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Abstract: The robustification parameter, which balances bias and robustness, plays a critical role
in the construction of subGaussian estimators for heavy-tailed and/or skewed data. Although
the parameter can be tuned using cross-validation, in large-scale statistical problems such as
high-dimensional covariance matrix estimation and large-scale multiple testing, the number of
robustification parameters increases with the dimensionality causing cross-validation to become
computationally prohibitive. We propose a new data-driven principle for choosing the robustifi-
cation parameter for Huber-type subGaussian estimators in three fundamental problems: mean
estimation, linear regression, and sparse regression in high dimensions. Our proposal is guided
by a nonasymptotic deviation analysis, and is conceptually different from cross-validation, which
relies on the mean squared error to assess the fit. Extensive numerical experiments and a real-

data analysis further illustrate the efficacy of the proposed methods.
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1. Introduction
Data subject to heavy-tailed and/or skewed distributions are frequently observed
in various disciplines (Cont, 2001; Purdom and Holmes, 2005). A random variable X

is heavy-tailed if its tail probability P(|X| > ¢) decays to zero polynomially in 1/t
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as t — oo, or equivalently, if X has finite polynomial-order moments. The connection
between the moments and the tail probability is revealed by the property that E(| X |*) =
kSt 'P(|X| > t)dt, for any k& > 1. Here the sampling distribution has only a
small number of finite moments, with a high chance that some observations deviate
significantly from the population mean. Such observations are known as outliers, and
are caused by heavy-tailed noise. In contrast, samples generated from a Gaussian
or subGaussian distribution (Vershynin, 2012) are strongly concentrated around the
expected value, making the chance of having extreme observations much smaller.
Heavy-tailed data bring new challenges to conventional statistical methods. For lin-
ear models, regression estimators based on the least squares loss are suboptimal, both
theoretically and empirically, in the presence of heavy-tailed errors. See Catoni (2012)
for a deviation analysis showing that the deviation of the empirical mean can be much
worse for nonGaussian samples than it is for Gaussian ones. More broadly, this study
exemplifies the pitfalls of asymptotic studies in statistics, and inspires new notions of
optimality commonly used to assess the performance of estimators. In particular, the
minimax optimality under the mean squared error does not quite capture the influence
of estimators’ extreme behaviors. However, these rare events may have severe negative
effects in practice, leading to wrong conclusions or false discoveries. Since the work of
Catoni (2012), nonasymptotic deviation analyses have drawn considerable attention,
and are becoming increasingly important in the construction of subGaussian estima-

tors (see Section S1.2 in the Supplementary Materials) for heavy-tailed data; see, for
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example, Brownlees, Joly, and Lugosi (2015), Minsker (2015, 2018), Hsu and Sabato
(2016), Devroye et al. (2016), Lugosi and Mendelson (2016), Fan, Li, and Wang (2017),
Lugosi and Mendelson (2019), Lecué and Lerasle (2017), and Zhou et al. (2018), among
others.

For linear models, Fan, Li, and Wang (2017) and Zhou et al. (2018) proposed Huber-
type estimators in both low- and high-dimensional settings’ and derived nonasymptotic
deviation bounds for the estimation error. To implement either Catoni’s or a Huber-
type method, a tuning parameter 7 needs to be specified in advance to balance the
robustness and bias of the estimation. A deviation analysis suggests that this tuning
parameter, which we refer to as the robustification parameter, should adapt to the sam-
ple size, dimension, variance of the noise, and confidence level. Calibration schemes are
typically based on cross-validation or Lepski’s method, which can be computationally
intensive, especially for large-scale inference and high-dimensional estimation problems,
where the number of parameters may be exponential in the number of observations.
For example, Avella-Medina et al. (2018) proposed adaptive Huber estimators for es-
timating high-dimensional covariance and precision matrices. For a d x d covariance
matrix, although every entry can be robustly estimated using a Huber-type estimator
with 7 chosen via cross-validation, the overall procedure involves as many as d? tuning
parameters. As a result, the cross-validation method soon becomes computationally
intractable as d grows. Efficient tuning is important, not only for the problem, but also

for applications in a broader context.
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First, we develop data-driven Huber-type methods for mean estimation, linear re-
gression, and sparse regression in high dimensions. For each problem, we first provide
subGaussian concentration bounds for the Huber-type estimator under a minimal mo-
ment condition on the errors. These nonasymptotic results guide the choice of key
tuning parameters. Some are of independent interest, and improve existing results by
weakening the sample size scaling. Second, we propose a novel data-driven principle to

calibrate the robustification parameter 7 > 0 in the Huber loss

x?/2 if || <7,
0 (z) = (1.1)

Tlo| —7%/2  if |z > T
Huber proposed using 7 = 1.3450 to retain 95% of the asymptotic efficiency of the
estimator for normally distributed data, and to guarantee the estimator’s performance
for arbitrary contamination in a neighborhood of the true model (Huber, 1981; Huber
and Ronchetti, 2009). This default setting is useful in high-dimensional statistics, even
though the asymptotic efficiency is no longer well defined; see, for example, Lambert-
Lacroix and Zwald (2011), Elsener and van de Geer (2018), and Loh (2017). Guided
by the nonasymptotic deviation analysis, our proposed 7 grows with the sample size
for the bias—robustness trade-off. For linear regressions under different regimes, the
optimal 7 depends on the dimension d: 7 ~ U\/m in the low-dimensional setting
with small d/n, and 7 ~ a\/m in high dimensions. Lastly, we design simple and

fast algorithms to implement our method for calibrating 7.

