealing with categorical features. However, tree-based models in scikit-learn

do not support categorical inputs directly. Manually transformation is required to convert categorical features to integer-

valued ones, such as using dummy variables, or treated as ordinal when applicable.
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In classification, there are several different choices for the impurity function H . Suppose for
nodem, the target y can take values of 1, 2, . . . ,K , define

pmk =
1

nm

∑

xi ∈m
1(yi = k )

to be the proportion of class k in nodem, for k = 1, 2, . . . ,K . Common choices are:

(1) Misclassification error:
H (m) = 1 − max

1≤k≤K
pmk .

(2) Gini index:

H (m) =
∑

k�k ′
pmkpmk ′ = 1 −

K∑

k=1

p2mk .

(3) Cross-entropy or deviance:

H (m) = −
K∑

k=1

pmk logpmk .

This article will focus on mean squared error for regression and Gini index for classification.

2.2 RF and Gradient Boosting Trees

Though intuitive and interpretable, there are two major drawbacks associated with a single de-
cision tree: they suffer from high variance and in some situations, they are too simple to capture
complex signals in the data. Bagging [4] and boosting [12] are two popular techniques used to
improve the performance of decision trees.
Suppose we use a decision tree as a base learner t (x ; z1, z2, . . . , zn ), where x is the input for

prediction and z1, z2, . . . ,zn are training examples as before. Bagging aims to stabilize the base
learner t by resampling the training data. In particular, the bagged estimator can be expressed as:

t̂ (x ) =
1

B

B∑

b=1

t
(
x ; z∗b1, z

∗
b2, . . . , z

∗
bn

)

where z∗
bi

are drawn independently with replacement from the original data (bootstrap sample),
and B is the total number of base learners. Each tree is constructed using a different bootstrap
sample from the original data. Thus approximately one-third of the cases are left out and not used
in the construction of each base learner. We call these out-of-bag samples.
RF [5] are a popular extension of bagging with an additional randomness injected. At each

step when searching for the best split, only p0 features are randomly selected from all p possible
features and the best splitθ ∗must be chosen from this subset.Whenp0 = p, this reduces to bagging.
Mathematically, the prediction is written as

t̂RF (x ) =
1

B

B∑

b=1

t
(
x ; ξb , z

∗
b1, z

∗
b2, . . . , z

∗
bn

)

with ξb
iid∼ Ξ denoting the additional randomness for selecting from a random subset of available

features.
Boosting is another widely used technique by data scientists to achieve state-of-the-art results

on many machine learning challenges [7]. Instead of building trees in parallel as in bagging, it
does this sequentially, allowing the current base learner to correct for any previous bias. In Ghosal
and Hooker [13], the authors also consider boosting RF to reduce bias. We will skip over some
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technical details on boosting and restrict our discussion of feature importance in the context of
decision trees and RF. Note that as long as tree-based models combine base learners in an additive
fashion, their feature importance measures are naturally calculated by (weighted) average across
those of individual trees.

3 MEASUREMENT OF FEATURE IMPORTANCE

Almost every feature importance measures used in tree-based models belong to two classes: split-
improvement or permutation importance. Though our focus will be on split-improvement, per-
mutation importance is introduced first for completeness.

3.1 Permutation Importance

Arguably permutation might be the most popular method for assessing feature importance in the
machine learning community. Intuitively, if we break the link between a variable X j and y, the
prediction error increases then variable j can be considered as important.
Formally, we view the training set as a matrix X of size n × p, where each row xi is one obser-

vation. Let X π , j be a matrix achieved by permuting the jth column according to some mechanism
π . If we use l (yi , f (xi )) as the loss incurred when predicting f (xi ) for yi , then the importance of
jth feature is defined as:

VIπj =

n∑

i=1

l
(
yi , f
(
xπ , ji

)
− l (yi , f (xi ))

)
(2)

the increase in prediction error when the jth feature is permuted. Variations include choosing
different permutationmechanism π or evaluating Equation (2) on a separate test set. In RF, Breiman
[5] suggest to only permute the values of the jth variable in the out-of-bag samples for each tree,
and final importance for the forest is given by averaging across all trees.
There is a small literature analyzing permutation importance in the context of RF. Ishwaran

[19] studied paired importance. Hooker [15], Hooker and Mentch [16], Strobl et al. [38] advocated
against permuting features by arguing it emphasizes behavior in regions where there is very little
data. More recently, Gregorutti et al. [14] conducted a theoretical analysis of permutation impor-
tance measure for an additive regression model.

