
ar
X

iv
:2

00
4.

13
19

7v
1 

 [c
s.D

S]
  2

7 
A

pr
 2

02
0

Batched Predecessor and Sorting with Size-Priced

Information in External Memory

Michael A. Bender∗ Mayank Goswami† Dzejla Medjedovic‡

Pablo Montes§ Kostas Tsichlas¶

Abstract

In the unit-cost comparison model, a black box takes an input two
items and outputs the result of the comparison. Problems like sorting
and searching have been studied in this model, and it has been general-
ized to include the concept of priced information, where different pairs
of items (say database records) have different comparison costs. These
comparison costs can be arbitrary (in which case no algorithm can be
close to optimal (Charikar et al. STOC 2000)), structured (for exam-
ple, the comparison cost may depend on the length of the databases
(Gupta et al. FOCS 2001)), or stochastic (Angelov et al. LATIN
2008). Motivated by the database setting where the cost depends on
the sizes of the items, we consider the problems of sorting and batched
predecessor where two non-uniform sets of items A and B are given as
input.

(1) In the RAM setting, we consider the scenario where both sets
have n keys each. The cost to compare two items in A is a, to compare
an item of A to an item of B is b, and to compare two items in B is
c. We give upper and lower bounds for the case a ≤ b ≤ c, the case
that serves as a warmup for the generalization to the external-memory
model. Notice that the case b = 1, a = c = ∞ is the famous “nuts and
bolts” problem.

∗Stony Brook University, bender@cs.stonybrook.edu. This work was supported in
part by NSF grants CCF-1725543, CSR-1763680, CCF-1716252, CCF-1617618, CNS-
1938709, and by Sandia National Laboratories.

†Queens College, CUNY, mayank.goswami@qc.cuny.edu. Supported by NSF grants
CRII-1755791 and CCF-1910873.

‡International University of Sarajevo, dzmedjedovic@ius.edu.ba.
§Google Inc., pabmont@gmail.com.
¶Aristotle University of Thessaloniki, tsichlas@csd.auth.gr.

1

http://arxiv.org/abs/2004.13197v1


(2) In the Disk-Access Model (DAM), where transferring elements
between disk and internal memory is the main bottleneck, we con-
sider the scenario where elements in B are larger than elements in A.
The larger items take more I/Os to be brought into memory, consume
more space in internal memory, and are required in their entirety for
comparisons.

A key observation is that the complexity of sorting depends heavily
on the interleaving of the small and large items in the final sorted
order. If all large elements come after all small elements in the final
sorted order, sorting each type separately and concatenating is optimal.
However, if the set of predecessors of B in A has size k # n, one must
solve an associated batched predecessor problem in order to achieve
optimality.

We first give output-sensitive lower and upper bounds on the batched
predecessor problem, and use these to derive bounds on the complexity
of sorting in the two models. Our bounds are tight in most cases, and
require novel generalizations of the classical lower bound techniques in
external memory to accommodate the non-uniformity of keys.

Keywords: Priced information sorting batched predecessor exter-
nal memory output-sensitive algorithms.

1 Introduction

In most published literature on sorting and other comparison-based prob-
lems (e.g., searching and selection), the traditional assumption is that a
comparison between any two elements costs one unit, and the efficiency of
an algorithm depends on the total number of comparisons taken to solve the
problem. In this paper, we study a natural extension to sorting, where the
cost of a comparison between a pair of elements can vary, and the comparison
cost is the function of the elements being compared.

We work in both the the random-access-machine (RAM) and the disk-
access-machine (DAM) [1] models (described below). We derive worst-case
upper and lower bounds for comparison-based sorting and batched predeces-
sor.

In the RAM model, we assume that comparisons between a pair of keys
have an associated cost that depends on the “type” of keys involved. As
a toy problem, consider the case when we have keys of two types—n red
keys and n blue keys. A comparison between a pair of red keys costs a,
between a red key and a blue key costs b, and between a pair of blue keys
costs c. Without loss of generality we can assume a < c, which gives rise
to three cases to be considered, a < b < c, a < c < b, and b < a < c

2



(when b = 1 but a = c = ∞ corresponds to the well-known nuts and bolts
problem [2].) Traditionally such problems have been studied in the context
of priced information [11, 12], where the cost of an algorithm is studied in
the competitive analysis setting. These comparison costs can be arbitrary
(in which case no algorithm can be close to optimal [11]), structured (for
example, the comparison cost may depend on the length of the databases
[16]), or stochastic [3].

In this paper we consider the setting of [16], where the price of the in-
formation depends on the length of the keys being compared. However, we
depart from the competitive analysis model by considering the worst-case
cost, but parameterized by the specific distribution (or the “interleaving”) of
the elements in the final sorted order.

Then we turn to the disk access machine (DAM ) model (also called the
external-memory model or the I/O model) [1]. This model captures an essen-
tial aspect of modern computers—that computation is fast but transferring
data between levels of a memory hierarchy is slow. Data is transferred from
an infinite external disk to a RAM of size M in blocks of size B; the cost of
the algorithm is measured by the number of block transfers (I/Os) that it
uses.

In the DAM model the notion of comparison cost naturally comes into
play when elements have different sizes (or lengths). In this model, compar-
isons come for free once the elements are in RAM. However, it is cheaper
to transfer short elements into RAM than long elements. For example, if a
key has length w, where w ≤ B, then up to B/w keys can be fetched with
one I/O; similarly, if w ≥ B, then it takes w/B I/Os to bring that key into
memory. Moreover, a long element, when brought into RAM, will displace
a larger volume of keys than a short element.1

Consider the following generalization of the RAM problem to DAM: we
are given S keys of unit size (short keys) and L/w (long) keys of size w
each (total volume L). What is the optimal sorting algorithm for when
there are two key sizes? We want to express our results parameterized by
the interleaving of the elements in their final sorted order. Let interleaving
parameter k denote the number of consecutive runs of large keys (stripes) in
the final sorted order. In other words, the set of predecessors of L in S has

1Note that the DAM model actually models the memory transfers between any two
levels of the memory hierarchy. Although this paper adapts the terminology of I/Os
between RAM and disk, the model also applies to cache misses between cache and RAM.
In the former case, elements could be larger than B but are (essentially always) much
smaller than M . In the latter case, elements could have a length that is a nontrivial
fraction of M .

3



size k. We want to express the performance of the sorting algorithm, as a
function of S, L, w, and k.

Sorting with two key lengths helps illustrate a special connection between
sorting and batched searching. Consider the following batched searching
problem, which we call the PLE (placement of large elements) problem. We
have S keys of unit size (short keys), which are given in sorted order. We have
L/w (long) keys of size w each, and the objective is to find which short key
is the immediate predecessor of each long key. The PLE problem is a lower
bound on the sorting problem because it starts off with more information
than the original sorting and asks to do less.

