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1. Introduction

Suppose we observe independent and identically distributed (i.i.d.) data vectors
{(yi,xi) : 1 ≤ i ≤ n} from (y,x) that follows the linear model

y = xTβ∗ + ε =

d∑
j=1

β∗
j xj + ε, (1.1)

where x = (x1, . . . , xd)
T ∈ R

d with x1 ≡ 1 is the predictor, β∗ = (β∗
1 , . . . , β

∗
d)

T

is the vector of regression coefficients with β∗
1 denoting the intercept, and ε is

an error term satisfying E(ε|x) = 0. This setting includes the location-scale
model in which ε = σ(x)e, σ(·) : Rd �→ R is an unknown function, and e is
independent of x and satisfies E(e) = 0. We restrict attention to the high-
dimensional regime in which the number of features d exceeds the sample size
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n, and β∗ ∈ R
d is s-sparse with s � n. Of particular interest is the case where

the error variable is asymmetric and heavy-tailed with only bounded second
moment.

Since the invention of Lasso in the seminal work of [46], a variety of variable
selection methods have been developed for finding a small group of covariates
that are associated with the response from a large pool. The Lasso estima-
tor β̂Lasso solves the convex optimization problem minβ∈Rd (2n)−1

∑n
i=1(yi −

xT
i β)

2 + λ‖β‖1, where λ > 0 is the regularization parameter. The Lasso is
an �1-penalized least squares method in nature: the quadratic loss is used as
a goodness of fit measure and the �1-norm induces sparsity. To achieve better
performance under different circumstances, several Lasso variants have been pro-
posed and studied; see [3, 5, 14, 43, 51, 56, 57] to name a few. We refer to [8, 20]
and [49] for comprehensive and systematic introductions of high-dimensional
statistical methods and theory.

As a general regression analysis method, the Lasso, along with many of its
variants, has two potential downsides. First, the regularized least squares meth-
ods are sensitive to the tails of error distributions, even though various alterna-
tive penalties have been proposed to achieve better model selection performance.
Consider a Lasso-type estimator that solves the penalized empirical risk mini-
mization minβ∈Rp{(1/n)

∑n
i=1 �(yi − xT

i β) + λ‖β‖1}, where �(x) : R �→ [0,∞)
is a general loss function. The effects of the loss and noise on estimation er-
ror are coded in the vector {�′(εi)}ni=1. When � is the quadratic loss and ε is
heavy-tailed, this vector is likely to have relatively many large coordinates. As
a result, the combination of the rapid growth of � with heavy-tailed sampling
distribution inevitably leads to outliers, which will eventually be translated into
spurious discoveries. Secondly, the �1-penalty introduces nonnegligible estima-
tion bias [14, 56]. For correlated designs, the bias of the Lasso may offset true
signals and creates spurious effects, leading to inconsistency in support recovery.
Technically, this is expressed as the irrepresentable condition for the selection
consistency of the Lasso [55]. Under restricted eigenvalue type conditions, the
Lasso and its sorted variant Slope [1, 2] do achieve rate optimality for predic-
tion and coefficient estimation. However, they do not benefit much from strong
signals because the bias does not diminish as signal strengthens. Under the re-
stricted isometry property (on the design) and Gaussian errors, [39] derived the

lower bound for the minimax risk: inf β̂ supβ∗∈Ω(s,a) E‖β̂ − β∗‖22 � σ2s/n when

a � σ
√
log(ed/s)/n, where Ω(s, a) = {β ∈ Rd : ‖β‖0 ≤ s,minj:βj �=0 |βj | ≥ a}.

For estimating such sparse vectors with sufficiently strong signals, Lasso can
not achieve the oracle rate without a variant of the irrepresentable condition
[37, 55], which is a condition on how strongly the important and unimportant
variables can be correlated. This condition, however, is in general very restric-
tive; see [56] for counterexamples and numerical demonstrations. Recently, [23]
provided precise descriptions of the lower and upper irrepresentable conditions,
proven to be necessary and sufficient for the selection consistency of Lasso, and
also pointed that the Lasso estimator cannot achieve selection consistency and√
n-consistency simultaneously under general conditions.



3290 X. Pan et al.

In the presence of heavy-tailed noise, outliers occur more frequently and may
have a significant impact on (regularized) empirical risk minimization when the
loss grows quickly. When the regression error ε only has finite second moment,
the Lasso still achieves the minimax rate

√
s log(d)/n (under �2-norm) but with

worse deviations [28]. To reduce the ill-effects of outliers, a widely recognized
strategy is to use a robust loss function that is globally Lipschitz continuous
and locally quadratic. A prototypical example is the Huber loss [21]:

�τ (x) =

{
x2/2 if |x| ≤ τ,
τ |x| − τ2/2 if |x| > τ,

(1.2)

where τ > 0 is a robustification parameter that controls the tradeoff between
the robustness and bias. Next, to alleviate the nonnegligible estimation bias in-
troduced by �1-regularization, [14] introduced a family of folded-concave penal-
ties, including the smoothly clipped absolute deviation (SCAD) penalty [14],
minimax concave (MC+) penalty [52], and the capped �1-penalty [41, 54].
These ideas motivate the following nonconvex (folded concave) regularized M -
estimator

β̂ ∈ argmin
β∈Rd

{
L̂τ (β) +

d∑
j=1

pλ(βj)

}
, (1.3)

where L̂τ (β) := (1/n)
∑n

i=1 �τ (yi −xT
i β) is the empirical loss, τ > 0 is a robus-

tification parameter, and pλ : R �→ [0,∞) is a concave penalty function with a
regularization parameter λ > 0. We refer to [53] for a comprehensive survey of
folded concave regularized methods.

In practice, it is inherently difficult to solve the nonconvex optimization prob-
lem (1.3) directly. Statistical properties, such as the rate of convergence under
various norms and oracle properties, are established for either the hypothetical
global optimum that is unobtainable by any practical algorithm in polynomial
time, or some local optimum that exists somewhere like a needle in a haystack.
To mitigate the gap between statistical theory and algorithmic complexity, we
apply an iteratively reweighted �1-penalized algorithm, which originates from
[58], to adaptive Huber regression. This multi-step regularized robust regression
procedure (provably) yields an estimator with desired oracle properties, and is
computationally efficient because it only involves solving a sequence of (uncon-
strained) convex programs. Our theoretical analysis is based on and improves
upon [16], who established the statistical and algorithmic theory for the iter-
atively reweighted �1-penalized least squares regression estimator. The aim of
this paper is to explore a general class of robust loss functions, typified by the
Huber loss, not merely for the purpose of generality but owing to a real downside
of the quadratic loss. Typified by the Huber loss, our general principle applies
to a class of robust loss functions as will be discussed in Section 4. Software im-
plementing the proposed procedure and reproducing our computational results
is available at https://github.com/XiaoouPan/ILAMM.

https://github.com/XiaoouPan/ILAMM
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1.1. Related literature

Nonasymptotic or finite-sample analysis of regularized regression methods be-
yond least squares, such as regularized empirical risk minimization (ERM) or
M -estimation with a non-quadratic loss, can be divided into three categories
depending on the form of the regularizer/penalty.

�1-regularization: For high-dimensional sparse linear models, [38] and [15],
respectively, proposed a robust version of Lasso based on geometric median
and �1-penalized Huber’s M -estimator. Both estimators achieve sub-Gaussian
deviation bounds when the regression error only has finite variance. In such a
heavy-tailed case, [28] showed that the Lasso still achieves the minimax rate
under expectation but with much worse deviations. When the regression error
only has finite (1 + δ)-th absolute moment for some δ ∈ (0, 1), [44] established
exponential deviation bounds for �1-penalized adaptive Huber regression esti-
mator with a more delicate choice of the robustification parameter. For more
general penalized M -estimators with a convex and Lipschitz continuous loss, [1]
established both estimation bounds and sharp oracle inequalities. Their results
do not require a local strong convexity on the loss function, thus also including
the hinge loss and quantile regression loss. For nonconvex loss functions with a
redescending derivative, typified by Tukey’s bisquare loss, [36] proved the sta-
tistical consistency of the �1-penalized estimator subject to an �2-constraint to
stationary points.

Folded concave regularization: For folded concave penalized M -estima-
tors subject to a convex side constraint, [31] and [32] were among the first to
provide rigorous statistical and algorithmic theory for local optima. They quan-
tified statistical accuracy by providing bounds on �1/�2- and prediction errors
between stationary points and the population-level optimum. They also pro-
vided conditions under which the stationary point is unique, and proposed a
composite gradient algorithm for provably solving the constrained optimization
problem efficiently. In the context of generalized linear models with a sufficiently
smooth link function and bounded covariates, [32] proved under the scaling
n � s3 log(d) that the nonconvex regularized program subject to an �1-ball con-
straint has a unique stationary point given by the oracle estimator with high
probability. For linear regression with symmetric heavy-tailed errors, [30] studied
statistical consistency and asymptotic normality of nonconvex regularized ro-
bust M -estimators (also subject to an �1-ball constraint) with a locally strongly
convex loss. For sub-Gaussian covariates, [30] proved the uniqueness of a sta-
tionary point which has �2- and �1-error bounds in the order of

√
s log(d)/n and

s
√

log(d)/n, respectively. Furthermore, under the scaling n � max{s2, s log(d)}
and the beta-min condition ‖β∗

S‖min � λ +
√

log(s)/n, this stationary point
coincides with the oracle estimator.

In this paper, we address nonconvex regularized robust regression from a
different angle. Motivated by the local linear approximation (LLA) algorithm
proposed by [58], we apply an iteratively reweighted �1-penalized algorithm to
adaptive Huber regression, which involves solving a sequence of (unconstrained)
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convex programs. We simultaneously analyze the statistical property and algo-
rithmic complexity of the solutions produced by such an iterative procedure.
For sub-exponential covariates and asymmetric error with finite variance, we
show that the multi-step penalized estimator, after O(log s + log(log d)) itera-
tions, achieves exponential deviation bounds with �2- and �1-errors in the order
of

√
s/n and s/

√
n, respectively, under the scaling n � s log(d) and the above

beta-min condition. The strong oracle property can be obtained under slightly
stronger moment condition and the scaling n � max{s2, s log(d)}.
�0-regularization: Another popular class of sparse recovery algorithms is
based on directly solving �0-constrained or �0-penalized empirical risk minimiza-
tions, which naturally produces sparse solutions. Such a formation is NP-hard,
and believed to be intractable in practice. Despite its computational hardness,
many practically useful algorithms have been proposed to solve �0-regularized
ERM, while the statistical properties beyond least squares regression are much
less studied. We refer to [4] and [19] for two comprehensive survey articles on
�0-regularized regression methods.

The idea of having the robustification parameter grow with the sample size
in order to achieve exponential deviations even when the sampling distribu-
tion only has finite variance dates back to [9] in the context of mean estimation.
Therefore, the robustness considered in this paper is primarily about nonasymp-
totic exponential deviation of the estimator versus polynomial tail of the error
distribution. The resulting procedure does sacrifice a fair amount of robustness
to adversarial contamination of the data. To echo the message in [9], the motiva-
tion of this work is different from and should not be confused with the classical
notion of robust statistics.

From a variable selection perspective, this paper focuses on oracle properties
of multi-step penalized robust regression estimators when the signal is suffi-
ciently strong. While allowing for heavy-tailed noise, the high-dimensional fea-
ture vector x ∈ R

d is assumed to have either sub-exponential or sub-Gaussian
tails. For more complex problems in which both the covariates and noise can
be (i) heavy-tailed and/or (ii) adversarially contaminated, the estimator ob-
tained by minimizing a robust loss function is still sensitive to outliers in the
feature space. To achieve robustness in both feature and response spaces, recent
years have witnessed a rapid development of the “median-of-means” (MOM)
principle, which dates back to [40] and [22], and a variety of MOM-based proce-
dures for regression and classification in both low- an high-dimensional settings
[12, 13, 26, 27, 33, 35]. We refer to [34] for a recent survey. An interesting open
problem is how to efficiently incorporate the MOM principle with nonconvex
regularization or iteratively reweighted �1-regularization so as to achieve high
degree of robustness and variable selection consistency simultaneously.

1.2. Notation

Let us summarize our notation. For every integer k ≥ 1, we use Rk to denote the
k-dimensional Euclidean space. The inner and Hadamard products of any two
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vectors u = (u1, . . . , uk)
T,v = (v1, . . . , vk)

T ∈ R
k are defined by uTv = 〈u,v〉 =∑k

i=1 uivi and u◦v = (u1v1, . . . , ukvk)
T, respectively. We use ‖·‖p (1 ≤ p ≤ ∞)

to denote the �p-norm in R
k: ‖u‖p = (

∑k
i=1 |ui|p)1/p and ‖u‖∞ = max1≤i≤k |ui|.

Moreover, we write ‖u‖min = min1≤i≤k |ui|. For k ≥ 2, Sk−1 = {u ∈ R
k :

‖u‖2 = 1} denotes the unit sphere in R
k. For any function f : R �→ R and

vector u = (u1, . . . , uk)
T ∈ Rk, we write f(u) = (f(u1), . . . , f(uk))

T ∈ Rk.
For k ≥ 2, Ik represents the identity/unit matrix of size k. For any k × k

symmetric matrix Σ ∈ R
k×k, ‖Σ‖2 is the operator norm of Σ, and we use

λmin(Σ) and λmax(Σ) to denote the minimal and maximal eigenvalues of Σ,
respectively. For a positive semidefinite matrix Σ ∈ R

k×k, ‖ · ‖Σ denotes the
norm linked to Σ given by ‖u‖Σ = ‖Σ1/2u‖2, u ∈ R

k. For any two real numbers
u and v, we write u∨v = max(u, v) and u∧v = min(u, v). For any integer d ≥ 1,
we write [d] = {1, . . . , d}. For any set S, we use |S| to denote its cardinality,
i.e., the number of elements in S.

2. Regularized Huber M-estimation

We first revisit the �1-penalized Huber regression estimator in Section 2.1, and
point out two different regimes for the robustification parameter τ . In Sec-
tion 2.2, we propose a multi-step procedure, which is closely related to folded
concave regularized Huber regression, for fitting high-dimensional sparse models
with heavy-tailed noise. This multi-step penalized robust regression method not
only is computationally efficient, but also achieves optimal rate of convergence
and oracle properties, as will be studied in Sections 2.3 and 2.4. Throughout,
S = supp(β∗) = {1 ≤ j ≤ d : β∗

j �= 0} ⊆ [d] denotes the active set and s = |S|
is the sparsity.

2.1. �1-penalized Huber regression

Given i.i.d. observations {(yi,xi)}ni=1 from the linear model (1.1), consider the
�1-regularized Huber M -estimator, which we refer to as the Huber-Lasso,

β̂H-Lasso ∈ argmin
β∈Rd

{L̂τ (β) + λ‖β‖1}, (2.1)

where L̂τ (·) is the empirical loss function defined in (1.3). Statistical properties
of the penalized Huber M -estimator have been studied by [1, 15, 24, 30] under
different assumptions. A less-noticed problem is the connection between the
robustification parameter and the error distribution, which in turn quantifies
the tradeoff between robustness and unbiasedness. Recent studies by [44] reveal
that the use of Huber loss is particularly suited for heavy-tailed problems in both
low and high dimensions. With a properly chosen robustification parameter,
calibrated by the noise level, sample size and parametric dimension, the effects
of the heavy-tailed noise can be removed or dampened.

Remark 2.1. In practice, it is natural to leave the intercept or a given subset of
the parameters unpenalized in the penalized M -estimation framework. Denote
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by R be a user-specified index set of unpenalized parameters, which contains at
least index 1. A modified Huber-Lasso estimator is then defined as the solution
to minβ∈Rd{L̂τ (β)+λ‖βRc‖1}, where ‖βRc‖1 =

∑
j∈Rc |βj |. Similar theoretical

analysis can be carried out with slight modifications, and thus will be omitted
for ease of exposition.

We first impose the following assumptions on the data generating process.
The (random) covariate vectors are assumed to be sub-exponential/sub-gamma
[6], and we allow the regression errors to be heavy-tailed and asymmetric.

Condition 2.1. There exist some constant σx, c0 ≥ 1 such that P(|uTx| ≥
σxt) ≤ c0e

−t for all u ∈ Sd−1 and t ≥ 0. For simplicity, we set c0 = 1. Moreover,
Σ = E(xxT) is positive definite with ρl = λmin(Σ) > 0. The regression error ε
satisfies E(ε|x) = 0 and E(ε2|x) ≤ σ2

2 almost surely.

Theorem 2.1. Assume that Condition 2.1 holds for model (1.1). For every

t > 0, any optimal solution β̂H-Lasso to the convex program (2.1) with τ �
σ2

√
n/(log d+ t) and λ � σ2

√
(log d+ t)/n satisfies

‖β̂H-Lasso − β∗‖2 ≤ c1σ2(log d+ t)1/2
√

s

n
and

‖β̂H-Lasso − β∗‖1 ≤ c2σ2(log d+ t)1/2
s√
n

(2.2)

with probability at least 1− 3e−t as long as n ≥ c3(s log d+ t), where c1–c3 are
constants that are independent of (n, d, s) and t.

Theorem 2.1 provides the error bounds for the one-step penalized estimator,
and paves the way for our subsequent analysis for the multi-step procedure.
Theorem 2.1 is a modified version of Theorem B.2 in [44] (when δ = 1) with
an explicit relation between deviation bound and confidence level under slightly
relaxed moment condition on the design. When the (conditional) distribution

of ε is symmetric, β∗ can be identified as β∗ ∈ argminβ∈Rd EL̂τ (β). Then, with
a fixed τ (e.g. τ � σ2), Theorem 2.1 can also be obtained as a special case of
Theorem 2.1 in [1] when the feature vector x is sub-Gaussian.

2.2. Iteratively reweighted �1-penalized Huber regression

For fitting sparse regression models, the Lasso-type estimators typically exhibit
a suboptimal rate of convergence, as compared to the oracle rate achieved by
nonconvex regularization methods, under a minimum signal strength condition
[39, 53], also known as the beta-min condition [8, Section 7.4]. However, as noted
previously, directly solving the nonconvex optimization problem (1.3) is compu-
tationally challenging. Moreover, statistical properties are only established for
the hypothetical global optimum (or some stationary point), which is typically
unobtainable by any polynomial time algorithm.

Inspired by the local linear approximation to folded concave penalties [58],
we consider a multi-stage procedure that solves a sequence of convex programs
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up to a prespecified optimization precision. This is an iteratively reweighted
�1-penalized algorithm, which is similar in spirit to the iteratively reweighted
basis-pursuit algorithms studied in [18]. Let pλ(·) be a differentiable penalty

function as in (1.3) and recall that L̂τ (·) is the empirical loss function. Starting

with an initial estimate β̂(0) = (β̂
(0)
1 , . . . , β̂

(0)
d )T, consider a sequence of convex

optimization programs {(P�)}�≥1:

min
β=(β1,...,βd)T

{
L̂τ (β) +

d∑
j=1

p′λ(|β̂
(�−1)
j |)|βj |

}
(P�) (2.3)

for � = 1, 2, . . ., where β̂(�) = (β̂
(�)
1 , . . . , β̂

(�)
d )T is the optimal solution to program

(P�). Following [53], we assume the following conditions on the penalty function
pλ.

Condition 2.2. The penalty function pλ is of the form pλ(t) = λ2p(t/λ) for
t ∈ R, where p : R �→ [0,∞) satisfies: (i) p(t) = p(−t) for all t and p(0) = 0;
(ii) p is nondecreasing on [0,∞); (iii) p is differentiable almost everywhere on
(0,∞) and limt→0+ p′(t) = 1; (iv) p′(t1) ≤ p′(t2) for all t1 ≥ t2 > 0.

Prototypical examples of the penalty function p(·) in Condition 2.2 include
the �1-function, the SCAD penalty [14], MC+ penalty [52], and capped-�1 func-
tion [54].

1. (SCAD) p(t) =
∫ |t|
0

min{1, (1 − u−1
a−1 )+}du and p′(t) = sign(t)min{1, (1 −

|t|−1
a−1 )+} for some a > 2. By a Bayesian argument, [14] suggested the choice
of a = 3.7.

2. (MC+) p(t) =
∫ |t|
0

(1 − u/a)+du and p′(t) = sign(t)(1 − |t|/a)+ for some
a > 1.

3. (Capped-�1) p(t) = min(a, |t|) and p′(t) = I(|t| ≤ a) for some a > 0.