We focus on the notion of tail robustness (Catoni, 2012; Minsker, 2018; Zhou et
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al., 2018; Fan, Li, and Wang, 2017; Avella-Medina et al., 2018), which is character-
ized by tight nonasymptotic deviation guarantees for the estimators under weak mo-
ment assumptions, and is evidenced by better finite-sample performance in the pres-
ence of heavy-tailed and/or highly skewed noise. This is inherently different from the
traditional definition of robustness under Huber’s e-contamination model (Huber and
Ronchetti, 2009). Following the introduction of the finite-sample breakdown point by
Donoho and Huber (1983), traditional robust statistics have focused, in part, on the
development of high breakdown point estimators. Informally, the breakdown-point of
an estimator is defined as the largest proportion of contaminated samples in the data
that an estimator can tolerate before it produces arbitrarily large estimates (Hampel,
1971; Hampel et al., 1986; Maronna et al., 2018). A high breakdown point does not
necessarily shed light on an estimator’s convergence properties, efficiency, and stability.
Refer to Portnoy and He (2000) for a review of classical robust statistics. In contrast, a
tail robust estimator is resilient to outliers caused by heavy-tailed noise. Intuitively, the
breakdown point describes the worst-case robustness, whereas our focus corresponds to
the average-case robustness.

The remainder of this paper is organized as follows. In Section 2, we revisit Catoni’s
method on robust mean estimation. Motivated by a careful analysis of the truncated
sample mean, we introduce a novel data-driven adaptive Huber estimator. We extend
this data-driven tuning scheme to robust regression in Section 3 under both low- and

high-dimensional settings. Extensive numerical experiments are reported in Section 4
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to demonstrate the finite-sample performance of the proposed procedures. Section 5
concludes the paper. All proofs, together with technical details and real-data examples,

are relegated to the Supplementary Material.

2. Robust data-adaptive mean estimation

2.1 DMotivation

To motivate our proposed data-driven scheme for Huber-type estimators, we start by
revisiting the mean estimation problem. Let Xi,..., X, (n > 2) be independent and
identically distributed (i.7.d.) copies of X with mean p and finite variance 02 > 0. The
sample mean, denoted as X,,, is the most natural estimator for ;. However, it suffers
severely from not being robust to heavy-tailed sampling distributions (Catoni, 2012).
In order to cancel, or at least dampen, the erratic fluctuations in X,,, which are more
likely to occur if the distribution of X is heavy-tailed, we consider the truncated sample

mean m, =n"*ty . (X;), for some 7 > 0, where

¥, (x) = sign(z) min(|z|, 7) (2.1)

is a truncation function on R. Here, the tuning parameter 7 controls the bias and tail
robustness of m,. To see this, note that the bias term Bias := E(m,) — u satisfies
|Bias| = |E{X — sign(X)7} (| X| > 7)| < 77'E(X?). For tail robustness, the following
result shows that m, with a properly chosen 7 is a subGaussian estimator, as long as

the second moment of X is finite.
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Proposition 2.1. Assume that vy := /E(X?) is finite. For any z > 0,

(i) m, with 7 = vy/n/z, for some v > vy, satisfies P{|m, — p| > 2v\/z/n} < 2e7%;

(ii) m, with 7 = cva\/n/z, for some 0 < ¢ < 1, satisfies P{|m,—p| > 2(ve/c)\/z/n} <

2%/,

Proposition 2.1 shows how m, performs under various idealized scenarios, thus
providing guidance on the choice of 7. Here, z > 0 is a user-specified parameter that
controls the confidence level; see the discussion before Remark 2.2. Given a properly
tuned 7, the subGaussian performance is achieved; conversely, if the resulting estimator
performs well, the data are truncated at the right level and can be further exploited. An
ideal 7 is such that the sample mean of the truncated data . (X;),. .., 1. (X,) serves as
a good estimator of . The influence of outliers caused by heavy-tailed noise is weakened
owing to the proper truncation. At the same time, we may expect that the empirical
second moment for the same truncated data will provide a reasonable estimate of v3.
Motivated by this, we propose choosing 7 > 0 by solving 7 = {37 | 2(X;)}'/2\/n/z,

which is equivalent to

n

1 < V(X
_ZMQ):E, > 0. (2.2)
nizl T

We show that, under mild conditions, (2.2) has a unique solution 7, which gives rise

to the following data-driven mean estimator:

1 n
T - I ia/\z 1 i) 2.3
mz—n E min(|X;|, 7,) sign(X;) (2.3)

=1
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To understand the property of 7., consider the population version of (2.2):

E{(v}(X)} _ E{min(X*7%)} = o (2.4)

T T

The following result establishes the existence and uniqueness of the solution to (2.4).
Proposition 2.2. Assume that v, = /E(X?2) is finite.

(i) Provided 0 < z < nP(]X| > 0), (2.4) has a unique solution 7, that satisfies

[E{min(X?,¢2,)}]"/*\/n/z < 7. <wyy/n/z, where g, := inf{t : P(|X] > t) < a}

is the upper a-quantile of | X|.

(ii) Let z = z, > 0 satisfy z, — oo and z = o(n). Then, 7, — oo and 7, ~ vyy/n/z,
as n — oo.

As a direct consequence of Proposition 2.2, the following result ensures the existence

and uniqueness of the solution to (2.2), the empirical counterpart of (2.4).
Proposition 2.3. Provided 0 < z < > | I(|X;]| > 0), (2.2) admits a unique solution.
Throughout, denote 7, as the solution to (2.2), which is unique and positive when-
ever z < > I(|X;| > 0). For completeness, we set 7, = 0 on {z > >"" | I(|X;| > 0)}.
If P(X =0) =0 and 0 < z < n, then 7, > 0 with probability one. With both 7, and

7. well defined, we investigate the property of 7, below.

Theorem 2.1. Assume E(X?) < oo and P(X = 0) = 0. For any 1 < 2z < n and

0 <r <1, we have

P77, — 1| > 7) < e~0ir2*/@et2ar2/3) | =air®z/2 | gp—(a1na2)?s/8 (2.5)
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where

a; = ai(z,1) = 2122((7—;)) (12:_:)2 and ay = as(z,7) = P(;ZQ(_T:)ZT) i : ::,

(2.6)
with P(t) = E{X?I(|X| < t)} and Q(t) = E{y?(X)}.
Remark 2.1. Here, we give some direct implications of Theorem 2.1.