Often, the complexity of PLE dominates the complexity of sorting. How-
ever, obtaining lower bounds on the PLE presents several challenges. First,
for many reasons (we want bounds in terms of k, keys have different sizes, and
there are many searches happening in batch) standard information-theoretic
lower bounds bounding how much information is learned do not immediately
apply: different I/Os can “learn” very different amount of information. Sec-
ond, because of the nonuniformity of the keys, the complexity of PLE turns
out to be a minimum of two terms, each optimal for a certain range of values
of w (the length of large elements). Each case requires different techniques.
Third, we have to take preprocessing into account. PLE is a batched search-
ing problem with a nontrivial preprocessing-query tradeoff [8]. However, in
our context it is a subproblem of sorting, and other parts of sorting dictate
how much preprocessing is allowed.

Related Work. In RAM, algorithms that work with inputs with priced
information have been studied before[11, 12, 16, 3].In this setting the results
are presented using a competitive analysis framework. Another example
of varying comparison costs is the well-known nuts-and-bolts problem [2].
Interleaving-sensitive lower bounds and batched searching in RAM are re-
lated to lower bounds for sorting multisets [19] and distribution-sensitive
set-partitioning [14].

Aggarwal and Vitter [1] introduced the external-memory (DAM) model.
The lower bounds they establish for fundamental comparison-based problems
were generalized by Arge, Knudsen, and Larsen [6], and by Erickson [15] to
the external algebraic decision tree model. Prominent examples studying
lower bounds on batched and predecessor searching are found in [4, 7, 8].

Most previous work that considers variable-length keys does so in the
context of B-trees [18, 13, 17, 20, 9].

4



Relation to string sorting. Arge et al. [5] study the I/O complexity of
sorting strings in external memory. The authors consider different models
of key divisibility and derive upper and lower bounds for each model. The
problem is different from ours because strings are not atomic: they can be
broken into their individual characters which can reduce the I/O complexity
of sorting.

Many systems are designed to be consistent with the notion of indivisible
keys. For example, sorting and searching libraries such as GNU Sort [21]
or Oracle Berkeley DB [10] allow (or require) one to pass in a comparison
function as a parameter. Note that the algorithms and lower bounds for
indivisible keys in this paper also hold as the worst-case lower bounds for
string sorting — when the entire string is necessary in memory in order to
break the tie.

Organization. In Section 2 we present the RAM version of our problem.
We present the sorting problem in external-memory in Section 3 and relate it
to the batched predecessor problem. We discuss the challenges in extending
the RAM solution to this case in section 4.

We then derive lower and upper bounds on the batched predecessor prob-
lem in sections 5 and 6, respectively. We end with open problems in Section
7. Due to space constraints, complete proofs are relegated to the appendix.

2 Warmup: the RAM version

Two types, RAM version (2RAMSORT). The input is n red and n
blue keys, and the output is the sorted sequence of all keys. A comparison
between a pair of red keys costs a, between a red key and a blue key costs b,
and between a pair of blue keys costs c. Without loss of generality we can
assume that a < c.
Interleaving-sensitive analysis. The optimal sorting cost in RAM de-
pends on the final interleaving of the elements in the final sorted order.
If in the final sorted order all red keys come before all blue keys, then
Θ(an log n + cn log n) is the optimal total comparison cost, because the al-
gorithm that separately sorts and concatenates is optimal. However, if the
red and blue keys alternate in the final sorted order, then no blue-blue com-
parisons are ever required to sort.
Stripes and the interleaving parameter k. A consecutive run of red or
blue keys in the final sorted order is called a stripe. Define k to be the number
of blue stripes, and let !i (respectively si) be the number of blue (respectively

5



red) keys in stripe i. The notation ! and s are chosen to correspond with
the later sections when red elements will be small and blue elements will be
large.

Theorem 1. 2RAMSORT has the following comparison cost complexity for
the case a ≤ b ≤ c:

Θ(an log n+ b(k log n+ n log k) + c
k
∑

i=1

!i log !i)

Proof. We are interested in the version that is most relevant to us, the case
when a < b < c. This is because red elements can be considered small, blue
elements can be considered large, and under the natural setting where com-
parisons involving red elements cost less than those involving blue elements,
we get that a < b < c.
Lower bounds. First, the number of permutations any algorithm for
2RAMSORT must achieve is at least n!. Any comparison reduces these
by a factor of at most 2, and the cheapest comparison costs a, thus giving a
a log n! = Ω(an log n) lower bound.

Second, consider the instance where the red elements are already sorted
for free, the stripes of blue elements are already provided for free, and one is
required to finish sorting. In this case, no comparison involving a red element
is useful, the only comparisons available cost c, and these must be used to
sort the contents of each stripe separately. This gives us a lower bound of
Ω(c

∑k
i=1 !i).

Proving the second term as a lower bound involves the batched prede-
cessor problem. Consider the instance where the red elements are sorted for
free, and the algorithm is just required to discover the content of the k blue
stripes. This is identical to the batched predecessor problem on the blue
elements, and any sorting algorithm also solves this subproblem.

There are at least
(n
k

)

S(n, k) permutations to consider, where S(n, k)
is the Stirling number of the second kind2. This is because there are

(n
k

)

positions to place the blue stripes among the red elements in, and S(n, k)
distinct possibilities for the contents of the blue stripes.

An easy lower bound on S(n, k) is kn−k, which is achieved by fixing an
ordering of the n blue elements, sending the first k to a distinct subset, and
now for the remaining n − k blue elements one has k possibilities for each
one.

2this is the number of ways to partition a set of size n into k non-empty, disjoint
subsets.

6



Thus we get that the total number of permutations is at least
(n
k

)

S(n, k),
which is at least (n/k)kkn−k. Since red elements are already sorted, compar-
isons of cost a are useless, and the cheapest available comparisons are those
costing b. Thus we get a lower bound of Ω(b(k log(n/k) + (n − k) log k)),
which equals Ω(b(k log n+ n log k − 2k log k)) .