3.2 Split-Improvement

While permutation importance measures can generically be applied to any prediction function,
split-improvement is unique to tree-based methods, and can be calculated directly from the train-
ing process. Every time a node is split on variable j, the combined impurity for the two descendent
nodes is less than the parent node. Adding up the weighted impurity decreases for each split in a
tree and averaging over all trees in the forest yields an importance score for each feature.
Following our notation in Section 2.1, the impurity function H is either mean squared error for

regression or Gini index for classification. The best split at nodem is given by θ∗m which splits at

jth variable and results in two child nodes denoted as l and r . Then the decrease in impurity for
split θ ∗ is defined as:

Δ(θ ∗m ) = ωmH (m) − (ωlH (l ) + ωrH (r )), (3)

where ω is the proportion of observations falling into each node, i.e., ωm =
nm
n
, ωl =

nl
n
and ωr =

nr
n
. Then, to get the importance for jth feature in a single tree, we add up all Δ(θ ∗m ) where the split

is at the jth variable:

VITj =
∑

m, j ∈θ ∗m

Δ(θ ∗m ). (4)
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(a) Classification (b) Regression

Fig. 1. Split-improvement measures on five predictors. Box plot is based on 100 repetitions. A total of 100

trees are built in the forest and maximum depth of each tree is set to 5.

Here the sum is taken over all non-terminal nodes of the tree, and we use the notation j ∈ θ ∗m to

denote that the split is based on the jth feature.
The notion of split-improvement for decision trees can be easily extended to RF by taking the

average across all trees. Suppose there are B base learners in the forest, we could naturally define

VIRFj =
1

B

B∑

b=1

VI
T(b)
j =

1

B

B∑

b=1

∑

m, j ∈θ ∗m

Δb (θ
∗
m ). (5)

3.3 Bias in Split-Improvement

Strobl et al. [39] pointed out that the split-improvement measure defined above is biased towards
increasing the importance of continuous features or categorical features with many categories.
This is because of the increased flexibility afforded by a larger number of potential split points. We
conducted a similar simulation to further demonstrate this phenomenon. All our experiments are
based on RF which gives more stable results than a single tree.
We generate a simulated dataset so that X1 ∼ N (0, 1) is continuous, and X2,X3,X4,X5 are cate-

gorically distributed with 2, 4, 10, 20 categories, respectively. The probabilities are equal across cat-
egories within each feature. In particular,X2 is Bernoulli distribution with p = 0.5. In classification
setting, the response y is also generated as a Bernoulli distribution with p = 0.5, but independent
of all the X ’s. For regression, y is independently generated as N (0, 1). We repeat the simulation
100 times, each time generating n = 1,000 data points and fitting an RF model4 using the dataset.
Here categorical features are encoded into dummy variables, and we sum up importance scores
for corresponding dummy variables as final measurement for a specific categorical feature. In Ap-
pendix B, we also provide simulation results when treating those categorical features as (ordered)
discrete variables.
Box plots are shown in Figure 1(a) and 1(b) for classification and regression, respectively. The

continuous feature X1 is frequently given the largest importance score in regression setting, and
among the four categorical features, those with more categories receive larger importance scores.
Similar phenomenon is observed in classification as well, while X5 appears to be artificially more
important thanX1. Also note that all five features get positive importance scores, though we know
that they have no predictive power for the target value y.

4Our experiments are implemented using scikit-learn. Unless otherwise noted, default parameters are used.
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(a) Classification (b) Regression

Fig. 2. Average feature importance ranking across different signal strengths over 100 repetitions. A total of

100 trees are built in the forest and maximum depth of each tree is set to 5.

We now explore how strong a signal is needed in order for the split-improvement measures to
discover important predictors. We generate X1,X2, . . . ,X5 as before, but in regression settings set
y = ρX2 + ϵ where ϵ ∼ N (0, 1). We choose ρ to range from 0 to 1 at step size 0.1 to encode different
levels of signal. For classification experiments, we first make y = X2 and then flip each element of

y according to P (U >
1+ρ
2 ) whereU is Uniform [0, 1]. This way, the correlation between X2 and y

will be approximately ρ. We report the average ranking of all five variables across 100 repetitions
for each ρ. The results are shown in Figure 2.
We see that ρ needs to be larger than 0.2 to actually find X2 is the most important predictor in

our classification setting, while in regression this value increases to 0.6. And we also observe that
a clear order exists for the remaining (all unimportant) four features.
This bias phenomenon could make many statistical analyses based on split-improvement in-

valid. For example, gender is a very common and powerful binary predictor in many applications,
but feature screening based on split-improvement might think it is not important compared to
age. In the next section, we explain intuitively why this bias is observed, and provide a simple but
effective adjustment.