For each � ≥ 1, program (P�) corresponds to a weighted �1-penalized empir-
ical Huber loss minimization of the form

min
β∈Rd

{L̂τ (β) + ‖λ ◦ β‖1}, (2.4)

where λ = (λ1, . . . , λd)
T is a d-vector of regularization parameters with λj ≥ 0.

By convex optimization theory, any optimal solution β̂ to the convex program
(2.4) satisfies the first-order condition

∇L̂τ (β̂) + λ ◦ ξ = 0d for some ξ = (ξ1, . . . , ξd)
T ∈ ∂‖β̂‖1 ⊆ [−1, 1]d,

where ∇L̂τ (β) = (−1/n)
∑n

i=1 �
′
τ (yi − xT

i β)xi.

Definition 2.1. Following the terminology in [16], for a prespecified tolerance

level ε > 0, we say β̃ is an ε-optimal solution to (2.4) if ωλ(β̃) ≤ ε, where

ωλ(β) := min
ξ∈∂‖β‖1

‖∇Lτ (β) + λ ◦ ξ‖∞, β ∈ R
d. (2.5)
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In view of Definition 2.1, for a prespecified sequence of tolerance levels {ε�}�≥1,

we use β̃(�) = (β̃
(�)
1 , . . . , β̃

(�)
d )T to denote an ε�-optimal solution to program (P�),

that is,

min
β∈Rd

{L̂τ (β) + ‖λ(�−1) ◦ β‖1},

where λ(�−1) := p′λ(|β̃(�−1)|). For simplicity, we consider a trivial initial esti-

mator β̃(0) = 0. Since p′λ(|β̃
(0)
j |) = p′λ(0) = λ for j = 1, . . . , d, the program

(P1) coincides with that in (2.1). In Section 3, we will describe an iterative
local adaptive majorize-minimization (I-LAMM) algorithm which produces an
ε-optimal solution to (2.4) after a few iterations.

The above procedure is sequential, and can be categorized into two stages:
contraction (� = 1) and tightening (� ≥ 2). As we will see in the next subsec-
tion, even starting with a trivial initial estimator that is fairly remote from the
true parameter, the contraction stage will produce a reasonably good estimator
whose statistical error is of the order

√
log(d) · s/n. Essentially, the contraction

stage is equivalent to the �1-penalized Huber regression in (2.1). A tightening
stage further refines this coarse contraction estimator consecutively, and even-
tually gives rise to an estimator that achieves the oracle rate

√
s/n under a

weak beta-min condition.

2.3. Deterministic analysis

To analyze the statistical properties of {β̃(�)}�≥1, we first define a “good” event
regarding the restricted strong convexity (RSC) property of the empirical Huber
loss over a local �1-cone.

Definition 2.2. For some r, l, κ > 0, define the event

E1(r, l, κ) =
{

inf
β∈β∗+B(r)∩C(l)

〈∇L̂τ (β)−∇L̂τ (β
∗),β − β∗〉

‖β − β∗‖22
≥ κ

}
, (2.6)

where B(r) = B
d(r) = {δ ∈ R

d : ‖δ‖2 ≤ r} is an �2-ball and C(l) := {δ ∈ R
d :

‖δ‖1 ≤ l‖δ‖2} is an �1-cone. Here β + B(r) ∩ C(l) = {β + δ : δ ∈ B(r) ∩ C(l)}.
Throughout the following, we assume that the penalty function pλ(·) satisfies

Condition 2.2. Moreover, define

w∗ = ∇L̂τ (β
∗)−∇Lτ (β

∗) and b∗τ = ‖∇Lτ (β
∗)‖2, (2.7)

where Lτ (β) = EL̂τ (β) is the population loss. Here w∗ ∈ R
d is the centered

gradient vector which corresponds to the stochastic error, and b∗τ quantifies the
(deterministic) approximation bias induced by the Huber loss. See Lemma A.1
in the Supplementary Material for an upper bound on the bias.

Remark 2.2. In this paper, we introduce the bias term b∗τ into the results
primarily because the error distribution, if not specified, can be asymmetric.
This term is typically nullified in the literature due to two reasons. First, under
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the symmetry assumption that ε (conditional on x) is symmetric around zero,
E{�′τ (ε)x} = 0 for any τ > 0. Secondly, it is sometimes assumed that xi and
εi are independent, and both have zero means. Again, for any τ > 0, it follows
that E{�′τ (ε)x} = E{�′τ (ε)} · E(x) = 0. In these two scenarios, the bias term b∗τ
vanishes for any given τ .

Proposition 2.1. Let λ, r, κ > 0 satisfy

λ ≥ s−1/2b∗τ , r > 2.5κ−1s1/2λ. (2.8)

Then, conditioned on the event E1(r, l, κ)∩{λ ≥ 2(‖w∗‖∞+ε1)} with l = 6s1/2,

any ε1-optimal solution β̃(1) of program (P1) satisfies

‖β̃(1) − β∗‖2 ≤ 2.5κ−1s1/2λ. (2.9)

Proposition 2.1 is deterministic in the sense that the error bound (2.9) holds
conditioning on the event E1(r, l, κ)∩{λ ≥ 2(‖w∗‖∞+ε1)}. Under Condition 2.1
(sub-exponential design and heavy-tailed error with finite variance), we will
establish the delicate choices of λ, ε1, r and sample size requirement in order
that this event occurs with high probability. Specifically, we will show that

‖β̃(1) − β∗‖2 � σ2

√
s log(d)

n
with high probability as long as n � s log(d).

Next, we investigate the statistical properties of {β̃(�)}�≥2 in the tighten-
ing stage. We impose a minimum signal strength condition on ‖β∗

S‖min =
minj∈S |β∗

j |, so that the error rate obtained in Proposition 2.1 is improvable
[39, 53]. Recall that s = |S|.
Proposition 2.2. Assume there exists some γ > 0 such that p′(γ) > 0. Let

λ ≥ s−1/2b∗τ , κ >
√
5/(2γ), (2.10)

and choose c > 0 so that

0.5p′(γ)(c2 + 1)1/2 + 2 = cκγ. (2.11)

Set l = {2 + 2
p′(γ)}(c2 + 1)1/2s1/2 + 2

p′(γ)s
1/2 and let r > 0 satisfy

rcrude := cγs1/2λ ≤ r. (2.12)

Under the minimum signal strength condition ‖β∗
S‖min ≥ γλ, and conditioned

on event E1(r, l, κ) ∩ {λ ≥ 2
p′(γ) (‖w∗‖∞ +max�≥1 ε�)}, the ε�-optimal solutions

β̃(�) (� ≥ 2) satisfy

‖β̃(�) − β∗‖2
≤ δ · ‖β̃(�−1) − β∗‖2 + κ−1

{
‖p′λ(|β∗

S | − γλ)‖2 + ‖w∗
S‖2 + s1/2ε� + b∗τ

}︸ ︷︷ ︸
=:rora

.

(2.13)
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where δ =
√
5/(2γκ) ∈ (0, 1). Furthermore, it holds

‖β̃(�) − β∗‖2 ≤ δ�−1rcrude + (1− δ)−1rora for any � ≥ 2. (2.14)

Proposition 2.2 unveils how the tightening stage improves the statistical rate:
every tightening step shrinks the estimation error from the previous step by a
δ-fraction. The second term on the right-hand side of (2.13) or (2.14) dominates
the �2-error, and up to constant factors, consists of three components,

‖p′λ(|β∗
S | − γλ)‖2︸ ︷︷ ︸

shrinkage bias

, ‖w∗
S‖2 + b∗τ︸ ︷︷ ︸

oracle rate plus approx. bias

and s1/2ε�︸ ︷︷ ︸
optimization error

.

We identify ‖p′λ(|β∗
S |−γλ)‖2 as the shrinkage bias induced by the penalty func-

tion. This explains the limitation of the �1-penalty pλ(t) = λ|t| whose derivative
p′λ(t) = λ sign(t) (t �= 0) does not vanish regardless of the signal strength. In-
tuitively, choosing a proper penalty function pλ(·) with a descending derivative
reduces the bias as signal strengthens. The second term, ‖w∗

S‖2+b∗τ , reveals the
oracle property. To see this, consider the oracle estimator defined as

β̂ora = argmin
β:βSc=0

L̂τ (β) = argmin
β:βSc=0

1

n

n∑
i=1

�τ (yi − xT

i,SβS). (2.15)

Since s = |S| � n, the finite sample theory for Huber’s M -estimation in low

dimensions [44] applies to β̂ora, indicating that with high probability,

‖β̂ora − β∗‖2 � ‖w∗
S‖2 + b∗τ .

According to Definition 2.1, the last term s1/2ε� demonstrates the optimization
error, which will be discussed in Section 3.

The above results provide conditions under which the sequence of estima-
tors {β̃(�)}�≥1 satisfies the contraction property and, meanwhile, falls in a local
neighborhood of β∗. Another important feature of the proposed procedure is
that the resulting estimator satisfies the strong oracle property, as demonstrated
by the following result. Let {β̂(�)}�≥1 be any optimal solutions to the convex

programs {(P�)}�≥1 in (2.3) with β̂(0) = 0. Similarly to Definition 2.2, we define
the following event in regard of the restricted strong convexity of the empirical
Huber loss. For some r, l, κ > 0,

E2(r, l, κ) :=
{

inf
(β′,β′′)∈C(r,l)

〈∇L̂τ (β
′)−∇L̂τ (β

′′),β′ − β′′〉
‖β′ − β′′‖22

≥ κ

}
. (2.16)

where C(r, l) = {(β1,β2) : β1 ∈ β2 + B(r) ∩ C(l),β2 ∈ β∗ + BΣ(r), supp(β2) ⊆
S} and BΣ(r) = {β ∈ R

d : ‖β‖Σ ≤ r}. Moreover, define the “oracle” score
wora ∈ Rd as

wora = ∇L̂τ (β̂
ora), (2.17)

which satisfies wora
Sc = 0.
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Proposition 2.3. Suppose there exist constants γ1 > γ0 > 0 such that p′(γ0) ∈
(0, 1/2], p′(γ1) = 0. For a prespecified δ ∈ (0, 1), let κ ≥ 1.25/(δγ0) and choose
c0 > 0 so that

1 + 0.5p′(γ0)(c
2
0 + 1)1/2 = c0κγ0. (2.18)

Moreover, set l = {2 + 2
p′(γ0)

}(c20 + 1)1/2s1/2 and let r ≥ c0γ0s
1/2λ. Then,

conditioned on the event{
‖wora‖∞ ≤ p′(γ0)

2
λ

}
∩
{
‖β̂ora − β∗‖∞ ≤ λ

5δκ

}
∩
{
‖β̂ora − β∗‖Σ ≤ r

}
∩ E2(r, l, κ), (2.19)

the strong oracle property holds under the minimum signal strength condition
‖β∗

S‖min ≥ (γ0 + γ1)λ: β̂
(�) = β̂ora for all � ≥ �log(s1/2/δ)/ log(1/δ)�.

The proofs of Propositions 2.1, 2.2 and 2.3 are provided in the Supplementary
Material.

2.4. Random analysis

In this section, we complement the previous deterministic results with proba-
bilistic bounds on the random events of interest. To be more specific, events
E1(r, l, κ) and E2(r, l, κ) correspond to the RSC properties of L̂τ (·). The order

of the regularization parameter λ depends on ‖w∗‖∞, where w∗ = ∇L̂τ (β
∗)−

∇Lτ (β
∗) is the centered score function evaluated at β∗. The oracle conver-

gence rate depends on the �2-norm of w∗
S ∈ R

s, the subvector of w∗ indexed
by S.

Under Condition 2.1, x = (x1, . . . , xd)
T is sub-exponential and Σ = E(xxT) =

(σjk)1≤j,k≤d is positive definite. Here we do not require the components of x to
have zero means. Moreover, given the true active set S ⊆ [d] of β∗, we define
the following s× s principal submatrix of Σ:

S = E(xSx
T

S), where xS ∈ R
s is the subvector of x indexed by S. (2.20)

Throughout, “�” and “�” stand for “≤” and “≥”, respectively, up to constants
that are independent of (n, d, s) but might depend on those in Condition 2.1.
In particular, define

ρx = sup
u∈Rd

{E(xTu)4}1/4/{E(xTu)2}1/2

= sup
u∈Sd−1

{E(uTΣ−1/2x)4}1/4 ≥ 1, (2.21)

which is a constant depending only on σx.
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Proposition 2.4. Assume Condition 2.1 holds, and let ρu = λmax(Σ). Then,
for any t ≥ 0,

inf
β∈β∗+B(r)∩C(l)

〈∇L̂τ (β)−∇L̂τ (β
∗),β − β∗〉

‖β − β∗‖22

≥ 3

4
ρl − C0σx

τ l

r

√
log(2d)

n
− ρuρ

2
x

√
2t

n
−
(
τ

r

)2
t

3n
(2.22)

holds with probability at least 1 − e−t as long as τ ≥ max{C1σ2, C2r} and
n ≥ log(2d), where C0, C1 are absolute constants and C2 depends only on σx.

The next proposition provides high probability bounds on ‖w∗‖∞ and ‖w∗
S‖2,

where w∗ = ∇L̂τ (β
∗)−∇Lτ (β

∗).

Proposition 2.5. Assume Condition 2.1 holds. For any t > 0, the centered
score w∗ ∈ R

d satisfies

‖w∗‖∞ ≤ 2σx

{
σ2

√
log(2d) + t

n
+ τ

log(2d) + t

2n

}
. (2.23)

with probability at least 1− e−t, and

‖w∗
S‖2 ≤ 3σx

(
σ2

√
2s+ t

n
+ τ

2s+ t

2n

)
, (2.24)

with probability at least 1− e−t.

Similarly to Theorem 2.1, Propositions 2.4 and 2.5 are also modified versions
of Lemmas C.4 and C.6 in [44] under a weaker sub-exponential condition on
the feature vector x. Therefore in the proofs, we only provide the necessary
steps that help improve upon the existing results. Together, Propositions 2.4
and 2.5 reveal the impact of the robustification parameter on the statistical
properties of the resulting estimator. As discussed in Section 2.3 above, the
order of ‖w(β∗)S‖2 determines the oracle rate of convergence. In Theorem 2.2,
we show that after only a small number of iterations, the proposed procedure
leads to an estimator that achieves the oracle rate of convergence. Recall from
Section 2.2 that {β̃(�)}�=1,2,... is a sequence of ε�-optimal solutions of the convex

programs (2.3), initialized at β̃(0) = 0.

Theorem 2.2. Assume Conditions 2.1 and 2.2 hold, and there exist some γ1 >
γ0 > 0 such that

γ0 >
√
5/ρl, p′(γ0) > 0, p′(t) = 0 for all t ≥ γ1. (2.25)

Given t ≥ 0, suppose the sample size satisfies n � s log d + t, and ε� ≤
√
1/n

for all � ≥ 1. Moreover, suppose that we choose a regularization parameter
λ � σ2

√
(log d+ t)/n, and let τ satisfy

σ2 � τ � σ2

√
n

log d+ t
and b∗τ = ‖E{�′τ (ε)x}‖2 ≤ s1/2λ. (2.26)
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Then, under the minimum signal strength condition ‖β∗
S‖min ≥ (γ0 + γ1)λ, the

multi-stage estimator β̃(T ) with T � � log(log d+t)
log(1/δ) � satisfies the bounds

‖β̃(T ) − β∗‖2 � σ2

√
s+ t

n
+ τ

s+ t

n
+ b∗τ and

‖β̃(T ) − β∗‖1 � s1/2

(
σ2

√
s+ t

n
+ τ

s+ t

n
+ b∗τ

) (2.27)

with probability at least 1− 3e−t.

We refer to the conclusion of Theorem 2.2 as the weak oracle property in the
sense that the proposed estimator achieves the same rate of convergence as the
oracle β̂ora which knows a priori the support S of β∗. We keep the two terms
τ(s + t)/n and b∗τ in the upper bounds of (2.27) to keep track the impact of τ
on the estimator error: the former is part of the stochastic error and the latter
characterizes the bias. Below are two cases that are of general interests.

1. (Symmetry) As discussed in Remark 2.2, if ε (conditional on x) is sym-
metric around zero, then b∗τ = 0 for any τ > 0. To certify (2.2), τ can be
taken as a constant-multiple of σ2, and the resulting error bounds become

‖β̃(T ) − β∗‖2 � σ2

√
s+ t

n
and ‖β̃(T ) − β∗‖1 � s1/2σ2

√
s+ t

n

with probability at least 1− 3e−t.
2. (Asymmetry) When the conditional distribution of εi is asymmetric, there

will be a bias-robustness tradeoff. If ε only has bounded second moment, by
Lemma A.1 in the Supplementary Material we have b∗τ � σ2

2τ
−1 although

τb∗τ → 0 as τ → ∞. Then, the multi-step iterative estimator β̃(T ) with
τ � σ2

√
n/(s+ log d+ t) satisfies, under the scaling n � s log d+ t, that

‖β̃(T ) − β∗‖2 � σ2

√
s+ log d+ t

n
and

‖β̃(T ) − β∗‖1 � s1/2σ2

√
s+ log d+ t

n

with probability at least 1− 3e−t.

A more intriguing result, as revealed by the following theorem, is that our
estimator achieves the strong oracle property, namely, it coincides with the
oracle with high probability. Here we need slightly stronger moment conditions
than those in Condition 2.1, that is, the random predictor x is sub-Gaussian and
the noise variable ε satisfies an L2+η-L2 norm equivalence for some η ∈ (0, 1].

Condition 2.3. There exists σx ≥ 1 such that P(|uTx| ≥ σxt) ≤ 2e−t2/2 for all
u ∈ S

d−1 and t ≥ 0. Moreover, Σ = (σjk) = E(xxT) satisfies ρl = λmin(Σ) > 0
and

max
j∈Sc

‖ΣjS(ΣSS)
−1‖1 ≤ A0 (2.28)
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for some A0 > 0. The random error ε satisfies E(ε|x) = 0 and E(ε2|x) ≤ σ2
2 ,

and {E(|ε|2+η|x)}1/(2+η) ≤ aη{E(ε2|x)}1/2 (almost surely) for some η ∈ (0, 1]
and aη > 1. Moreover, ε satisfies the anti-concentration property: there exists a
constant a0 > 0 such that

P(a ≤ ε ≤ b|x) ≤ a0(b− a) for all a ≤ b. (2.29)

Theorem 2.3. Assume Conditions 2.2 and 2.3 hold, and there exist some γ1 >
γ0 > 2.5/ρl such that p′(γ0) > 0, p′(t) = 0 for all t ≥ γ1. For any t ≥ 0 and
q ≥ max(s, log d), let λ � σ2

√
(log d+ t)/n and τ � σ2

√
n/(q + t). Moreover,

assume the sample size satisfies n � max{s log d + t, (q + t)1+1/η(log d)−1/η},
and the beta-min condition ‖β∗

S‖min ≥ (γ0 + γ1)λ. Then, with probability at

least 1 − 8e−t, β̂(�) = β̂ora provided � ≥ �log(s1/2/δ)/ log(1/δ)�, where δ :=
2.5/(ρlγ0) ∈ (0, 1).

Theorem 2.3 provides a useful complement to Theorem 2 in [30], and differs
from it in two aspects. First, the latter studies the estimator obtained by solving
the folded concave penalized optimization program in (1.3) subject to an �1-ball
constraint in order to ensure the existence of local/global optima. Secondly,
Theorem 2 in [30] establishes the strong oracle property for any stationary

point β̃ of the program (1.3) (with an �1-ball constraint) that falls inside a
local neighborhood of β∗. In contrast, Theorem 2.3 concerns the strong oracle
property of the proposed iteratively reweighted �1-penalized estimator obtained
by solving a sequence of (unconstrained) convex programs (2.3).

Remark 2.3. A direct consequence of the strong oracle property is variable
selection consistency, saying that

P
{
supp(β̂(�)) = S

}
→ 1 as n, d → ∞.

In particular, assume Condition 2.3 holds with η = 1, implying that ε satisfies
an L3-L2 norm equivalence. Then, Theorem 2.3 implies that the multi-step esti-
mator β̂(�) with λ � σ2

√
(log d)/n, τ � σ2

√
n/(s+ log d) and � � log s achieves

variable selection consistency as n, d → ∞ under the scaling n � max(s log d, s2)
and the necessary beta-min condition ‖β∗

S‖min � σ2

√
log(d)/n [39].