(i) Let z = 2z, > 1 satisfy z = o(n) and z — oo as n — oo. By Proposition 2.2,

7, — 00 and T, ~ vyy/n/z, which implies P(7,) — v3 and Q(7,) — v5 as n — o0o.

(i) With » = 1/2 and z = log"(n), for some x > 1, in (2.5), the constants a; =
ai1(z,1/2) and as = ag(z,1/2) satisfy a; — 5/9 and ay — 3/2, respectively,
as n — oo. The resulting 7, satisfies that, with probability approaching one,

T./2 <7, < 31./2.

We conclude this section with a uniform deviation bound for m,. The uniformity of
the rate over a neighborhood of the optimal tuning scale requires an additional log(n)-
factor. As a result, we show that the data-driven estimator ms, is tightly concentrated

around the mean with high probability.

Theorem 2.2. For z > 1, let 77 = v94/n/z. Then, with probability at least 1 —2ne™*,

sup  |my — p| < dvg(z/n)Y? 4+ von 2, (2.7)
7 /2<T<37% /2

Letting z = 2log(n) and 7, be the solution to (2.2), we obtain the following con-

centration inequality for the mean estimator mz, given in (2.3).



Statistica Sinica: Preprint
doi:10.5705/55.202019.0045

2.2 Adaptive Huber estimator10

Corollary 2.1. With probability at least 1 —cyn= for all sufficiently large n, we have
Imz. — | < 4vsy/2log(n) /n + van ™2, (2.8)

where ¢q, co > 0 are absolute constants.

2.2 Adaptive Huber estimator

For the truncation method, even with the theoretically desirable tuning parameter
T =1y \/n_/z7 the deviation of the resulting estimator scales only with v,, rather than
with the standard deviation o. The optimal deviation, which is enjoyed by the sample
mean with subGaussian data, is of order J\/z/_n. To achieve such an optimal order,
Fan, Li, and Wang (2017) modified Huber’s method to construct an estimator that
exhibits fast (subGaussian type) concentration under a finite-variance condition.

The Huber loss in (1.1) is continuously differentiable with ¢ (z) = ¢, (x), where
¥, (+) is defined in (2.1). The Huber estimator is obtained as fi, = argmingeg > o, - (X;—

0), or equivalently, /i, is the unique solution to

0= Z U (X; —0) = Z min(|X; — 6], 7) sign(X; — 6). (2.9)

Refer to Catoni (2012) for a general class of robust mean estimators. The following
result from Theorem 5 in Fan, Li, and Wang (2017) shows the exponential-type con-

centration of 1i; when 7 is properly calibrated.

Proposition 2.4. Let z > 0 and v > 0. Provided n > 8z, i, with T = vy/n/z satisfies

the bound |z, — p| < 4vy/z/n with probability at least 1 — 2e~%.



Statistica Sinica: Preprint
doi:10.5705/55.202019.0045

2.2 Adaptive Huber estimatori1

Proposition 2.4 indicates that a theoretically desirable tuning parameter for the
Huber estimator is 7 ~ o+/n/z. Motivated by the data-driven approach proposed in

Section 2.1, we consider the following modification of (2.4):

E{yr(X —w} _ Emin{(X —w*, )] _ = (2.10)

According to Proposition 2.2, provided 0 < z < nP(X # u), (2.10) admits a unique

solution 7., that satisfies \/E [min{(X — )2, &/.}]/n/z < 7., < 0y/n/z, where
Go = inf{t : P(|X — u| > t) < a}. From a large-sample perspective, if z = z, satisfies
z — oo and z = o(n), then 7, , — oo and 7, , ~ o+/n/z as n — .

Based on (2.9) and (2.10), a clearly motivated data-driven estimate of u can be

obtained by solving the following system of equations:

fi(0,7) =300 (X = 0) = 0,
geR,7>0. (2.11)

f2(0,7) :=n "t >0 min{(X; — 0)%,7°}/7> —n'2 =0,
Observe that for any given 7 > 0, fi(-,7) = 0 always admits a unique solution, and
for any given 0, f5(6,-) = 0 has a unique solution, provided that z < >  I(X; #
f). With initial values 0 = X, and 7 = 5,/n/z, where 52 denotes the sam-
ple variance, we can solve (2.11) successively by computing a sequence of solutions
{(0%) 70} 5, that satisfy fo(0%1, 7)) = 0 and f1(0®,7*®) = 0, for k > 1. For
a predetermined tolerance €, the algorithm terminates within the /th iteration when
max{|0©) — 9=V |70 — 7D} < ¢ and uses ) as a robust estimator of .

In the case of z = 1, the algorithm stops in the first iteration and delivers the
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solution X,,. According to the results in Section 2.1, for fixed z > 1, there is no net
improvement in terms of tail robustness; instead, we should let z = z,, grow slowly with
the sample size to achieve tail robustness without introducing extra bias. Specifically,

we choose z = log(n) throughout our numerical experiments.

Remark 2.2. The proposed estimator is obtained by iteratively solving (2.11), which
mimics (1.6) in Bickel (1975), and can be viewed as a variant of (6.28) and (6.29) in
Huber and Ronchetti (2009) for joint location and scale estimation. The estimator in
Bickel (1975) solves the equation > | 15(X; —0) = 0, where 7 is chosen independently
as the normalized interquartile range 7 = {X(—n/a141) — X(pn/ap }/2®71(3/4) or the
symmetrized interquartile range o® = median{|X; — m|}/®71(3/4), where X, <

- < X(pn) are the order statistics and m is the sample median. The consistency of

2) is established under the symmetry assumption of X, but remains unclear

oW or
for general distributions. On the other hand, similarly to Bickel (1975), our proposed
estimators of # and 7 are also location and scale equivariant (see Sections S1.7 and S1.8
in the Supplementary Materials).

Unlike this classical approach, we waive the symmetry requirement by allowing the
robustification parameter to diverge in order to reduce the bias induced by the Huber
loss when the distribution is asymmetric. Another difference is that Bickel’s proposal
is a two-step method that estimates the scale and location separately, whereas our

procedure estimates p and calibrates 7 simultaneously by solving a system of equations.