3.4 Related Work

Before presenting our algorithm, we review some related work aiming at correcting the bias in
split-improvement. Most of the methods fall into two major categories: they either propose new
tree building algorithms by redesigning split selection rules, or perform as a post hoc approach to
debias importance measurement.
There has been a line of work on designing trees which do not have such bias as observed in

classical algorithms such as CART and C4.5. For example, Quick, Unbiased, and Efficient Statis-
tical Tree (QUEST) [26] removed the bias by using F-tests on ordered variables and contingency
table chi-squared tests on categorical variables. Based on QUEST, CRUISE [22] and GUIDE [24]
were developed. We refer readers to Loh [25] for a detailed discussion in this aspect. In Strobl et al.
[39], the authors resorted to a different algorithm called cforest [17], which was based on a condi-
tional inference framework [18]. They also implemented a stopping criteria based on multiple test
procedures.
Sandri and Zuccolotto [35] expressed split-improvement as two components: a heterogeneity

reduction and a positive bias. Then the original dataset (X,Y ) is augmented with pseudo data Z
which is uninformative but shares the structure of X [this idea of generating pseudo data is later
formulated in a general framework termed “knockoffs”; 1]. The positive bias term is estimated by
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26:8 Z. Zhou and G. Hooker

utilizing the pseudo variables Z and subtracted to get a debiased estimate. Nembrini et al. [30] later
modified this approach to shorten computation time and provided empirical importance testing
procedures. Most recently, Li et al. [23] derived a tight non-asymptotic bound on the expected bias
of noisy features and provided a new debiased importance measure. However, this approach only
alleviates the issue and still yields biased results.
Our approach works as a post-hoc analysis, where the importance scores are calculated after a

model is built. Compared to previous methods, it enjoys several advantages:

—It can be easily incorporated into any existing framework for tree-based methods, such as
Python or R.

—It does not require generating additional pseudo data or computational repetitions as in
Nembrini et al. [30], Sandri and Zuccolotto [35].

—Compared to Li et al. [23] which does not have a theoretical guarantee, ourmethod is proved
to be unbiased for noisy features.

4 UNBIASED SPLIT-IMPROVEMENT

When it comes to evaluating the performance of machine learning models, we generally use a
separate test set to calculate generalization accuracy. The training error is usually smaller than
the test error as the algorithm is likely to “overfit” on the training data. This is exactly why we
observe the bias with split-improvement. Each split will favor continuous features or those features
with more categories, as they will have more flexibility to fit the training data. The vanilla version
of split-improvement is just like using train error for evaluating model performance.
Below we propose methods to remedy this bias phenomenon by utilizing a separate test set,

and prove that for features with no predictive power, we’re able to get an importance score of 0 in
expectation for both classification and regressions settings. Our method is entirely based on the
original framework of RF, requires barely no additional computational efforts, and can be easily
integrated into any existing software libraries.
The main ingredient of the proposed method is to calculate the impurity function H using ad-

ditional information provided from test data. In the context of RF, we can simply take out-of-bag
samples for each individual tree. Our experiments below are based on this strategy. In the context
of the honest trees proposed in Wager and Athey [40] that divide samples into a partition used
to determine tree structures and a partition used to obtain leaf values, the latter could be used as
our test data below. In boosting, it is common not to sample, but to keep a test set separate to
determine a stopping time. Since the choice of impurity function H is different for classification
and regression, in what follows we will treat them separately.
Figures 3 and 4 show the results on previous classification and regression tasks when our unbi-

ased method is applied.5 Feature scores for all variables are spread around 0, though continuous
features and categorical features with more categories tend to exhibit more variability. In the case,
where there is correlation between X2 and y, even for the smallest ρ = 0.1, we can still find the
most informative predictor, whereas there are no clear order for the remaining noise features.

4.1 Classification

Consider a root nodem and two child nodes, denoted by l and r , respectively. The best split θ∗m =
(j, s ) was chosen by Formula (1) and Gini index is used as impurity function H .
For simplicity, we focus on binary classification. Let p denote class proportion within each node.

For example, pr,2 denotes the proportion of class 2 in the right child node. Hence the Gini index

5Relevant codes can be found at https://github.com/ZhengzeZhou/unbiased-feature-importance.
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(a) Classification (b) Regression

Fig. 3. Unbiased split-improvement. Box plot is based on 100 repetitions. A total of 100 trees are built in

the forest and maximum depth of each tree is set to 5. Each tree is trained using bootstrap samples and

out-of-bag samples are used as test set.

(a) Classification (b) Regression

Fig. 4. Unbiased feature importance ranking across different signal strengths averaged over 100 repetitions.

A total of 100 trees are built in the forest and maximum depth of each tree is set to 5. Each tree is trained

using bootstrap samples and out-of-bag samples are used as test set.

for each node can be written as:

H (m) = 1 − p2m,1 − p2m,2,

H (l ) = 1 − p2l,1 − p
2
l,2,

H (r ) = 1 − p2r,1 − p2r,2.
The split-improvement for a split at jth feature when evaluated using only the training data
is written as in Equation (3). This value is always positive no matter which feature is chosen
and where the split is, which is exactly why a selection bias will lead to overestimate of feature
importance.
If instead, we have a separate test set available, the predictive impurity function for each node

is modified to be:
H ′(m) = 1 − pm,1p

′
m,1 − pm,2p

′
m,2,

H ′(l ) = 1 − pl,1p ′l,1 − pl,2p
′
l,2,

H ′(r ) = 1 − pr,1p ′r,1 − pr,2p ′r,2,
(6)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 26. Publication date: December 2020.



