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Abstract: The robustification parameter, which balances bias and robustness, plays a critical role

in the construction of subGaussian estimators for heavy-tailed and/or skewed data. Although

the parameter can be tuned using cross-validation, in large-scale statistical problems such as

high-dimensional covariance matrix estimation and large-scale multiple testing, the number of

robustification parameters increases with the dimensionality causing cross-validation to become

computationally prohibitive. We propose a new data-driven principle for choosing the robustifi-

cation parameter for Huber-type subGaussian estimators in three fundamental problems: mean

estimation, linear regression, and sparse regression in high dimensions. Our proposal is guided

by a nonasymptotic deviation analysis, and is conceptually different from cross-validation, which

relies on the mean squared error to assess the fit. Extensive numerical experiments and a real-

data analysis further illustrate the efficacy of the proposed methods.

Key words and phrases: Data adaptive, heavy tails, Huber loss, M -estimator, tuning parameters

1. Introduction

Data subject to heavy-tailed and/or skewed distributions are frequently observed

in various disciplines (Cont, 2001; Purdom and Holmes, 2005). A random variable X

is heavy-tailed if its tail probability P(|X| > t) decays to zero polynomially in 1/t
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Data-Adaptive Huber Regression 2

as t → ∞, or equivalently, if X has finite polynomial-order moments. The connection

between the moments and the tail probability is revealed by the property that E(|X|k) =

k
∫∞
0
tk−1P(|X| > t) dt, for any k ≥ 1. Here the sampling distribution has only a

small number of finite moments, with a high chance that some observations deviate

significantly from the population mean. Such observations are known as outliers, and

are caused by heavy-tailed noise. In contrast, samples generated from a Gaussian

or subGaussian distribution (Vershynin, 2012) are strongly concentrated around the

expected value, making the chance of having extreme observations much smaller.

Heavy-tailed data bring new challenges to conventional statistical methods. For lin-

ear models, regression estimators based on the least squares loss are suboptimal, both

theoretically and empirically, in the presence of heavy-tailed errors. See Catoni (2012)

for a deviation analysis showing that the deviation of the empirical mean can be much

worse for nonGaussian samples than it is for Gaussian ones. More broadly, this study

exemplifies the pitfalls of asymptotic studies in statistics, and inspires new notions of

optimality commonly used to assess the performance of estimators. In particular, the

minimax optimality under the mean squared error does not quite capture the influence

of estimators’ extreme behaviors. However, these rare events may have severe negative

effects in practice, leading to wrong conclusions or false discoveries. Since the work of

Catoni (2012), nonasymptotic deviation analyses have drawn considerable attention,

and are becoming increasingly important in the construction of subGaussian estima-

tors (see Section S1.2 in the Supplementary Materials) for heavy-tailed data; see, for
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example, Brownlees, Joly, and Lugosi (2015), Minsker (2015, 2018), Hsu and Sabato

(2016), Devroye et al. (2016), Lugosi and Mendelson (2016), Fan, Li, and Wang (2017),

Lugosi and Mendelson (2019), Lecué and Lerasle (2017), and Zhou et al. (2018), among

others.

For linear models, Fan, Li, and Wang (2017) and Zhou et al. (2018) proposed Huber-

type estimators in both low- and high-dimensional settings’ and derived nonasymptotic

deviation bounds for the estimation error. To implement either Catoni’s or a Huber-

type method, a tuning parameter τ needs to be specified in advance to balance the

robustness and bias of the estimation. A deviation analysis suggests that this tuning

parameter, which we refer to as the robustification parameter, should adapt to the sam-

ple size, dimension, variance of the noise, and confidence level. Calibration schemes are

typically based on cross-validation or Lepski’s method, which can be computationally

intensive, especially for large-scale inference and high-dimensional estimation problems,

where the number of parameters may be exponential in the number of observations.

For example, Avella-Medina et al. (2018) proposed adaptive Huber estimators for es-

timating high-dimensional covariance and precision matrices. For a d × d covariance

matrix, although every entry can be robustly estimated using a Huber-type estimator

with τ chosen via cross-validation, the overall procedure involves as many as d2 tuning

parameters. As a result, the cross-validation method soon becomes computationally

intractable as d grows. Efficient tuning is important, not only for the problem, but also

for applications in a broader context.
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First, we develop data-driven Huber-type methods for mean estimation, linear re-

gression, and sparse regression in high dimensions. For each problem, we first provide

subGaussian concentration bounds for the Huber-type estimator under a minimal mo-

ment condition on the errors. These nonasymptotic results guide the choice of key

tuning parameters. Some are of independent interest, and improve existing results by

weakening the sample size scaling. Second, we propose a novel data-driven principle to

calibrate the robustification parameter τ > 0 in the Huber loss

`τ (x) =


x2/2 if |x| ≤ τ,

τ |x| − τ 2/2 if |x| > τ.

(1.1)

Huber proposed using τ = 1.345σ to retain 95% of the asymptotic efficiency of the

estimator for normally distributed data, and to guarantee the estimator’s performance

for arbitrary contamination in a neighborhood of the true model (Huber, 1981; Huber

and Ronchetti, 2009). This default setting is useful in high-dimensional statistics, even

though the asymptotic efficiency is no longer well defined; see, for example, Lambert-

Lacroix and Zwald (2011), Elsener and van de Geer (2018), and Loh (2017). Guided

by the nonasymptotic deviation analysis, our proposed τ grows with the sample size

for the bias–robustness trade-off. For linear regressions under different regimes, the

optimal τ depends on the dimension d: τ ∼ σ
√

(n/d) in the low-dimensional setting

with small d/n, and τ ∼ σ
√
n/ log(d) in high dimensions. Lastly, we design simple and

fast algorithms to implement our method for calibrating τ .

We focus on the notion of tail robustness (Catoni, 2012; Minsker, 2018; Zhou et
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al., 2018; Fan, Li, and Wang, 2017; Avella-Medina et al., 2018), which is character-

ized by tight nonasymptotic deviation guarantees for the estimators under weak mo-

ment assumptions, and is evidenced by better finite-sample performance in the pres-

ence of heavy-tailed and/or highly skewed noise. This is inherently different from the

traditional definition of robustness under Huber’s ε-contamination model (Huber and

Ronchetti, 2009). Following the introduction of the finite-sample breakdown point by

Donoho and Huber (1983), traditional robust statistics have focused, in part, on the

development of high breakdown point estimators. Informally, the breakdown-point of

an estimator is defined as the largest proportion of contaminated samples in the data

that an estimator can tolerate before it produces arbitrarily large estimates (Hampel,

1971; Hampel et al., 1986; Maronna et al., 2018). A high breakdown point does not

necessarily shed light on an estimator’s convergence properties, efficiency, and stability.