In fact, as a direct extension of the idea in Section 2.1, we can also tune 7 independently
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from the estimation by solving (’2‘)_1 D ocicjen T omin{(X; — X;)?/2,7%} = zn”!, for
z > 0. Let X’ be an independent copy of X. Then, the population version of this
equation is E [min{(X — X")?/2,72}] 772 = z/n, the solution of which is unique under

mild conditions and scales as o+/n/z.

Remark 2.3. We assume a finite variance of errors. For more subtle scenarios with a
finite (1+ 0)th moment and 0 < § < 1, the phase transition phenomenon discovered by
Devroye et al. (2016) and Sun, Zhou, and Fan (2020) suggests that Huber’s M-estimator
no longer admits subGaussian-type deviation bounds. Developing the corresponding
data-driven principle to tune Huber’s method when § < 1 is nontrivial, and thus is left

as a topic for future investigation.

3. Robust data-adaptive linear regression

In this section, we extend the proposed data-driven method for robust mean estimation

to regression problems. Consider the linear regression model
Yi=p;+ X8 +ei, i=1,...,n, (3.1)

where Y; is a response variable, X, is a d-dimensional vector of covariates, [; and
B* € R% denote the intercept and vector, respectively, of the regression coefficients,
and €1,...,&, are independent regression errors with zero mean and finite variance.
For ease of presentation, we write Z; = (1, X])T and 6* = (55, 8*7)T. The goal is to

estimate 6* from the observed data {(Y;, X;)}",.
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3.1 Adaptive Huber regression in low dimensions

We start with the low-dimensional regime, where d < n. In the presence of heavy-
tailed errors, the finite-sample properties of the least squares method are suboptimal,
both theoretically and empirically. Under such heavy-tailed models, refer to Audibert
and Catoni (2011) and Sun, Zhou, and Fan (2020) for a nonasymptotic analysis of
Huber-type robust regressions; the former focuses on the excess risk bounds, and the
latter provides deviation bounds for the estimator, along with nonasymptotic Bahadur
representations.

Given 7 > 0, Huber’s M-estimator is defined as

6. = (o BT € axgmin Y 4.(Y; — 276), 52)

d
OcRd+l T

where ¢.(-) is given in (1.1). By the convexity of the Huber loss, the solution to (3.2) is
determined uniquely using the first-order condition ). ¢ (Y; — Z] é\T)Zi = 0. Most
desirable features of Huber’s method are established under the assumption that the
error distribution is symmetric around zero. In the absence of symmetry, the bias
induced by the Huber loss becomes non-negligible. To make this statement precise,

note that é\T = (3077, B\I)T is a natural M-estimator of

n

0 = (ﬁaT,ﬁ:T)T = argmin ZE{&(Yi — B — X{B)}, (3.3)

(Bo,BT)TERIFL 5

whereas the true parameters (5 and B* are identified as argming, 5> " | E{(Y; — 8o —

X]3)?}. For any fixed 7 > 0, although Bo,r and B, are robust estimates of B, and

*
T

respectively, (5;,,3;) differs from (835, 3"), in general. The following proposition
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provides an explicit bound on the bias, complementing the results in Section 4.9.2 of

Maronna et al. (2018).

Proposition 3.1. Assume that ¢ and X are independent, and that the function « >

E{l;(¢ — @)} has a unique minimizer o, = argmin,p E{¢,(¢ — «)}, which satisfies
P(le —a,;| <71)>0. (3.4)

Assume further that E(ZZT) is positive definite. Then, we have §; . = 5; + a, and

B = B*. Moreover, a, with 7 > o satisfies the bound

o~ E{y2()} 1

< .
jar| < 1—7202 7

(3.5)

Note too that the Huber loss minimization is equivalent to the penalized least
squares problem (She and Owen, 2011), (f&., 57) = argmin g gepari{y Dorq (Y — i —
Z10)? + 757" |}, where p = (pa,...,p,)7 and 6, coincide with those in (3.2).
This loss function can be written as > (Y; — i — Bo — X7 B)?/2+ 7> 1, ||, which
explains from a different perspective that the bias arises only at the intercept. The
larger 7 is, the sparser p, is and, therefore, the smaller the estimation bias is.

Proposition 3.1 draws attention to intercept estimation, a problem of independent
interest that needs to be treated with greater caution. If the distribution of ¢ is asym-
metric, «, is typically nonzero, for any 7 > 0; here, a smaller 7 results in a larger
bias and, thus, a larger prediction error. To balance the bias and the tail robustness,

we propose two modifications to Huber’s method (a one-step method, and a two-step
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method) that are robust against heavy-tailed and asymmetric errors, while maintaining

high efficiency for normal data.

3.1.1 One-step method

As noted in Zhou et al. (2018), there is an inherent bias-robustness trade-off in the
choice of 7, which should adapt to the sample size, dimension, and the variance of the

noise; see Theorem 3.1. To begin with, we impose the following moment conditions.

Condition 3.1. The covariates X1, ..., X, are i.i.d. random vectors from X . There
exists Ay > 0, such that for any w € R¥! and t € R, P(|(u, 2)| > Agllullz - t) < e,
where z = S™Y/2Z and S = E(ZZT) is positive definite. The regression errors ¢; are

independent and satisfy E(g;| X;) = 0 and E(¢7|X;) < 02 almost surely.

Theorem 3.1. Assume Condition 3.1 holds. For any z > 0 and v > o, the estimator @
in (3.2), with 7 = v\/n/(d + 2), satisfies the bound [|S!/2(8, — 6*)||» < civ\/(d + 2)/n
with probability at least 1 —2e~?, provided n > ¢y(d+2), where ¢;, ¢o > 0 are constants

depending only on Aj.