If k ≤ n/3, n log k − 2k log k ≥ n
3 log k, and we get the claimed lower

bound. If k > n/3, we claim that bn log n is a lower bound, which matches
our lower bound for this case. Consider the instance where red elements are
sorted, k blue representatives of each stripe are given (unsorted) and one is
told that the remaining n − k blue elements are all larger than the largest
red elements. To finish the batched predecessor problem, there are at least
(n
k

)

k! permutations to check (find where to place the representatives, find
the order in which representatives should go). No comparison between red
elements are useful, the cheapest available comparison costs b, so we get a
lower bound of b log(

(n
k

)

k!), which since k > n/3, is Ω(bn log n).
Since we derived the lower bound on a constant number of instances of

2RAMSORT, we can claim a lower bound of the maximum complexity of
these instances, which in turn is the same as the sum of the complexities in
Ω(.) notation, since we only have constantly many such instances.
Upper bounds for the case a < b < c. The algorithm proceeds in a
similar fashion:

1. Sort the n red elements using cost a comparisons.

2. Build a binary tree Tr on the sorted red elements. The algorithm also
maintains a binary tree Tb (initially empty) on the set of discovered
âĂĲborderâĂİ of red elements, i.e., the red elements which immedi-
ately precede and succeed a discovered stripe. A blue element is first
sent down Tb to find whether it belongs to an already discovered stripe.
If it does not belong to an already discovered stripe, it is bound to dis-
cover a new stripe, and it is sent down Tr. The new bordering red
elements are then inserted into Tb. It is clear that only k blue elements
go down Tr, whereas every blue element may go down Tb, which has at
most k leaves. All the comparisons in this step are cost b.

3. Sort the stripes of blue elements using type c comparisons.

One can easily verify that the running time of this algorithm matches the
one in the theorem statement.

7



3 Sorting and Batched Predecessor in External Mem-

ory with Size-Priced Information

The input to the two-sized sorting and batched predecessor problems are
S = {s∗} (the small records) and L = {!∗} (the large records, each of
size 1 < w ≤ M/2). A set of large elements forms a stripe if for each
pair of large elements !i and !j in the stripe, there does not exist a small
element between !i and !j in the final sorted order. Let k be the number of
large-element stripes, and let the large-element stripes be L1,L2, . . . ,Lk, as
they are encountered in the ascending sorted order. The parameters in the
complexity analysis of sorting and batched predecessor are thus S, L, w, k,
and {Li}ki=1.

Definition 2 (Two-Sized Sorting Sort (S,L)). The input is an (unsorted)
set of elements N = S ∪ L. Set S consists of S unit-size elements, and L
consists of L/w elements, each of size w, where3 B ≤ w ≤ M/2. The out-
put comprises the elements in N , sorted and stored contiguously in external
memory.

Definition 3 (PLE-Placement of Large Elements:). The input is the sorted
set of small elements S = {s1, s2, . . . , sS}, and the unsorted set of large
elements L = {!1, !2, . . . , !L/w}. In the output, elements in S are sorted,
and elements in L are sorted according to which stripe they belong to, but
arbitrarily ordered within their stripe.

The following theorem relates the complexities of the sorting and the
batched predecessor problem.

Theorem 4 (Sorting complexity). Denote by PLE (S,L) the complex-
ity of the PLE problem. Then the I/O complexity of Two-Sized Sorting
Sort (S,L) is

Θ

(

S

B
logM/B

S

B
+ PLE (S,L) +

(

k
∑

i=1

(

Li

B
logM/w

Li

w

)

+
L

B

))

.

We will use this section to prove the first and the third term of the
Theorem 4. It is easy to see that PLE (S,L) is an instance of Sort (S,L)
that starts with more information (sorted small elements), and requires less
(just the contents of the stripes, unsorted).

3We overload notation for convenience of presentation. We assume w ≥ B also for
the convenience of presentation. Our bounds hold for any 1 < w ≤ M/2; we extend our
results to this entire range in Appendix 5.3.

8



Lemma 5. Sort (S,L) = Ω
(

S
B logM/B

S
B

)

.

Proof. We denote by p the total number of permutations that any algorithm
for Two-Sized Atomic-Key Sorting must distinguish between in order to sort.
We bound p in terms of the number of large-element stripes k:

p ≥
S!

(B!)S/B

(

S − 1

k

)(

L

w
!

)(

L/w − 1

k − 1

)

.

The four factors that comprise the right side include (1) sorting S (after
sorting within the small blocks, the total number of permutations goes down
by a factor of (B!)S/B), (2) choosing the k locations for stripes within S, (3)
sorting L and (4) forming k large-element stripes by choosing k−1 delimiters
in the sorted L.

We can assume that the elements in memory are sorted at all times, be-
cause maintaining this order requires no additional I/Os. The number of
remaining permutations goes down by at most

(M
B

)

after one memory trans-
fer, thus a lower bound on the number of I/Os to sort is sort-lower(N) =

Ω
(

log p/log
(M
B

)

)

. Using that p ≥ S!
(B!)S/B

, and that log
(M
B

)

= Θ(B log(M/B)),
we get

sort-lower(N) = Ω

(

S logS − S logB

B log(M/B)

)

= Ω

(

S

B
logM/B

S

B

)

,

concluding the proof.

The third term concerns sorting the stripes Li of large elements. Al-
though this is same-size sorting, we need a slight generalization of the clas-
sical Aggarwal and Vitter [1] result for records of size w > 1.

Lemma 6 (Aggarwal and Vitter). Consider an external-memory algorithm
A that sorts the total volume V of V/w elements, each of size w.

1. If 1 ≤ w < B, A requires Ω
(

V
B logM/B

V
B

)

block transfers.

2. If w ≥ B, A requires Ω
(

V
B logM/w

V
w

)

block transfers.

Remark: The third term in the bound in Theorem 4 is derived by substi-
tuting V = Li in the above lemma, and adding all the lower bounds (since
sorting stripe i is independent of sorting stripe j).

9



Proof. In both cases, we count the total number of possible output permu-
tations and the maximum permutations achievable during a single I/O, or
during the input of one element (w/B I/Os), whichever is larger.

1. 1 ≤ w < B: Assume that w divides B. In a linear scan, we can inter-
nally sort every block, which restricts the possible output permutations
to

(V/w)!

((B/w)!)V/B
.

When a block is input, there are at most (M −B)/w sorted elements
in memory. The incoming block contains B/w sorted elements, so the
number of remaining output permutations reduces by at most a factor
of

(

(M −B)/w +B/w

B/w

)

=

(

M/w

B/w

)

.

Thus we get that the algorithm requires at least

Ω





log
(

(V/w)!/((B/w)!)V/B
)

log
(M/w
B/w

)





block transfers. Using the same bounds for
(n
k

)

as in Lemma 5, we get
the desired bound.

2. w ≥ B: Assume for simplicity that w is an integer multiple of B. In
this case, there are (V/w)! possible output permutations. One can scan
every chunk of size M , but this does not change the bound we present
asymptotically ( logM/w V/w changes to logM/w V/M).

When an element is input, there are at most (M −w)/w = (M/w)− 1
(sorted) elements in memory. The input of an element costs w/B I/Os,
and this element can go into any one of M/w positions between the
elements in memory. Hence the maximum branching factor for one
element input is M/w.