26:10 Z. Zhou and G. Hooker

where p ′ is class proportion evaluating on the test data. And similarly,

Δ′(θ ∗m ) = ωmH
′(m) − (ωlH

′(l ) + ωrH
′(r ))

= ωl (H
′(m) − H ′(l )) + ωr (H

′(m) − H ′(r )).
(7)

Using these definitions, we first demonstrate that an individual split is unbiassed in the sense that
if y has no bivariate relationship with X j , Δ

′(θ ∗m ) will have expectation 0.

Lemma 4.1. In classification settings, for a given feature X j , if y is marginally independent of X j

within the region defined by nodem, then

EΔ′(θ ∗m ) = 0

when splitting at the jth feature.

Proof. See Appendix A. �

The Gini index can be interpreted in an interesting way [11]. Instead of classifying observations
to the majority class in each node, we could classify them to class k with probability pm,k . Then
the training error rate of this rule in the node is exactly 1 − p2m,1 − p2m,2. For the predictive impurity

given in Equation (6), we can naturally interpret it as the test error rate of the rule.
Similar to Equation (4), split-improvement of x j in a decision tree is defined as:

VIT,Cj =
∑

m, j ∈θ ∗m

Δ′(θ ∗m ). (8)

We can now apply Lemma 4.1 to provide a global result so long as X j is always irrelevant to y.

Theorem 1. In classification settings, for a given feature X j , if y is independent of X j in every

hyper-rectangle subset of the feature space, then we always have

EVIT,Cj = 0.

Proof. The result follows directly from Lemma 4.1 and Equation (8). �

This unbiasedness result can be easily extended to the case of RF by Equation (5), as it’s an aver-
age across base learners. We note here that our independence condition is designed to account for
relationships that appear before accounting for splits on other variables, possibly due to relation-
ships between X j and other features, and afterwards. It is trivially implied by the independence
of X j with both y and the other features. Our condition may also be stronger than necessary, de-
pending on the tree-building process. We may be able to restrict the set of hyper-rectangles to be
examined, but only by analyzing specific tree-building algorithms.

4.2 Regression

In regression, we use mean squared error as the impurity function H :

ȳm =
1

nm

∑

xi ∈m
yi ,

H (m) =
1

nm

∑

xi ∈m
(yi − ȳm )2.

If instead the impurity function H is evaluated on a separate test set, we define

H ′(m) =
1

n′m

n′m∑

i=1

(
y ′m,i − ȳm

)2
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and similarly

Δ′(θ ∗m ) = ωmH
′(m) − (ωlH

′(l ) + ωrH
′(r )).

Note that hereH ′(m)measures mean squared error within nodem on test data with the fitted value
ȳm from training data. If we just sum up Δ′ as feature importance, it will end up with negative
values as ȳm will overfit the training data and thus make mean squared error much larger deep in
the tree. In other words, it over-corrects the bias. For this reason, our unbiased split-improvement
is defined slightly different from the classification case (8):

VIT,Rj =
∑

m, j ∈θ ∗m

(
Δ(θ ∗m ) + Δ′(θ ∗m )

)
. (9)

Notice that although Equations (8) and (9) are different, they originates from the same idea
by correcting bias using test data. Unlike Formula (6) for Gini index, where we could design a
predictive impurity function by combining train and test data together, it’s hard to come up with
a counterpart in regression setting.
Just as in the classification case, we could show the following unbiasedness results:

Lemma 4.2. In regression settings, for a given featureX j , ify is marginally independent ofX j within

the region defined by nodem, then

E (Δ(θ ∗m ) + Δ′(θ ∗m )) = 0

when splitting at the jth feature.

Proof. See Appendix A. �

Theorem 2. In regression settings, for a given feature X j , if y is independent of X j in every hyper-

rectangle subset of the feature space, then we always have

EVIT,Rj = 0.

5 EMPIRICAL STUDIES

In this section, we apply our method to one simulated example and three real datasets.We compare
our results to three other algorithms: the default split-improvement in scikit-learn, cforest [18] in R
package party and bias-corrected impurity [30] in R package ranger.We did not include comparison
with Li et al. [23] since their method does not enjoy the unbiased property. In what follows, we use
shorthand SI for the default split-improvement, UFI for our method (unbiased feature importance).