As previously noted, Lasso [46] achieves desirable risk properties, in terms of
both estimation and prediction, under mild conditions, yet its variable selection
consistency requires much stronger assumptions [23, 37, 48, 55]. In addition
to sub-Gaussian errors, it requires a stronger beta-min condition—‖β∗

S‖min �
σ2

√
(s log d)/n, and the irrepresentable condition

max
j∈Sc

‖ΣjS(ΣSS)
−1‖1 ≤ a0 < 1. (2.30)

See, for example, Chapter 7 in [8] and Section 7.5 in [49]. We also refer to [23]
for the precise lower and upper irrepresentable conditions, which are necessary
and sufficient for the variable selection consistency of Lasso.
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3. Optimization algorithm

In this section, we use the local adaptive majorize-minimization (LAMM) prin-
cipal [16] to derive an iterative algorithm for solving each subproblem (P�) in
(2.3):

min
β∈Rd

{L̂τ (β) + ‖λ(�−1) ◦ β‖1}, � = 1, 2, . . . ,

where λ(�−1) = (λ
(�−1)
1 , . . . , λ

(�−1)
d )T ∈ R

d with λ
(�−1)
j ≥ 0. Specifically, λ

(�−1)
j =

0 for some j means that the j-th coefficient is not penalized.

3.1. LAMM algorithm

To minimize a nonlinear function f(·) on R
d, at a given point β(k), the majorize-

minimization (MM) algorithm first majorizes it by another function g(· |β(k)),
which satisfies

g(β|β(k)) ≥ f(β) and g(β(k)|β(k)) = f(β(k)) for any β ∈ R
d,

and then compute β(k+1) := argminβ∈Rd g(β|β(k)) [25]. The objective value of
such an algorithm is non-increasing in each step, because

f(β(k+1))
(i)

≤ g(β(k+1) |β(k))
(ii)

≤ g(β(k) |β(k)) = f(β(k)), (3.1)

where inequality (i) is due to the majorization property of g(·|β(k)) and in-
equality (ii) follows from the definition β(k+1). [16] observed that the global
majorization requirement is not necessary. It only requires the local properties

f(β(k+1)) ≤ g(β(k+1)|β(k)) and g(β(k)|β(k)) = f(β(k)) (3.2)

for the inequalities in (3.1) to hold.
Using the above principle, it suffices to locally majorize the objective function

L̂τ (β) in the penalized optimization problem. At the k-th step with working
parameter vector β(�,k−1), we use an isotropic quadratic function, that is,

F (β;φ,β(�,k−1)) := L̂τ (β
(�,k−1))

+ 〈∇L̂τ (β
(�,k−1)),β − β(�,k−1)〉+ φ

2
‖β − β(�,k−1)‖22, (3.3)

to locally majorize L̂τ (β) such that

F (β(�,k);φ(�,k),β(�,k−1)) ≥ L̂τ (β
(�,k)), (3.4)

where φ(�,k) is a proper quadratic coefficient at the k-th update, and β(�,k) is
the solution to

min
β

{
F (β;φ(�,k),β(�,k−1)) + ‖λ(�−1) ◦ β‖1

}
.
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It is easy to see that β(�,k) takes a simple explicit form

β(�,k) = Ssoft

(
β(�,k−1) −∇L̂τ (β

(�,k−1))/φ(�,k),λ(�−1)/φ(�,k)
)
, (3.5)

where Ssoft(β,λ) := (sign(βj)max{|βj | − λj , 0})j=1,...,d is the soft-thresholding
operator. For simplicity, we summarize and define the above update as β(�,k) =
Tλ(�−1),φ(�,k)(β(�,k−1)). Using this simple update formula of β, we iteratively

search for the pair (φ(�,k),β(�,k)) that ensures the local majorization (3.4). Start-
ing with an initial quadratic coefficient φ = φ0, say 10−4, we iteratively increase
φ by a factor of γu > 1 and compute

β(�,k) = Tλ(�−1),φ(�,k)(β(�,k−1)) with φ(�,k) = γk−1
u φ0,

until the local property (3.4) holds. This routine is summarized in Algorithm 1.

Algorithm 1 LAMM algorithm at the k-th iteration of the �-th subproblem.

1: Algorithm: {β(�,k), φ(�,k)} ← LAMM(λ(�−1),β(�,k−1), φ0, φ(�,k−1))
2: Input: λ(�−1),β(�,k−1), φ0, φ(�,k−1)

3: Initialize: φ(�,k) ← max{φ0, γ
−1
u φ(�,k−1)}

4: Repeat
5: β(�,k) ← Tλ(�−1),φ(�,k) (β(�,k−1))

6: If F (β(�,k),λ(�−1)) < L̂τ (β(�,k)) then φ(�,k) ← γuφ(�,k)

7: Until F (β(�,k),λ(�−1)) ≥ L̂τ (β(�,k))
8: Return {β(�,k), φ(�,k)}

3.2. Complexity theory

To investigate the complexity theory of the proposed algorithm, we first impose
the following standard regularity conditions on the objective function.

Condition 3.1. ∇L̂τ (·) is L-Lipschitz continuous for some L > 0, that is,

‖∇L̂τ (β1)−∇L̂τ (β2)‖∞ ≤ L‖β1 − β2‖2 for any β1,β2 ∈ R
d.

Our next theorem characterizes the computational complexity in the contrac-
tion stage. Recall that λ(0) = (λ, . . . , λ)T ∈ R

d.

Theorem 3.1. Assume Condition 3.1 holds and the optimal solution β̂(1)

satisfies ‖β̂(1) − β∗‖2 � s1/2λ. Then, to attain an εc-optimal solution β̃(1),

i.e. ωλ(0)(β̃(1)) ≤ εc, in the contraction stage, we need as many as
C1L

2(1 + γu)
2(‖β∗‖2 + s1/2λ)2/ε2c LAMM iterations in (3.5), where C1 > 0

is a constant independent of (n, d, s).

The sublinear rate in the contraction stage is due to the lack of global strong
convexity of the loss function in this stage, because we start with a naive initial
value 0. Once we enter the contracting region where the estimator is relatively
closer to the underlying true parameter vector, the problem becomes strongly
convex (at least with high probability). This endows the algorithm a linear rate
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of convergence. Our next theorem provides a formal statement on the geometric
convergence rate of LAMM for solving each subproblem in the tightening stage.
To this end, we describe a variant of the sparse eigenvalue condition.

Definition 3.1 (LSE—Localized Sparse Eigenvalue). Given r, τ > 0 and an
integer m ≥ |S|, the localized sparse eigenvalues are defined as

κ+(m, r, τ) = sup
{
δT∇2L̂τ (β)δ : δ ∈ C0(m),β ∈ β∗ + B(r)

}
and κ−(m, r, τ) = inf

{
δT∇2L̂τ (β)δ : δ ∈ C0(m),β ∈ β∗ + B(r)

}
,

where C0(m) := {u ∈ S
d−1 : S ⊆ supp(u), |supp(u)| ≤ m} denotes a sparse

cone.

Condition 3.2. We say an LSE(C0) condition holds for some C0 ≥ 1 if there
exist an integer s′ � s and constants κ∗, κ∗, C1 > 0 such that

0 < κ∗ ≤ κ−(C0s+ 2s′, r, τ) < κ+(C0s+ 2s′, r, τ) ≤ κ∗

and κ+(s
′, r, τ)/κ−(C0s+ 2s′, r, τ) ≤ 1 + C1s

′/s.

Note that if a vector u ∈ R
d belongs to the sparse cone C0(m) for somem ≥ 1,

by Cauchy-Schwarz inequality we have ‖u‖1 ≤ m1/2‖u‖2. This implies that u
also falls into the �1-cone C(m1/2) defined in (2.6). Proposition 2.4 will remain
valid, possibly with different constants, if the �1-cone C(l) therein is replaced
by a sparse cone. Note that Proposition 2.4 controls the minimum LSE. Similar
results can be obtained to bound the maximum LSE from above.

Theorem 3.2. Assume LSE(C0) condition holds for a sufficiently large C0 > 1

and τ � r � λ
√
s. To obtain an εt-optimal solution β̃(�), i.e. ωλ(�−1)(β̃(�)) ≤ εt,

in the �-th subproblem for � ≥ 2, we need as many as C1 log(C2s
1/2λ/εt) LAMM

iterations in (3.5), where C1 and C2 are positive constants.

We summarize the above two theorems in the following result, which charac-
terizes the computational complexity of the whole algorithm.

Corollary 3.1. Assume that the conditions in Theorems 3.1 and 3.2 hold. To
achieve a sequence of approximate solutions {β̃(�)}T�=1 such that ωλ(0)(β̃(1)) ≤
εc � λ and ωλ(�−1)(β̃(�)) ≤ εt �

√
1/n for 2 ≤ � ≤ T , the required number of

LAMM iterations is of the order C1ε
−2
c + C2(T − 1) log(ε−1

t ), where C1 and C2

are positive constants independent of (n, d, s).

4. Extension to general robust losses

Thus far, we have restricted our attention to the Huber loss. As a representative
robust loss function, the Huber loss has the merit of being (i) globally τ -Lipschitz
continuous, and (ii) locally quadratic. A natural question arises that whether
similar results, both statistical and computational, remain valid for more general
loss functions that possess the above two features. In this section, we introduce a
class of loss functions which, combined with folded concave regularization, leads
to statistically optimal estimators that are robust against heavy-tailed errors.



3306 X. Pan et al.

Condition 4.1 (Globally Lipschitz and locally quadratic loss functions). Con-
sider a general loss function �τ (·) that is of the form �τ (x) = τ2�(x/τ) for x ∈ R,
where � : R �→ [0,∞) is convex and satisfies: (i) �′(0) = 0 and |�′(x)| ≤ c1 for all
x ∈ R; (ii) �′′(0) = 1 and �′′(x) ≥ c2 for all |x| ≤ c3; and (iii) |�′(x)− x| ≤ c4x

2

for all x ∈ R, where c1–c4 are positive constants.

Note that Condition 4.1 excludes some important Lipschitz continuous func-
tions, such as the check function for quantile regression and the hinge loss for
classification, which do not have a local strong convexity. The recent works [1]
and [12, 13] established optimal estimation and excess risk bounds for (regu-
larized) empirical risk minimizers and MOM-type estimators based on general
convex and Lipschitz loss functions even without a local quadratic behavior.
Our work complements the existing results on �1-regularized ERM by showing
oracle properties of nonconvex regularized methods under stronger signals. For
this reason, we need an additional local strong convexity condition on the loss.
It remains unclear whether the oracle rates or variable selection consistency can
still be achieved without such a local curvature of the loss function.

We now discuss the implications of the three properties in Condition 4.1.
First, since �′τ (x) = τ�′(x/τ), it follows from property (i) that supx∈R |�′τ (x)| ≤
c1τ . The boundedness of |�′τ | facilitates the use of Bernstein’s inequality on de-
riving upper bounds for the random quantities ‖w∗‖∞ and ‖w∗

S‖2 as in Propo-

sition 2.5, where w∗ = ∇L̂τ (β
∗) −∇Lτ (β

∗) with L̂τ (β) = (1/n)
∑n

i=1 �τ (yi −
xT
i β). Next, note that �′′τ (x) = �′′(x/τ). Property (ii) indicates that �τ is strongly

convex on [−c3τ, c3τ ], which turns out to be the key factor in establishing the re-

stricted strong convexity condition on L̂τ . See Proposition 2.4 and Lemma C.1.
Lastly, property (iii) is particularly useful when the error distribution is asym-

metric. Even though it can be shown under property (i) that ∇L̂τ (β
∗) is con-

centrated around its expected value ∇Lτ (β
∗) with high probability, ∇Lτ (β

∗) =
−E{�′τ (ε)x} is typically nonzero when the conditional distribution of ε is asym-
metric. However, since E(ε|x) = 0, we have E{�′τ (ε)|x} = E{�′τ (ε) − ε|x} =
τE{�′(ε/τ)− ε/τ |x}. Together with property (iii), this implies

|E{�′τ (ε)|x}| ≤ c4τE{(ε/τ)2|x} = c4σ
2
2τ

−1.

We thus use b∗τ = ‖∇Lτ (β
∗)‖2 to quantify the bias; see Lemma A.1 and Theo-

rem 2.2.
Below we list five examples of �(·) (including the Huber loss) that satisfy

Condition 4.1.

1. (Huber loss): �(x) = x2/2 · I(|x| ≤ 1) + (|x| − 1/2) · I(|x| > 1) with
�′(x) = xI(|x| ≤ 1) + sign(x)I(|x| > 1) and �′′(x) = I(|x| ≤ 1). Moreover,

|�′(x)− x| = |x− sign(x)|I(|x| > 1) ≤ x2.

2. (Pseudo-Huber loss I): �(x) =
√
1 + x2 − 1, whose first and second deriva-

tives are

�′(x) =
x√

1 + x2
and �′′(x) =

1

(1 + x2)3/2
,
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respectively. It is easy to see that supx∈R |�′(x)| ≤ 1 and �′′(x) ≥ (1 +
c2)−3/2 for all |x| ≤ c and c > 0. Moreover, since �′′′(x) = −3x(1 +
x2)−5/2 satisfies |�′′′(x)| < 0.9 for all x, it follows from Taylor’s theorem
and Lagrange error bound that |�′(x) − x| = |�′(x) − �′(0) − �′′(0)x| ≤
0.45x2.

3. (Pseudo-Huber loss II): �(x) = log{(ex + e−x)/2}, whose first and second
derivatives are, respectively,

�′(x) =
ex − e−x

ex + e−x
and �′′(x) =

4

(ex + e−x)2
.

It follows that supx∈R |�′(x)| ≤ 1 and �′′(x) ≥ 4(ec + e−c)−2 for all |x| ≤ c
and c > 0. Moreover, we calculate the third derivative �′′′(x) = −8(ex −
e−x)(ex + e−x)−4 that satisfies |�′′′(x)| < 0.4. Again, by Taylor’s theorem
and Lagrange error bound, |�′(x)− x| ≤ 0.2x2.

4. (Smoothed Huber loss I): The Huber loss is twice differentiable in R, except
at ±1. Modifying the Huber loss gives rise to the following function that
is twice differentiable everywhere:

�(x) =

{
x2/2− |x|3/6 if |x| ≤ 1,

|x|/2− 1/6 if |x| > 1,

whose first and second derivatives are

�′(x) =

{
x− sign(x) · x2/2 if |x| ≤ 1,

sign(x)/2 if |x| > 1,
�′′(x) =

{
1− |x| if |x| ≤ 1,

0 if |x| > 1.

Direct calculations show that supx∈R |�′(x)| ≤ 1/2 and �′′(x) ≥ 1 − c for
all |x| ≤ c and 0 < c < 1. Since �′′ is 1-Lipschitz continuous, we have
|�′(x)− x| ≤ x2/2.

5. (Smoothed Huber loss II): Another smoothed version of the Huber loss
function is

�(x) =

{
x2/2− x4/24 if |x| ≤

√
2,

(2
√
2/3)|x| − 1/2 if |x| >

√
2.

The derivative of this function is used in [10] for mean vector estimation.
We compute

�′(x) =

{
x− x3/6 if |x| ≤

√
2,

(2
√
2/3) sign(x) if |x| >

√
2,

�′′(x) =

{
1− x2/2 if |x| ≤

√
2,

0 if |x| >
√
2.

It is easy to see that supx∈R |�′(x)| ≤ 2
√
2/3 and �′′(x) ≥ 1− c2/2 for all

|x| ≤ c and 0 < c <
√
2. Noting that �′′ is

√
2-Lipschitz continuous, it

holds |�′(x)− x| ≤ x2/
√
2.
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The loss functions discussed above, along with their derivatives up to order
three, are plotted in Figure 1 except for the Huber loss. Provided that the loss
function �τ (·) satisfies Condition 4.1, all the theoretical results in Sections 2.3
and 2.4 remain valid only with different constants. It is worth noticing that the
four loss functions described in examples 2–5 also have Lipschitz continuous
second derivatives; see Figure 1. In fact, if the function � satisfies �′(0) = 0,
�′′(0) = 1 and has L2-Lipschitz second derivative, then property (iii) in Con-
dition 4.1 holds with c2 = L2/2. The Lipschitz continuity of �′′(·) also helps
remove the anti-concentration condition (2.29) on ε.

Fig 1. Examples of robust loss functions and their derivatives.
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5. Numerical study

In this section, we compare the empirical performance of the proposed multi-
step penalized robust regression estimator with several benchmark methods,
such as the Lasso [46], the SCAD and MC+ penalized least squares [14, 52].
All the computational results presented below are reproducible using software
available at https://github.com/XiaoouPan/ILAMM.

We generate data vectors {(yi,xi)}ni=1 from two types of linear models:

1. (Homoscedastic model): yi = xT
i β

∗ + εi with xi ∼ N(0, Id), i = 1, . . . , n.
2. (Heteroscedastic model): yi = xT

i β
∗+c−1(xT

i β
∗)2εi with xi ∼ N(0, Id) for

i = 1, . . . , n, where the constant c is chosen as c =
√
3 ‖β∗‖22 such that

E{c−1(xT
i β

∗)2}2 = 1, and therefore the variance of the noise is the same
as that of εi.

In addition, we consider the following four error distributions:

1. Normal distribution N(μ, σ2) with mean μ = 0 and standard deviation
σ = 1.5;

2. Skewed generalized t distribution sgt(0, 5, 0.75, 2, 2.5) [45] with mean μ =
0, variance σ2 = q/(q− 2) = 5, q = 2.5, skewness parameter λ = 0.75 and
shape parameter p = 2;

3. Lognormal distribution LN(μ, σ2) with log location parameter μ = 0 and
log shape parameter σ = 1.2;

4. Pareto distribution Par(xm, α) with scale parameter xm = 2 and shape
parameter α = 2.2.

Except for the normal distribution, all the other three are skewed and heavy-
tailed. To meet our model assumption, we subtract the mean from the lognormal
and Pareto distributions.

In both homoscedastic and heteroscedastic models, the sample size n = 100,
the ambient dimension d = 1000 and the sparsity parameter s = 6. The true vec-
tor of regression coefficients is β∗ = (4, 3, 2,−2,−2, 2, 0, . . . , 0)T, where the first
6 elements are non-zero and the rest are all equal to 0. We apply the proposed
TAC (Tightening After Contraction) algorithm to compute all the estimators
with tuning parameters λ and τ chosen via three-fold cross-validation. To be
more specific, we first choose a sequence of λ values the same way as in the
glmnet algorithm [17]. Guided by its theoretically “optimal” magnitude, the
candidate set for τ is taken to be {2j σ̂MAD

√
n/log(nd) : j = −2,−1, 0, 1, 2},

where σ̂MAD := median{|R̂−median(R̂)|}/Φ−1(3/4) is the median absolute de-

viation (MAD) estimator using the residuals R̂ = (r̂1, . . . , r̂n)
T obtained from

the Lasso.

To highlight the tail robustness and oracle property of our algorithm, we
consider the following four measurements to assess the empirical performance:

1. True positive, TP, which is the number of signal variables that are selected;
2. False positive, FP, which is the number of noise variables that are selected;

https://github.com/XiaoouPan/ILAMM
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3. Relative error, RE1 and RE2, which is the relative error of an estimator
β̂ with respect to the Lasso under �1- and �2-norms:

RE1 =
||β̂ − β∗||1

||β̂Lasso − β∗||1
and RE2 =

||β̂ − β∗||2
||β̂Lasso − β∗||2

.

Table 1

Simulation results for the Lasso, SCAD, Huber-SCAD, MC+ and Huber-MC+ estimators
under the homoscedastic model.