This implies that the number of element inputs is

Ω

(

(V/w) log(V/w)

log(M/w)

)

= Ω

(

V

w
logM/w

V

w

)

,

and multiplying by the cost of every large element input (w/B) gives
us the claimed bound.

10



As in the RAM setting, since we have three subproblems, their maxi-
mum complexity, and hence the complexity of their sum, is a lower bound
on Sort (S,L). We have thus reduced the sorting problem to the batched
predecessor problem, which will occupy the rest of this article.

4 Main Challenges in the Batched Predecessor Prob-

lem

For PLE (S,L), one can see that there is not much point comparing large
records to each other; one would rather compare a large record to more
small records than one large record. We need the notion of a fan-out, which
measures the efficiency of an I/O. In PLE (S,L), large elements are the ones
trying to find their locations amongst the small elements. A large element is
called active during an I/O if it is either in memory or in the block transferred
during this I/O. Before an I/O, any active large element has a set of locations
where it might lie, and this set gets reduced by a certain factor (possibly 1)
after this I/O. The fan-out of an I/O is defined to be the product of all such
factors for all large elements active during this I/O.

We now describe the three main challenges in extending the RAM solu-
tion to external memory.
1.Non-uniformity: In the unit-sized setting, the transfer of a block to main
memory can decrease the number of permutations to be checked by a factor
of at most4 B!

(M
B

)

. In our setting, the number of comparisons performed by
an I/O varies depending on whether the block transfer carries large records
or small records, and what the contents of RAM are at the time of the I/O.

• The transfer of a large element into main memory full of large elements
gives only

(M/w
1

)

per w/B I/OS as a large-element transfer costs w/B.
• The transfer of B small records into main memory filled with small

records gives
(M
B

)

.
• The transfer of a large element into a memory full of M small elements

gives a fan-out of M + 1.
4The proof of the lower bound for sorting N unit-sized keys in [15] proceeds in the

following fashion: assuming that all blocks are sorted (using a linear scan costing N/B
I/Os), there are N !/(B!)(N/B) permutations required to achieve, and the transfer of a
block of B sorted elements into the main memory containing M −B sorted elements can
at most an

(

M
B

)

fraction of these permutations (the “fan-out,” since this is the degree of
the node in the decision tree). Standard algebra gives a lower bound of N

B logM/B
N
B .

11



• While the above three cases are tight, the main issue is in getting an
upper bound on how much a small block I/O can achieve. The main
memory can hold p = (M − B)/w large elements, and an incoming
small block has B small elements. Thus naively the maximum fan-out
can be upper bounded by Bp, which is not tight. Our main aim is to
get a better upper bound on this fan-out.

Both our upper and lower bounds are a minimum of two terms, where one
dominates the other depending on how large the large elements are (whether
they can be brought into memory multiple times or just once).
2. Requiring output-sensitive lower bound limits adversarial ar-
guments: Lower bounds on the unit-sized batched predecessor problem in
external memory were recently obtained in [8]. The adversary strategy in
the comparison model was quite simple since the adversary had the freedom
to place the elements being searched for at any place in the sorted set. By
maintaining the invariant that all the elements being searched for currently
in main memory must have disjoint search spaces, it was able to guarantee
a fan-out of at most 2B , and in some cases, a fan-out of at most B.

In our setting, a more complicated adversarial analysis is required that
forms exactly k stripes at the end. Using this, we can argue a fan-out of at
most 2B on most small block I/Os.
3. Have to take preprocessing into account: PLE is not a traditional
searching problem, but a subproblem of sorting. We cannot be concerned
only with the query time, but also the preprocessing time: what is the
minimum amount of preprocessing needed to achieve a given query time?
Even for the classical single-element-search (for which the well known B-
tree provides optimal query time), this is, to the best of our knowledge, not
known. We have the following observation which might be surprising at a
first glance.

Observation 7. Given a sorted array of N keys on disk, there exists an
algorithm that uses extra space of O(N (1−1/ logB)/B)(= o(N/B)) blocks, and
answers single-element search query in (optimal) O(logB N) I/Os. If the
query time is required to be at most c logB N , then any algorithm needs to
preprocess Ω(N (1−(2c/ logB))/B) extra blocks.

Proof. We first prove the lower bound. We can assume that the element x
being searched for is always inside the memory at all times. The N keys on
disk are stored in N/B blocks; call the set of these blocks B. Let S denote
the current search space of x: this is the set of locations in N that x can
lie in, given all the information achieved by the algorithm until now. Any
algorithm that solves this problem is described by a decision tree which has

12



nodes corresponding to I/Os of either a preprocessed block or a block from
B. The decision tree has at least N/B leaves.

We first relax that the algorithm only locate x to within a space of 2B,
i.e., once |S| ≤ 2B, we will give the algorithm the exact position for free.
With this, the input of a block from B can reduce S by a factor of at most 4
(actually, this factor is 2S/(S −B), which is very close to 2 when S is large,
and equals 4 when S = 2B). Since the query time cannot exceed c logB N , S
can reduce by a factor of at most 4c logB N = N1−(2c/ logB). This still leaves
a factor of N (1−(2c/ logB))/B to account for.

Call the set of all extra blocks preprocessed by the algorithm B
′
. Let K

be the set of all elements in blocks in B
′

such that no two elements in K
belong to the same block in B

′
. The following holds:

1. To preprocess B
′
, the algorithm required Ω(K) I/Os.

2. The maximum fan-out that using preprocessed blocks can achieve is
O(K).

Proof of 1: Since there are K elements from different blocks, each of these
blocks needed to be inputted at least once at some point of preprocessing,
hence requiring at least K memory transfers.

Proof of 2: Regardless of the choice of K elements within S, there will
be at least one gap that is of size at least S/K. Hence, the maximum factor
by which the search space can be decreased is K.

Since the decision tree still must have enough nodes to guarantee the
remaining fan-out of N1−(2c/ logB)/B, the above two observations imply that
K = Ω(N1−(2c/ logB)/B), thus finishing the proof.
Upper Bound: Let β = N1/ logB . In a linear scan, the algorithm can
write out every βth element from N , and store them in contiguous blocks.
There are N1−1/ logB such elements, and this requires and extra space of
N (1−1/ logB)/B blocks. The algorithm then builds a B-tree on this set of
elements.

The search proceeds by first going through the B-tree, until the search
space of x is reduced to a set of size β. On this set, the algorithm performs
a simple binary search. The total runtime is bounded by logB N (1−1/logB) +
log2 β ≤ 3 logB N I/Os.

13



5 Complexity of the Batched Predecessor problem:

Lower Bounds

In this section, we prove the lower bounds for the PLE (S,L) problem in the
following theorem:

Theorem 8 (PLE Lower Bound).

PLE (S,L) = Ω

(

min

{

kw

B
logM S +

L

B
logM k,

k

B
log S +

L

wB
log k +

L

B

})

.