5.1 Simulated Data

The data has 1,000 samples and 10 features, where Xi takes values in 0, 1, 2, . . . , i with uniform
probability for 1 ≤ i ≤ 10. Here, we assume only X1 contains true signal and all remaining nine
features are noisy features. The target value y is generated as follows:

—Regression: y = X1 + 5ϵ , where ϵ ∼ N (0, 1).
—Classification: P (y = 1|X ) = 0.55 if X1 = 1, and P (y = 1|X ) = 0.45 if X1 = 0.

Note that this task is designed to be extremely hard by choosing the binary feature as infor-
mative, and adding large noise (regression) or setting the signal strength low (classification). To
evaluate the results, we look at the ranking of all features based on importance scores. Ideally X1

should be ranked 1st as it is the only informative feature. Table 1 shows the average ranking of
feature X1 across 100 repetitions. The best result of each column is marked in bold. Here we also
compare the effect of tree depth by constructing shallow trees (with tree depth 3) and deep trees
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Table 1. Average Importance Ranking of Informative Feature X1

Tree depth = 3 Tree depth = 10
R C R C

SI 3.71 4.10 10.00 10.00
UFI 1.47 1.39 1.55 1.69

cforest 1.57 1.32 1.77 1.88
ranger 1.54 1.64 2.46 1.93

R stands for regression and C for classification. The result averages over 100 rep-

etitions. Lower values indicate better abilities in identifying informative features.

In cforest, we set mincriterion to be 2.33 (0.99 percentile of normal distribution)

for shallow trees and 1.28 (0.9 percentile) for deep trees.

(with tree depth 10). Since cforest does not provide a parameter for directly controlling tree depth,
we change the values of mincriterion as an alternative.
We can see that our method UFI achieves the best results in three situations except the clas-

sification case for shallow trees, where it is only slightly worse than cforest. Another interesting
observation is that deeper trees tend to make the task of identifying informative features harder
when there are noisy ones, since it is more likely to split on noisy features for splits deep down in
the tree. This effect is most obvious for the default split-improvement, where it performs the worst
especially for deep trees: the informative feature X1 is consistently ranked as the least important
(10th place). UFI does not seem to be affected too much from tree depth.

5.2 RNA Sequence Data

The first dataset examined is the prediction of C-to-U edited sites in plant mitochondrial Ribonu-
cleic acid (RNA). This task was studied statistically in Cummings andMyers [8], where the authors
applied RF and used the original split-improvement as feature importance. Later, Strobl et al. [39]
demonstrated the performance of cforest on this dataset.
RNA editing is a molecular process whereby an RNA sequence is modified from the sequence

corresponding to the DNA template. In the mitochondria of land plants, some cytidines are con-
verted to uridines before translation [8].
We use the Arabidopsis thaliana data file6 as in Strobl et al. [39]. The features are based on

the nucleotides surrounding the edited/non-edited sites and on the estimated folding energies of
those regions. After removing missing values and one column which will not be used, the data file
consists of 876 rows and 45 columns:

—the response (binary);
—a total of 41 nucleotides at positions −20 to 20 relative to the edited site (categorical, one of
A, T, C or G);

—the codon position (also four categories); and
—two continuous variables based on on the estimated folding energies.

For implementation, we create dummy variables for all categorical features, and build forest
using 100 base trees. The maximum tree depth for this dataset is not restricted as the number of
potential predictors is large. We take the sum of importance across all dummy variables corre-
sponding to a specific feature for final importance scores. All default parameters are used unless
otherwise specified.
The results are shown in Figure 5. Red error bars depict one standard deviation when the exper-

iments are repeated 100 times. From the default split-improvement (Figure 5(a)), we can see that

6The dataset can be downloaded from https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-5-132.
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(a) SI (b) UFI

(c) cforest (d) ranger

Fig. 5. Feature importance for RNA sequence data. A total of 100 trees are built in the forest. Red error bars

depict one standard deviation when the experiments are repeated 100 times. The x-axis denotes two classes

of features: position relative to edited/non−edited site, other measures (cp, fe, dfe).

except several apparently dominant predictors (nucleotides at position −1 and 1, and two continu-
ous features fe and dfe), the importance for the remaining nearly 40 features are indistinguishable.
The feature importance scores given by UFI (Figure 5(b)) and cforest (Figure 5(c)) are very sim-
ilar. Compared with SI, although all methods agree on top three features being the nucleotides
at position −1 and 1, and the continuous one fe, there are some noticeable differences. Another
continuous feature dfe is originally ranked at the fourth place in Figure 5(a), but its importance
scores are much lower by UFI and cforest. The result given by ranger (Figure 5(d)) is slightly dif-
ferent from UFI and cforest, where it seems to have more features with importance scores larger
than 0. In general, we see a large portion of predictors with feature importance close to 0 for three
improved methods, which makes subsequent tasks like feature screening easier.