Error dist. Lasso SCAD Huber-SCAD MC+ Huber-MC+
Normal TP 6.00(0) 6.00(0) 6.00(0) 6.00(0) 6.00(0)

FP 24.44(14.25) 3.11(4.53) 2.19(3.87) 0.84(1.91) 0.53(1.27)
RE1 1.00 0.23(0.12) 0.22(0.11) 0.19(0.09) 0.19(0.09)
RE2 1.00 0.32(0.13) 0.33(0.13) 0.30(0.12) 0.30(0.12)

Skewed t TP 4.74(1.37) 4.87(1.35) 4.74(1.39) 3.97(1.67) 3.97(1.62)
FP 20.78(17.10) 18.49(9.65) 11.48(8.82) 4.28(4.24) 2.76(3.23)
RE1 1.00 0.88(0.22) 0.73(0.23) 0.73(0.21) 0.65(0.22)
RE2 1.00 0.91(0.17) 0.86(0.19) 0.94(0.20) 0.88(0.23)

Lognormal TP 5.68(0.87) 5.71(0.84) 6.00(0.07) 5.49(1.14) 5.97(0.37)
FP 29.70(16.66) 16.75(8.70) 3.80(4.52) 4.32(4.62) 0.91(1.95)
RE1 1.00 0.54(0.26) 0.15(0.12) 0.42(0.32) 0.13(0.11)
RE2 1.00 0.62(0.26) 0.23(0.14) 0.60(0.30) 0.22(0.14)

Pareto TP 5.64(1.09) 5.67(1.01) 6.00(0) 5.44(1.35) 5.98(0.35)
FP 28.30(16.21) 14.69(8.97) 2.91(4.34) 3.48(3.39) 0.71(1.71)
RE1 1.00 0.51(0.30) 0.14(0.08) 0.40(0.25) 0.13(0.17)
RE2 1.00 0.58(0.26) 0.21(0.11) 0.57(0.28) 0.22(0.22)

Table 2

Simulation results for the Lasso, SCAD, Huber-SCAD, MC+ and Huber-MC+ estimators
under the heteroscedastic model.

Error dist. Lasso SCAD Huber-SCAD MC+ Huber-MC+
Normal TP 6.00(0) 6.00(0) 5.96(0.40) 6.00(0) 5.98(0.28)

FP 22.71(16.51) 3.29(5.76) 0.31(1.68) 0.88(2.03) 0.13(0.70)
RE1 1.00 0.28(0.17) 0.21(0.16) 0.24(0.14) 0.16(0.18)
RE2 1.00 0.38(0.19) 0.31(0.16) 0.36(0.18) 0.25(0.14)

Skewed t TP 4.93(1.59) 5.04(1.53) 5.83(0.65) 4.58(1.76) 5.52(1.17)
FP 22.99(18.62) 18.21(10.83) 2.71(4.29) 4.99(5.14) 0.92(2.42)
RE1 1.00 0.83(0.30) 0.26(0.26) 0.69(0.29) 0.27(0.27)
RE2 1.00 0.87(0.28) 0.34(0.26) 0.87(0.29) 0.35(0.28)

Lognormal TP 5.74(0.96) 5.77(0.91) 6.00(0) 5.65(1.14) 6.00(0)
FP 26.61(16.51) 11.28(9.50) 1.23(3.55) 2.62(3.45) 0.30(0.86)
RE1 1.00 0.45(0.28) 0.14(0.13) 0.35(0.23) 0.12(0.09)
RE2 1.00 0.53(0.26) 0.21(0.15) 0.50(0.26) 0.19(0.12)

Pareto TP 5.67(1.19) 5.67(1.18) 5.97(0.42) 5.59(1.29) 5.95(0.55)
FP 25.56(16.04) 10.13(10.31) 0.61(2.03) 2.80(4.06) 0.23(0.91)
RE1 1.00 0.46(0.29) 0.14(0.12) 0.39(0.28) 0.15(0.23)
RE2 1.00 0.55((0.29) 0.22(0.16) 0.54(0.31) 0.23(0.35)

Tables 1 and 2 summarize the averages of each measurement, TP, FP, RE1,
and RE2 with their standard deviations in brackets, over 200 replications un-
der both homoscedastic and heteroscadastic models. RE1 and RE2 for Lasso
are defined to be one, so we omit their standard deviations. Here, Huber-
SCAD and Huber-MC+ signify the proposed two-stage algorithm using the
SCAD and MC+ penalties, respectively. When the noise distributions are heavy-
tailed and/or skewed, we see that Huber-SCAD and Huber-MC+ outperform
SCAD and MC+, respectively, with fewer spurious discoveries (false positives),
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smaller estimation errors and less variability. Under the homoscedastic nor-
mal model, Huber-SCAD and Huber-MC+ perform similarly to their least
squares counterparts; while under heteroscedasticity, the proposed algorithm
exhibits a notable advantage over existing methods on selection consistency
even though the error is normally distributed. In summary, these numerical
studies validate our expectations that the proposed robust regression algorithm
improves the Lasso as a general regression analysis method on two aspects:
robustness against heavy-tailed (and even heteroscedastic) noise and selection
consistency.

To further visualize the advantage of the multi-step penalized robust regres-
sion methods over the existing ones (e.g. Lasso, SCAD and MC+), we draw
the receiver operating characteristic (ROC) curve, which is the plot of true
positive rate (TPR) against false positive rate (FPR) at various regularization
parameters. Specifically, TPR and FPR are defined, respectively, as the ratio
of true positive to s and the ratio of false positive to d − s. We generate data
vectors {(yi,xi)}ni=1 from both homoscedastic and heteroscedastic models with
sample size n = 100, dimension d = 1000 and sparsity s = 10. The true vector
of regression coefficients is β∗ = (1.5, 1.5, . . . , 1.5, 0, . . . , 0)T, where the first 10
elements are non-zero with weaker signals than the previous experiment, and
the rest are all equal to 0. We apply the proposed TAC algorithm to implement
all the five methods, Lasso, SCAD, MC+, Huber-SCAD and Huber-MC+, with
a sequence of λ values chosen as before and τ as σ̂MAD

√
n/log(nd). For each

combination of λ and τ , the empirical FPR and TPR are computed based on
200 simulations.

Figures 2 and 3 indicate evident advantage of Huber-SCAD and Huber-MC+
over their least squares counterparts: the robust methods have a greater area un-
der the curve (AUC) when the noise distribution is heavy-tailed and/or skewed
in both homoscedastic and heteroscedastic models. Surprisingly, even in a nor-
mal model, the proposed methods still outperform the competitors by a visible
margin.
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Appendix A: Preliminaries

Assume we observe independent data {(yi,xi)}ni=1 from the linear model yi =
xT
i β

∗+εi. Let λ = (λ1, . . . , λd)
T be a d-vector of regularization parameters with

λj ≥ 0. Consider the optimization problem

min
β∈Rd

{L̂τ (β) + ‖λ ◦ β‖1}, (A.1)
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Fig 2. Plots of ROC curves of the five methods under the homoscedastic model with errors
generated from four distributions: normal, Student’s t, lognormal and Pareto.

where L̂τ (β) = (1/n)
∑n

i=1 �τ (yi − xT
i β) and λ ◦ β = (λ1β1, . . . , λdβd)

T. More-

over, define the population loss Lτ (β) = EL̂τ (β).

The following result provides conditions under which an ε-optimal solution
to the convex program (A.1) falls in an �1-cone. Recall that S = supp(β∗) and
Sc = [d] \ S. Moreover, define

w(β) = ∇L̂τ (β)−∇Lτ (β) and b(β) = ‖∇Lτ (β)‖2,

which are, respectively, the centered score function and the approximation bias.
We first characterize the magnitude of the bias b∗τ := b(β∗), as a function of τ .

Lemma A.1. Assume μ1 = supu∈Sd−1 E|uTx| < ∞, E(ε|x) = 0 and E(ε2|x) ≤
σ2
2 almost surely. Then |b∗τ | ≤ μ1σ

2
2τ

−1 for any τ > 0, and τ |b∗τ | → 0 as
τ → ∞.
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Fig 3. Plots of ROC curves of the five methods under the heteroscedastic model with errors
generated from four distributions: normal, Student’s t, lognormal and Pareto.

Proof of Lemma A.1. Note that∇Lτ (β
∗) = E{�′τ (ε)x}, where �′τ (u) = uI(|u| ≤

τ) + τ sign(u)I(|u| > τ). Recalling E(ε|x) = 0, it follows that

|E{�′τ (ε)|x}| = |E[{ε− τ sign(ε)}I{|ε| > τ}|x]|
≤ E[{|ε| − τ sign(ε)}I{|ε| > τ}|x]

≤ E{(ε2 − τ2)I(|ε| > τ)|x}
τ

≤ σ2
2 − E{�′τ (ε)2|x}

τ
almost surely.

By the variational representation of the �2-norm, we have

‖∇Lτ (β
∗)‖2 = sup

u∈Sd−1

E{�′τ (ε)uTx} ≤ σ2
2τ

−1 · sup
u∈Sd−1

E|uTx| = μ1σ
2
2τ

−1,

as claimed. The second claim follows from the fact that E{ε2I(|ε| > τ)|x} → 0
as τ → ∞.
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Lemma A.2. Let E be a subset of [d] that contains S. For any β ∈ R
d satisfying

βEc = 0 and ε > 0, provided λ = (λ1, . . . , λd)
T satisfies ‖λEc‖min > ‖w(β)‖∞+

ε, any ε-optimal solution β̃ to (A.1) satisfies

‖(β̃ − β)Ec‖1 ≤ {‖λ‖∞ + ‖w(β)‖∞ + ε}‖(β̃ − β)E‖1 + b(β)‖β̃ − β‖2
‖λEc‖min − ‖w(β)‖∞ − ε

.

Proof of Lemma A.2. For any ξ ∈ ∂‖β̃‖1, define uξ = ∇L̂τ (β̃) + λ ◦ ξ ∈ R
d.

Note that

‖uξ‖∞‖β̃ − β‖1 ≥ 〈uξ, β̃ − β〉
= 〈∇L̂τ (β̃)−∇L̂τ (β), β̃ − β〉︸ ︷︷ ︸

≥ 0

+〈∇L̂τ (β)−∇Lτ (β), β̃ − β〉

+ 〈∇Lτ (β), β̃ − β〉+ 〈λ ◦ ξ, β̃ − β〉
≥ −‖w(β)‖∞‖β̃ − β‖1 − b(β)‖β̃ − β‖2 + 〈λ ◦ ξ, β̃ − β〉.

Moreover, we have

〈λ ◦ ξ, β̃ − β〉 = 〈(λ ◦ ξ)Ec , (β̃ − β)Ec〉+ 〈(λ ◦ ξ)E , (β̃ − β)E〉
≥ ‖λEc‖min‖(β̃ − β)Ec‖1 − ‖λE‖∞‖(β̃ − β)E‖1.

Together, the last two displays imply

‖uξ‖∞‖β̃ − β‖1 ≥ −‖w(β)‖∞‖β̃ − β‖1 − b(β)‖β̃ − β‖2
+ ‖λEc‖min‖(β̃ − β)Ec‖1 − ‖λE‖∞‖(β̃ − β)E‖1.

Since the right-hand side of this inequality does not depend on ξ, taking the
infimum with respect to ξ ∈ ∂‖β̃‖1 on both sides to reach

ωλ(β̃)‖β̃ − β‖1 ≥ −‖w(β)‖∞‖β̃ − β‖1 − b(β)‖β̃ − β‖2
+ ‖λEc‖min‖(β̃ − β)Ec‖1 − ‖λE‖∞‖(β̃ − β)E‖1.

By definition, β̃ is an ε-optimal solution so that ωλ(β̃) ≤ ε. Putting together
the pieces, we obtain

{ε+ ‖w(β)‖∞}‖β̃ − β‖1 + b(β)‖β̃ − β‖2
≥ ‖λEc‖min‖(β̃ − β)Ec‖1 − ‖λE‖∞‖(β̃ − β)E‖1.

Decompose ‖β̃ − β‖1 as ‖(β̃ − β)E‖1 + ‖(β̃ − β)Ec‖1, the stated result follows
immediately.

Lemma A.3. Consider some β ∈ R
d satisfying βSc = 0, and let E ⊆ [d]

be a subset that contains S and has cardinality |E| = k. Assume that λ =
(λ1, . . . , λd)

T satisfies ‖λ‖∞ ≤ λ and ‖λEc‖min ≥ ρλ > 0 for some ρ ∈ (0, 1] and
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λ ≥ s−1/2b(β). Conditioned on event {‖w(β)‖∞ + ε ≤ 0.5ρλ}, any ε-optimal

solution β̃ to (A.1) satisfies β̃ ∈ β + C(l), where l = (2 + 2
ρ )k

1/2 + 2
ρs

1/2.
Moreover, let r, κ > 0 satisfy

r > κ−1(0.5ρk1/2 + 2s1/2)λ.

Then, conditioned on the event E1(r, l, κ) ∩ {‖w(β)‖∞ + ε ≤ 0.5ρλ},

‖β̃ − β‖2 ≤ κ−1
{
‖λS‖2 + ‖w(β)E‖2 + k1/2ε

}
+ κ−1b(β) (A.2)

≤ κ−1
(
0.5ρk1/2 + 2s1/2

)
λ < r. (A.3)

Proof of Lemma A.3. For some r > 0 to be specified, define η = sup{u ∈ [0, 1] :

(1 − u)β + uβ̃ ∈ B(r)}, where B(r) = {δ ∈ Rd : ‖δ‖2 ≤ r}. Note that η = 1

if β̃ ∈ β + B(r) and η ∈ (0, 1) otherwise. Then, the intermediate estimate

β̃η := ηβ̃ + (1 − η)β satisfies (i) β̃η ∈ β + B(r), (ii) β̃η lies on the boundary

of β + B(r) with 0 < η < 1 if β̃ /∈ β + B(r), and (iii) β̃η = β̃ with η = 1 if

β̃ ∈ β + B(r).
By the convexity of Huber loss and Lemma F.2 in [16], we have

〈∇L̂τ (β̃η)−∇L̂τ (β), β̃η − β〉 ≤ η〈∇L̂τ (β̃)−∇L̂τ (β), β̃ − β〉. (A.4)

First we bound the left-hand side of (A.4) from below. Conditioned on the stated
event, Lemma A.2 indicates

‖(β̃ − β)Ec‖1 ≤ (1 + 2/ρ)‖(β̃ − β)E‖1 + 2(ρλ)−1b(β)‖β̃ − β‖2,

from which it follows that ‖β̃−β‖1 ≤ (2+ 2
ρ )k

1/2‖β̃−β‖2+ 2
ρλ

−1b(β)‖β̃−β‖2.
Provided that λ ≥ s−1/2b(β), this implies β̃ ∈ β + C(l) with l = (2 + 2

ρ )k
1/2 +

2
ρs

1/2. Since β̃η − β = η(β̃− β), we have β̃η ∈ β+B(r)∩C(l) and conditioned

on event E1(r, l, κ),

〈∇L̂τ (β̃η)−∇L̂τ (β), β̃η − β〉 ≥ κ‖β̃η − β‖22. (A.5)

Next we upper bound the right-hand side of (A.4). For any ξ ∈ ∂‖β̃‖1, write

〈∇L̂τ (β̃)−∇L̂τ (β), β̃ − β〉
= 〈u, β̃ − β〉 − 〈λ ◦ ξ, β̃ − β〉 − 〈∇L̂τ (β), β̃ − β〉
:= Π1 −Π2 −Π3, (A.6)

where u = ∇L̂τ (β̃) + λ ◦ ξ. For Π3 = 〈∇L̂τ (β), β̃ − β〉, by the decomposition

∇L̂τ (β) = w(β) +∇Lτ (β) we have

|Π3| ≤ ‖w(β)E‖2‖(β̃ − β)E‖2
+ ‖w(β)Ec‖∞‖(β̃ − β)Ec‖1 + b(β)‖β̃ − β‖2. (A.7)
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Turning to Π2, decompose λ◦ξ and β̃−β according to S ∪ (E \S)∪Ec to reach

Π2 = 〈(λ ◦ ξ)S , (β̃ − β)S〉+ 〈(λ ◦ ξ)E\S , (β̃ − β)E\S〉+ 〈(λ ◦ ξ)Ec , (β̃ − β)Ec〉.

Since βEc = 0 and ξ ∈ ∂‖β̃‖1, we have 〈(λ ◦ ξ)Ec , (β̃ − β)Ec〉 = 〈λEc , |β̃Ec |〉 =
〈λEc , |(β̃ − β)Ec |〉. Also, 〈(λ ◦ ξ)E\S , (β̃ − β)E\S〉 = 〈(λ ◦ ξ)E\S , β̃E\S〉 ≥ 0.
Therefore,

Π2 ≥ −‖λS‖2‖(β̃ − β)S‖2 + ‖λEc‖min‖(β̃ − β)Ec‖1. (A.8)

Similarly, Π1 satisfies the bound

|Π1| ≤ ‖uE‖2‖(β̃ − β)E‖2 + ‖u‖∞‖(β̃ − β)Ec‖1. (A.9)

Together, (A.6)–(A.9) yield

〈∇L̂τ (β̃)−∇L̂τ (β), β̃ − β〉
≤ −{‖λEc‖min − ‖w(β)‖∞}‖(β̃ − β)Ec‖1 + ‖u‖∞‖(β̃ − β)Ec‖1

+ {‖w(β)E‖2 + ‖uE‖2}‖(β̃ − β)E‖2 + ‖λS‖2‖(β̃ − β)S‖2 + b(β)‖β̃ − β‖2.

Taking the infimum over ξ ∈ ∂‖β̃‖1 on both sides, it follows that

〈∇L̂τ (β̃)−∇L̂τ (β), β̃ − β〉
≤ −{‖λEc‖min − ‖w(β)‖∞ − ε}‖(β̃ − β)Ec‖1

+ {‖w(β)E‖2 + k1/2ε}‖(β̃ − β)E‖2
+ ‖λS‖2‖(β̃ − β)S‖2 + b(β)‖β̃ − β‖2. (A.10)

It follows from (A.4), (A.5) and (A.10) that conditioned on E1(r, l, κ) ∩
{‖w(β)‖∞ + ε ≤ 0.5ρλ},

κ‖β̃η − β‖22 ≤ {‖λS‖2 + ‖w(β)E‖2 + k1/2ε}‖β̃η − β‖2 + b(β)‖β̃η − β‖2,
(A.11)

On the same event, note that

‖w(β)E‖2 + k1/2ε ≤ k1/2{‖w(β)‖∞ + ε} ≤ 0.5ρk1/2λ.

Moreover, recall that ‖λS‖2 ≤ s1/2λ and b(β) ≤ s1/2λ. Plugging these bounds
into (A.11) yields

‖β̃η − β‖2 ≤ κ−1{(s1/2 + 0.5ρk1/2)λ+ b(β)} ≤ κ−1(2s1/2 + 0.5ρk1/2)λ < r.

Hence, β̃η falls in the interior of β + B(r). Via proof by contradiction, we must

have η = 1 and β̃η = β̃. Consequently, (A.2) and (A.3) follow, respectively, from
(A.11) and the last display.
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In Lemma A.3, we need λ to be sufficiently large in the sense that for some
s-sparse vector β,

λ � ‖w(β)‖∞ and λ ≥ s−1/2b(β),

where w(β) = ∇L̂τ (β) − ∇Lτ (β) is the centered gradient at β and b(β) =
‖∇Lτ (β)‖2 quantifies the bias. To prove the weak oracle property (Proposi-
tion 2.2), we will take β = β∗ and control the stochastic term ‖w∗‖∞ =
‖w(β∗)‖∞ and bias term b(β∗) separately. For some β which has vanishing

or negligible bias, we will only focus on the stochastic term ‖∇L̂τ (β)‖∞, as
described in the next lemma. Recall the event E2(r, l, κ) defined in (2.16), and
BΣ(r) = {β ∈ R

d : ‖β‖Σ ≤ r}.

Lemma A.4. Consider some β ∈ β∗ + BΣ(r) (r > 0) satisfying βSc = 0, and
let E ⊆ [d] be a subset that contains S and has cardinality |E| = k. Assume
that λ = (λ1, . . . , λd)

T satisfies ‖λ‖∞ ≤ λ and ‖λEc‖min ≥ ρλ > 0 for some

ρ ∈ (0, 1]. Conditioned on event {‖∇L̂τ (β)‖∞ ≤ 0.5ρλ}, any optimal solution

β̂ to (A.1) satisfies β̂ ∈ β + C(l), where l = (2 + 2
ρ )k

1/2 + 2
ρs

1/2. Moreover,

let r, κ > 0 satisfy r > κ−1(0.5ρk1/2 + 2s1/2)λ. Then, conditioned on the event

E2(r, l, κ) ∩ {‖∇L̂τ (β)‖∞ ≤ 0.5ρλ},

‖β̂ − β‖2 ≤ κ−1
{
‖λS‖2 + ‖∇L̂τ (β)E‖2

}
.

The proof of Lemma A.4 is based on the same arguments from the proof of
Lemmas A.2 and A.3, and thus is omitted. To prove the strong oracle property
(Proposition 2.3), we will apply Lemma A.4 with β = β̂ora, the oracle estimator
defined in (2.15).