In order to prove Theorem 8, first divide the PLE (S,L) problem further
into three subproblems. Doing this helps us develop a more intricate adver-
sarial analysis that gives us tight lower bounds. We then develop matching
upper bounds on the PLE (S,L) problem. We consider the following three
subproblems of PLE, whose complexities lower bound the complexity of PLE,
and hence Sort (S,L):

1. S-k: An instance with only one large element in each large-element
stripe.

• Input: Set S of unit-sized elements s1, . . . , sS (sorted), where
s1 = −∞ and sS = ∞, and large elements !1, . . . , !k (volume
kw) unsorted.

• Output: For each !i output sj such that sj ≤ !i ≤ sj+1. It is
guaranteed that no other !k satisfies sj ≤ !k ≤ sj+1 (one large
element per stripe).

2. k-k̃: An instance with only one small element in each small-element
stripe.

• Input: Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞
and sk+1 = ∞, and large elements !1, . . . , !k̃ (volume k̃w) un-
sorted.

• Output: For each !i, output its predecessor and successor in S.
3. k-k: An instance with only one element in each stripe, large or small.

• Input: Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞
and sk+1 = ∞, and large elements !1, . . . , !k (volume kw) un-
sorted.

• Output: The entire set in the sorted order.
The format of lower bounds for S-k, k-k̃ and k-k is as follows: let X

be the logarithm of the total number of permutations that an algorithm
needs to achieve in order to solve the problem. As is easily observed, the
values of X for these three subproblems are k log(S/k), k̃ log k, and k log k,
respectively. Lemma 9 below is the most technical part of this paper, and

14



it helps us quantify the behavior of the adversary during small-block and
large-element inputs for all three subproblems. We use this lemma to prove
the lower bounds for the individual three subproblems (found in Lemma 14,
Lemma 15, and Lemma 17). Then we put the three lemmas together to
obtain the expression from Theorem 8.

Lemma 9. Consider any algorithm for the S-k, k-k̃, or the k-k problem.
There exists an adversary such that:

• On the input of any block of B short elements, the adversary answers
comparisons between all elements in main memory such that the fan-out
of this I/O is at most 2B . In other words, the number of permutations
the algorithm needs to check is reduced by a factor at most 2B .

• On the input of any large element (costing w/B I/Os), the adversary
answers comparisons between all elements in main memory such that
the fan-out of this I/O is at most O(M). In other words, the number
of permutations the algorithm needs to check is reduced by a factor at
most O(M).

Proof of Lemma 9: We prove this lemma by describing the adversary. We
capture the information learned at every point of the algorithm by assigning
a search interval to every large element:

Definition 10 (Search interval). A search interval R(!) = (si, sj) for a large
element ! at step t is the narrowest interval of small elements where ! can
possibly land in the final sorted order, given what the algorithm has learned
so far.

It will be useful to consider the binary tree T on the set S. The search
interval of any large element at any point during the execution of the algo-
rithm is a contiguous collection of leaves in T . Note that it can never be
disconnected.

For simplicity we will assume that the size of S is a power of 2, and
hence T is perfectly balanced. Also, if R(!) = (si, sj) is the range of a large
element, we will make sure the adversary “rounds off” the search space so
that the new range corresponds exactly to a subtree of some node in T . This
is accomplished by first finding the least common ancestor lca of si and sj,
and then shrinking the search space of ! to either the search space in the left
subtree of lca or to the search space in the right subtree of lca, whichever is
larger. Thus each large element ! at any time has an associated node in T ,
which we denote by v(!). We also denote the interval corresponding to v(!)
(this is just the interval of its subtree) as I(v(!)).

15



In the remainder, we find it convenient to work with logarithms of size
of search spaces. For this purpose, we will use the term “bit”. The learning
of one “bit” by the algorithm corresponds to the halving of the search space
of some large element.
Mechanics of the adversary’s strategy: Our adversary will try to main-
tain the following invariant at all times during the execution of the algorithm.
Invariant: The search intervals of large elements in main memory are dis-
joint.

We denote by {!p−1
i }M/w

i=1 the set of at most M/w large elements in mem-
ory before the pth I/O. By hypothesis, the nodes in T belonging to the set
{v(!p−1

i )}M/w
i=1 have no ancestor-descendant relationships between them. We

write Sp−1
i to denote I(v(!p−1

i )), the search interval of large element !p−1
i at

step p− 1.
Small-block input. Consider the incoming block. We denote np,i as the
number of incoming small elements that belong to Sp−1

i . These elements
divide Sp−1

i into np,i+1 parts {P1, . . . , Pnpi+1}, some of them possibly empty.
The largest of these parts (say Pj) is of size at least 1/(np,i + 1) times the
size of Sp−1

i . The new search interval of !pi is defined to be the highest node
in T such that I(v) ⊂ Pj .
Large element input. On an input of a large element !pnew (with search
interval Sp−1

new ), the adversary uses a strategy similar to that one on a small-
block input to compare !pnew with the (at most) M small elements present
in memory. These M small elements divide Sp−1

new into at most M parts, and
the new search interval of !pnew corresponds to the highest node in T that
contains the largest part.

This is the temporary search interval Snew, with the corresponding node
vnew.

Snew can be related to the search intervals of large elements in memory
in three ways:

Case 1. The element !pnew shares a node with another large element !pi .
The conflict is resolved by sending !pnew and !pi to the left and right children
of vnew, respectively.

Case 2. The element !pnew has an ancestor in memory. The ancestor is sent
one level down, to the child that does not contain vnew in its subtree. Thus
the conflict is resolved while giving at most O(1) bit.

Case 3. The element !pnew has descendants in memory.

16



Denote the nodes that are descendants of vnew in T as v1, . . . , vM/w.
Let the corresponding search intervals be Sp−1

1 , . . . , Sp−1
M/w, respectively. Let

X = ∪M/w
i=1 Sp−1

i and Y = Snew \X. The set Y is a union of at most M/w+1
intervals, each of which we denote by Yi. Let Z be the largest interval from
the set {Sp−1

1 , . . . , Sp−1
M/w, Y1, . . . , YM/w}. Hence, |Z| ≥ |Snew|/(2M/w).

There are two cases to consider. The first case is when Z = Sp−1
i for

some i. In this case, Snew = Sp−1
i . In doing this we have given at most

O(logM) bits. Now we proceed as in Case 1 to resolve the conflict with at
most O(1) extra bits. Otherwise, if Z = Yi for some i, then the adversary
allots !pnew to the highest node v in T such that I(v) ⊆ Z.

5.1 Analysis

We have the following auxiliary lemmas:

Lemma 11. On a small-block input, the adversary gives at most O(log(np,i+
1)) bits to !pi .