Refer to Portnoy and He (2000) for a review of classical robust statistics. In contrast, a

tail robust estimator is resilient to outliers caused by heavy-tailed noise. Intuitively, the

breakdown point describes the worst-case robustness, whereas our focus corresponds to

the average-case robustness.

The remainder of this paper is organized as follows. In Section 2, we revisit Catoni’s

method on robust mean estimation. Motivated by a careful analysis of the truncated

sample mean, we introduce a novel data-driven adaptive Huber estimator. We extend

this data-driven tuning scheme to robust regression in Section 3 under both low- and

high-dimensional settings. Extensive numerical experiments are reported in Section 4

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0045



6

to demonstrate the finite-sample performance of the proposed procedures. Section 5

concludes the paper. All proofs, together with technical details and real-data examples,

are relegated to the Supplementary Material.

2. Robust data-adaptive mean estimation

2.1 Motivation

To motivate our proposed data-driven scheme for Huber-type estimators, we start by

revisiting the mean estimation problem. Let X1, . . . , Xn (n ≥ 2) be independent and

identically distributed (i.i.d.) copies of X with mean µ and finite variance σ2 > 0. The

sample mean, denoted as X̄n, is the most natural estimator for µ. However, it suffers

severely from not being robust to heavy-tailed sampling distributions (Catoni, 2012).

In order to cancel, or at least dampen, the erratic fluctuations in X̄n, which are more

likely to occur if the distribution of X is heavy-tailed, we consider the truncated sample

mean mτ = n−1
∑n

i=1 ψτ (Xi), for some τ > 0, where

ψτ (x) = sign(x) min(|x|, τ ) (2.1)

is a truncation function on R. Here, the tuning parameter τ controls the bias and tail

robustness of mτ . To see this, note that the bias term Bias := E(mτ ) − µ satisfies

|Bias| = |E{X − sign(X)τ}I(|X| > τ)| ≤ τ−1E(X2). For tail robustness, the following

result shows that mτ with a properly chosen τ is a subGaussian estimator, as long as

the second moment of X is finite.
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2.1 Motivation7

Proposition 2.1. Assume that v2 :=
√
E(X2) is finite. For any z > 0,

(i) mτ with τ = v
√
n/z, for some v ≥ v2, satisfies P{|mτ − µ| ≥ 2v

√
z/n} ≤ 2e−z;

(ii) mτ with τ = cv2
√
n/z, for some 0 < c ≤ 1, satisfies P{|mτ−µ| ≥ 2(v2/c)

√
z/n} ≤

2e−z/c
2
.

Proposition 2.1 shows how mτ performs under various idealized scenarios, thus

providing guidance on the choice of τ . Here, z > 0 is a user-specified parameter that

controls the confidence level; see the discussion before Remark 2.2. Given a properly

tuned τ , the subGaussian performance is achieved; conversely, if the resulting estimator

performs well, the data are truncated at the right level and can be further exploited. An

ideal τ is such that the sample mean of the truncated data ψτ (X1), . . . , ψτ (Xn) serves as

a good estimator of µ. The influence of outliers caused by heavy-tailed noise is weakened

owing to the proper truncation. At the same time, we may expect that the empirical

second moment for the same truncated data will provide a reasonable estimate of v22.

Motivated by this, we propose choosing τ > 0 by solving τ = {
∑n

i=1 ψ
2
τ (Xi)}1/2

√
n/z,

which is equivalent to

1

n

n∑
i=1

ψ2
τ (Xi)

τ 2
=
z

n
, τ > 0. (2.2)

We show that, under mild conditions, (2.2) has a unique solution τ̂z, which gives rise

to the following data-driven mean estimator:

mτ̂z =
1

n

n∑
i=1

min(|Xi|, τ̂z) sign(Xi). (2.3)
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2.1 Motivation8

To understand the property of τ̂z, consider the population version of (2.2):

E{ψ2
τ (X)}
τ 2

=
E{min(X2, τ 2)}

τ 2
=
z

n
, τ > 0. (2.4)

The following result establishes the existence and uniqueness of the solution to (2.4).

Proposition 2.2. Assume that v2 =
√
E(X2) is finite.

(i) Provided 0 < z < nP(|X| > 0), (2.4) has a unique solution τz that satisfies

[E{min(X2, q2z/n)}]1/2
√
n/z ≤ τz ≤ v2

√
n/z, where qα := inf{t : P(|X| > t) ≤ α}

is the upper α-quantile of |X|.

(ii) Let z = zn > 0 satisfy zn →∞ and z = o(n). Then, τz →∞ and τz ∼ v2
√
n/z,

as n→∞.

As a direct consequence of Proposition 2.2, the following result ensures the existence

and uniqueness of the solution to (2.2), the empirical counterpart of (2.4).

Proposition 2.3. Provided 0 < z <
∑n

i=1 I(|Xi| > 0), (2.2) admits a unique solution.

Throughout, denote τ̂z as the solution to (2.2), which is unique and positive when-

ever z <
∑n

i=1 I(|Xi| > 0). For completeness, we set τ̂z = 0 on {z ≥
∑n

i=1 I(|Xi| > 0)}.

If P(X = 0) = 0 and 0 < z < n, then τ̂z > 0 with probability one. With both τz and

τ̂z well defined, we investigate the property of τ̂z below.

Theorem 2.1. Assume E(X2) < ∞ and P(X = 0) = 0. For any 1 ≤ z < n and

0 < r < 1, we have

P(|τ̂z/τz − 1| ≥ r) ≤ e−a
2
1r

2z2/(2z+2a1rz/3) + e−a
2
2r

2z/2 + 2e−(a1∧a2)
2z/8, (2.5)
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2.1 Motivation9

where

a1 = a1(z, r) =
P (τz)

2Q(τz)

2 + r

(1 + r)2
and a2 = a2(z, r) =

P (τz − τzr)
2Q(τz)

2− r
1− r

, (2.6)

with P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψ2
t (X)}.

Remark 2.1. Here, we give some direct implications of Theorem 2.1.

(i) Let z = zn ≥ 1 satisfy z = o(n) and z → ∞ as n → ∞. By Proposition 2.2,

τz →∞ and τz ∼ v2
√
n/z, which implies P (τz)→ v22 and Q(τz)→ v22 as n→∞.