Appendix B: Proofs of propositions

B.1. Proof of Proposition 2.1

With the initial estimate β̃(0) = 0d, we have λ(0) = p′λ(0d) = (λ, . . . , λ)T ∈ R
d.

Then (2.9) follows immediately from Lemma A.3 with β = β∗, E = S and
ρ = 1.

B.2. Proof of Proposition 2.2

In order to improve the statistical rate at step � ≥ 1, we need to control the mag-

nitude of the spurious discoveries from the last step, that is, maxj∈Sc |β̃(�−1)
j |.

Recall that λ(�−1) = (λ
(�−1)
1 , . . . , λ

(�−1)
d )T = (p′λ(|β̃

(�−1)
1 |), . . . , p′λ(|β̃

(�−1)
d |))T and

pλ(t) = λ2p(t/λ) for t ∈ R. Intuitively, the larger |β̃(�−1)
j | is, the smaller λ

(�−1)
j

is. Motivated by this observation, we construct an augmented set E� of S in each

step and control the magnitude of ‖λ(�−1)
Ec
�

‖min.
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Starting from β̃(0) = 0, we have λ(0) = (λ, . . . , λ)T ∈ R
d. Recall from (2.10)

that λ ≥ s−1/2b∗τ , or equivalently, λ−1b∗τ ≤ s1/2. Then, applying Lemma A.3
with E = S and l0 = 6s1/2 we obtain that, conditioning on E1(r, l0, κ) ∩ {λ ≥

2
p′(γ) (‖w∗‖∞ + ε1)},

‖β̃(1) − β∗‖2 ≤ κ−1
{(

‖λ(0)
S ‖2 + ‖w∗

S‖2 + s1/2ε1
)
+ b∗τ

}
≤ κ−1{1 + 0.5p′(γ)}s1/2λ+ κ−1b∗τ

≤ κ−1{2 + 0.5p′(γ)}s1/2λ, (B.1)

where the last inequality is due to (2.10). For � ≥ 1, define the augmented set

E� = S ∪ {1 ≤ j ≤ d : λ
(�−1)
j < p′(γ)λ}, (B.2)

which depends on the solution β̃(�−1) from the previous step. We claim that the
above constructed sets satisfy

|E�| < (c2 + 1)s and ‖λ(�−1)
Ec
�

‖min ≥ p′(γ)λ, (B.3)

where c is the constant determined by (2.11). If these were true, it follows from
Lemma A.3 with ρ = p′(γ), k = (c2 +1)s and l = (2+ 2

ρ )(c
2 +1)1/2s1/2 + 2

ρs
1/2

that, conditioned on E1(r, l, κ) ∩ {λ ≥ 2
p′(γ) (‖w∗‖∞ + ε1)},

‖β̃(�) − β∗‖2 ≤ κ−1
(
‖λ(�−1)

S ‖2 + ‖w∗
E�
‖2 + |E�|1/2ε�

)
+ κ−1b∗τ (B.4)

< κ−1
{
1 + 0.5(c2 + 1)1/2p′(γ)

}
s1/2λ+ κ−1s1/2λ

= κ−1
{
2 + 0.5(c2 + 1)1/2p′(γ)

}
s1/2λ

= cγs1/2λ︸ ︷︷ ︸
=:rcrude

≤ r, (B.5)

where the last two steps follow from (2.11) and (2.12).
We prove the earlier claim (B.3) by the method of induction. For � = 1, we

have λ(0) = (λ, . . . , λ)T ∈ R
d. Thus, (B.3) holds with E1 = S. Next, assume

(B.3) holds for some � ≥ 1, from which (B.5) follows. To bound the cardinality

of E�+1, note that for any j ∈ E�+1 \ S, p′λ(|β̃
(�)
j |) = λ

(�)
j < p′(γ)λ = p′λ(γλ).

This, together with the monotonicity of p′λ on R+, implies |β̃(�)
j | > γλ. Recalling

that β∗
j = 0 for j ∈ E�+1 \ S, we obtain

|E�+1 \ S|1/2 <
1

γλ
‖β̃(�)

E�+1\S‖2 =
1

γλ
‖(β̃(�) − β∗)E�+1\S‖2

(i)

≤ cγs1/2λ

γλ
= cs1/2, (B.6)

where inequality (i) applies the bound (B.5). Hence, |E�+1| ≤ |S|+ |E�+1 \ S| <
(c2 + 1)s. By (B.2) and the property p′λ(t) = λp′(t/λ), we are guaranteed that

λ
(�)
j ≥ p′(γ)λ ≥ 2(‖w∗‖∞ + ε�+1) for j ∈ Ec

�+1.
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The two hypotheses in (B.3) then hold for �+1, which completes the induction
step. Consequently, the bounds (B.4) and (B.5) hold for any � ≥ 1.

We have shown that under proper conditions, all the estimates β̃(�) fall in
a local neighborhood of β∗, i.e., ‖β̃(�) − β∗‖Σ ≤ rcrude = cγs1/2λ. To further
refine this bound as signal strengthens, on the right-hand side of (B.4), we need
to establish sharper bounds on

‖λ(�−1)
S ‖2 =

√∑
j∈S

{λ(�−1)
j }2 and ‖w∗

E�
‖2 + |E�|1/2ε�,

and maintain the bias term b∗τ , instead of replacing it with an upper bound s1/2λ.

For each j ∈ [d], λ
(�−1)
j = p′λ(|β̃

(�−1)
j |). If |β̃(�−1)

j − β∗
j | ≥ γλ, then λ

(�−1)
j ≤ λ ≤

γ−1|β̃(�−1)
j − β∗

j |; otherwise if |β̃(�−1)
j − β∗

j | ≤ γλ, λ
(�−1)
j ≤ p′λ(|β∗

j | − γλ) due to
monotonicity of p′λ. Putting together the pieces, we conclude that

‖λ(�−1)
S ‖2 ≤ ‖p′λ(|β∗

S | − γλ)‖2 + γ−1‖(β̃(�−1) − β∗)S‖2.

For the remaining terms that involve E�, by the triangle inequality and (B.6) we
obtain that

‖w∗
E�
‖2 + |E�|1/2ε�

≤ ‖w∗
S‖2 + s1/2ε� + |E� \ S|1/2‖w∗‖∞ + |E� \ S|1/2ε�

< ‖w∗
S‖2 + s1/2ε� +

‖w∗‖∞ + ε�
γλ

‖(β̃(�−1) − β∗)E�\S‖2

≤ ‖w∗
S‖2 + s1/2ε� +

p′(γ)

2γ
‖(β̃(�−1) − β∗)E�\S‖2.

Recall that p′(γ) ≤ 1, and for any a, b ≥ 0,
√
a+

√
b/4 ≤

√
5(a+ b)/4. Plugging

the above refined bounds into (B.4) yields

‖β̃(�) − β∗‖2

≤ κ−1
{
‖p′λ(|β∗

S | − γλ)‖2 + ‖w∗
S‖2 + s1/2ε� + b∗τ

}
+

√
5

2γκ
‖(β̃(�−1) − β∗)E�

‖2.

Taking δ =
√
5/(2γκ) ∈ (0, 1), the contraction inequality (2.13) follows imme-

diately. Finally, (2.14) is a direct consequence of (2.13) and (B.1).

B.3. Proof of Proposition 2.3

By construction, the oracle estimator β̂ora is such that β̂ora
Sc = 0 ∈ R

d−s and

∇L̂τ (β̂
ora)S = 0 ∈ R

s. With wora = ∇L̂τ (β̂
ora), the proof strategy is similar

to that in the proof of Proposition 2.2 with ε� = 0, because β̂(�) are optimal
solutions to (P�).
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Recall that l = {2 + 2
p′(γ0)

}(c20 + 1)1/2s1/2 with c0 > 0 determined by (2.18).

Conditioned on the event{
‖wora‖∞ ≤ 0.5p′(γ0)λ

}
∩
{
‖β̂ora − β∗‖Σ ≤ r

}
∩ E2(r, l, κ),

following the proof of Proposition 2.2 and applying Lemma A.4 with β = β̂ora

and E = E�, it can be similarly shown that

‖β̂(�) − β̂ora‖2 ≤ κ−1
(
‖λ(�−1)

S ‖2 + ‖wora
E�

‖2
)

≤ κ−1
(
s1/2λ+ |E�|1/2‖wora‖∞

)
< κ−1

{
1 + 0.5p′(γ0)(c

2
0 + 1)1/2

}
s1/2λ = c0γ0s

1/2λ ≤ r, (B.7)

where similarly to (B.2) and (B.3), E� = S ∪ {1 ≤ j ≤ d : λ
(�−1)
j < p′(γ0)λ} is

such that |E� \S| < c20s and thus |E�| < (c20+1)s. In this case, the approximation
bias is hidden in ‖wora‖∞. Moreover, define a sequence of subsets

S� = {1 ≤ j ≤ d : |β̂(�)
j − β∗

j | ≥ γ0λ}, � = 0, 1, 2, . . . .

Starting with β̂(0) = 0, it holds under the minimum signal strength condition
that S0 = S.

To obtain a refined upper bound on ‖λ(�−1)
S ‖2, note that if j ∈ S ∩ Sc

�−1,

λ
(�−1)
j = p′λ(|β̂

(�−1)
j |) ≤ p′λ(|β∗

j | − γ0λ) due to monotonicity; otherwise if j ∈
S ∩ S�−1, λ

(�−1)
j ≤ λ. Therefore,

‖λ(�−1)
S ‖2 ≤ ‖p′λ(|β∗

S | − γ0λ)‖2 + λ|S ∩ S�−1|1/2.

Since ‖β∗
S‖min ≥ (γ0 + γ1)λ and p′λ(t) = 0 for all t ≥ γ1λ, ‖p′λ(|β∗

S | − γ0λ)‖2
vanishes. Turning to ‖wora

E�
‖2, by the first-order condition of minimizing βS �→

(1/n)
∑n

i=1 L̂τ (yi − xT

i,SβS), we have wora
S = 0 and hence

‖wora
E�

‖2 = ‖wora
E�\S‖2 ≤ ‖wora‖∞|E� \ S|1/2.

For each j ∈ E� \ S, β∗
j = 0 and λ

(�−1)
j = p′λ(|β̂

(�−1)
j |) < p′(γ0)λ = p′λ(γ0λ).

Hence, |β̂(�−1)
j − β∗

j | = |β̂(�−1)
j | > γ0λ so that j ∈ S�−1 \ S. Therefore, E� \ S ⊆

S�−1 \ S. Combined with the earlier bound, we arrive at

‖wora
E�

‖2 ≤ ‖wora‖∞|S�−1 \ S|1/2.

Since p′(γ0) ≤ 1/2, substituting the above estimates into (B.7) yields

‖β̂(�) − β̂ora‖2 ≤ |S ∩ S�−1|1/2 + |S�−1 \ S|1/2/4
κ

λ

≤
√
17

4

λ

κ
|S�−1|1/2. (B.8)
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Next we bound |S�| (� ≥ 1), the cardinality of S�. By (2.19), it holds for any
j ∈ S� that

|β̂(�)
j − β̂ora

j | ≥ γ0λ− ‖β̂ora − β∗‖∞ ≥ 1.25
λ

δκ
− 0.2

λ

δκ
= 1.05

λ

δκ
.

In conjunction with (B.8), this implies

|S�|1/2 ≤ ‖β̂(�) − β̂ora‖2
1.05λ/(κδ)

≤
√
17
4 (λ/κ)|S�−1|1/2
1.05λ/(κδ)

< δ|S�−1|1/2, � ≥ 1. (B.9)

Recall that S0 = S, we have |S�|1/2 < δ�s1/2 for any � ≥ 1. As long as � ≥ T :=
�log(s1/2)/ log(1/δ)�, we are guaranteed that |S�| < 1, i.e. S� = ∅. Consequently,
it follows from (B.8) that β̂(�) = β̂ora for all � ≥ T + 1. This completes the
proof.

B.4. Proof of Proposition 2.4

The proof is based on similar arguments that were used in the proof of Lem-
mas C.3 and C.4 in [44]. We only present the necessary steps in order to slightly
relax the sub-Gaussian condition on xi = (xi1, . . . , xid)

T.
For any β ∈ β∗ + B(r) ∩ C(l), write δ = β − β∗. Following the proof of

Lemma C.3 in [44], it can be shown under Condition 2.1 that

〈∇L̂τ (β)−∇L̂τ (β
∗),β − β∗〉

≥
{
1− (2σ2/τ)

2
}
‖δ‖2Σ − E(xTδ)2I{|xTδ|/‖δ‖2 ≥ τ/(4r)} −Δ(r, l) · ‖δ‖22

≥
{
1− (2σ2/τ)

2 − ρ2xe
−τ/(8σxr)

}
· ‖δ‖2Σ −Δ(r, l) · ‖δ‖22, (B.10)

where the second inequality uses the bound

E(xTδ)2I{|xTδ|/‖δ‖2 ≥ τ/(4r)} ≤
{
E(xTδ)4

}1/2
P
(
|xTδ|/‖δ‖2 ≥ τ/(4r)

)1/2
≤ ρ2xe

−τ/(8σxr)‖δ‖2Σ

and Δ(r, l) = supδ∈B(r)∩C(l)(1/n)
∑n

i=1 |fδ(xi, εi)− Efδ(xi, εi)| with

fδ(xi, εi) := I(|εi| ≤ τ/2) · ϕτ‖δ‖2/(2r)(x
T

i δ)/‖δ‖22

and ϕc(u) := u2I(|u| ≤ c/2) + (|u| − c)2I(c/2 < |u| ≤ c) for u ∈ R and
c ≥ 0. We thus let τ ≥ max{4

√
2σ2, 8 log(8ρ

2
x)σxr} so that (2σ2/τ)

2 ≤ 1/8 and
ρ2xe

−τ/(8σxr) ≤ 1/8. It then follows from (B.10) that

〈∇L̂τ (β)−∇L̂τ (β
∗),β − β∗〉 ≥ 3

4
· ‖δ‖2Σ −Δ(r, l) · ‖δ‖22 (B.11)

holds uniformly over β ∈ β∗ + B(r) ∩ C(l).
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It remains to control the supremum Δ(r, l). Note that ϕc(·) is c-Lipschitz
continuous, and satisfies ϕbc(bu) = b2ϕc(u) for b, c > 0 and u ∈ R. Thus, the
above fδ(xi, εi) can be simplified as

fδ(xi, εi) = I(|εi| ≤ τ/2) · ϕτ/(2r)(x
T

i δ/‖δ‖2).

Moreover, since 0 ≤ ϕc(u) ≤ min{(c/2)2, u2}, we have 0 ≤ fδ(xi, εi) ≤ τ2/(4r)2

and by (2.21), Ef2
δ (xi, εi) ≤ E(xT

i δ/‖δ‖2)4 ≤ ρ4x{E(xT
i δ/‖δ‖2)2}2 ≤ (ρuρ

2
x)

2

for all δ ∈ Rd. Then, applying Bousquet’s version of Talagrand’s inequality (see,
e.g. Theorem 7.3 in [7]), we obtain that for every t ≥ 0,

Δ(r, l) ≤ EΔ(r, l) +
√

EΔ(r, l)(τ/2r)2t/n+ 2(ρuρ2x)
2t/n+ (τ/4r)2t/(3n)

≤ 1.25EΔ(r, l) + ρuρ
2
x

√
2t/n+ (τ/r)2t/(3n) (B.12)

with probability at least 1−e−t. For EΔ(r, l), using Rademacher symmetrization
gives

EΔ(r, l) ≤ 2E

{
sup

δ∈B(r)∩C(l)

∣∣∣∣∣ 1n
n∑

i=1

eifδ(xi, εi)

∣∣∣∣∣
}
,

where e1, . . . , en are independent Rademacher random variables. Since ϕc(·) is
c-Lipshitz, fδ(xi, εi) is a (τ/2r)-Lipschitz function in xT

i δ/‖δ‖2, i.e., for any
sample (xi, εi) and parameters δ, δ′ ∈ R

d,

|fδ(xi, εi)− fδ′(xi, εi)| ≤
τ

2r
|xT

i δ/‖δ‖2 − xT

i δ
′/‖δ′‖2|.

Moreover, observe that fδ(xi, εi) = 0 for any δ such that xT
i δ/‖δ‖2 = 0, and

I(|εi| ≤ τ/2) ∈ {0, 1}. Then, applying Talagrand’s contraction principle (see,
e.g. Theorem 4.4, Theorem 4.12 and (4.20) in [29]) yields

EΔ(r, l) ≤ 2E

{
sup

δ∈B(r)∩C(l)

∣∣∣∣∣ 1n
n∑

i=1

eifδ(xi, εi)

∣∣∣∣∣
}

≤ 2τ

r
E

{
sup

δ∈B(r)∩C(l)

∣∣∣∣∣ 1n
n∑

i=1

eix
T

i δ/‖δ‖2

∣∣∣∣∣
}

≤ 2τ l

r
· E

∥∥∥∥ 1n
n∑

i=1

eixi

∥∥∥∥
∞
, (B.13)

where the last inequality uses the cone constraint that ‖δ‖1 ≤ l‖δ‖2. Next, we
apply a maximal inequality for sub-exponential random variables to bound the
last term on the right-hand side of (B.13). For j = 1, . . . , d, define partial sums
Sj =

∑n
i=1 eixij , of which each summand satisfies E(eixij) = 0 and E(eixij)

2 =
σjj . More over, for k = 2, 4, . . ., E|ei|k = 1 and

E|eixij |k ≤ σk
x · k

∫ ∞

0

tk−1
P(|xij | ≥ σxt) dt ≤ σk

x · k
∫ ∞

0

tk−1e−t dt

= k!σk
x =

k!

2
2σ2

x︸︷︷︸
≥σjj

σk−2
x .
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By the symmetry of Rademacher random variables, and Bernstein’s inequality
(see, e.g. Theorems 2.10 in [6]), we obtain that

logEeλSj = logEe−λSj ≤ ψ(λ) :=
νλ2

2(1− cλ)
for all λ ∈ (0, 1/c),

where ν = 2nσ2
x and c = σx. Following the proof of Theorems 2.5 in [6], it can

be shown that

E max
1≤j≤d

|Sj | ≤ inf
λ∈(0,1/c)

{
log(2d) + ψ(λ)

λ

}
=

√
2v log(2d) + c log(2d).

Re-arranging terms and using (B.13), we find that

EΔ(r, l) ≤ 2σx(τ l/r)

{
2

√
log(2d)

n
+

log(2d)

n

}
.

Combining this with (B.11) and (B.12) yields the bound (2.22).

B.5. Proof of Proposition 2.5

Write Sj = (1/n)
∑n

i=1(ξixij −Eξixij) with ξi := �′τ (εi) for j = 1, . . . , d, so that
‖w∗‖∞ = max1≤j≤d |Sj |. Note that �′τ (u) = uI(|u| ≤ τ) + τ sign(u)I(|u| > τ),
we have E(ξ2i |xi) ≤ σ2

2 and |ξi| ≤ τ . It follows that E(ξixij)
2 ≤ σ2

2σjj and under
Condition 2.1,

E|ξixij |k ≤ τk−2σ2
2 · E|xij |k ≤ τk−2σ2

2 · k!σk
x ≤ k!

2
· 2σ2

2σ
2
x · (τσx)

k−2,

for k = 3, 4, . . .. Bernstein’s inequality, in conjunction with the union bound,
implies that for any x ≥ 0,

max
1≤j≤d

|Sj | ≤ σx

(
2σ2

√
2x

n
+ τ

x

n

)

with probability at least 1− 2de−x. Taking x = log(2d) + t proves (2.23). Next
we use a standard covering argument to prove (2.24). For any ε ∈ (0, 1), there
exists an ε-net Nε of the unit sphere in R

s with cardinality |Nε| ≤ (1 + 2/ε)s

such that

‖w∗
S‖2 ≤ 1

1− ε
max
u∈Nε

1

n

n∑
i=1

(
ξiu

Txi,S − Eξiu
Txi,S

)
. (B.14)

For every u ∈ Nε, Bernstein’s condition holds: E(ξiu
Txi,S)

2 ≤ 2σ2
2σ

2
x and for

k = 3, 4, . . .,

E|ξiuTxi,S |k ≤ k!