Proof. Observe that

‖Pj‖ ≥
‖Sp−1

i ‖

(npi + 1)
.

Divide Sp−1
i into 2(np,i+1) equal parts (with the last one being possibly

smaller). If Pj is equal to the union of two consecutive such parts, there
is a node in T corresponding to Pj, and the adversary has given exactly
log(np,i + 1) bits. Otherwise, Pj contains at least one of these parts, for
which there is a node log(np,i + 1) + 1 levels below v(!p−1

i ), which is how
many bits the adversary gives in this scenario.

In either case, the maximum number of bits given by the adversary is
O(log(np,i + 1)), as claimed.

Lemma 12. On a small-block input, the adversary gives at most O(B) bits.

Proof. This follows easily from Lemma 11. Let G denote the total number of
bits given by the adversary during the input of a block of small elements. It
can be seen that G =

∑B
i=1 (log(np,i + 1) + 1). By definition

∑B
i=1 npi = B,

implying that
∑B

i=1 log(np,i +1) ≤ B, which in turn implies that G < 2B =
O(B).

Lemma 13. During the input of a large element, the adversary gives at most
O(logM) bits.

17



Proof. The number of bits given due to comparisons with small elements
already in memory is O(logM). In each of the three cases an additional
O(log(M/w)) bits are given. Thus, the total number of bits given by the
adversary during the I/O of a large element is O(logM).

5.2 Putting It All Together: getting lower bounds for S-k,
k-k̃ and k-k

1) S-k Lower Bound. The proof rests on the following action of the
adversary: in the very beginning, the adversary gives the algorithm the
extra information that the ith largest large element lies somewhere between
s(i−1)α and siα, where α = S/k. In other words, the adversary tells the
algorithm that the large elements are equally distributed across S, one in
each chunk of size S/k in S.

This deems the invariant of large elements in main memory having dis-
joint search intervals automatically satisfied.

Because any algorithm that solves S-k must achieve Ω(k log(S/k)) bits
of information, we have that

Lemma 14. S−k= Ω
(

min
(

kw
B logM

S
k ,

k
B log S

k + kw
B

))

.

2) k-k̃ Lower Bound. To solve k-k̃, an algorithm needs to learn k log k̃
bits of information. Using the adversary strategy we described, we obtain
the following lower bound:

Lemma 15. k-k̃ = Ω
(

min
(

k̃w
B logM k, k̃

B log k + k̃w
B

))

.

3) k-k Lower Bound. To solve k-k, an algorithm needs to learn k log k
bits of information. In the k-k problem, we expect to produce the perfect
interleaving of the small and large elements in the final sorted order. That
is, each element lands in its own leaf of T .

Therefore, the adversary does not posses the freedom to route elements
down the tree at all times using the strategy we described. Instead, the
strategy is used for a fraction of total bits the algorithm learns, and the
remaining fraction is used to make up for the potential imbalance created
by sending more elements to the left or to the right. We call these type one
and type two bits, respectively. Late bits are effectively given away for free
by the adversary.

More formally, we define the node capacity (cT (v)) as the number of large
elements that pass through v during the execution of an algorithm. If the

18



k-k algorithm runs in T I/Os, then the node capacity of v at a level h of T
is designated by cT (v) = k/2h.

Definition 16 (type one and type two bits). A bit gained by a large element
! is an type one bit if, when ! moves from v to one of v’s children, at
most cT (v)/4 − 1 other large elements have already passed through v. The
remainder of the bits are type two bits.

Because a small-block input gives O(B) bits and a large-element input
gives O(logM) bits, and we need to achieve all type one bits to solve the
problem (there are (k log k)/4 of them), we obtain the following lower bound:

Lemma 17. k−k= Ω
(

min
(

kw
B logM k, k

B log k + kw
B

))

.

Now we combine everything to get the proof of our PLE and sorting
lower bounds.
Proof of Theorem 8

The lower bounds for k-k, k-k̃ and S-k are each a minimum of two terms;
it is safe to add the respective terms as the transition between which term
dominates occurs at exactly the same value of w for each of the subproblems.
Adding the terms for the lower bounds of k-k and S-k provides the k

B logS

and kw
B logM S terms in Theorem 8. Adding the terms for the lower bounds

of k-k and k-k̃, and using that k + k̃ = L/w provides the L
wB logS and

L
B logM S terms in Theorem 8.

5.3 Generalization of lower bounds to the case when w1 <

w2 < B

So far, our assumptions on the record sizes accommodate one set of records
of unit size, and the other set contains items larger than a block. But what if
we have two record sizes, where both can be relatively large but still smaller
than a block? In this section, we generalize the lower bound results to this
case.

The number of bits required by an algorithm remains unchanged as that
is an information-theoretic lower bound. It remains to see how the invariant
maintained by the adversary limits the information achieved by any algo-
rithm.

The input of a small block contains B/w1 elements now. Since the large
elements in memory have disjoint search spaces, the maximum number of
bits achievable by this I/O is B/w1, which is the case when each of these
small elements is a pivot for a unique large element. Thus we get O(B/w1)
bits per I/O.

19



The input of a large block contains B/w2 large elements. The memory
can contain at most (M − B)/w1 small elements, and so the total number
of possible permutations achievable is

P =

(M−B
w1

+ B
w2

B
w2

)(

B

w2
!

)

<

(M
w1

B
w2

)(

B

w2
!

)

<

(

ew2M

Bw1

)B/w2
(

B

w2
!

)

This gives

log P = O

(

B

w2
log

(

Mw2

Bw1

)

+
B

w2
log

(

B

w2

))

= O

(

B

w2
log

(

M

w1

))

bits per I/O.
In both cases, the amortized number of bits achieved is:

1. O(B/w1) bits per I/O, equivalent to O(1) bit per w1/B I/Os.

2. B
w2

log
(

M
w1

)

bits per I/O, equivalent to log(M/w1) bits per w2/B I/Os.

6 Upper bounds on Sorting and the Batched Pre-

decessor Problem

Our algorithm for Sort (S,L) works in three steps:1) sort the short elements
using traditional multi-way external memory merge-sort [1], 2) solve the
associated PLE (S,L) problem, and 3) sort the long stripes obtained again
using multi-way mergesort. The first and third steps give the first and third
terms in the sorting complexity in Theorem 2.

We give two algorithms to solve PLE (S,L): PLE-DFS and PLE-BFS.
The final upper bound is the minimum of the two terms, as presented in
Theorem 18.

20



PLE-DFS: PLE-DFS builds a static B-tree T on S, and searches for large
elements in T one by one. This approach is preferred in the case of really
large elements, and it is better to input them fewer times.