(ii) With r = 1/2 and z = logκ(n), for some κ ≥ 1, in (2.5), the constants a1 =

a1(z, 1/2) and a2 = a2(z, 1/2) satisfy a1 → 5/9 and a2 → 3/2, respectively,

as n → ∞. The resulting τ̂z satisfies that, with probability approaching one,

τz/2 ≤ τ̂z ≤ 3τz/2.

We conclude this section with a uniform deviation bound for mτ . The uniformity of

the rate over a neighborhood of the optimal tuning scale requires an additional log(n)-

factor. As a result, we show that the data-driven estimator mτ̂z is tightly concentrated

around the mean with high probability.

Theorem 2.2. For z ≥ 1, let τ ∗z = v2
√
n/z. Then, with probability at least 1−2ne−z,

sup
τ∗z /2≤τ≤3τ∗z /2

|mτ − µ| ≤ 4v2(z/n)1/2 + v2n
−1/2. (2.7)

Letting z = 2 log(n) and τ̂z be the solution to (2.2), we obtain the following con-

centration inequality for the mean estimator mτ̂z given in (2.3).
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Corollary 2.1. With probability at least 1−c1n−c2 for all sufficiently large n, we have

|mτ̂z − µ| ≤ 4v2
√

2 log(n)/n + v2n
−1/2, (2.8)

where c1, c2 > 0 are absolute constants.

2.2 Adaptive Huber estimator

For the truncation method, even with the theoretically desirable tuning parameter

τ = v2
√
n/z, the deviation of the resulting estimator scales only with v2, rather than

with the standard deviation σ. The optimal deviation, which is enjoyed by the sample

mean with subGaussian data, is of order σ
√
z/n. To achieve such an optimal order,

Fan, Li, and Wang (2017) modified Huber’s method to construct an estimator that

exhibits fast (subGaussian type) concentration under a finite-variance condition.

The Huber loss in (1.1) is continuously differentiable with `′τ (x) = ψτ (x), where

ψτ (·) is defined in (2.1). The Huber estimator is obtained as µ̂τ = argminθ∈R
∑n

i=1 `τ (Xi−

θ), or equivalently, µ̂τ is the unique solution to

0 =
n∑
i=1

ψτ (Xi − θ) =
n∑
i=1

min(|Xi − θ|, τ) sign(Xi − θ). (2.9)

Refer to Catoni (2012) for a general class of robust mean estimators. The following

result from Theorem 5 in Fan, Li, and Wang (2017) shows the exponential-type con-

centration of µ̂τ when τ is properly calibrated.

Proposition 2.4. Let z > 0 and v ≥ σ. Provided n ≥ 8z, µ̂τ with τ = v
√
n/z satisfies

the bound |µ̂τ − µ| ≤ 4v
√
z/n with probability at least 1− 2e−z.
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2.2 Adaptive Huber estimator11

Proposition 2.4 indicates that a theoretically desirable tuning parameter for the

Huber estimator is τ ∼ σ
√
n/z. Motivated by the data-driven approach proposed in

Section 2.1, we consider the following modification of (2.4):

E{ψ2
τ (X − µ)}
τ 2

=
E[min{(X − µ)2, τ 2}]

τ 2
=
z

n
, τ > 0. (2.10)

According to Proposition 2.2, provided 0 < z < nP(X 6= µ), (2.10) admits a unique

solution τz,µ that satisfies
√
E
[
min{(X − µ)2, q̄z/n}

]√
n/z ≤ τz,µ ≤ σ

√
n/z, where

q̄α = inf{t : P(|X − µ| > t) ≤ α}. From a large-sample perspective, if z = zn satisfies

z →∞ and z = o(n), then τz,µ →∞ and τz,µ ∼ σ
√
n/z as n→∞.

Based on (2.9) and (2.10), a clearly motivated data-driven estimate of µ can be

obtained by solving the following system of equations:
f1(θ, τ) :=

∑n
i=1 ψτ (Xi − θ) = 0,

f2(θ, τ) := n−1
∑n

i=1 min{(Xi − θ)2, τ 2}/τ 2 − n−1z = 0,

θ ∈ R, τ > 0. (2.11)

Observe that for any given τ > 0, f1(·, τ) = 0 always admits a unique solution, and

for any given θ, f2(θ, ·) = 0 has a unique solution, provided that z <
∑n

i=1 I(Xi 6=

θ). With initial values θ(0) = X̄n and τ (0) = σ̂n
√
n/z, where σ̂2

n denotes the sam-

ple variance, we can solve (2.11) successively by computing a sequence of solutions

{(θ(k), τ (k))}k≥1 that satisfy f2(θ
(k−1), τ (k)) = 0 and f1(θ

(k), τ (k)) = 0, for k ≥ 1. For

a predetermined tolerance ε, the algorithm terminates within the `th iteration when

max{|θ(`) − θ(`−1)|, |τ (`) − τ (`−1)|} ≤ ε, and uses θ(`) as a robust estimator of µ.

In the case of z = 1, the algorithm stops in the first iteration and delivers the
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solution X̄n. According to the results in Section 2.1, for fixed z ≥ 1, there is no net

improvement in terms of tail robustness; instead, we should let z = zn grow slowly with

the sample size to achieve tail robustness without introducing extra bias. Specifically,

we choose z = log(n) throughout our numerical experiments.

Remark 2.2. The proposed estimator is obtained by iteratively solving (2.11), which

mimics (1.6) in Bickel (1975), and can be viewed as a variant of (6.28) and (6.29) in

Huber and Ronchetti (2009) for joint location and scale estimation. The estimator in

Bickel (1975) solves the equation
∑n

i=1 ψσ̂(Xi−θ) = 0, where σ̂ is chosen independently

as the normalized interquartile range σ̂(1) = {X(n−[n/4]+1) −X([n/4])}/2Φ−1(3/4) or the

symmetrized interquartile range σ̂(2) = median{|Xi − m|}/Φ−1(3/4), where X(1) <

· · · < X(n) are the order statistics and m is the sample median. The consistency of

σ̂(1) or σ̂(2) is established under the symmetry assumption of X, but remains unclear

for general distributions. On the other hand, similarly to Bickel (1975), our proposed

estimators of θ and τ are also location and scale equivariant (see Sections S1.7 and S1.8

in the Supplementary Materials).