5.3 Adult Data

As a second example, we will use the Adult Dataset from UCI Machine Learning Repository.7 The
task is to predict whether income exceeds $50K/yr based on census data. We remove all entries
including missing values, and only focus on people from Unites States. In total, there are 27,504
training samples and Table 2 describes relevant feature information. Notice that we add a standard
normal random variable, which is shown in the last row. We randomly sample 5,000 entries for
training.
The results are shown in Figure 6. UFI (Figure 6(b)), cforest(Figure 6(c)), and ranger (Figure 6(d))

display similar feature rankings which are quite different from the original split-improvement
(Figure 6(a)). Notice the random normal feature we added (marked in black) is actually ranked the
third most important in Figure 6(a). This is not surprising as most of the features are categorical,
and even for some continuous features, a large portion of the values are actually 0 (such as capital-
gain and capital-loss). For UFI, cforest and ranger, the random feature is assigned an importance

7https://archive.ics.uci.edu/ml/datasets/adult.
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Table 2. Attribute Description for Adult Dataset

Attribute Description

age continuous

workclass categorical (7)

fnlwgt continuous

education categorical (16)

education-num continuous

marital-status categorical (7)

occupation categorical (14)

relationship categorical (6)

race categorical (5)

sex binary

capital-gain continuous

capital-loss continuous

hours-per-week continuous

random continuous

(a) SI (b) UFI

(c) cforest (d) ranger

Fig. 6. Feature importance for adult data. A total of 20 trees are built in the forest. Red error bars depict

one standard deviation when the experiments are repeated 100 times. The x-axis lists feature names for the

model: Age, fnlgwt, Education, Sex, Capital Gain, Capital Loss, Hours/Week, Workclass, Education, Marital

Status, Occupation, Relationship, Race, and random.

score close to 0. Another feature with big discrepancy is fnlwgt, which is ranked among top three
originally but is the least important for other methods. fnlwgt represents final weight, the number
of units in the target population that the responding unit represents. Thus it is unlikely to have
strong predictive power for the response. For this reason, some analyses deleted this predictor
before fitting models.8

8http://scg.sdsu.edu/dataset-adult_r/.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 26. Publication date: December 2020.

http://scg.sdsu.edu/dataset-adult_r/


Unbiased Measurement of Feature Importance in Tree-Based Methods 26:15

(a) SI (b) UFI

(c) cforest (d) ranger

Fig. 7. Feature importance for Boston housing data. A total of 100 trees are built in the forest. Red error bars

depict one standard deviation when the experiments are repeated 100 times. The x-axis lists feature names

for the model: CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, and random.

5.4 Boston Housing Data

We also conduct analyses on a regression example using the Boston Housing Data,9 which has
been widely studied in previous literature [2, 33]. The dataset contains 12 continuous, one ordinal
and one binary features and the target is median value of owner-occupied homes in $1,000’s. We
add a random feature distributed as N (0, 1) as well.
All four methods agree on two most important features: RM (average number of rooms per

dwelling) and LSTAT (% lower status of the population). In SI, the random feature still appears to
be more important than several other features such as INDUS (proportion of non-retail business
acres per town) and RAD (index of accessibility to radial highways), though the spurious effect is
much less compared to Figure 6(a). As expected, the importance of random feature is close to zero
in UFI. In this example, the SI did not seem to provide misleading result as most of the features
are continuous, and the only binary feature CHAS (Charles River dummy variable) turns out to be
not important.

5.5 Summary

Our empirical studies confirm that the default split-improvement method is biased towards in-
creasing the importance of features with more potential splits. The bias is more severe in deeper
trees. Compared to three other approaches, our proposed method performs the best in a difficult
task to identify the only important feature from 10 noisy features. For real-world datasets, though
we do not have a ground truth for feature importance scores, our method gives similar and mean-
ingful outputs as two state-of-the-art methods cforest and ranger.

9https://archive.ics.uci.edu/ml/machine-learning-databases/housing/.
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6 DISCUSSIONS

Tree-based methods are widely employed in many applications. One of the many advantages is
that these models come naturally with feature importance measures, which practitioners rely on
heavily for subsequent analysis such as feature ranking or screening. It is important that these
measurements are trustworthy.
We show empirically that split-improvement, as a popular measurement of feature importance

in tree-based models, is biased towards continuous features, or categorical features with more
categories. This phenomenon is akin to overfitting in training any machine learning model. We
propose a simple fix to this problem and demonstrate its effectiveness both theoretically and em-
pirically. Though our examples are based on RF, the adjustment can be easily extended to any
other tree-based model.
The original version of split-improvement is the default and only feature importance measure