We dynamically maintain a smaller B-tree T ′ that contains only border
elements (the two small elements sandwiching each large element in the final
sorted order) and has depth at most logB k. All large elements first travel
down T ′ to locate their stripe. Only those elements for which their stripe
has not yet been discovered need to travel down T . After a new stripe is
discovered in T , it is then added to T ′. The total cost becomes

O

(

L

w
logB k + k logB S +

L

B
+

S

B

)

. (1)

PLE-BFS: Our second algorithm for PLE uses a batch-searching tree with
fanout Θ(M). When a node of the tree is brought into memory, we route all
large elements via the node to the next level. We process the nodes of the
M -tree level by level so all large elements proceed at an equal pace from the
root to leaves. This technique is helpful when large elements are sufficiently
small so that bringing them many times into memory does not hurt while
they benefit from a large fanout.

The analysis is as follows: at each level of M-tree, the algorithm spends
Θ(L/B) I/Os in large-element inputs. Every node of the tree is brought in
at most once, which results in total O(S/B) I/Os in small-element inputs.
The total number of memory transfers for PLE-BFS then becomes

O

(

L

B
logM S +

S

B

)

. (2)

Our final upper bound is the better of the two algorithms:

Theorem 18 (PLE Upper Bound).

PLE (S,L) = O

(

min

{

L

B
logM S +

S

B
,
L

w
logB k + k logB S +

L

B
+

S

B

})

.

Substituting the lower and upper bounds of the batched predecessor prob-
lem (PLE (S,L)) derived in Theorems 3 and 4 into the complexity of sort-
ing in Theorem 2 gives us lower and upper bounds on the sorting problem
Sort (S,L).
Remark 1: One observes that in Theorem 4 (PLE (S,L) lower bound), the
transition between the two terms in the minimum happens at w = B logM .
This is because when large elements are very large, the bound obtained

21



by algorithms that do not input the large elements too often (PLE-DFS)
is smaller than algorithms that input large elements multiple times (e.g.,
PLE-BFS).
Remark 2: The upper and lower bounds on PLE (S,L) are tight for a wide
range of parameters. Moreover, if the first and third terms in the complexity
of sorting (Theorem 2) dominate the complexity of the associated PLE (S,L)
problem, our sorting algorithms are tight.
Remark 3: We would like to draw the reader’s attention to the second
terms in the lower and upper bounds of PLE (S,L):

k

B
log S +

L

wB
log k versus k logB S +

L

w
logB k

The gap appears because while our algorithm (the two-tree PLE-DFS)
works on B-trees and gets a fanout of B per I/O, our lower bound only
forbids fanouts larger than 2B . One may wonder whether an upper bound of
B on the fan-out is possible, as is the case with almost all searching problems
in external memory. Consider the perfectly interleaved case, i.e., n short and
long elements each, and k = n (the “nuts and bolts” version)). We show that
if n is very large, there is an algorithm that achieves a fanout of 2B ! This
algorithm does not exist for small n, but it nevertheless shows that obtaining
an unconditional upper bound of a fanout of B is not possible.

Theorem 19. Consider the problem where k short elements are given sorted,
k large elements each of size w ≥ B are given unsorted, and it is given
that in the final sorted order the elements are perfectly interleaved. There
exists k0 ∈ N such that for all input sizes k > k0, there is an algorithm

that after O
(

k
B logM/B

k
B

)

I/Os in preprocessing outputs the sorted order in

O
(

k
B log k + kw

B )
)

I/Os.

Proof. We will assume that w ≥ logM . If not, then (k log k)/B > (kw/B) logM k,
and we already have an upper bound (the BFS algorithm in Section 6) that
has complexity O((kw/B) logM k) I/Os. Also for simplicity, we will assume
that k and B are powers of two.

Since we are looking for an upper bound of O ((k log k)/B + kw/B), we
need to achieve roughly a fan-out of 2B per I/O. The basic idea is the follow-
ing: assume there are B large elements in memory, and their search spaces
are S1, · · · SB. If an incoming short block has the medians of all the Sis, then
the input of this short block reduces every Si by a factor of 2, and we get
the desired 2B fan-out. Of course, for this to continue, we would need the
appropriate short block (containing the medians of the new search spaces,

22



and so on). Thus, it is intuitively clear how to achieve the upper bound if
one were allowed, say

(k
B

)

preprocessing. This is huge, and the main question
is whether we can reduce it to O ((k log k)/B + kw/B).

To describe our algorithm, we will need a smaller data structure first,
which we explain next.
2B Tree: A 2B tree for α levels on a sorted set A of A unit-sized elements
(denoted as T (A, 2B ,α)) is a tree that performs the following : Assume B
long elements have to find their positions among elements in A, and that
they are in memory. Initially they could be anywhere (so their search space
size is A). T (A, 2B ,α) is a data structure that reduces their search spaces
to size A/(2αB) using α + 1 short block I/Os. We briefly describe how to
build this tree. In the first step, we bring in the root block of the B-tree on
A, achieving a fan-out of B for every long element. Partition the set A :=
{e1, ...eA} into B equally sized (sorted) subsets Ai = {e(iA/B)+1, ...e(i+1)A/B}

(0 ≤ i ≤ B−1). Put the B middle elements ,{e(2j+1)A/2B}
B−1
j=0 , into a block,

which serves as the root of T (A, 2B ,α). Assume that the ith long element
points to Ai (so Ai is its current search space). Upon comparison of this
root block with the B long elements in memory, each long element’s search
space is reduced by a factor of 2, the total fan-out being 2B . In each such
permutation a long element’s search space is now either the left half or the
right half of its original. For each of the 2B permutations, make a block of
B short elements comprising of the middle pivots of the new search spaces
corresponding to the permutation. These are the immediate children of the
root node. We recurse on these nodes now and stop when we have built α
levels of this tree.

Preprocessing Phase

1. Define

j =
log logM/B k/B − logB

B − 1

and g = (log k − j)/j.

Build T (k, 2B , j) on the sorted set of the k short elements.For the
algorithm to work, j = ω(1), which automatically puts a restriction on
k. This is the k0 referred to in the statement of the observation, and
the algorithm works only if k > k0. Also, we will assume that k is
sufficiently large that Bw < log logM/B k.

2. Let {Ui}
g
i=1 be a collection of sets, where Ui is the (sorted) set of all

nodes at depth i.j (so i.j levels from the root) in the binary tree on k

23



short elements. Let Ui be the cardinality of Ui ( Ui = 2ij). For every
Ui do the following :

• Starting from the left, divide the set Ui into groups of size B.
• Let Gir = {v1, ..., vB} be such a group of nodes (1 ≤ r ≤ Ui/B).

Let Air be the union of the search spaces of these nodes (union
of the leaves of their subtrees).

• Build the trees T (Air, 2B , j) for all groups Gir above.