This theorem establishes a subGaussian concentration bound for é; under the opti-
mal sampling size scaling. Compared with Theorem 2.1 in Zhou et al. (2018), there are
two technical improvements: first, the moment condition on the random predictor is
relaxed from subGaussian to sub-exponential; and second, the sample size requirement

is improved to n 2 d, which is in line with the classical asymptotic consistency result
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that requires d = o(n). To achieve subGaussian performance under the finite-variance
condition, the key observation is that the robustification parameter 7 should adapt to
the sample size, dimension, variance of the noise, and confidence level for an optimal
trade-off between bias and robustness. Extending our proposal for mean estimation,
for € R! and 7 > 0, we estimate 8* and calibrate 7 simultaneously by solving the

system of equations

91(0,7) =321, (Y, — Z]6)Z; = 0,
(3.6)

92(0,7) := (7*n) "t >0 min{(Y; — Z]0)%, 7*} —n ' (d+2) = 0.
With initial values 8©) := @, = o, Z,ZN S YiZ and 7O = 5,3 /n/(d + 2),
where 2 = (1/n) 321, (Y — ZT0,)?, for k > 1, solve go(0%~1, 7)) = 0 to obtain 7%,
and then compute 8*) as the solution to gl(B(k),T(k)) = (. Iterate until convergence,
and set ' := - as the one-step estimator, where (OA, 7) is the final output.

The main advantage of the proposed adaptive Huber regression over the traditional
one with 7 = 1.3450 is that the estimation bias with respect to the intercept is alle-
viated. Examining the proof of Proposition 3.1, we find that the bias is of order 1/7
when the second moment is finite, and is quadratic in 1/7 if the third moment is fi-
nite. The statistical error, on the other hand, is determined by the f;-norm of the
score function evaluated at 6*, which is of order 0\/d/_n + 7d/n; see Theorem 3.2.
The overall error is then optimized at 7 < a\/n_/d. For the normal model, because
max;<i<, |ei| ~ 01/21og(2n) < oy/n/d, the adaptive Huber estimator is almost iden-

tical to the least squares estimator. The numerical results in Section 4 provide strong
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support for the tail-adaptivity of our proposed data-driven Huber regression.

When 7 scales as a constant, such as co, the corresponding Huber loss is Lipschitz
with a bounded score function, and because 37 = B* for any 7 > 0, there is no sacrifice
in bias when estimating the slope 3*. Again, a constant ¢ is typically tuned to ensure
a given level of asymptotic efficiency. The asymptotic properties of general robust M-
estimators have been well studied in the literature; see Avella-Medina and Ronchetti
(2015) for a selective overview. The next result further complements Theorem 3.1 by
establishing the deviations of the Huber estimator with fixed 7 from a nonasymptotic
viewpoint.

Theorem 3.2. Suppose Condition 3.1 and the assumptions in Proposition 3.1 hold.
Assume further that p, := P(|le — a;| < 7/2) > 0. Then, the estimator 8, in (3.2)
satisfies [|SY2(0, — 02)|2 < p='Ao{o/(d+ z)/n + 7(d + z)/n}, for any z > 0, with
probability at least 1 — 2e~%, provided n > c3(d + z), where ¢3 > 0 is a constant

depending only on (Ay, p,).

3.1.2 Two-step method

Motivated by our bias-robustness analysis and the results of the finite-sample investi-
gation, we introduce a two-step procedure that estimates the regression coefficients and
the intercept successively.

In the first step, we compute the Huber estimator 0. = (3077, ,@jT)T by solving (3.2)

with 7 = co. We take ¢ = 1.345 to retain the 95% efficiency for the normal model.
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Here, o can be estimated simultaneously with 8* by solving a system of equations, as
in Huber’s “Proposal 2” (Huber, 1964; Huber and Ronchetti, 2009), or we can fix o at
an initial robust estimate, and then optimize over @ (Hampel et al., 1986). We follow
the former route and consider an iterative procedure. Start with an initial estimate
0© . At iteration k = 0,1,2, ..., we employ a simple procedure to obtain ), based

k+1

on which we update 8%*1. This step involves two procedures.

Procedure 1: Scale estimation. Using the current estimate 8%), we compute the vector
of residuals r*) = (rYC), . ,rﬁk))T and the robustification parameter 7*) = 1.3455%),

where ) denotes the median absolute deviation (MAD) estimator median{]r§k) -

median(r™)[}/®-1(3/4).

Procedure 2: Weighted least squares. Compute the n x n diagonal matrix W) =
diag((1 + w%k))*l, oo (T4 w,(f))*l), where wgk) = |r§k)|/7(k) —1if |T§k)| > 7®) and
wgk) =0 if |r§k)] < 7% Then, we update 8% to produce 8% *1) using the weighted
least squares; that is,

n - 7TH)2
0"+ — argmin —(Yl Z.9)

= (Z7WWZ)"lZzZ7TWWy
6cri+t S 1+ wgk) 7

where Z = (Zy,...,Z,)T ¢ R and Y = (;,...,Y,)".
Starting with 8(0) = éols, we repeat the above two procedures until convergence.
Denote ,é\ ¢ R? as the vector of coefficient estimates extracted from the final solution.

In the second step, observe that 85 = E(¢;), where §; = Y; — X[3* = 3% + ¢; are

the residuals. To estimate [, define the fitted residuals 25\1 =Y, - X/ B I and solve the
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system of equations

F1(Bo,7) = (r2n) 1 S0 min{(8; — Bo)?, 72} — nMog(n) = 0,
(3.7)

f2(Bo, 7) = Yoy (05 — Bo) = 0
in the same way as (2.11) to obtain EOH. Then, 81 = (B(}I, BH) is the two-step estimator
of 6.

The two-step procedure leverages the fact that for the asymmetric regression er-
rors with potentially heavy tails, the Huber loss with a fixed 7 introduces bias to the
intercept estimation, but not to the estimation of the slope coefficients. To alleviate
the influence of skewness in the error, in the second step, we use the adaptive Hu-
ber method with a divergent 7 to re-estimate the intercept. The two-step estimator

therefore achieves both a high degree of tail robustness and unbiasedness.