2
· 2σ2

2σ
2
x · (τσx)

k−2.
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Again, applying (one-sided) Bernstein’s inequality yields, for any x > 0,

1

n

n∑
i=1

(
ξiu

Txi,S − Eξiu
Txi,S

)
≤ σx

(
2σ2

√
x

n
+ τ

x

n

)

with probability at least 1 − e−x. Consequently, from the union bound and
(B.14), we have

‖w(β)S‖2 ≤ σx

1− ε

(
2σ2

√
x

n
+ τ

x

n

)

with probability at least 1−elog(1+2/ε)s−x. Taking ε = 1/3 and x = 2s+t proves
(2.24).

Appendix C: Proofs of theorems

C.1. Proof of Theorem 2.1

We will apply Propositions 2.1, 2.4 and 2.5 to prove Theorem 2.1. To begin
with, let λ, r, κ > 0 satisfy (2.8), that is, λ ≥ s−1/2b∗τ and r > 2.5κ−1s1/2λ.
Applying Proposition 2.1 with ε1 = 0 yields that, conditioned on the event
E1(r, 6s1/2, κ) ∩ {λ ≥ 2‖w∗‖∞}, the Huber-Lasso estimator defined in (2.1)
satisfies

‖β̂H-Lasso − β∗‖2 ≤ κ−1
(
1.5s1/2λ+ b∗τ

)
≤ 2.5κ−1s1/2λ. (C.1)

It remains to control the above event of interest. Taking l = 6s1/2 and κ =
ρl/2, it follows from Proposition 2.4 that P{E1(r, l, κ)} ≥ 1− e−t as long as τ �
max(σ2, r) and n � (τ/r)2(s log d+t). Furthermore, Proposition 2.5 ensures that
event {λ ≥ 2‖w∗‖∞} occurs with probability at least 1−e−t if the regularization
parameter satisfies

λ ≥ σx

(
4σ2

√
log(2d) + t

n
+ 2τ

log(2d) + t

n

)
.

Finally, we take τ � σ2

√
n/(log d+ t) and r � τ . By Lemma A.1 and Con-

dition 2.1, b∗τ ≤ σxσ
2
2τ

−1 � σ2

√
(log d+ t)/n. Putting together the pieces, we

conclude that under the scaling n � s log d + t, and if λ has magnitude of the
order within the range

σ2

√
log d+ t

n
� λ � σ2s

−1/2

√
n

log d+ t
,

the event E1(r, 6s1/2, ρl/2) ∩ {λ ≥ 2‖w∗‖∞} occurs with probability at least
1− 2e−t. Combined with (C.1), this proves the claimed bound.
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C.2. Proof of Theorem 2.2

We will apply Propositions 2.2, 2.4 and 2.5 to prove (2.27). The key is to control
the random events from Proposition 2.2, which relies on a delicate combination
of all the parameters. Similarly to the proof of Theorem 2.1, we take κ = ρl/2,
and let λ ≥ s−1/2b∗τ , where b∗τ = ‖∇Lτ (β

∗)‖2 ≤ σxσ
2
2τ

−1 due to Condition 2.1.
Given γ1 > γ0 > 0 satisfying (2.25), define δ = p′(γ0)/(ρlγ0) ∈ (0, 1), and let c >
0 be the constant determined by 0.5p′(γ0)(c

2 +1)1/2 +4 = cρlγ0, which verifies
(2.11) with κ = ρl/2. Moreover, set l = {2 + 2

p′(γ0)
}(c2 + 1)1/2s1/2 + 2

p′(γ0)
s1/2,

and let

r ≥ cγ0s
1/2λ =: rcrude.

Consequently, we apply Proposition 2.2 to conclude that, conditioned on event
E1(r, l, ρl/2) ∩ {‖w∗‖∞ + n−1/2 ≤ 0.5p′(γ0)λ}, the ε�-optimal solutions β̃(�)

satisfy

‖β̃(�) − β∗‖2 ≤ δ · ‖β̃(�−1) − β∗‖2
+ 2ρ−1

l

{
‖p′λ(|β∗

S | − γ0λ)‖2 + ‖w∗
S‖2 + (s/n)1/2 + b∗τ

}
for all � ≥ 2. Under the minimum signal strength condition ‖β∗

S‖min ≥ (γ0+γ1)λ,
and due to the fact that p′λ(t) = 0 for all t ≥ γ1λ, the deterministic term
‖p′λ(|β∗

S | − γ0λ)‖2 vanishes, thus implying

‖β̃(�) − β∗‖2 ≤ δ�−1rcrude + 2(1− δ)−1ρ−1
l

{
‖w∗

S‖2 + (s/n)1/2 + b∗τ
}

(C.2)

for all � ≥ 2.
Next, we control the event E1(r, l, ρl/2)∩{‖w∗‖∞+n−1/2 ≤ 0.5p′(γ0)λ} and

the oracle error term ‖w∗
S‖2. Given t ≥ 0, it follows from Proposition 2.4 with

the above l � s1/2 and κ = ρl/2 that event E1(r, l, κ) occurs with probability at
least 1− e−t as long as τ � max(σ2, r) and n � (τ/r)2(s log d+ t). We therefore
take r � τ throughout the proof. Turning to the gradient vector w∗ ∈ Rd,
applying Proposition 2.5 yields that with probability at least 1− 2e−t,

‖w∗‖∞ � σ2

√
log d+ t

n
+ τ

log d+ t

n
and ‖w∗

S‖2 � σ2

√
s+ t

n
+ τ

s+ t

n
.

Based on the above analysis, we choose the regularization parameter λ =
Cσ2

√
(log d+ t)/n for a sufficiently large C. Under the scaling n � s log d + t,

and if τ has magnitude of the order within the range of σ2 to σ2

√
n/(log d+ t),

it follows from (C.2) that with probability at least 1− 3e−t,

‖β̃(�) − β∗‖2 � δ�−1s1/2λ+
1

1− δ

(
σ2

√
s+ t

n
+ τ

s+ t

n
+ b∗τ

)
for all � ≥ 1.

This leads to the claimed bound by letting � � �log(log d+ t)/ log(1/δ)�.
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C.3. Proof of Theorem 2.3

The proof is based primarily on Proposition 2.3, combined with complementary
probabilistic analysis. For t ≥ 0 and a prescribed q ≥ max(s, log d), set τ =
σ2

√
n/(q + t). In order to apply the high-level result in Proposition 2.3, we

need the following two technical lemmas to control the events in (2.19). The
former controls the event E2(r, l, κ) defined in (2.16) under proper sample size

requirement, and the latter provides upper bounds on the �∞-error terms ‖β̂ora−
β∗‖∞ and ‖wora‖∞ = ‖∇L̂τ (β̂

ora)‖∞.

Lemma C.1. Under the conditions of the theorem, let τ, r, l > 0 satisfy

τ ≥ max(C0σ2, C1r) and n � (τ/r)2(s+ l2 log d+ t), (C.3)

where C0 is an absolute constant and C1 depends only on σx. Then, with prob-
ability at least 1− e−t,

〈∇L̂τ (β1)−∇L̂τ (β2),β1 − β2〉 ≥
ρl
2
‖β1 − β2‖22 (C.4)

holds uniformly over (β1,β2) ∈ C(r, l), where C(r, l) is defined in (2.16).

The next lemma provides statistical properties of the oracle estimator β̂ora

defined in (2.15) with τ = σ2

√
n/(q + t). Since the oracle β̂ora has access to

the true active set S, it is essentially an unpenalized Huber estimator based on
{(yi,xi,S)}ni=1.

Lemma C.2. Under the sample size scaling n � q + t, the following bounds

‖β̂ora − β∗‖Σ � σ2

√
s+ t

n
,

‖β̂ora − β∗‖∞ � σ2

√
log s+ t

n
+ σ2

(
q + t

n

)(1+η)/2

,

(C.5)

and

‖∇L̂τ (β̂
ora)‖∞ � σ2

√
log s+ t

n
+ σ2

(
q + t

n

)(1+η)/2

(C.6)

hold with probability at least 1− 7e−t.

Compared to Propositions 2.4 and 2.5, the proofs of Lemmas C.1 and C.2,
which are placed in the following two subsections, require a more delicate analy-
sis of the local behavior of the gradient process {∇L̂τ (β),β ∈ R

d} around both

the underlying vector β∗ and the oracle estimator β̂ora, with the latter being
random itself.
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With the above preparations, we are ready to prove the result. In Proposi-
tion 2.3, we set κ = ρl/2, δ = 2.5/(ρlγ0) ∈ (0, 1) and l = {2 + 2

p′(γ0)
}(c20 +

1)1/2s1/2, where c0 is determined by (2.18). Taking r = τ/C1 in Lemma C.1,
we obtain that event E2(r, l, κ) happens with probability at least 1 − e−t as
long as n � σ2 and n � s log d + t. Next, let λ = Cσ2

√
(log d+ t)/n for a

sufficient large constant C. Then, it follows from Lemma C.2 that the event
{‖wora‖∞ ≤ 0.5p′(γ0)λ} ∩ {‖β̂ora − β∗‖∞ ≤ λ/(5δκ) = γ0λ/6.25} ∩ {‖β̂ora −
β∗‖Σ ≤ r} occurs with probability at least 1 − 7e−t as long as n � (q +
t)1+1/η(log d)−1/η. Finally, the strong oracle property is a direct consequence of
Proposition 2.3.

C.3.1. Proof of Lemma C.1

By the convexity of the loss function, for any β1,β2 ∈ R
d,

D(β1,β2) := 〈∇L̂τ (β1)−∇L̂τ (β2),β1 − β2〉

=
1

n

n∑
i=1

{�′τ (yi − xT

i β2)− �′τ (yi − xT

i β1)}xT

i (β1 − β2)

≥ 1

n

n∑
i=1

{�′τ (yi − xT

i β2)− �′τ (yi − xT

i β1)}xT

i (β1 − β2)IEi , (C.7)

where IEi is the indicator function of the event Ei := {|εi| ≤ τ/4} ∩ {|xT
i (β2 −

β∗)| ≤ τ/4} ∩ {|xT
i (β1 − β2)| ≤ τ‖β1 − β2‖2/(2r)} on which |yi − xT

i β2| ≤
|εi|+|xT

i (β2−β∗)| ≤ τ/2 and |yi−xT
i β1| ≤ |xT

i (β1−β2)|+|xT
i (β2−β∗)|+|εi| ≤ τ

for all β1 ∈ β2 + B(r). Similarly to the proof of Proposition 2 in [30], for any
R > 0, define Lipschitz continuous functions

ϕR(u) = u2I(|u| ≤ R/2) + (|u| −R)2I(R/2 < |u| ≤ R),

and φR(u) = I(|u| ≤ R/2) + {2− (2u/R) sign(u)}I(R/2 < |u| ≤ R),

which are smoothed versions of u �→ u2I(|u| ≤ R) and u �→ I(|u| ≤ R), respec-
tively. Moreover, ϕR(u) ≤ u2I(|u| ≤ R) and φR(u) ≤ I(|u| ≤ R). By (C.7) and
the fact that �′′τ (u) = 1 for |u| ≤ τ ,

D(β1,β2)

≥ 1

n

n∑
i=1

{xT

i (β1 − β2)}2I|xT
i (β1−β2)|/‖β1−β2‖2≤ τ

2r
I|xT

i (β2−β∗)|≤ τ
4
I|εi|≤ τ

4

≥ D0(β1,β2) :=
1

n

n∑
i=1

ϕ τ
2r ‖β1−β2‖2

(xT

i (β1 − β2))φ τ
4
(xT

i (β2 − β∗))I|εi|≤ τ
4

= ED0(β1,β2) +D0(β1,β2)− ED0(β1,β2). (C.8)

In what follows, we deal with ED0(β1,β2) and D0(β1,β2)− ED0(β1,β2), sep-
arately.
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Noting that ϕR(u) ≥ u2I(|u| ≤ R/2) and φR(u) ≥ I(|u| ≤ R/2), we have

ED0(β1,β2) ≥
1

n

n∑
i=1

Eϕ τ
2r ‖β1−β2‖2

(xT

i (β1 − β2))I|xT
i (β2−β∗)|≤ τ

8
I|εi|≤ τ

4

≥ 1

n

n∑
i=1

E{(xT

i (β1 − β2)}2I|xT
i (β1−β2)|≤ τ

4r ‖β1−β2‖2

− 1

n

n∑
i=1

E{(xT

i (β1 − β2)}2I|xT
i (β2−β∗)|> τ

8
− 1

n

n∑
i=1

E{xT

i (β1 − β2)}2I|εi|> τ
4
.

(C.9)

Write δ = β1 − β2 for β1 ∈ β2 + B(r) and β2 ∈ β∗ + BΣ(r). By Hölder’s
inequality and (2.21),

E(xT

i δ)
2I|xT

i δ|> τ
4r ‖δ‖2

≤ 2ρ2xe
−(τ/8σxr)

2‖δ‖2Σ,
E(xT

i δ)
2I|xT

i (β2−β∗)|> τ
8
≤ (8/τ)2E(xT

i δ)
2{xT

i (β2 − β∗)}2 ≤ (8ρ2xr/τ)
2‖δ‖2Σ

and E(xT
i δ)

2I|εi|> τ
4
≤ (4σ2/τ)

2‖δ‖2Σ. Substituting these into (C.9) yields

ED0(β1,β2) ≥
{
1− (4σ2/τ)

2 − 2ρ2xe
−(τ/8σxr)

2 − (8ρ2xr/τ)
2
}
‖δ‖2Σ.

Let τ ≥ 8max(2σ2, {log(16ρ2x)}1/2σxr, 4ρ
2
xr), so that

(4σ2/τ)
2 ≤ 1/16, 2ρ2xe

−(τ/8σxr)
2 ≤ 1/8 and (8ρ2xr/τ)

2 ≤ 1/16.

It thus follows that

ED0(β1,β2) ≥
3

4
‖β1 − β2‖2Σ ≥ 3

4
ρl‖β1 − β2‖22 (C.10)

uniformly over β1 ∈ β2 + B(r) and β2 ∈ β∗ + BΣ(r).
Next, we will establish a high probability bound for the supremum

Δ(r, l) := sup
(β1,β2)∈C(r,l)

|D0(β1,β2)− ED0(β1,β2)|
‖β1 − β2‖22

.

Note that ϕcR(cu) = c2ϕR(u) for any c > 0 and u ∈ R. For each pair (β1,β2),
we write δ = β1 − β2 and define

fβ1,β2(xi, εi) = ϕ τ
2r
(xT

i δ/‖δ‖2) · φ τ
4
(xT

i (β2 − β∗)) · I|εi|≤ τ
4
,

so that Δ(r, l) = sup(β1,β2)∈C(r,l) |(1/n)
∑n

i=1 fβ1,β2(xi, εi) − Efβ1,β2(xi, εi)|.
Since 0 ≤ ϕR(u) ≤ min{(R/2)2, u2} and 0 ≤ φR(u) ≤ 1 for all u ∈ R, we have

0 ≤ fβ1,β2(xi, εi) ≤ (τ/4r)2 and Ef2
β1,β2

(xi, εi) ≤ ρ2uρ
4
x.
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By Bousquet’s version of Talagrand’s inequality [7] and (B.12), for any t ≥ 0,

Δ(r, l) ≤ 1.25EΔ(r, l) + ρuρ
2
x

√
2t/n+ (τ/r)2t/(3n) (C.11)

holds with probability at least 1− e−t.
It suffices to bound the expected value EΔ(r, l). Applying the symmetriza-

tion inequality for empirical processes and the connection between Gaussian
complexity and Rademacher complexity (see, e.g. Lemma 4.5 in [29]), we obtain
that

EΔ(r, l) ≤ 2 ·
√

π

2
· E

{
sup

(β1,β2)∈C(r,l)
|Gβ1,β2 |

}
, (C.12)

where

Gβ1,β2 :=
1

n

n∑
i=1

giϕ τ
2r
(xT

i δ/‖δ‖2)φ τ
4
(xT

i (β2 − β∗))I|εi|≤ τ
4

with δ = β1 − β2 and gi’s are independent standard normal random variables
that are independent of the observations. In particular, Gβ∗,β∗ is defined as
zero. Let E∗ be the conditional expectation given {(yi,xi)}ni=1. By symmetry,

E
∗

{
sup

(β1,β2)∈C(r,l)
|Gβ1,β2 |

}
≤ E

∗|Gβ∗,β∗ |︸ ︷︷ ︸
=0

+2E∗

{
sup

(β1,β2)∈C(r,l)
Gβ1,β2

}
. (C.13)

Next, we apply the Gaussian comparison theorem to bound the remaining term
E
∗{sup(β1,β2)∈C(r,l) Gβ1,β2}, from which a bound on E{sup(β1,β2)∈C(r,l) Gβ1,β2}

follows immediately. For another pair (β′
1,β

′
2) ∈ C(r, l), write δ′ = β′

1−β′
2, and

note that

Gβ1,β2 −Gβ′
1,β

′
2

= Gβ1,β2 −Gβ′
2+δ,β′

2
+Gβ′

2+δ,β′
2
−Gβ′

1,β
′
2

=
1

n

n∑
i=1

giϕ τ
2r
(xT

i δ/‖δ‖2){φ τ
4
(xT

i (β2 − β∗))− φ τ
4
(xT

i (β
′
2 − β∗))}I|εi|≤ τ

4

+
1

n

n∑
i=1

giφ τ
4
(xT

i (β
′
2 − β∗)){ϕ τ

2r
(xT

i δ/‖δ‖2)− ϕ τ
2r
(xT

i δ
′/‖δ′‖2)}I|εi|≤ τ

4
.

By the Lipschitz properties of φR and ϕR, i.e., |φR(u)− φR(v)| ≤ 2
R |u− v| and

|ϕR(u)− ϕR(v)| ≤ R|u− v|, and recall that ϕR(u) ≤ (R/2)2, we have

E
∗(Gβ1,β2 −Gβ′

2+δ,β′
2
)2 ≤ 1

n2

n∑
i=1

(
τ

4r

)4(
8

τ

)2

{xT

i (β2 − β′
2)}2

=

(
τ

2r2

)2
1

n2

n∑
i=1

{xT

i (β2 − β′
2)}2 (C.14)
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and

E
∗(Gβ′

2+δ,β′
2
−Gβ′

1,β
′
2
)2

≤ 1

n2

n∑
i=1

{
ϕ τ

2r
(xT

i δ/‖δ‖2)− ϕ τ
2r
(xT

i δ
′/‖δ′‖2)

}2

≤
(

τ

2r

)2
1

n2

n∑
i=1

(
xT

i δ/‖δ‖2 − xT

i δ
′/‖δ′‖2

)2
. (C.15)

Motivated by (C.14), (C.15) and the inequality that

E
∗(Gβ1,β2 −Gβ′

1,β
′
2
)2 ≤ 2E∗(Gβ1,β2 −Gβ′

2+δ,β′
2
)2 + 2E∗(Gβ′

2+δ,β′
2
−Gβ′

1,β
′
2
)2,

we define another (conditional) Gaussian process {Zβ1,β2 , (β1,β2) ∈ C(r, l)} as

Zβ1,β2 =

√
2τ

2r2
· 1
n

n∑
i=1

g′ix
T

i (β2 − β∗) +

√
2τ

2r
· 1
n

n∑
i=1

g′′i x
T

i δ/‖δ‖2

=

√
2τ

2r2
· 1
n

n∑
i=1

g′ix
T

i,S(β2 − β∗)S +

√
2τ

2r
· 1
n

n∑
i=1

g′′i x
T

i δ/‖δ‖2,

where g′1, g
′′
1 , . . . , g

′
n, g

′′
n are independent standard normal random variables that

are independent of all the other variables. We have established that E∗(Gβ1,β2 −
Gβ′

1,β
′
2
)2 ≤ E∗(Zβ1,β2 − Zβ′

1,β
′
2
)2. Then, applying Sudakov-Fernique’s Gaussian

comparison inequality (see, e.g. Theorem 7.2.11 in [47]) yields

E
∗

{
sup

(β1,β2)∈C(r,l)
Gβ1,β2

}
≤ E

∗

{
sup

(β1,β2)∈C(r,l)
Zβ1,β2

}
, (C.16)

which remains valid if E∗ is replaced by E. For the supremum of Zβ1,β2 , it is
easy to see that

E

{
sup

(β1,β2)∈C(r,l)
Zβ1,β2

}

≤
√
2τ

2r
E

∥∥∥∥ 1n
n∑

i=1

g′i (ΣSS)
−1/2xi,S

∥∥∥∥
2

+

√
2τ l

2r
E

∥∥∥∥ 1n
n∑

i=1

g′′i xi

∥∥∥∥
∞

≤
√
2τ

2r

√
s

n
+

√
2τ l

2r
E

∥∥∥∥ 1n
n∑

i=1

g′′i xi

∥∥∥∥
∞
. (C.17)

Together, (C.12), (C.13), (C.16) and (C.17) deliver the bound

EΔ(r, l) ≤ 2
√
π
τ

r

{√
s

n
+ lE

(
max
1≤j≤d

∣∣∣∣∣ 1n
n∑

i=1

gixij

∣∣∣∣∣
)}

. (C.18)
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Finally we bound the maximum under expectation on the right-hand side of
(C.18). Write Sj =

∑n
i=1 gixij for j = 1, . . . , d. Under Condition 2.3, for each

1 ≤ j ≤ d and m ≥ 2 we have

E|xj |m = σm
x m

∫ ∞

0

tm−1
P(|xj | ≥ σxt) dt

≤ 2σm
x m

∫ ∞

0

tm−1e−t2/2 dt = 2m/2σm
x mΓ(m/2).