Unlike this classical approach, we waive the symmetry requirement by allowing the

robustification parameter to diverge in order to reduce the bias induced by the Huber

loss when the distribution is asymmetric. Another difference is that Bickel’s proposal

is a two-step method that estimates the scale and location separately, whereas our

procedure estimates µ and calibrates τ simultaneously by solving a system of equations.

In fact, as a direct extension of the idea in Section 2.1, we can also tune τ independently
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from the estimation by solving
(
n
2

)−1∑
1≤i<j≤n τ

−2 min{(Xi −Xj)
2/2, τ 2} = zn−1, for

z > 0. Let X ′ be an independent copy of X. Then, the population version of this

equation is E [min{(X −X ′)2/2, τ 2}] τ−2 = z/n, the solution of which is unique under

mild conditions and scales as σ
√
n/z.

Remark 2.3. We assume a finite variance of errors. For more subtle scenarios with a

finite (1 + δ)th moment and 0 < δ < 1, the phase transition phenomenon discovered by

Devroye et al. (2016) and Sun, Zhou, and Fan (2020) suggests that Huber’s M -estimator

no longer admits subGaussian-type deviation bounds. Developing the corresponding

data-driven principle to tune Huber’s method when δ < 1 is nontrivial, and thus is left

as a topic for future investigation.

3. Robust data-adaptive linear regression

In this section, we extend the proposed data-driven method for robust mean estimation

to regression problems. Consider the linear regression model

Yi = β∗0 +Xᵀ
i β
∗ + εi, i = 1, . . . , n, (3.1)

where Yi is a response variable, Xi is a d-dimensional vector of covariates, β∗0 and

β∗ ∈ Rd denote the intercept and vector, respectively, of the regression coefficients,

and ε1, . . . , εn are independent regression errors with zero mean and finite variance.

For ease of presentation, we write Zi = (1,Xᵀ
i )ᵀ and θ∗ = (β∗0 ,β

∗ᵀ)ᵀ. The goal is to

estimate θ∗ from the observed data {(Yi,Xi)}ni=1.
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3.1 Adaptive Huber regression in low dimensions

We start with the low-dimensional regime, where d � n. In the presence of heavy-

tailed errors, the finite-sample properties of the least squares method are suboptimal,

both theoretically and empirically. Under such heavy-tailed models, refer to Audibert

and Catoni (2011) and Sun, Zhou, and Fan (2020) for a nonasymptotic analysis of

Huber-type robust regressions; the former focuses on the excess risk bounds, and the

latter provides deviation bounds for the estimator, along with nonasymptotic Bahadur

representations.

Given τ > 0, Huber’s M -estimator is defined as

θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ ∈ argmin
θ∈Rd+1

n∑
i=1

`τ (Yi −Zᵀ
i θ), (3.2)

where `τ (·) is given in (1.1). By the convexity of the Huber loss, the solution to (3.2) is

determined uniquely using the first-order condition
∑n

i=1 ψτ (Yi − Z
ᵀ
i θ̂τ )Zi = 0. Most

desirable features of Huber’s method are established under the assumption that the

error distribution is symmetric around zero. In the absence of symmetry, the bias

induced by the Huber loss becomes non-negligible. To make this statement precise,

note that θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ is a natural M -estimator of

θ∗τ = (β∗0,τ ,β
∗ᵀ
τ )ᵀ = argmin

(β0,βᵀ)ᵀ∈Rd+1

n∑
i=1

E{`τ (Yi − β0 −Xᵀ
i β)}, (3.3)

whereas the true parameters β∗0 and β∗ are identified as argminβ0,β
∑n

i=1 E{(Yi − β0 −

Xᵀ
i β)2}. For any fixed τ > 0, although β̂0,τ and β̂τ are robust estimates of β∗0,τ and

β∗τ , respectively, (β∗0,τ ,β
∗
τ ) differs from (β∗0 ,β

∗), in general. The following proposition
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3.1 Adaptive Huber regression in low dimensions15

provides an explicit bound on the bias, complementing the results in Section 4.9.2 of

Maronna et al. (2018).

Proposition 3.1. Assume that ε and X are independent, and that the function α 7→

E{`τ (ε− α)} has a unique minimizer ατ = argminα∈R E{`τ (ε− α)}, which satisfies

P(|ε− ατ | ≤ τ) > 0. (3.4)

Assume further that E(ZZᵀ) is positive definite. Then, we have β∗0,τ = β∗0 + ατ and

β∗τ = β∗. Moreover, ατ with τ > σ satisfies the bound

|ατ | ≤
σ2 − E{ψ2

τ (ε)}
1− τ−2σ2

1

τ
. (3.5)

Note too that the Huber loss minimization is equivalent to the penalized least

squares problem (She and Owen, 2011), (µ̂τ , θ̂τ ) = argminµ∈Rn,θ∈Rd+1{12
∑n

i=1(Yi−µi−

Zᵀ
i θ)2 + τ

∑n
i=1 |µi|}, where µ = (µ1, . . . , µn)ᵀ and θ̂τ coincide with those in (3.2).

This loss function can be written as
∑n

i=1(Yi− µi− β0−X
ᵀ
i β)2/2 + τ

∑n
i=1 |µi|, which

explains from a different perspective that the bias arises only at the intercept. The

larger τ is, the sparser µ̂τ is and, therefore, the smaller the estimation bias is.

Proposition 3.1 draws attention to intercept estimation, a problem of independent

interest that needs to be treated with greater caution. If the distribution of ε is asym-

metric, ατ is typically nonzero, for any τ > 0; here, a smaller τ results in a larger

bias and, thus, a larger prediction error. To balance the bias and the tail robustness,

we propose two modifications to Huber’s method (a one-step method, and a two-step
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3.1 Adaptive Huber regression in low dimensions16

method) that are robust against heavy-tailed and asymmetric errors, while maintaining

high efficiency for normal data.

3.1.1 One-step method

As noted in Zhou et al. (2018), there is an inherent bias–robustness trade-off in the

choice of τ , which should adapt to the sample size, dimension, and the variance of the

noise; see Theorem 3.1. To begin with, we impose the following moment conditions.

Condition 3.1. The covariates X1, . . . ,Xn are i.i.d. random vectors from X. There

exists A0 > 0, such that for any u ∈ Rd+1 and t ∈ R, P(|〈u, z〉| ≥ A0‖u‖2 · t) ≤ e−t,

where z = S−1/2Z and S = E(ZZᵀ) is positive definite. The regression errors εi are

independent and satisfy E(εi|Xi) = 0 and E(ε2i |Xi) ≤ σ2 almost surely.