3.2 Adaptive Huber regression in high dimensions

We now move to the high-dimensional setting, where d > n and 8* = (8;,...,8)T €
R? is sparse, with [|3*]|o = Z;.l:l[(ﬁ]*f # 0) = s < n. Since the invention of the
Lasso (Tibshirani, 1996), a variety of variable selection methods have been developed
for finding a small group of response-associated covariates from a large pool; refer to
Biithlmann and van de Geer (2011) and Hastie, Tibshirani, and Wainwright (2015) for
a comprehensive review along this line.

The Lasso estimator is Blaso(\) € argming cp gepa{ (2n) 7' D00 (Vi — Bo — X[ B)* +

A|Bl1}, where A > 0 is a regularization parameter. Viewing the noise variable as
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Gaussian, this can be interpreted as a penalized maximum likelihood estimate, where
the /1-penalty encourages sparsity in the estimation. However, least squares fitting is
sensitive to the tails of the error distributions, particularly for ultrahigh-dimensional
covariates, because their spurious correlations with the noise can be large. Therefore,
this method is not ideal in the presence of heavy-tailed noise.

Recently, Fan, Li, and Wang (2017) modified Huber’s procedure to obtain an ¢;-
regularized robust estimator that admits the desirable concentration bound under a
finite-variance condition on the regression errors. According to Section 3.1, the inter-
cept, albeit often ignored in the literature, plays an important role in studies of robust
methods. To take into account the effect of the intercept, we consider the regularized

Huber estimator of the form

~

Ou(r,\) € argmin  {£.(0) + N8B}, (3.8)
6=(fo.pT)TERTH

where £,(0) := (1/n) > ", 0, (Y; — Z]0) = (1/n) > " (-(Y; — By — X[ B), and T and
A are the robustification and regularization parameters, respectively.

Given ¢; with finite variance, Theorem 3.3 reveals that the ¢;-regularized Huber
regression with properly tuned (7, A) gives rise to consistent estimators, with ¢;- and
ly-errors scaling as s\/W and \/m, respectively, under the sample size
scaling n 2 slog(d). These rates are exactly the minimax rates enjoyed by the Lasso

with subGaussian errors.

Theorem 3.3. Assume Condition 3.1 holds, and denote by Ag the minimal eigenvalue
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of S. Assume further that the unknown B8 is sparse with s = [|8*[lo. Let 0;; = E(X?),
for j = 1,...,d. Then, the estimator By(r,\) given in (3.8), with 7 = o+/n/log(d)
and A scaling with Ap max;<;<q Ujl-fa\/log(d)/n, satisfies

sl/2)\ SA

and  ||Ou(r, ) — 0%, < =2 (3.9)

16 (7, \) — %[l <

with probability at least 1 — 3d~!, as long as n > ¢;slog(d), where ¢; > 0 is a constant

depending only on (Ao, maxj<j<d 0jj, AS)

Theorem 3.3 complements Theorem 3 in Fan, Li, and Wang (2017). The latter
provides convergence rates for an ¢;-penalized Huber M-estimator under the weakly
sparse setting that ||8*|, < R,, for some 0 < ¢ < 1. Their results, however, do not
directly apply to the sparse regime where ¢ = 0. Moreover, the subGaussian condition

imposed in Fan, Li, and Wang (2017) is now relaxed to the sub-exponential condition.

Remark 3.1. The main purpose of using the Huber loss for data fitting is to gain
robustness against outliers from the contamination models (Huber, 1973) or the heavy-
tailed models considered here. For other purposes, different loss functions have been
proposed to replace the squared loss, such as the nonconvex Tukey and Cauchy losses,
quantile loss, and asymmetric quadratic loss, among others. Refer to Owen (2007), Loh
and Wainwright (2015), Loh (2017), Zhou et al. (2018), Mei, Bai, and Montanari (2018),
Alquier, Cottet, and Lecué (2019), and Pan, Sun, and Zhou (2019) for discussions on

the regularized M-estimator with different loss functions.

In practice, it is computationally demanding to choose the optimal values of 7 and
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A using a two-dimensional grid search and cross-validation. We consider the following
procedure that estimates 8* and tunes 7 simultaneously. Given a random sample of
size n, we use a cross-validated Lasso as an initialization 0). At iteration k = 1,2,...,

using the previous estimate §(k_1), we compute 7%) as the solution to

1 i min{(¥; — Z76%* D)2, 72} log(nd)

3.10
{n _ g(k—l)} — 7_2 n ) ( )
where s—1 = Hﬁ(k—l)uo. Next, take 7 = 7). and compute 8® by solving
1 n
. - - T
mem{n E_l (Y, — Z] 0)—}—)\HﬂH1}, (3.11)

where ) is chosen using cross-validation. Repeat the above two steps until convergence,
or until the maximum number of iterations is reached.

To implement the data-driven Huber regression in high dimensions, starting with
some initial guess, we iteratively solve (3.10) and (3.11). For the convex optimization
problems in (3.11), the minimizer satisfies the Karush-Kuhn-Tucker conditions, and

therefore can be found by solving the following system of nonsmooth equations:

.

~

—n~' 32 (Y; — Z70) = 0,

~

—n S (Y — ZTO) Xy + A =0, j=1,....d (3.12)

\ﬁj_s(ﬁj_{_ﬁj):(L jzla"'7d7
where 8 = (B\O,B\T)T € R with ,[/3\ = (31, . ,B\d)T, n; € 8|§j|, and S(z) = sign(2)(|z| —
1); is the soft-thresholding operator. Instead of directly applying the semismooth

Newton algorithm (SNA) to the entire system of equations, we adapt the semismooth
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Newton coordinate descent (SNCD) algorithm proposed by Yi and Huang (2017), which
combines the SNA with a cyclic coordinate descent to solve (3.12). More specifically,
in the SNCD, we divide (3.12) into two parts in order to avoid the cumbersome matrix
operations involved in solving the entire system. In a cyclic fashion, we update the
intercept using only the first equation, and update the coefficients with its subgradients
using the last two equations. Therefore, we reduce the computational cost from O(nd?)
to O(nd) at each iteration. The gain in computational scalability and efficiency is
substantial for large d. After obtaining a solution path of (3.11), we employ the cross-

validation method to select A and then the associated 5('“).