Let g ∼ N(0, 1) be independent of x. Using the Legendre duplication formula,
i.e., Γ(s)Γ(s+ 1/2) = 21−2s

√
π Γ(2s), and some algebra, we get

E|gxj |m ≤ 2m/2Γ(
m+1
2 )√
π

· 2m/2σm
x mΓ(m/2) = 2σm

x m! =
m!

2
4σ2

x︸︷︷︸
≥E(gjxj)2

σm−2
x .

Hence, using Bernstein’s inequality and the symmetry of normal distribution
yields

logEeλSj = logEe−λSj ≤ 4σ2
xnλ

2

2(1− σxλ)

for all λ ∈ (0, 1/σx). Combined with Theorem 2.5 in [6], this implies

E

(
max
1≤j≤d

∣∣∣∣∣ 1n
n∑

i=1

gixij

∣∣∣∣∣
)

= E max
1≤j≤d

|Sj/n|

≤ σx

{
2

√
2 log(2d)

n
+

log(2d)

n

}
. (C.19)

Combining (C.18), (C.19) with the concentration inequality (C.11), we de-
termine that with probability at least 1 − e−t, Δ(r, l) ≤ ρl/4 as long as n �
(τ/r)2(s + l2 log d + t). This, together with (C.8) and (C.10), proves the claim
(C.4).

C.3.2. Proof of Lemma C.2

To begin with, consider the decomposition

∇L̂τ (β̂
ora) = w(β̂ora)−w(β∗) +∇Lτ (β̂

ora) +w∗,

where w(β) = ∇L̂τ (β) − ∇Lτ (β), Lτ (β) = EL̂τ (β) and w∗ = w(β∗). In

the following, we control the �∞-norms of the three terms, w(β̂ora) − w(β∗),

∇Lτ (β̂
ora) andw∗, separately. Throughout the proof, we take τ = σ2

√
n/(q + t)

for some q ≥ max(s, log d) and t ≥ 0.
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Applying Proposition 2.5 to the centered gradient w∗ = ((w∗
S)

T, (w∗
Sc))T)T ∈

R
d with slight modifications, we obtain that with probability at least 1− 2e−t,

‖w∗
S‖∞ � σ2

√
log s+ t

n
and ‖w∗

Sc‖∞ � σ2

√
log(d− s) + t

n
, (C.20)

thus implying ‖w∗‖∞ � σ2

√
(log d+ t)/n with the same probability.

Recall that β̂ora and β∗ have the same support S ⊆ [d]. Define the oracle
local neighborhood Θ∗(r) = {β ∈ β∗ + BΣ(r) : βSc = 0}. Then, conditioned on

the event {‖β̂ora − β∗‖Σ ≤ r},

‖w(β̂ora)−w(β∗)‖∞ ≤ sup
β∈Θ∗(r)

‖w(β)−w(β∗)‖∞. (C.21)

We thus focus on the supremum on the right-hand side of (C.21). For every
s-sparse vector β ∈ Θ∗(r), we write δ = (β − β∗)S ∈ R

s. For j = 1, . . . , d,
let ej ∈ R

d be the coordinate vector that has 1 on its j-th coordinate and 0
elsewhere, and define Δ0

j (δ) = 〈w(β)−w(β∗), ej〉 = (1/n)
∑n

i=1(ηij −Eηij) for
δ ∈ R

s, where ηij = xij{�′τ (εi − xT

i,Sδ)− �′τ (εi)}. Consequently, we have

sup
β∈Θ∗(r)

‖w(β)−w(β∗)‖∞ ≤ max
1≤j≤d

sup
‖δ‖S≤r

Δ0
j (δ)

∨
max
1≤j≤d

sup
‖δ‖S≤r

−Δ0
j (δ),

(C.22)

where S=ΣSS ∈R
s×s. In order to bound the local fluctuation supδ:‖δ‖S≤r Δ

0
j (δ),

we need to control the moment generating function of Δ0
j (δ) for each δ ∈ R

s. By

the Lipschitz continuity of �′τ (·), |E(ηij)| ≤ E|xijx
T

i,Sδ| ≤ σ
1/2
jj ‖δ‖S, E(η2ij |xi) ≤

x2
ij(x

T

i,Sδ)
2 and

E{(ηij − Eηij)
2|xi} ≤ 2E(η2ij |xi) + 2(Eηij)

2 ≤ 2x2
ij(x

T

i,Sδ)
2 + 2σjj‖δ‖2S.

The above moment inequalities, combined with the elementary inequality |eu −
1− u| ≤ (u2/2)eu∨0, imply that for any λ ∈ R and λ∗ = λ/(σ

1/2
jj ‖δ‖S),

Eeλ
√
nΔ0

j (δ)/(σ
1/2
jj ‖δ‖S) =

n∏
i=1

Ee
λ∗
√

n
(ηij−Eηij)

≤
n∏

i=1

E

{
1 +

λ∗2

2n
(ηij − Eηij)

2e
|λ∗|√

n
|ηij−Eηij |

}

≤
n∏

i=1

{
1 +

λ∗2e|λ|/
√
n

2n
E(ηij − Eηij)

2e
|λ∗|√

n
|xijx

T
i,Sδ|

}

≤
n∏

i=1

{
1 +

λ2

n
e|λ|/

√
n
Ee

|λ∗|√
n

|xijx
T
i,Sδ|

+
λ∗2

n
e|λ|/

√
n
Ex2

ij(x
T

i,Sδ)
2e

|λ∗|√
n

|xijx
T
i,Sδ|

}
.

(C.23)
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Applying Hölder’s inequality to the exponential moments on the right-hand side
of (C.23), we have

Ex2
ij(x

T

i,Sδ)
2e

|λ∗|√
n

|xijx
T
i,Sδ|

≤ σjj‖δ‖2S ·
{
E(xij/σ

1/2
jj )4e

|λ|√
n
x2
ij/σjj

}1/2

×
(
E(δTxi,S/‖δ‖S)4e

|λ|√
n
(xT

i,Sδ/‖δ‖S)
2

)1/2

and

Ee
|λ∗|√

n
|xijx

T
i,Sδ| ≤

(
Ee

|λ|√
n
x2
ij/σjj

)1/2

·
(
Ee

|λ|√
n
(xT

i,Sδ/‖δ‖S)
2
)1/2

.

Substituting these bounds into the earlier inequality (C.23), we find that for
any |λ| ≤ √

n/C1,

Eeλ
√
nΔ0

j (δ)/(σ
1/2
jj ‖δ‖S) ≤ eC

2
2λ

2/2,

where C1, C2 > 0 depend only on υ1 in Condition 2.3. A similar argument can
be used to establish the same bound for each pair (δ, δ′), that is,

Eeλ
√
n{Δ0

j (δ)−Δ0
j (δ

′)}/(σ1/2
jj ‖δ−δ′‖S) ≤ eC

2
2λ

2/2 for all |λ| ≤
√
n/C1.

The above inequality certifies condition (Ed) in [42] (see Section 2 in the supple-
ment), so that Corollary 2.2 therein applies to the process {Δ0

j (δ)}δ∈Rs:‖δ‖S≤r:
with probability at least 1− e−x,

sup
β∈Θ∗(r)

〈w(β)−w(β∗), ej〉 = sup
δ:‖δ‖S≤r

Δ0
j (δ) � r

√
s+ x

n

as long as n � s+ x. Combined with (C.22) and the union bound, we find that

sup
β∈Θ∗(r)

‖w(β)−w(β∗)‖∞ � r

√
s+ x

n

with probability at least 1− 2de−x provided n � s+ x. Taking x = log(2d) + t,

it follows from (C.21) that conditioned on {‖β̂ora − β∗‖Σ ≤ r},

‖w(β̂ora)−w(β∗)‖∞ � r

√
s+ log d+ t

n
(C.24)

holds with probability at least 1− e−t as long as n � s+ log d+ t.

Tuning to ‖∇Lτ (β̂
ora)‖∞, again, we control this term conditioned on the

same event above. Following the proof of Lemma A.1, it can be similarly shown
that

‖∇Lτ (β
∗)‖∞ � (aησ2)

2+ητ−1−η. (C.25)
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For any β ∈ Θ∗(r), write δ = (β − β∗)S ∈ R
s, and note that

∇Lτ (β)−∇Lτ (β
∗) = E

{
�′τ (ε)− �′τ (ε− xT

Sδ)
}
x

= E

∫ 0

−xT
Sδ

�′′τ (ε+ u) du · x

= E�′′τ (ε)xx
T

Sδ + E

∫ 0

−xT
Sδ

{
�′′τ (ε+ u)− �′′τ (ε)

}
du · x.

Let Ex and Px be the conditional expectation and probability given x, respec-
tively. By the anti-concentration property (2.29) of the distribution of ε given
x, we see that for any u ∈ R,

|Ex{�′′τ (ε+ u)− �′′τ (ε)}| = |Px(|ε+ u| ≤ τ)− Px(|ε| ≤ τ)| ≤ a0|u|.

Together, the last two displays imply

‖∇Lτ (β)−∇Lτ (β
∗) + H·Sδ‖∞

≤ a0
2

max
1≤j≤d

E|xj |(xT

Sδ)
2 ≤ a0

2
max
1≤j≤d

σ
1/2
jj ρ2x‖δ‖2S, (C.26)

where H·S := E{�′′τ (ε)xxT

S} ∈ R
d×s is the submatrix of H = ∇2Lτ (β

∗) =
E{�′′τ (ε)xxT}. For the linear term H·Sδ, write Σ·S = E(xxT

S) and note that

‖(H·S − Σ·S)δ‖∞ ≤ max
1≤j≤d

E
{
Px(|ε| ≥ τ) · |xjx

T

Sδ|
}

≤ max
1≤j≤d

σ
1/2
jj σ2

2‖δ‖Sτ−2. (C.27)

Together, (C.25), (C.26) and (C.27) imply that conditioned on {‖β̂ora−β∗‖Σ ≤
r},

‖∇Lτ (β̂
ora) + Σ·S(β̂

ora − β∗)S‖∞ � r2 + σ2+η
2 τ−1−η + σ2

2τ
−2r. (C.28)

Next we consider the oracle estimator β̂ora with τ = σ2

√
n/(q + t). Following

an argument similar to that used to prove Theorem 2.1 in [11], it can be shown
that with probability at least 1− 3e−t,

‖β̂ora − β∗‖Σ = ‖(β̂ora − β∗)S‖S � σ2

√
s+ t

n
(C.29)

and ∥∥∥∥∥S1/2(β̂ora − β∗)S − S−1/2 1

n

n∑
i=1

�′τ (εi)xi,S

∥∥∥∥∥
2

� σ2
s+ t

n
, (C.30)

where S = E(xSx
T

S) = ΣSS . Note that the linear term (1/n)
∑n

i=1 �
′
τ (εi)xi,S in

the Bahadur representation bound (C.30) can be written as

1

n

n∑
i=1

�′τ (εi)xi,S = −w∗
S −∇Lτ (β

∗)S .
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It follows that

‖β̂ora − β∗‖∞ = ‖(β̂ora − β∗)S‖∞
≤ ‖(β̂ora − β∗)S + S−1w∗

S + S−1∇Lτ (β
∗)S‖∞ + ‖S−1w∗

S + S−1∇Lτ (β
∗)S‖∞

≤ ‖(β̂ora −β∗)S +S−1w∗
S +S−1∇Lτ (β

∗)S‖2 + ‖S−1w∗
S‖∞ + ‖S−1∇Lτ (β

∗)S‖2
≤ ‖S−1‖1/22

{
‖S1/2(β̂ora − β∗)S + S−1/2w∗

S

+ S−1/2∇Lτ (β
∗)S‖2 + ‖S−1/2∇Lτ (β

∗)S‖2
}
+ ‖S−1w∗

S‖∞.

Similarly to Lemma A.1, we obtain that ‖S−1/2∇Lτ (β
∗)S‖2 ≤ (aησ2)

2+ητ−1−η.
For ‖S−1w∗

S‖∞, following the proof of Proposition 2.5, it can be similarly shown
that with probability at least 1− e−t,

‖S−1w∗
S‖∞ � σ2

√
log(2s) + t

n
.

Putting together the pieces, we conclude that the �2-error bound (C.29) and the
�∞-error bound

‖β̂ora − β∗‖∞ � σ2

√
log s+ t

n
+ σ2

(
q + t

n

)(1+η)/2

hold with probability 1− 4e−t as long as n � q+ t. Combined with (C.29), this
proves (C.5).

Finally, it remains to deal with ‖Σ·S(β̂
ora−β∗)S‖∞. Under condition (2.28),

‖Σ·Sδ‖∞ ≤ max
j∈Sc

‖ΣjS(ΣSS)
−1‖1 · ‖ΣSSδ‖∞ ≤ A0 · ‖Sδ‖∞ for any δ ∈ R

s.

Using the previous bounds (C.20), (C.25) and (C.30), we obtain that

‖S(β̂ora − β∗)S‖∞

≤
∥∥∥∥∥S(β̂ora − β∗)S − 1

n

n∑
i=1

�′τ (εi)xi,S

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1n
n∑

i=1

�′τ (εi)xi,S

∥∥∥∥∥
∞

≤
∥∥∥∥∥S(β̂ora − β∗)S − 1

n

n∑
i=1

�′τ (εi)xi,S

∥∥∥∥∥
2

+ ‖w∗
S‖∞ + ‖∇Lτ (β

∗)S‖∞

� σ2
s+ t

n
+ σ2

√
log s+ t

n
+ a2+η

η σ2

(
q + t

n

)(1+η)/2

.

Combining this bound with (C.24), (C.28) and (C.29) yields the claim (C.6).

C.4. Proof of Theorem 3.1

For simplicity, we write β(k) = β(1,k), φ(k) = φ(1,k) and λ = λ(0) throughout
this section.
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C.4.1. Technical lemmas

We first present three technical lemmas, which are the key ingredients to the
proof. The first lemma provides an alternative to the stopping rule.

Lemma C.3. ωλ(β
(k)) ≤ L(1 + γu)‖β(k) − β(k−1)‖2.

Proof of Lemma C.3. For simplicity, we write L(·) = L̂τ (·) as the loss function
of interest. Since β(k) is the exact solution at the k-th iteration when � = 1, the
first-order optimality condition holds: there exists some ξ(k) ∈ ∂‖β(k)‖1 such
that

∇L(β(k−1)) + φ(k)(β(k) − β(k−1)) + λ ◦ ξ(k) = 0d.

For any u ∈ R
d such that ‖u‖1 = 1, we have

〈∇L(β(k)) + λ ◦ ξ(k),u〉
= 〈∇L(β(k)),u〉 − 〈∇L(β(k−1)) + φ(k)(β(k) − β(k−1)),u〉
= 〈∇L(β(k))−∇L(β(k−1)),u

〉
− 〈φ(k)(β(k) − β(k−1)),u〉

≤ ‖∇L(β(k))−∇L(β(k−1))‖∞ + φ(k)‖β(k) − β(k−1)‖∞
≤ (φ(k) + L)‖β(k) − β(k−1)‖2,

where the last inequality is due to the Lipschitz continuity of ∇L(·). Taking the
supremum over all u satisfying ‖u‖1 ≤ 1, we obtain

ωλ(β
(k)) ≤ (φ(k) + L)‖β(k) − β(k−1)‖2.

It remains to show that φ(k) ≤ Lγu for any k. This is guaranteed by the
iterative LAMM algorithm. Otherwise, if φ(k) > Lγu, then φ′ ≡ φ(k)/γu > L is
the quadratic parameter in the previous iteration for searching φ such that

F (β̃(k);φ′,β(k−1)) < L(β̃(k)),

where β̃(k) is the new updated parameter vector under the quadratic coefficient
φ′. On the other hand, it follows from the definition of F and the Lipschitz
continuity of ∇L that

F (β̃(k);φ′,β(k−1)) + λ‖β‖1

= L(β(k−1)) + 〈∇L(β(k−1)), β̃(k) − β(k−1)〉+ φ′

2
‖β̃(k) − β(k−1)‖22

> L(β(k−1)) + 〈∇L(β(k−1)), β̃(k) − β(k−1)〉+ L

2
‖β̃(k) − β(k−1)‖22

≥ L(β̃(k)).

This leads to a contradiction, indicating that φ(k) ≤ Lγu.
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The second lemma is a modified version of Lemma E.4 in [16]. We reproduce
its proof here for completeness. Let Ψ(β,λ) = L(β) + ‖λ ◦ β‖1 with λ = λ(0).

Lemma C.4. For any β ∈ R
d, we have

Ψ(β,λ)−Ψ(β(k),λ) ≥ φ(k)

2

{
‖β − β(k)‖22 − ‖β − β(k−1)‖22

}
.

Proof of Lemma C.4. Since F (β;φ(k),β(k−1)) majorizes L(β) at β(k), we have

Ψ(β,λ)−Ψ(β(k),λ) ≥ Ψ(β,λ)−
{
F (β(k);φ(k),β(k−1)) + ‖λ ◦ β(k)‖1

}
.

(C.31)

By the convexity of L(·) and β �→ ‖λ ◦ β‖1,

L(β) ≥ L(β(k−1)) + 〈∇L(β(k−1)),β − β(k−1)〉 and

‖λ ◦ β‖1 ≥ ‖λ ◦ β(k)‖1 + 〈λ ◦ ξ(k),β − β(k)〉

for any ξ(k) ∈ ∂‖β(k)‖1. This further implies

Ψ(β,λ) ≥ L(β(k−1)) + 〈∇L(β(k−1)),β − β(k−1)〉
+ ‖λ ◦ β(k)‖1 + 〈λ ◦ ξ(k),β − β(k)〉. (C.32)

Plugging the expression of F (β(k);φ(k),β(k−1)) in (3.3) and (C.32) into (C.31),
we obtain

Ψ(β,λ)−Ψ(β(k),λ) ≥ −φ(k)

2
‖β(k) − β(k−1)‖22

+ 〈∇L(β(k−1)),β − β(k)〉+ 〈λ ◦ ξ(k),β − β(k)〉. (C.33)

By the first-order optimality condition, there exists some ξ ∈ ∂‖β(k)‖1 such
that

∇L(β(k−1)) + φ(k)(β(k) − β(k−1)) + λ ◦ ξ(k) = 0.

Substituting this into (C.33) proves the claimed bound.

Recall that Ψ(β,λ) = L(β) + ‖λ ◦ β‖1 and β̂(1) ∈ minβ∈Rd Ψ(β,λ) denotes
the optimal solution in the contraction stage.

Lemma C.5. For any k ≥ 1, we have

Ψ(β(k),λ)−Ψ(β̂(1),λ) ≤ max1≤j≤k φ
(j)

2k
‖β(0) − β̂(1)‖22.