Theorem 3.1. Assume Condition 3.1 holds. For any z > 0 and v ≥ σ, the estimator θ̂τ

in (3.2), with τ = v
√
n/(d+ z), satisfies the bound ‖S1/2(θ̂τ − θ∗)‖2 ≤ c1v

√
(d+ z)/n

with probability at least 1−2e−z, provided n ≥ c2(d+z), where c1, c2 > 0 are constants

depending only on A0.

This theorem establishes a subGaussian concentration bound for θ̂τ under the opti-

mal sampling size scaling. Compared with Theorem 2.1 in Zhou et al. (2018), there are

two technical improvements: first, the moment condition on the random predictor is

relaxed from subGaussian to sub-exponential; and second, the sample size requirement

is improved to n & d, which is in line with the classical asymptotic consistency result
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3.1 Adaptive Huber regression in low dimensions17

that requires d = o(n). To achieve subGaussian performance under the finite-variance

condition, the key observation is that the robustification parameter τ should adapt to

the sample size, dimension, variance of the noise, and confidence level for an optimal

trade-off between bias and robustness. Extending our proposal for mean estimation,

for θ ∈ Rd+1 and τ > 0, we estimate θ∗ and calibrate τ simultaneously by solving the

system of equations
g1(θ, τ) :=

∑n
i=1 ψτ (Yi −Z

ᵀ
i θ)Zi = 0,

g2(θ, τ) := (τ 2n)−1
∑n

i=1 min{(Yi −Zᵀ
i θ)2, τ 2} − n−1(d+ z) = 0.

(3.6)

With initial values θ(0) := θ̂ols = (
∑n

i=1ZiZ
ᵀ
i )−1

∑n
i=1 YiZi and τ (0) = σ̂n

√
n/(d+ z),

where σ̂2
n = (1/n)

∑n
i=1(Yi−Z

ᵀ
i θ̂ols)

2, for k ≥ 1, solve g2(θ
(k−1), τ (k)) = 0 to obtain τ (k),

and then compute θ(k) as the solution to g1(θ
(k), τ (k)) = 0. Iterate until convergence,

and set θ̂ I := θ̂τ̂ as the one-step estimator, where (θ̂, τ̂) is the final output.

The main advantage of the proposed adaptive Huber regression over the traditional

one with τ = 1.345σ is that the estimation bias with respect to the intercept is alle-

viated. Examining the proof of Proposition 3.1, we find that the bias is of order 1/τ

when the second moment is finite, and is quadratic in 1/τ if the third moment is fi-

nite. The statistical error, on the other hand, is determined by the `2-norm of the

score function evaluated at θ∗, which is of order σ
√
d/n + τd/n; see Theorem 3.2.

The overall error is then optimized at τ � σ
√
n/d. For the normal model, because

max1≤i≤n |εi| ∼ σ
√

2 log(2n) . σ
√
n/d, the adaptive Huber estimator is almost iden-

tical to the least squares estimator. The numerical results in Section 4 provide strong

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0045



3.1 Adaptive Huber regression in low dimensions18

support for the tail-adaptivity of our proposed data-driven Huber regression.

When τ scales as a constant, such as cσ, the corresponding Huber loss is Lipschitz

with a bounded score function, and because β∗τ = β∗ for any τ > 0, there is no sacrifice

in bias when estimating the slope β∗. Again, a constant c is typically tuned to ensure

a given level of asymptotic efficiency. The asymptotic properties of general robust M -

estimators have been well studied in the literature; see Avella-Medina and Ronchetti

(2015) for a selective overview. The next result further complements Theorem 3.1 by

establishing the deviations of the Huber estimator with fixed τ from a nonasymptotic

viewpoint.

Theorem 3.2. Suppose Condition 3.1 and the assumptions in Proposition 3.1 hold.

Assume further that ρτ := P(|ε − ατ | ≤ τ/2) > 0. Then, the estimator θ̂τ in (3.2)

satisfies ‖S1/2(θ̂τ − θ∗τ )‖2 . ρ−1τ A0{σ
√

(d+ z)/n + τ(d + z)/n}, for any z > 0, with

probability at least 1 − 2e−z, provided n ≥ c3(d + z), where c3 > 0 is a constant

depending only on (A0, ρτ ).

3.1.2 Two-step method

Motivated by our bias-robustness analysis and the results of the finite-sample investi-

gation, we introduce a two-step procedure that estimates the regression coefficients and

the intercept successively.

In the first step, we compute the Huber estimator θ̂τ = (β̂0,τ , β̂
∗ᵀ
τ )ᵀ by solving (3.2)

with τ = cσ. We take c = 1.345 to retain the 95% efficiency for the normal model.
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Here, σ can be estimated simultaneously with θ∗ by solving a system of equations, as

in Huber’s “Proposal 2” (Huber, 1964; Huber and Ronchetti, 2009), or we can fix σ at

an initial robust estimate, and then optimize over θ (Hampel et al., 1986). We follow

the former route and consider an iterative procedure. Start with an initial estimate

θ(0). At iteration k = 0, 1, 2, . . ., we employ a simple procedure to obtain σ̂(k), based

on which we update θ(k+1). This step involves two procedures.

Procedure 1: Scale estimation. Using the current estimate θ(k), we compute the vector

of residuals r(k) = (r
(k)
1 , . . . , r

(k)
n )ᵀ and the robustification parameter τ (k) = 1.345σ̂(k),

where σ̂(k) denotes the median absolute deviation (MAD) estimator median{|r(k)i −

median(r
(k)
i )|}/Φ−1(3/4).

Procedure 2: Weighted least squares. Compute the n × n diagonal matrix W(k) =

diag((1 + w
(k)
1 )−1, . . . , (1 + w

(k)
n )−1), where w

(k)
i = |r(k)i |/τ (k) − 1 if |r(k)i | > τ (k), and

w
(k)
i = 0 if |r(k)i | ≤ τ (k). Then, we update θ(k) to produce θ(k+1) using the weighted

least squares; that is,

θ(k+1) = argmin
θ∈Rd+1

n∑
i=1

(Yi −Zᵀ
i θ)2

1 + w
(k)
i

= (ZᵀW(k)Z)−1ZᵀW(k)Y ,

where Z = (Z1, . . . ,Zn)ᵀ ∈ Rn×(d+1) and Y = (Y1, . . . , Yn)ᵀ.

Starting with θ(0) = θ̂ols, we repeat the above two procedures until convergence.

Denote β̂ II ∈ Rd as the vector of coefficient estimates extracted from the final solution.