Remark 3.2. The above regularized data-adaptive Huber (DA-Huber) regression method
is a direct extension of the one-step method proposed in Section 3.1 to high dimen-
sions. Furthermore, note that Proposition 3.1 holds in high dimensions, as long as the
population Gram matrix S is positive definite. Therefore, to further reduce the esti-
mation bias of the intercept, we suggest using the two-step procedure that estimates
the regression coefficients using the standard regularized Huber regression, and then
estimates the intercept by applying the adaptive-Huber method to the fitted residuals,
as in (3.7). Section 4.3 provides numerical studies of both the one- and the two-step

regularized adaptive Huber estimators.
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4. Empirical analysis

In this section, we examine numerically the finite-sample performance of the proposed
DA-Huber methods for mean estimation and linear regressions. In the Supplementary
Material, using three real data sets, we also demonstrate the desirable performance of
the proposed DA-Huber methods in terms of their prediction accuracy.

We consider the following four distribution settings to investigate the robustness
and efficiency of the proposed method:

(1) Normal distribution N(0,0?) with mean zero and variance o2 > 0;

(2) Skewed generalized t distribution (Theodossiou, 1998) sgt(yu, o2, A, p, q), where
mean p = 0, variance 0% = ¢/(q — 2) with ¢ > 2, shape p = 2, and skewness \ = 0.75;

(3) Lognormal distribution LN(y, o) with g = 0 and o > 0; and

(4) Pareto distribution Par(x,,, a) with scale z,,, = 1 and shape a > 0.
All of the above settings except (1) are skewed and might be very heavy-tailed for some

choice of the distribution parameters, such as o < 2 for the Pareto distribution.

4.1 Mean estimation

For each setting, we generate an independent sample of size n = 100 and compute three
mean estimators: the sample mean, the Huber estimator with 7 chosen using five-fold
cross-validation (CV-Huber), and the proposed DA-Huber mean estimator. Figure 1
displays the a-quantile of the estimation error, with a ranging from 0.5 to 1 based

on 2000 simulations. Figure S1 in the Supplementary Material shows box plots of the
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estimation error. The DA-Huber estimator and sample mean perform almost identically
for the normal data. For the heavy-tailed skewed distributions, the deviation of the
sample mean from the population mean grows rapidly with the confidence level, in

striking contrast to the CV- and DA-Huber estimators.