Proof of Lemma C.5. For simplicity, we write β̂ = β̂(1), and define φmax =
max1≤j≤k φ

(j) and φmin = min1≤j≤k φ
(j) > 0. Taking β = β̂ in Lemma C.4

gives

0 ≥ Ψ(β̂,λ)−Ψ(β(j),λ) ≥ φ(j)

2
{‖β̂ − β(j)‖22 − ‖β̂ − β(j−1)‖22}
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for all j ≥ 1. Summing over j from 1 to k yields

k∑
j=1

2

φ(j)
{Ψ(β̂,λ)−Ψ(β(j),λ)} ≥

k∑
j=1

{‖β(j) − β̂‖22 − ‖β(j−1) − β̂‖22},

which further implies

2

φmax

{
kΨ(β̂,λ)−

k∑
j=1

Ψ(β(j),λ)

}
≥ ‖β(k) − β̂‖22 − ‖β(0) − β̂‖22. (C.34)

Again, by Lemma C.4 with β = β(j−1) and k = j,

Ψ(β(j−1),λ)−Ψ(β(j),λ) ≥ φ(j)

2
‖β(j) − β(j−1)‖22 ≥ φmin

2
‖β(j) − β(j−1)‖22.

Multiplying both sides of the above inequality by j− 1 and summing over j, we
obtain

2

φmin

k∑
j=1

{(j − 1)Ψ(β(j−1),λ)− jΨ(β(j),λ) + Ψ(β(j),λ)}

≥
k∑

j=1

(j − 1)‖β(j) − β(j−1)‖22,

or equivalently,

2

φmin

{
− kΨ(β(k),λ) +

k∑
j=1

Ψ(β(j),λ)

}
≥

k∑
j=1

(j − 1)‖β(j) − β(j−1)‖22. (C.35)

Together, (C.34) and (C.35) imply

2k

φmin
{Ψ(β̂,λ)−Ψ(β(k),λ)}

≥ φmax

φmin
‖β(k) − β̂‖22 +

k∑
j=1

(j − 1)‖β(j) − β(j−1)‖22 −
φmax

φmin
‖β(0) − β̂‖22,

from which it follows immediately that

2k

φmax
{Ψ(β(k),λ)−Ψ(β̂,λ)} ≤ ‖β(0) − β̂‖22.

This completes the proof.
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C.4.2. Proof of the theorem

Recall that β(k) = β(1,k) and φ(k) = φ(1,k). By Lemma C.3 and its proof,

ωλ(β
(k)) ≤ (φ(k) + L)‖β(k) − β(k−1)‖2 ≤ L(1 + γu)‖β(k) − β(k−1)‖2.

Next, taking β = β(k−1) in Lemma C.4 yields

Ψ(β(k−1),λ)−Ψ(β(k),λ) ≥ φ(k)

2
‖β(k−1) − β(k)‖22.

Together, the last two displays lead to a bound for the suboptimality measure

ωλ(β
(k)) ≤ L(1 + γu)

[
2

φ(k)

{
Ψ(β(k−1),λ)−Ψ(β(k),λ)

}]1/2
. (C.36)

Recall that {Ψ(β(k),λ)}∞k=0 is a non-increasing sequence, i.e.,

Ψ(β̂(1),λ) ≤ · · · ≤ Ψ(β(k),λ) ≤ · · · ≤ Ψ(β(0),λ).

Then, it follows from (C.36) and Lemma C.5 that

ωλ(β
(k)) ≤ L(1 + γu)

[
2

φ(k)
{Ψ(β(k−1),λ)−Ψ(β̂,λ)}

]1/2
≤ L(1 + γu)√

k − 1

√
max1≤j≤k−1 φ(j)

φ(k)
‖β̂‖2,

where we used the fact that β(0) = 0. By the triangle inequality,

ωλ(β
(k)) � L(1 + γu)√

k

(
‖β∗‖2 + ‖β̂ − β∗‖2

)
.

Therefore, in the contraction stage, we need k � {L(1 + γu)(‖β∗‖2 + ‖β̂ −
β∗‖2)/εc}2 to ensure ωλ(0)(β(k)) ≤ εc. This proves the stated result.

C.5. Proof of Theorem 3.2

For convenience, we omit the index �, and use β̂, β(k), λ and E to denote
β̂(�), β(�,k),λ(�−1) and E�, respectively, where E� is the subset defined in (B.2)
satisfying S ⊆ E� and |E�| ≤ C0s for some constant C0 > 1. Moreover, write

L(·) = L̂τ (·), and define Ψ(β,λ) = L(β) + ‖λ ◦ β‖1 = L(β) + ‖λ(�−1) ◦ β‖1, so
that β̂ ∈ minβ Ψ(β,λ).
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C.5.1. Technical lemmas

We first provide several technical lemmas along with the proofs.

Lemma C.6. For any k-sparse (k ≥ 1) vectors β1,β2 ∈ β∗ + B(r), we have

1

2
κ−(2k, r, τ)‖β1 − β2‖22 ≤ DL(β1,β2) ≤

1

2
κ+(2k, r, τ)‖β1 − β2‖22.

where DL(β1,β2) := L(β1)−L(β2)− 〈∇L(β2),β1 −β2〉 is the Bregman diver-
gence.

Proof of Lemma C.6. By a second-order Taylor series expansion, there exists
some γ ∈ [0, 1] such that β̃ = γβ1 + (1 − γ)β2 ∈ β∗ + B(r) and DL(β1,β2) =

(1/2)(β1 − β2)
T∇2L(β̃)(β1 − β2). The stated bounds then follow directly from

Definition 3.1.

The next lemma converts the bound on Ψ(β,λ)−Ψ(β∗,λ) to that on ‖β −
β∗‖2. Recall that for any subset E ⊆ [d], we write βE as a subvector of β indexed
by E .
Lemma C.7. Assume LSE(1) condition holds. Let E ⊆ [d] be a subset sat-
isfying S ⊆ E and |E| ≤ C0s for some C0 ≥ 1. Assume further that λ ≥
max{4‖∇L(β∗)‖∞, ‖λ‖∞} and ‖λEc‖min ≥ λ/2. Then, for any β ∈ β∗ + B(r)
satisfying ‖βSc‖0 ≤ s′ and Ψ(β,λ)−Ψ(β∗,λ) ≤ Csλ2, we have

‖β − β∗‖2 ≤ C1s
1/2λ and ‖β − β∗‖1 ≤ C2

√
s(s+ s′)λ,

where C1, C2 > 0 depend only on C0, C and localized sparse eigenvalues.

Proof of Lemma C.7. We omit the arguments in κ−(s + s′, r, τ) and κ+(s +
s′, r, τ) whenever there is no ambiguity. For any β ∈ β∗ + B(r) satisfying
‖βSc‖0 ≤ s′, note that ‖β‖0 ≤ s+ s′ and ‖β−β∗‖0 ≤ s+ s′. Using Lemma C.6
yields

L(β∗) + 〈∇L(β∗),β − β∗〉+ κ−
2
‖β − β∗‖22 ≤ L(β).

Since Ψ(β)−Ψ(β∗) ≤ Csλ2, or equivalently,

L(β)− L(β∗) + (‖λ ◦ β‖1 − ‖λ ◦ β∗‖1) ≤ Csλ2, (C.37)

it follows

κ−
2
‖β − β∗‖22 ≤ Csλ2 − 〈∇L(β∗),β − β∗〉︸ ︷︷ ︸

I

+(‖λ ◦ β∗‖1 − ‖λ ◦ β‖1)︸ ︷︷ ︸
II

.

After some simple algebra, it can be derived that

|I| ≤ ‖(β − β∗)Ec‖1‖∇L(β∗)‖∞ + ‖(β − β∗)E‖1‖∇L(β∗)‖∞,

II ≤ λ‖(β − β∗)E‖1 − (λ/2)‖(β − β∗)Ec‖1.



Iteratively reweighted penalized robust regression 3341

Combining the above bounds gives

κ−
2
‖β − β∗‖22 + {λ/2− ‖∇L(β∗)‖∞}‖(β − β∗)Ec‖1
≤ {λ+ ‖∇L(β∗)‖∞}‖(β − β∗)E‖1 + Csλ2,

which further implies

κ−
2
‖β − β∗‖22 ≤ 5λ

4
‖(β − β∗)E‖1 + Csλ2.

To bound the right-hand side of the above inequality, we discuss two cases
regarding the magnitude of ‖(β − β∗)E‖1 as compared to sλ:

• If 5λ‖(β − β∗)E‖1/4 ≤ Csλ2, we have

κ−
2
‖β − β∗‖22 ≤ 2Csλ2, and hence

‖β − β∗‖2 ≤ 2(C/κ−)
1/2s1/2λ.

(C.38)

• If 5λ‖(β − β∗)E‖1/4 > Csλ2, we have

κ−
2
‖β − β∗‖22 ≤ 5

2
λ‖(β − β∗)E‖1 ≤ 5

2
λ(C0s)

1/2‖β − β∗‖2,

thus implying

‖β − β∗‖2 ≤ 5C
1/2
0 κ−1

− s1/2λ. (C.39)

Combining (C.38) and (C.39), we obtain

‖β − β∗‖2 ≤ max
{
2(C/κ−)

1/2, 5C
1/2
0 κ−1

−
}
s1/2λ � s1/2λ.

Since β − β∗ is at most (s+ s′)-sparse, ‖β − β∗‖1 ≤ (s+ s′)1/2‖β − β∗‖2. The
stated results then follow immediately.

Recall that E� is the subset defined in (B.2) satisfying S ⊆ E� and |E�| ≤ C0s
for some C0 > 1.

Lemma C.8. Assume LSE(C0) condition holds and 4{‖∇L(β∗)‖∞+ εc∨ εt} ≤
λ � s−1/2r. For any � ≥ 2, the solution sequence {β(�,k)}k≥0 satisfies

‖β(�,k)
Ec
�

‖0 ≤ s′, ‖β(�,k) − β∗‖2 ≤ C1s
1/2λ and

‖β(�,k) − β∗‖1 ≤ C2sλ,
(C.40)

where C1, C2 > 0 are constants depending only on the localized sparse eigenval-
ues.

Proof of Lemma C.8. We prove the theorem by the method of induction on
(�, k). Throughout, C denotes a constant independent of (n, d, s) and may take
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different values at each appearance. For the first subproblem, directly apply-
ing Proposition 4.1 and Lemma 5.4 in [16] we obtain that ‖β̃(1) − β‖2 ≤
Cκ−1

∗ s1/2λ < r, ‖β̃(1)−β‖1 ≤ Cκ−1
∗ sλ and β̃(1) is (s+s′)-sparse, where s′ ≤ Cs.

It follows that β(2,0) = β̃(1) falls in a localized sparse set.
To apply the method of induction, first we assume that for any k, β(2,k) falls

in a localized sparse set such that (C.40) holds. We then use Lemma E.13 in
[16] to show that β(2,k+1) also falls in a localized sparse set. To this end, we

need to verify two conditions. The first one, ‖λ(�)
Ec
�
‖min ≥ λ/2 is guaranteed by

Claim (B.3) in the proof of Proposition 2.2, when γ is such that p′(γ) = 1/2
and |El| ≤ C0s for some C0 > 1. For the second condition, it suffices to show

Ψ(β(2,k),λ(1))−Ψ(β∗,λ(1)) � (1 + ζ)κ−1
∗ sλ2,

where ζ = κ∗/κ∗. Using the mean value theorem, there exists some convex

combination of β(2,k) and β∗, say β̃, such that

Ψ(β(2,k),λ(1))−Ψ(β∗,λ(1))

= L(β(2,k))− L(β∗) + {‖λ(1) ◦ β(2,k)‖1 − ‖λ(1) ◦ β∗‖1}

≤ 〈∇L(β∗),β(2,k) − β∗〉+ 1

2
(β(2,k) − β∗)T∇2L(β̃)(β(2,k) − β∗)

+ ‖λ(1) ◦ (β(2,k) − β∗)‖1

≤ ‖∇L(β∗)‖∞‖β(2,k) − β∗‖1 +
1

2
κ∗‖β(2,k) − β∗‖22 + λ‖β(2,k) − β∗‖1

≤ C

4
κ−1
∗ sλ2 +

C2

2
κ∗κ−2

∗ sλ2 + Cκ−1
∗ sλ2 � (1 + ζ)κ−1

∗ sλ2.

With above preparations, it follows from Lemma E.13 in [16] with slight modi-

fication that ‖β(2,k+1)
Ec
�

‖0 ≤ s′ and hence ‖β(2,k+1)‖0 ≤ C0s+ s′.

Next, we show that ‖β(2,k+1) − β∗‖2 � κ−1
∗ s1/2λ. Again, by Lemma C.4,

Ψ(β(2,k+1),λ(1))−Ψ(β(2,k),λ(1)) ≤ −φ(2,k+1)

2
‖β(2,k+1) − β(2,k)‖2.

This implies that {Ψ(β(2,k),λ(1))−Ψ(β∗,λ(1))}k≥1 is a non-increasing sequence.
By induction, it follows that

Ψ(β(2,k+1),λ(1))−Ψ(β∗,λ(1)) ≤ Ψ(β(2,k),λ(1))−Ψ(β∗,λ(1)) � (1 + ζ)κ−1
∗ sλ2.

Combining this with Lemma C.7 gives the desired bounds on ‖β(2,k+1) − β∗‖2
and ‖β(2,k+1) − β∗‖1.

Finally, by an argument similar to that in the proof of Lemma 5.4 in [16], we
can derive the stated results for all � ≥ 3.

For ε > 0, let β̃ be an ε-optimal solution to the program minβ{L(β) + ‖λ ◦
β‖1}. The following lemma provides conditions under which β̃ falls in an �1-
cone.
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Lemma C.9. Let E ⊆ [d] be a subset satisfying S ⊆ E , and assume λ ≥
‖λ‖∞ ∨ 4{‖∇L(β∗)‖∞ + ε} and ‖λEc‖min ≥ λ/2. Then, any ε-optimal solution

β̃ satisfies the cone constraint

‖(β̃ − β∗)Ec‖1 ≤ ‖λ‖∞ + ‖∇L(β∗)‖∞ + ε

‖λEc‖min − ‖∇L(β∗)‖∞ − ε
‖(β̃ − β∗)E‖1 ≤ 5‖(β̃ − β∗)E‖1.

Proof of Lemma C.9. For any ξ ∈ ∂‖β̃‖1, let u = ∇L(β̃)+λ◦ξ. By the convex-

ity of L(·), 〈∇L(β̃) −∇L(β∗), β̃ − β∗〉 ≥ 0. This, together with the inequality

〈∇L(β̃) + λ ◦ ξ, β̃ − β∗〉 ≤ ‖u‖∞‖β̃ − β∗‖1, implies

0 ≤ ‖u‖∞‖β̃ − β∗‖1 − 〈∇L(β∗), β̃ − β∗〉︸ ︷︷ ︸
I

−〈λ ◦ ξ, β̃ − β∗〉︸ ︷︷ ︸
II

. (C.41)

For I and II, note that I ≥ −‖∇L(β∗)‖∞‖β̃ − β‖1, and

II = 〈λ ◦ ξ, β̃ − β∗〉 = 〈(λ ◦ ξ)Ec , (β̃ − β∗)Ec〉+ 〈(λ ◦ ξ)E , (β̃ − β∗)E〉
≥ ‖λEc‖min‖(β̃ − β∗)Ec‖1 − ‖λE‖∞‖(β̃ − β∗)E‖1.

Substituting the above bounds into (C.41) and taking the infimum over ξ ∈
∂‖β̃‖1 yields

0 ≤ −[‖λEc‖min − {‖∇L(β∗)‖∞ + ωλ(β̃)}]‖(β̃ − β∗)Ec‖1
+ {‖λE‖∞ + ‖∇L(β∗)‖∞ + ωλ(β̃)}‖(β̃ − β∗)E‖1,

or equivalently,

‖(β̃ − β∗)Ec‖1 ≤ ‖λ‖∞ + ‖∇L(β∗)‖∞ + ωλ(β̃)

‖λEc‖min − {‖∇L(β∗)‖∞ + ωλ(β̃)}
‖(β̃ − β∗)E‖1.

This proves the stated result.

C.5.2. Proof of the theorem

Restricting our attention to the �-th subproblem, we write φ(k) = φ(�,k) for
simplicity. Define the subset L = {αβ̂ + (1 − α)β(k−1) : 0 ≤ α ≤ 1}. Due to
local majorization, we have

Ψ(β(k),λ)

≤ min
β∈L

{
L(β(k−1))+ 〈∇L(β(k−1)),β−β(k−1)〉+ φ(k)

2
‖β−β(k−1)‖22 + ‖λ ◦ β‖1

}
≤ min

β∈L

{
L(β) + φ(k)

2
‖β − β(k−1)‖22 + ‖λ ◦ β‖1

}
,
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where we used the convexity of L(·) in the second inequality. Since Ψ(β,λ) =

L(β) + ‖λ ◦ β‖1 is minimized at β̂, by convexity we have

Ψ(β(k),λ) ≤ min
β∈L

{
Ψ(β,λ) +

φ(k)

2
‖β − β(k−1)‖22

}
≤ min

0≤α≤1

{
αΨ(β̂,λ) + (1− α)Ψ(β(k−1),λ) +

α2φ(k)

2
‖β(k−1) − β̂‖22

}
= min

0≤α≤1

{
Ψ(β(k−1),λ)− α{Ψ(β(k−1),λ)−Ψ(β̂,λ)}

+
α2φ(k)

2
‖β(k−1) − β̂‖22

}
. (C.42)

Next, we bound the right-hand side of (C.42). By Lemma C.8,

‖(β(k−1))Ec
�
‖0 ≤ s′, ‖β(k−1) − β∗‖2 � s1/2λ � r and ‖β(k−1) − β∗‖2 � sλ.

Similarly, it can be shown the the optimum β̂ satisfies the same properties.
Hence,

β(k), β̂ ∈ β∗ + B(r) and ‖β(k) − β̂‖0 ≤ |E�|+ 2s′ ≤ C0s+ 2s′.

By the first-order optimality condition, there exists some ξ̂ ∈ ∂‖β̂‖1 such that

∇L(β̂)+λ◦ξ̂ = 0. Moreover, defineDL(β1,β2) = L(β1)−L(β2)−〈∇L(β2),β1−
β2〉. Using Definition 3.1, Lemma C.6, and the convexity of L(·) and �1-norm,
we obtain that

Ψ(β(k−1),λ)−Ψ(β̂,λ)

≥ 〈∇L(β̂) + λ ◦ ξ̂,β(k−1) − β̂〉+DL(β
(k−1), β̂) ≥ κ−

2
‖β(k−1) − β̂‖22,

where κ− = κ−(C0s+ 2s′, r, τ). Plugging this bound into (C.42) yields

Ψ(β(k),λ)

≤ min
0≤α≤1

[
Ψ(β(k−1),λ)− α{Ψ(β(k−1),λ)−Ψ(β̂,λ)}

+
α2φ(k)

κ−
{Ψ(β(k−1),λ)−Ψ(β̂,λ)}

]
≤ Ψ(β(k−1),λ)− κ−

4φ(k)
{Ψ(β(k−1),λ)−Ψ(β̂,λ)}.

Following the proof of Lemma C.3, it can be similarly shown that φ(k) ≤ γuκ
∗

under Condition 3.2. Consequently,

Ψ(β(k),λ)−Ψ(β̂,λ) ≤
(
1− 1

4γuζ

)k

{Ψ(β(0),λ)−Ψ(β̂,λ)},
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where ζ = κ∗/κ∗.
By an argument similar to that in the proof of Lemma C.3, we can show

that, for � ≥ 2,

ωλ�−1(β(�,k)) ≤ κ∗(1 + γu)‖β(�,k) − β(�,k−1)‖2.

Further, using Lemma C.4 to bound ‖β(�,k)−β(�,k−1)‖2 from above and noting
that φ(k) ≥ κ∗, we obtain

ωλ(�−1)(β(�,k))

≤ (1 + γu)κ
∗
√
(2/κ∗){Ψ(β(�,k−1),λ(�−1))−Ψ(β(�,k),λ(�−1))}

≤ (1 + γu)

√
2ζκ∗{Ψ(β(�,k−1),λ(�−1))−Ψ(β̂(�),λ(�−1))}

≤ (1 + γu)

√
2ζκ∗

(
1− 1

4γuζ

)k−1

{Ψ(β(�,0),λ(�−1))−Ψ(β̂(�),λ(�−1))}

≤ C(1 + γu)

√
ζκ∗

φ(�,0)

(
1− 1

4γuζ

)k−1

sλ2 ≤ C(1 + γu)ζ

√(
1− 1

4γuζ

)k−1

sλ2,

where the last step applies Lemmas C.4 and C.8.
To make the right-hand side of the above inequality smaller than εt, we need

k to be sufficiently large that k ≥ C1 log(C2s
1/2λ/εt), where C1, C2 > 0 are

constants depending only on localized sparse eigenvalues and γu. This completes
the proof.
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