In the second step, observe that β∗0 = E(δi), where δi = Yi −Xᵀ
i β
∗ = β∗0 + εi are

the residuals. To estimate β∗0 , define the fitted residuals δ̂i = Yi−Xᵀ
i β̂

II, and solve the
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system of equations
f1(β0, τ) := (τ 2n)−1

∑n
i=1 min{(δ̂i − β0)2, τ 2} − n−1log(n) = 0,

f2(β0, τ) :=
∑n

i=1 ψτ (δ̂i − β0) = 0

(3.7)

in the same way as (2.11) to obtain β̂ II
0 . Then, θ̂ II = (β̂ II

0 , β̂
II) is the two-step estimator

of θ∗.

The two-step procedure leverages the fact that for the asymmetric regression er-

rors with potentially heavy tails, the Huber loss with a fixed τ introduces bias to the

intercept estimation, but not to the estimation of the slope coefficients. To alleviate

the influence of skewness in the error, in the second step, we use the adaptive Hu-

ber method with a divergent τ to re-estimate the intercept. The two-step estimator

therefore achieves both a high degree of tail robustness and unbiasedness.

3.2 Adaptive Huber regression in high dimensions

We now move to the high-dimensional setting, where d � n and β∗ = (β∗1 , . . . , β
∗
d)

ᵀ ∈

Rd is sparse, with ‖β∗‖0 :=
∑d

j=1 I(β∗j 6= 0) = s � n. Since the invention of the

Lasso (Tibshirani, 1996), a variety of variable selection methods have been developed

for finding a small group of response-associated covariates from a large pool; refer to

Bühlmann and van de Geer (2011) and Hastie, Tibshirani, and Wainwright (2015) for

a comprehensive review along this line.

The Lasso estimator is β̂lasso(λ) ∈ argminβ0∈R,β∈Rd{(2n)−1
∑n

i=1(Yi−β0−X
ᵀ
i β)2 +

λ‖β‖1}, where λ > 0 is a regularization parameter. Viewing the noise variable as
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Gaussian, this can be interpreted as a penalized maximum likelihood estimate, where

the `1-penalty encourages sparsity in the estimation. However, least squares fitting is

sensitive to the tails of the error distributions, particularly for ultrahigh-dimensional

covariates, because their spurious correlations with the noise can be large. Therefore,

this method is not ideal in the presence of heavy-tailed noise.

Recently, Fan, Li, and Wang (2017) modified Huber’s procedure to obtain an `1-

regularized robust estimator that admits the desirable concentration bound under a

finite-variance condition on the regression errors. According to Section 3.1, the inter-

cept, albeit often ignored in the literature, plays an important role in studies of robust

methods. To take into account the effect of the intercept, we consider the regularized

Huber estimator of the form

θ̂H(τ, λ) ∈ argmin
θ=(β0,βᵀ)ᵀ∈Rd+1

{
Lτ (θ) + λ‖β‖1

}
, (3.8)

where Lτ (θ) := (1/n)
∑n

i=1 `τ (Yi − Z
ᵀ
i θ) = (1/n)

∑n
i=1 `τ (Yi − β0 −X

ᵀ
i β), and τ and

λ are the robustification and regularization parameters, respectively.

Given εi with finite variance, Theorem 3.3 reveals that the `1-regularized Huber

regression with properly tuned (τ, λ) gives rise to consistent estimators, with `1- and

`2-errors scaling as s
√

log(d)/n and
√
s log(d)/n, respectively, under the sample size

scaling n & s log(d). These rates are exactly the minimax rates enjoyed by the Lasso

with subGaussian errors.

Theorem 3.3. Assume Condition 3.1 holds, and denote by λS the minimal eigenvalue
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of S. Assume further that the unknown β∗ is sparse with s = ‖β∗‖0. Let σjj = E(X2
j ),

for j = 1, . . . , d. Then, the estimator θ̂H(τ, λ) given in (3.8), with τ = σ
√
n/ log(d)

and λ scaling with A0 max1≤j≤d σ
1/2
jj σ

√
log(d)/n, satisfies

‖θ̂H(τ, λ)− θ∗‖2 .
s1/2λ

λS
and ‖θ̂H(τ, λ)− θ∗‖1 .

sλ

λS
(3.9)

with probability at least 1− 3d−1, as long as n ≥ c1s log(d), where c1 > 0 is a constant

depending only on (A0,max1≤j≤d σjj, λS).

Theorem 3.3 complements Theorem 3 in Fan, Li, and Wang (2017). The latter

provides convergence rates for an `1-penalized Huber M -estimator under the weakly

sparse setting that ‖β∗‖q ≤ Rq, for some 0 < q ≤ 1. Their results, however, do not

directly apply to the sparse regime where q = 0. Moreover, the subGaussian condition

imposed in Fan, Li, and Wang (2017) is now relaxed to the sub-exponential condition.

Remark 3.1. The main purpose of using the Huber loss for data fitting is to gain

robustness against outliers from the contamination models (Huber, 1973) or the heavy-

tailed models considered here. For other purposes, different loss functions have been

proposed to replace the squared loss, such as the nonconvex Tukey and Cauchy losses,

quantile loss, and asymmetric quadratic loss, among others. Refer to Owen (2007), Loh

and Wainwright (2015), Loh (2017), Zhou et al. (2018), Mei, Bai, and Montanari (2018),

Alquier, Cottet, and Lecué (2019), and Pan, Sun, and Zhou (2019) for discussions on

the regularized M -estimator with different loss functions.

In practice, it is computationally demanding to choose the optimal values of τ and
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λ using a two-dimensional grid search and cross-validation. We consider the following

procedure that estimates θ∗ and tunes τ simultaneously. Given a random sample of

size n, we use a cross-validated Lasso as an initialization θ̂(0). At iteration k = 1, 2, . . .,

using the previous estimate θ̂(k−1), we compute τ (k) as the solution to

1

{n− ŝ(k−1)}

n∑
i=1

min{(Yi −Zᵀ
i θ̂

(k−1))2, τ 2}
τ 2

=
log(nd)

n
, (3.10)

where ŝ(k−1) = ‖β̂(k−1)‖0. Next, take τ = τ (k), and compute θ̂(k) by solving

min
θ

{
1

n

n∑
i=1

`τ (Yi −Zᵀ
i θ) + λ‖β‖1

}
, (3.11)

where λ is chosen using cross-validation. Repeat the above two steps until convergence,

or until the maximum number of iterations is reached.