for RF in scikit-learn, and is also returned as one of the measurements for randomForest library in
R. Statistical analyses utilizing these packages will suffer from the bias discussed in this article.
Our method can be easily integrated into existing libraries, and require almost no additional com-
putational burden. As already observed, while we have used out-of-bag samples as a natural source
of test data, alternatives such as sample partitions—thought of as a subsample of out-of-bag data
for our purposes—can be used in the context of honest trees, or a held-out test set will also suffice.
The use of subsamples fits within the methods used to demonstrate the asymptotic normality of
RF developed in Mentch and Hooker [27]. This potentially allows for formal statistical tests to be
developed based on the unbiased split-improvement measures proposed here. Similar approaches
have been taken in Zhou et al. [44] for designing stopping rules in approximation trees.
However, feature importance itself is very difficult to define exactly, with the possible exception

of linear models, where the magnitude of coefficients serves as a simple measure of importance.
There are also considerable discussion on the subtly introduced when correlated predictors exist,
see for example [14, 38]. We think that clarifying the relationship between split-improvement and
the topology of the resulting function represents an important future research direction.

APPENDICES

A PROOFS OF LEMMA 4.1 AND 4.2

Proof of Lemma 4.1 We want to show that for independent X j and y within nodem, Δ′(θ ∗m )

should ideally be zero when splitting on the jth variable. Rewriting H ′(m) defined in Equation (6)
and we get:

H ′(m) = 1 − pm,1p
′
m,1 − pm,2p

′
m,2

= 1 − pm,1p
′
m,1 − (1 − pm,1) (1 − p ′m,1)

= pm,1 + p
′
m,1 − 2pm,1p

′
m,1.

Using similar expressions for H ′(l ), we have:

H ′(m) − H ′(l ) = (pm,1 + p
′
m,1 − 2pm,1p

′
m,1) − (pl,1 + p

′
l,1 − 2pl,1p

′
l,1).

Given that the test data is independent of the training data and the independence between X j and
y, then in expectation, we should have E (p ′m,1) = E (p ′

l,1
) = p ′1. Thus,

E (H ′(m) − H ′(l )) = (E (pm,1) + E (p
′
m,1) − 2E (pm,1p

′
m,1)) − (E (pl,1) + E (p

′
l,1) − 2E (pl,1p

′
l,1))

= (E (pm,1) + E (p
′
m,1) − 2E (pm,1)E (p

′
m,1)) − (E (pl,1) + E (p

′
l,1) − 2E (pl,1)E (p

′
l,1))

= (E (pm,1) + p
′
1 − 2E (pm,1)p

′
1) − (E (pl,1) + p

′
1 − 2E (pl,1)p ′1)

= (E (pm,1) − E (pl,1)) (1 − 2p ′1).
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Similarly,

E (H ′(m) − H ′(r )) = (E (pm,1) − E (pr,1)) (1 − 2p ′1).

Combined together into Equation (7),

E (Δ′(θ ∗m )) = ωl (H
′(m) − H ′(l )) + ωr (H

′(m) − H ′(r ))
= ωl (E (pm,1) − E (pl,1)) (1 − 2p ′1) + ωr (E (pm,1) − E (pr,1)) (1 − 2p ′1)
= (1 − 2p ′1) (ωmE (pm,1) − ωlE (pl,1) − ωrE (pr,1))

= (1 − 2p ′1) × 0
= 0,

since we always have

ωm × pm,1 = ωl × pl,1 + ωr × pr,1. �

Proof of Lemma 4.2. Rewriting the expression of H (m):

H (m) =
1

nm

nm∑

i=1

(ym,i − ȳm )2

=
1

nm
�
�

nm∑

i=1

y2m,i − nmȳ2m�
�
.

Thus,

Δ(θ ∗m ) = ωmH (m) − (ωlH (l ) + ωrH (r ))

= ωm
1

nm

nm∑

i=1

(y2m,i − nmȳ2m ) − �
�
ωl

1

nl

nl∑

i=1

(y2l,i − nlȳ
2
l ) + ωr

1

nr

nr∑

i=1

(y2r,i − nr ȳ2r )�
�

=
1

n

nm∑

i=1

(y2m,i − nmȳ2m ) − �
�

1

n

nl∑

i=1

(y2l,i − nlȳ
2
l ) +

1

n

nr∑

i=1

(y2r,i − nr ȳ2r )�
�

=
1

n
�
�

nm∑

i=1

(y2m,i − nmȳ2m ) −
nl∑

i=1

(y2l,i − nlȳ
2
l ) −

nr∑

i=1

(y2r,i − nr ȳ2r )�
�

=
1

n
�
�

nm∑

i=1

y2m,i −
nl∑

i=1

y2l,i −
nr∑

i=1

y2r,i
�
�
− 1

n
(nmȳ

2
m − nlȳ2l − nr ȳ

2
r )

=
1

n
(nlȳ

2
l + nr ȳ

2
r − nmȳ2m )

= ωlȳ
2
l + ωr ȳ

2
r − ωmȳ

2
m .