Querying Phase Here we describe how to perform the query search :

1. Divide the set of k large elements into groups of B long elements arbi-
trarily. For every group, bring it in memory and perform the search on
T (k, 2B , j) (sending every large element j levels down the binary tree
on k).

2. If all large elements have been flushed at least ij levels down (where
1 ≤ i ≤ g), for each group Gir in Ui, do the following :

• Find the set of large elements pointing to a node in Gir (in other
words, all large elements which have been found to belong to Air,
which, by definition, is the union of the search spaces of nodes in
Gir). Let this set be Q, with Q long elements. Note that by the
definition of the k-k problem (large and small elements perfectly
interleaved), Q = A, i.e., there are as many large elements point-
ing to a node in Gir as the number of small elements/leaves in
the subtrees rooted at nodes in Gir.

• Divide Q into groups of size B, bring each group into memory
one at a time and flush it through T (Air, 2B , j).

Lemma 20 (Complexity Analysis). The I/O complexity of the above algo-
rithm is O((k log k)/B + kw/B) I/Os.

Proof. Each short block I/O gets a fan-out of 2B , as it halves the search
space of B large elements in memory. The total fan-out required is k!, so
the number of short block I/Os is O((k log k)/B.

The large elements are swiped g times (once after every j levels). Each
time costs kw/B I/Os, requiring a total of O

(

kw log k
log logM/B k

)

I/Os (by

definition of g), which is O(kw/B) since k is sufficiently big to guarantee
Bw < log logM/B k.

24



Preprocessing Analysis

Lemma 21. Starting with a binary tree on A, T (A, 2B ,α) can be built in
O(B.2αB) I/Os.

Proof. There are O(2αB) blocks in T (A, 2B ,α). Each block takes a maximum
of B I/Os, since all the levels of the binary tree are already built and one
only needs to go one level down the binary tree in order to bring the middle
pivot.

The number of trees of type T (A, 2B , j) built by our algorithm can be
bounded by the last level. There are (k/B)/2j nodes in the last level on
which this data structure is built. Thus the total cost is bounded by

(B.2jB)
k

2jB
= k2j(B−1) =

k

B
logM/B

k

B
,

where the last inequality follows by the definition of j =
log logM/B k/B−logB

B−1 .
This finishes the proof of the preprocessing claim.

7 Conclusion and Open Problems

We derived upper and lower bounds on sorting and batched predecessor in
the RAM and DAM models, when comparison or I/O costs depend on the
length of the items being compared. In many settings, we show that the
optimal sorting algorithm involves the optimal batched predecessor problem
as a subroutine, and develop algorithms for the batched predecessor problem.

While our results are for the two-size setting, we would like to point
out that our algorithms generalize to the multiple-sizes setting. However,
generalizing our lower bound techniques to the multiple-size setting requires
more ideas.

References

[1] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of
sorting and related problems. Commun. ACM, 31:1116–1127, Septem-
ber 1988.

25



[2] Noga Alon, Manuel Blum, Amos Fiat, Sampath Kannan, Moni Naor,
and Rafail Ostrovsky. Matching nuts and bolts. In Proc. SODA, pages
690–696, 1994.

[3] Stanislav Angelov, Keshav Kunal, and Andrew McGregor. Sorting and
selection with random costs. In Latin American Symposium on Theo-
retical Informatics, pages 48–59. Springer, 2008.

[4] Lars Arge. The buffer tree: A technique for designing batched external
data structures. Algorithmica, 37(1):1–24, 2003.

[5] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter.
On sorting strings in external memory (extended abstract). In Proc.
STOC, pages 540–548, 1997.

[6] Lars Arge, Mikael Knudsen, and Kirsten Larsen. A general lower bound
on the I/O-complexity of comparison-based algorithms. In Proc. WADS,
pages 83–94, 1993.

[7] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and
Jeffrey Scott Vitter. Theory and practice of I/O-efficient algorithms for
multidimensional batched searching problems. In Proc. SODA, 1998.

[8] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Dzejla
Medjedovic, Pablo Montes, and Meng-Tsung Tsai. The batched pre-
decessor problem in external memory. In Proc. ESA, pages 112–124,
2014.

[9] Michael A. Bender, Haodong Hu, and Bradley C. Kuszmaul. Perfor-
mance guarantees for B-trees with different-sized atomic keys. In Proc.
PODS, pages 305–316, 2010.

[10] Berkeley DB C API Reference. set_bt_compare.
http://www.berkeleydb.com/.

[11] Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon Kleinberg,
Prabhakar Raghavan, and Amit Sahai. Query strategies for priced in-
formation. In Proc. STOC, pages 582–591, 2000.

[12] Ferdinando Cicalese and Eduardo Sany Laber. A new strategy for query-
ing priced information. In Proc. STOC, pages 674–683, 2005.

[13] George Diehr and Bruce Faaland. Optimal pagination of B-trees with
variable-length items. Commun. ACM, 27(3):241–247, Mar 1984.

26

set_bt_compare
http://www.berkeleydb.com/


[14] Amr Elmasry. Distribution-sensitive set multi-partitioning. In 1st In-
ternational Conference on the Analysis of Algorithms, 2005.

[15] Jeff Erickson. Lower bounds for external algebraic decision trees. In
Proc. SODA, pages 755–761, 2005.

[16] Anupam Gupta and Amit Kumar. Sorting and selection with struc-
tured costs. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pages 416–425. IEEE, 2001.

[17] L. L. Larmore and D. S. Hirschberg. Efficient optimal pagination of
scrolls. Commun. ACM, 28(8):854–856, August 1985.

[18] Edward M. McCreight. Pagination of B*-trees with variable-length
records. Commun. ACM, 20(9):670–674, Sep 1977.

[19] J. Ian Munro and Philip M. Spira. Sorting and searching in multisets.
SIAM J. Comput., 5(1):1–8, 1976.

[20] Anatoly P. Pinchuk and Konstantin V. Shvachko. Maintaining dictio-
naries: Space-saving modifications of b-trees. In Database Theory ICDT
’92, volume 646, pages 421–435. Springer Berlin Heidelberg, 1992.

[21] The GNU C Library. qsort. http://www.gnu.org/software/libc/manual/.

27

http://www.gnu.org/software/libc/manual/

	1 Introduction
	2 Warmup: the RAM version
	3 Sorting and Batched Predecessor in External Memory with Size-Priced Information
	4 Main Challenges in the Batched Predecessor Problem
	5 Complexity of the Batched Predecessor problem: Lower Bounds
	5.1 Analysis
	5.2 Putting It All Together: getting lower bounds for S-k, k- and k-k
	5.3 Generalization of lower bounds to the case when w1<w2<B

	6 Upper bounds on Sorting and the Batched Predecessor Problem
	7 Conclusion and Open Problems