To implement the data-driven Huber regression in high dimensions, starting with

some initial guess, we iteratively solve (3.10) and (3.11). For the convex optimization

problems in (3.11), the minimizer satisfies the Karush–Kuhn–Tucker conditions, and

therefore can be found by solving the following system of nonsmooth equations:
−n−1

∑
i ψτ (Yi −Z

ᵀ
i θ̂) = 0,

−n−1
∑

i ψτ (Yi −Z
ᵀ
i θ̂)Xij + λη̂j = 0, j = 1, . . . , d

β̂j − S(β̂j + η̂j) = 0, j = 1, . . . , d,

(3.12)

where θ̂ = (β̂0, β̂
ᵀ)ᵀ ∈ Rd+1 with β̂ = (β̂1, . . . , β̂d)

ᵀ, η̂j ∈ ∂|β̂j|, and S(z) = sign(z)(|z|−

1)+ is the soft-thresholding operator. Instead of directly applying the semismooth

Newton algorithm (SNA) to the entire system of equations, we adapt the semismooth
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Newton coordinate descent (SNCD) algorithm proposed by Yi and Huang (2017), which

combines the SNA with a cyclic coordinate descent to solve (3.12). More specifically,

in the SNCD, we divide (3.12) into two parts in order to avoid the cumbersome matrix

operations involved in solving the entire system. In a cyclic fashion, we update the

intercept using only the first equation, and update the coefficients with its subgradients

using the last two equations. Therefore, we reduce the computational cost from O(nd2)

to O(nd) at each iteration. The gain in computational scalability and efficiency is

substantial for large d. After obtaining a solution path of (3.11), we employ the cross-

validation method to select λ and then the associated θ̂(k).

Remark 3.2. The above regularized data-adaptive Huber (DA-Huber) regression method

is a direct extension of the one-step method proposed in Section 3.1 to high dimen-

sions. Furthermore, note that Proposition 3.1 holds in high dimensions, as long as the

population Gram matrix S is positive definite. Therefore, to further reduce the esti-

mation bias of the intercept, we suggest using the two-step procedure that estimates

the regression coefficients using the standard regularized Huber regression, and then

estimates the intercept by applying the adaptive-Huber method to the fitted residuals,

as in (3.7). Section 4.3 provides numerical studies of both the one- and the two-step

regularized adaptive Huber estimators.
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4. Empirical analysis

In this section, we examine numerically the finite-sample performance of the proposed

DA-Huber methods for mean estimation and linear regressions. In the Supplementary

Material, using three real data sets, we also demonstrate the desirable performance of

the proposed DA-Huber methods in terms of their prediction accuracy.

We consider the following four distribution settings to investigate the robustness

and efficiency of the proposed method:

(1) Normal distribution N (0, σ2) with mean zero and variance σ2 > 0;

(2) Skewed generalized t distribution (Theodossiou, 1998) sgt(µ, σ2, λ, p, q), where

mean µ = 0, variance σ2 = q/(q − 2) with q > 2, shape p = 2, and skewness λ = 0.75;

(3) Lognormal distribution LN(µ, σ) with µ = 0 and σ > 0; and

(4) Pareto distribution Par(xm, α) with scale xm = 1 and shape α > 0.

All of the above settings except (1) are skewed and might be very heavy-tailed for some

choice of the distribution parameters, such as α < 2 for the Pareto distribution.

4.1 Mean estimation

For each setting, we generate an independent sample of size n = 100 and compute three

mean estimators: the sample mean, the Huber estimator with τ chosen using five-fold

cross-validation (CV-Huber), and the proposed DA-Huber mean estimator. Figure 1

displays the α-quantile of the estimation error, with α ranging from 0.5 to 1 based

on 2000 simulations. Figure S1 in the Supplementary Material shows box plots of the
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estimation error. The DA-Huber estimator and sample mean perform almost identically

for the normal data. For the heavy-tailed skewed distributions, the deviation of the

sample mean from the population mean grows rapidly with the confidence level, in

striking contrast to the CV- and DA-Huber estimators.
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Figure 1: Estimation error versus confidence level for the sample mean, CV-Huber, and

DA-Huber estimators based on 2000 simulations.

In Figure 2, we examine the 99%-quantile of the estimation error versus a distribu-

tion parameter measuring the tail behavior and the skewness. That is, for normal data

we let σ vary between 1 and 4; for skewed generalized t distributions, we increase the

shape parameter q from 2.5 to 4; for the lognormal and Pareto distributions, the shape

 
Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0045



4.1 Mean estimation27

parameters σ and α vary from 0.25 to 2 and 1.5 to 3, respectively. The Huber-type
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Figure 2: Empirical 99%-quantile of the estimation error versus a parameter measuring

the tails and skewness for the sample mean, CV-Huber, and DA-Huber estimators.

estimators show substantial improvement in the deviations from the population mean

because the distribution tends to have heavier tails and becomes more skewed. In sum-

mary, the most attractive feature of our method is its adaptivity: (i) it is as efficient

as the sample mean for the normal model and is more robust for asymmetric and/or

heavy-tailed data; (ii) it performs as well as the cross-validation method but with a

much lower computational cost. The latter is particularly important for large-scale

inferences, in which a myriad of parameters need to be estimated simultaneously.
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4. 2 Li n e a r r e g r e s si o n

We g e n er at e d at a { (Y i, X i)}
n
i= 1 fr o m t h e li n e ar m o d el i n (3. 1 ), wit h n = 5 0 0 a n d

d = 5. T h e i nt er c e pt a n d t h e v e ct or of r e gr essi o n c o e ffi ci e nts ar e t a k e n as β 0 = 5 a n d

β ∗ = ( 1 , − 1 , 1 , − 1 , 1) , r es p e cti v el y. T h e c o v ari at es X i ar e i.i. d. r a n d o m v e ct ors t h at

c o nsist of i n d e p e n d e nt c o or di n at es fr o m a u nif or m distri b uti o n U nif (− 1 .5 , 1 .5).
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We c o m p ar e t h e D A- H u b er r e gr essi o n esti m at or wit h t h e or di n ar y l e ast s q u ar es

( O L S) esti m at or, a n d wit h cl assi c al r o b ust M - esti m at ors wit h a H u b er l oss τ (·), as

i n (1. 1 ), a n d T u k e y’s bi w ei g ht l oss T
τ (x ) = { 1 − ( 1 − x 2 / τ 2 ) 3 } I(|x | ≤ τ ) + I(|x | > τ ).
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τ (·) a n d τ (·) is t a k e n as 4 .6 8 5 a n d 1 .3 4 5, r es p e cti v el y,
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Fi g ur e 4: T ot al 2 - err ors u n d er di ff er e nt s etti n gs.