0.35

~~~~~ Sample Mean
| - CV-Huber
—— DA-Huber
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Estimation error
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Estimation error
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(c) LN(0, 1.5) (d) Par(1,2)

Figure 1: Estimation error versus confidence level for the sample mean, CV-Huber, and

DA-Huber estimators based on 2000 simulations.

In Figure 2, we examine the 99%-quantile of the estimation error versus a distribu-
tion parameter measuring the tail behavior and the skewness. That is, for normal data
we let o vary between 1 and 4; for skewed generalized ¢ distributions, we increase the

shape parameter ¢ from 2.5 to 4; for the lognormal and Pareto distributions, the shape
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parameters ¢ and a vary from 0.25 to 2 and 1.5 to 3, respectively. The Huber-type

o e Sample Mean
--- CV-Huber
—— DA-Huber

Error
Error
1.0

0.8

0.6

0
04

1.0 15 20 25 3.0 35 4.0 25 3.0 35 4.0
Parameter Parameter

(a) Normal (b) Skewed ¢

Error
Error

0.5 1.0 15 20 15 20 25 3.0
Parameter Parameter

(¢) Lognormal (d) Pareto

Figure 2: Empirical 99%-quantile of the estimation error versus a parameter measuring

the tails and skewness for the sample mean, CV-Huber, and DA-Huber estimators.

estimators show substantial improvement in the deviations from the population mean
because the distribution tends to have heavier tails and becomes more skewed. In sum-
mary, the most attractive feature of our method is its adaptivity: (i) it is as efficient
as the sample mean for the normal model and is more robust for asymmetric and/or
heavy-tailed data; (ii) it performs as well as the cross-validation method but with a
much lower computational cost. The latter is particularly important for large-scale

inferences, in which a myriad of parameters need to be estimated simultaneously.
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4.2 Linear regression

We generate data {(Y;, X;)}, from the linear model in (3.1), with n = 500 and
d = 5. The intercept and the vector of regression coefficients are taken as Sy = 5 and

B* = (1,—1,1,—1,1)7, respectively. The covariates X; are i.i.d. random vectors that

consist of independent coordinates from a uniform distribution Unif(—1.5,1.5).

0.05 0.10 015

0.00

00 05 10 15 20 25

We compare the DA-Huber regression estimator with the ordinary least squares
(OLS) estimator, and with classical robust M-estimators with a Huber loss Z.(-), as

in (1.1), and Tukey’s biweight loss £X(z) = {1 — (1 — 2%/72)*}(|z| < 7) + [(|z| > 7).
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Figure 3: Estimation errors of intercept under different settings.
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The tuning parameter 7 in £X(-) and /,(-) is taken as 4.685 and 1.345, respectively,
according to the 95% efficiency rule. We carry out 1000 Monte Carlo simulations to
(1) evaluate the overall performance of the DA-Huber methods by comparing it with
that of the three competitors, OLS, Tukey, and Huber (see Figures 3 and 4), and (2)
explore the robustness of different methods with varying degrees of heavy-tailedness

and skewness (see Figures 5

o002 004 008

000

Figures 3 and 4 display box plots of the estimation error of the intercept |_,§0 —
Bz| and the total fo-error ||@ — 6*||2, respectively, for a fixed distribution parameter,

as in Section 4.1.

and 6).
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Figure 4: Total ¢5-errors under different settings.

The one-step and two-step DA-Huber estimators both outperform
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Figure 5: Average estimation error of the intercept versus the distribution parameters
controlling the tails for the OLS estimator, standard Tukey and Huber estimators, and

data-adaptive Huber estimators (one-step and two-step).

the other methods across all examples. When estimating the intercept, DA-Huber
rectifies the non-negligible bias in the traditional robust M-estimator, as predicted by
the theory. In the normal case, the DA-Huber estimator performs almost identically
to the OLS estimator, and is therefore highly efficient. The fs-error of the OLS tends
to spread out (due to outliers), and thus is not reported. Figures 5 and 6 show the
average estimation error of the intercept and the total /s-error versus the distribution

parameters controlling the shape of the tails, respectively. In the normal case, the
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one-step DA-Huber and OLS slightly outperform the others. With heavy-tailed and
skewed errors, the DA-Huber methods enjoy a notable advantage. However, the two-
step approach is the most desirable because it strikes a good balance between bias and
tail robustness. Overall, the numerical results confirm that the proposed methods have
substantial advantages in the presence of asymmetric and heavy-tailed errors, while

maintaining high efficiency for the normal model.
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Figure 6: Average fy-errors versus the distribution parameters controlling the tails for
the OLS estimator, standard Tukey and Huber estimators, and data-adaptive Huber

estimators (one-step and two-step).
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4.3 Sparse linear regression

Now, we consider the sparse linear regression, Y; = 3 + X/3* + ¢, withi =1,...,n,
where 3* € R? is sparse, with s = ||3*|l¢ < n and d > n. In our simulations, we take
n = 250, d = 1000, and s = 20. We set 55 = 3 and B* = (3,...,3,0,...,0)7, where
the first s = 20 nonzero entries of B* are all equal to three. As before, the covariates
X, are i.i.d. random vectors whose independent coordinates are from Unif(—1.5,1.5),
and ¢; follows one of four distributions: normal, skewed generalized ¢, lognormal, and
Pareto.

To implement the iterative procedure proposed in Section 3.2, at the kth iteration,
we use five-fold cross-validation to choose )\gk) and /\ék) in the optimization programs
in (3.11), producing §§"f) and @Qk), respectively. We evaluate the proposed regularized
DA-Huber estimators using the following measurements: RG, the relative gain of the
DA-Huber estimator with respect to the Lasso in terms of the /- and fs-errors; RG, =
16y — 9||q/||§1asso —0||,, with ¢ = 1,2; FP, the number of false positives (selected noise
covariates); and FN, the number of false negatives (missed signal covariates).

Table 1 summarizes the relative gains of the DA-Huber estimators under the ¢;-
and fo-errors and the numbers of false positive and false negative discoveries. Across all
four models, both DA-Huber estimators outperform the Lasso, with smaller ¢;-errors
and fewer false positive discoveries. Therefore, they are less greedy in terms of model
selection. For the normal model, the proposed robust methods and the Lasso perform

equally well. In the presence of heavy-tailed skewed errors, the DA-Huber methods lead
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to remarkably better outputs in regard of both estimation and model selection. Similar

results are observed in Figure 52 in the Supplementary Material, which displays the

empirical distributions of the ¢y-errors for all estimators.

Table 1: RG, FP, and FN and their standard errors (in parenthese) of the Lasso and

DA-Huber estimators under different models. The results are based on 200 simulations.

DA-Huber DA-Huber
Lasso
(one-step) (two-step)

DA-Huber DA-Huber
Lasso
(one-step) (two-step)

Normal, MV (0,1)

sgt(0,5,0.75,2,2.5)

RG1 x 100
RG2 x 100
FP

FN

100 93.4 (0.6) 91.4 (0.9)

100 100.3 (0.2) 102.7 (0.3)
87.9 (1.7) 77.6 (1.4) 73.5 (2.0)

0 (0) 0 (0) 0 (0)

100 87.5 (1.0) 86.2 (0.9)

100 98.3 (0.5) 98.1(0.5)
86.1 (1.8) 63.1 (1.8) 60.7 (1.5)

0 (0) 0 (0) 0 (0)

Lognormal, LN(0,1.5)

Pareto, Par(1,2)

RG; x 100
RGa x 100
FP

FN

100 34.7 (0.7) 22.7 (0.5)

100 49.5 (1.0) 30.5 (0.7)

80.8 (2.0) 21.9 (0.6) 26.6 (0.7)

0.26 (0.1) 0 (0) 0 (0)

100 65.3 (1.1) 41.7 (0.8)

100 84.5(0.9) 51.2 (0.9)
85.1 (1.9) 34.5 (1.6) 44.2 (0.9)

0 (0) 0 (0) 0 (0)
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5. Conclusion

We have proposed a new principle for choosing a robustification parameter adaptively
from data for a variety of fundamental statistical problems, including mean estimations,
a linear regression, and a sparse regression in high dimensions. Inspired by the censored
moment equation approach, the proposed principle is tuning-free and data-adaptive.
It is conceptually different from the traditional practice of selecting the robustification
parameter using cross-validation, which is not only computationally demanding, but
also lacks the underpinning mathematical guarantees. The proposed principle is guided
by nonasymptotic deviation analysis, providing a unified method for choosing a robus-
tification parameter for tail-robust estimation and inference. In particular, the analysis
guiding our method can be extended easily to a broader class of robust convex loss
functions, including the pseudo-Huber loss functions. The key is the global Lipschitz
and local quadratic geometry of the loss function ¢,(z) = 72((x/7). In light of the
numerical evidence from both synthetic and real data, our proposal outperforms those
widely known procedures in terms of estimation, variable selection, and prediction in
the presence of heavy-tailed and skewed errors. Finally, an R package that implements

the DA-Huber method can be found at https://github.com/XiaoouPan/tfHuber.

Supplementary Material
The online Supplementary Material contains proofs of all theoretical results in the

main text, as well as additional empirical studies.
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