By Cauchy–Schwarz inequality,

(nlȳ
2
l + nr ȳ

2
r ) (nl + nr ) ≥ (nlȳl + nr ȳr )

2 = (nmȳm )2,

thus

Δ(θ ∗m ) =
1

n
(nlȳ

2
l + nr ȳ

2
r − nmȳ2m ) ≥ 0

unless ȳl = ȳr = ȳm .
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Similarly for H ′(m):

H ′(m) =
1

n′m

n′m∑

i=1

(y ′m,i − ȳm )2

=
1

n′m

n′m∑

i=1

y ′2m,i − 2
1

n′m

n′m∑

i=1

y ′m,iȳm +
1

n′m

n′m∑

i=1

ȳ2m

=
1

n′m

n′m∑

i=1

y ′2m,i − 2ȳ ′mȳm + ȳ2m

and thus

Δ′ (θ ∗m ) = ωmH ′ (m) − (ωlH
′ (l ) + ωrH

′ (r ))

= ωm
��
�

1

n′m

n
′
m∑

i=1

y′2
m,i − 2ȳ′mȳm + ȳ

2
m

��
�
− ωl

��
�

1

n′
l

n
′
l∑

i=1

y′2
l,i − 2ȳ

′
l
ȳl + ȳ

2
l

��
�
− ωr

��
�

1

n′r

n
′
r∑

i=1

y′2
r ,i − 2ȳ′r ȳr + ȳ2

r

��
�

=
��
�
ωm

1

n′m

n
′
m∑

i=1

y′2
m,i − ωl

1

n′
l

n
′
l∑

i=1

y′2
l,i − ωr

1

n′r

n
′
r∑

i=1

y′2
r ,i

��
�
+ (ωmȳ2

m − ωl ȳ
2
l
− ωr ȳ

2
r ) − 2(ωmȳ′mȳm − ωl ȳ

′
l
ȳl − ωr ȳ

′
r ȳr )

=
��
�
ωm

1

n′m

n
′
m∑

i=1

y′2
m,i − ωl

1

n′
l

n
′
l∑

i=1

y′2
l,i − ωr

1

n′r

n
′
r∑

i=1

y′2
r ,i

��
�
− Δ(θ ∗m ) − 2(ωmȳ′mȳm − ωl ȳ

′
l
ȳl − ωr ȳ

′
r ȳr ) .

By the independence assumptions, we have

E
1

n′m

n′m∑

i=1

y ′2m,i = E
1

n′
l

n′
l∑

i=1

y ′2l,i = E
1

n′r

n′r∑

i=1

y ′2r,i ,

and

Eȳ ′m = Eȳ ′l = Eȳ ′r .

We can conclude that

E (Δ(θ ∗m ) + Δ′(θ ∗m )) = 0. �

B ADDITIONAL SIMULATION RESULTS

Our simulation experiments in Sections 3 and 4 operate by creating dummy variables for categor-
ical features. It would be interesting to see the results if we instead treat those as ordered discrete
values.
Figures 8 and 9 show the original version of split-improvement corresponding to Figures 1 and 2.

Similar phenomenon is again observed: it over estimates importance of continuous features and
categorical features with more categories. It is worth noticing that the discrepancy between con-
tinuous and categorical features is even larger in this case. Unlike in Figure 1(a), X1 is always
ranked the most important. This results from the fact that by treating categorical features as or-
dered discrete ones, it limit the number of potential splits compared to using dummy variables.
Not surprisingly, our proposedmethodworkwell in declaring all five features have no predictive

power or finding the most informative one, as shown in Figures 10 and 11.
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(a) Classification (b) Regression

Fig. 8. Split-improvement measures on five predictors, where we treat categorical features as ordered dis-

crete values. Box plot is based on 100 repetitions. A total of 100 trees are built in the forest and maximum

depth of each tree is set to 5.

(a) Classification (b) Regression

Fig. 9. Average feature importance ranking across different signal strengths over 100 repetitions, where we

treat categorical features as ordered discrete values. A total of 100 trees are built in the forest and maximum

depth of each tree is set to 5.

(a) Classification (b) Regression

Fig. 10. Unbiased split-improvement, where we treat categorical features as ordered discrete values. Box

plot is based on 100 repetitions. A total of 100 trees are built in the forest and maximum depth of each tree

is set to 5. Each tree is trained using bootstrap samples and out-of-bag samples are used as test set.
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(a) Classification (b) Regression

Fig. 11. Unbiased feature importance ranking across different signal strengths averaged over 100 repetitions,

where we treat categorical features as ordered discrete values. A total of 100 trees are built in the forest and

maximum depth of each tree is set to 5. Each tree is trained using bootstrap samples and out-of-bag samples

are used as test set.
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