Fi g ur es 3 a n d 4 dis pl a y b o x pl ots of t h e esti m ati o n err or of t h e i nt er c e pt |β 0 −

β ∗
0 | a n d t h e t ot al 2 - err or θ − θ ∗ 2

2 , r es p e cti v el y, f or a fi x e d distri b uti o n p ar a m et er,

as i n S e cti o n 4. 1 . T h e o n e-st e p a n d t w o-st e p D A- H u b er esti m at ors b ot h o ut p erf or m
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Figure 5: Average estimation error of the intercept versus the distribution parameters

controlling the tails for the OLS estimator, standard Tukey and Huber estimators, and

data-adaptive Huber estimators (one-step and two-step).

the other methods across all examples. When estimating the intercept, DA-Huber

rectifies the non-negligible bias in the traditional robust M -estimator, as predicted by

the theory. In the normal case, the DA-Huber estimator performs almost identically

to the OLS estimator, and is therefore highly efficient. The `2-error of the OLS tends

to spread out (due to outliers), and thus is not reported. Figures 5 and 6 show the

average estimation error of the intercept and the total `2-error versus the distribution

parameters controlling the shape of the tails, respectively. In the normal case, the
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one-step DA-Huber and OLS slightly outperform the others. With heavy-tailed and

skewed errors, the DA-Huber methods enjoy a notable advantage. However, the two-

step approach is the most desirable because it strikes a good balance between bias and

tail robustness. Overall, the numerical results confirm that the proposed methods have

substantial advantages in the presence of asymmetric and heavy-tailed errors, while

maintaining high efficiency for the normal model.
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Figure 6: Average `2-errors versus the distribution parameters controlling the tails for

the OLS estimator, standard Tukey and Huber estimators, and data-adaptive Huber

estimators (one-step and two-step).
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4.3 Sparse linear regression

Now, we consider the sparse linear regression, Yi = β∗0 +Xᵀ
i β
∗ + εi, with i = 1, . . . , n,

where β∗ ∈ Rd is sparse, with s = ‖β∗‖0 � n and d� n. In our simulations, we take

n = 250, d = 1000, and s = 20. We set β∗0 = 3 and β∗ = (3, . . . , 3, 0, . . . , 0)ᵀ, where

the first s = 20 nonzero entries of β∗ are all equal to three. As before, the covariates

Xi are i.i.d. random vectors whose independent coordinates are from Unif(−1.5, 1.5),

and εi follows one of four distributions: normal, skewed generalized t, lognormal, and

Pareto.

To implement the iterative procedure proposed in Section 3.2, at the kth iteration,

we use five-fold cross-validation to choose λ
(k)
1 and λ

(k)
2 in the optimization programs

in (3.11), producing θ̂
(k)
1 and θ̂

(k)
2 , respectively. We evaluate the proposed regularized

DA-Huber estimators using the following measurements: RG, the relative gain of the

DA-Huber estimator with respect to the Lasso in terms of the `1- and `2-errors; RGq =

‖θ̂H − θ‖q/‖θ̂lasso − θ‖q, with q = 1, 2; FP, the number of false positives (selected noise

covariates); and FN, the number of false negatives (missed signal covariates).

Table 1 summarizes the relative gains of the DA-Huber estimators under the `1-

and `2-errors and the numbers of false positive and false negative discoveries. Across all

four models, both DA-Huber estimators outperform the Lasso, with smaller `1-errors

and fewer false positive discoveries. Therefore, they are less greedy in terms of model

selection. For the normal model, the proposed robust methods and the Lasso perform

equally well. In the presence of heavy-tailed skewed errors, the DA-Huber methods lead
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to remarkably better outputs in regard of both estimation and model selection. Similar

results are observed in Figure S2 in the Supplementary Material, which displays the

empirical distributions of the `2-errors for all estimators.

Table 1: RG, FP, and FN and their standard errors (in parenthese) of the Lasso and

DA-Huber estimators under different models. The results are based on 200 simulations.

Lasso
DA-Huber DA-Huber

Lasso
DA-Huber DA-Huber

(one-step) (two-step) (one-step) (two-step)

Normal, N (0, 1) sgt(0, 5, 0.75, 2, 2.5)

RG1 × 100 100 93.4 (0.6) 91.4 (0.9) 100 87.5 (1.0) 86.2 (0.9)

RG2 × 100 100 100.3 (0.2) 102.7 (0.3) 100 98.3 (0.5) 98.1 (0.5)

FP 87.9 (1.7) 77.6 (1.4) 73.5 (2.0) 86.1 (1.8) 63.1 (1.8) 60.7 (1.5)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Lognormal, LN(0, 1.5) Pareto, Par(1, 2)

RG1 × 100 100 34.7 (0.7) 22.7 (0.5) 100 65.3 (1.1) 41.7 (0.8)

RG2 × 100 100 49.5 (1.0) 30.5 (0.7) 100 84.5 (0.9) 51.2 (0.9)

FP 80.8 (2.0) 21.9 (0.6) 26.6 (0.7) 85.1 (1.9) 34.5 (1.6) 44.2 (0.9)

FN 0.26 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
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5. Conclusion

We have proposed a new principle for choosing a robustification parameter adaptively

from data for a variety of fundamental statistical problems, including mean estimations,

a linear regression, and a sparse regression in high dimensions. Inspired by the censored

moment equation approach, the proposed principle is tuning-free and data-adaptive.

It is conceptually different from the traditional practice of selecting the robustification

parameter using cross-validation, which is not only computationally demanding, but

also lacks the underpinning mathematical guarantees. The proposed principle is guided

by nonasymptotic deviation analysis, providing a unified method for choosing a robus-

tification parameter for tail-robust estimation and inference. In particular, the analysis

guiding our method can be extended easily to a broader class of robust convex loss

functions, including the pseudo-Huber loss functions. The key is the global Lipschitz

and local quadratic geometry of the loss function `τ (x) = τ 2`(x/τ ). In light of the

numerical evidence from both synthetic and real data, our proposal outperforms those

widely known procedures in terms of estimation, variable selection, and prediction in

the presence of heavy-tailed and skewed errors. Finally, an R package that implements

the DA-Huber method can be found at https://github.com/XiaoouPan/tfHuber.

Supplementary Material

The online Supplementary Material contains proofs of all theoretical results in the

main text, as well as additional empirical studies.
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