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Abstract: Connecting and comparing across student strategies has been
shown to be productive for students in the elementary and secondary class-
rooms. We have recently been working on a project converting such practices
from K-12 level to the undergraduate classroom. In this paper, we share a par-
ticular instantiation of this practice in an abstract algebra setting. Students
compare across two common proof approaches to showing that the Abelian
property is preserved by isomorphism. We share a complete sample lesson
where students make sense of the theorem, these proofs, then leverage the
difference between them in order to modify both proofs and mathematical
statements. We conclude with the students’ reflections on the activities, and

share our learnings from adapting best practices from K-12 to this new setting.
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COMPARING STUDENT PROOFS TO
EXPLORE A STRUCTURAL PROPERTY
IN ABSTRACT ALGEBRA

Abstract: Connecting and comparing across student strategies has been
shown to be productive for students in elementary and secondary classrooms.
We have recently been working on a project converting such practices from the
K-12 level to the undergraduate classroom. In this paper, we share a particular
instantiation of this practice in an abstract algebra setting. Students compare
across two common proof approaches to showing that the Abelian property is
preserved by isomorphism. We share a complete sample lesson where students
make sense of the theorem and the two proof approaches, then leverage the
differences between them in order to modify both proofs and mathematical
statements. We conclude with the students’ reflections on the activities, and

share our learnings from adapting best practices from K-12 to this new setting.

Keywords: best practices in instruction, abstract algebra, proof presen-

tations

1 INTRODUCTION

Recently, we have been teaching abstract algebra using an inquiry-
oriented approach [5]. One of the struggles in implementing a more
student-centered curriculum has been orchestrating discussions around
proof in ways that are productive for students while still centering their
ideas. In order to address this struggle, we have been experimenting
with incorporating best practices for orchestrating discussion from the

elementary and secondary level (e.g., [8]).
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The model of five practices for discussion facilitation is a compilation
of an expansive research base and was created to aid teachers who are
new to the more student-centered and inquiry-oriented approaches to
teaching [8]. The five practices are: (a.) anticipating student responses
to mathematical tasks, (b.) monitoring students’ responses, (c.) select-
ing particular students to present their responses, (d.) purposefully se-
quencing the student responses that will be displayed, and (e.) helping
the class make mathematical connections between different responses.
Furthermore, such practices can be enriched by the intentional use of
public records ([7]) and integration of visual representations ([3]).We
leveraged these K-12 best practices and related literature to design tasks
to help college instructors orchestrate discussions around proving.

In this article, we share examples from implementing one focal task,
related to a common theorem in an introductory abstract algebra class,
that has been developed with a focus on connecting and comparing
across student strategies (e.g., [4]). By having students move beyond
just sharing their strategies, to connecting and comparing, they are po-
sitioned to engage with authentic mathematical activities such as ana-
lyzing and validating proofs, modifying statements, and using diagrams
and examples to explore statements and strategies. In the next sections,
we will share the task, examples from our most recent implementation
of the task, feedback from students, and conclude with a reflection on

components of instructor facilitation.

1.1 The Task

Theorem 1 Suppose G and H are isomorphic groups. Then if G is
Abelian, H is Abelian.

The focal task was developed around the proof of the standard struc-
tural property in the theorem above. As a reminder, a group is a
nonempty set with a binary operation (often notated as o or x) such that
the group contains an identity, inverses, is closed under the operation,
and the operation is associative. An abelian group is a group whose op-

eration is commutative. A group homomorphism is a function between
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Theorem. Suppose G and H are isomorphic groups. Then if G is abelian, H is abelian.
Proof:
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Figure 1. G-First Approach.

two groups such that the group operation is preserved. Two groups are
isomorphic if there exists a homomorphism between the groups that is

one-to-one and onto.

Our motivations to develop this particular task are twofold: (1) prov-
ing this type of statement is ubiquitous to introductory abstract algebra
curricula yet prior research has shown that students often are unable
to successfully construct a proof of the claim and (2) there are multiple
approaches to setting up this proof, one often more productive than the
other [1], which provides the opportunity for students to compare and

contrast proof approaches.

In fact, in some of our prior research, we have found that students
often produce the proof found in Figure 1. The reader likely notices
that in the G-first approach, the arbitrary elements are selected from
G rather than H even though the goal is to make an argument about
H. This is unsurprising as students frequently begin with assumptions,
apply some known information, and arrive at conclusions. However, this
proof ultimately makes an argument about the image of the elements
commuting without leveraging surjectivity to argue that all elements
in H are necessarily images of elements in G. The thoughtful reader

may speculate that this is just an omission of a detail; however, we
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Figure 2. H-First Approach.

have established that students produced identical proofs for the false
statement without the necessary surjective requirement [1]. This reflects
that this error was more substantial and that students could benefit from

the error being explicitly addressed in instruction.

Figure 2 presents a contrasting approach (which we call the H-first
approach) where the student began with arbitrary elements in H, used
surjectivity, and arrived at the conclusion that these arbitrary elements

commute.

We note that the bones of the argument are similar in both ap-
proaches. In fact, we have found that the majority of students believe
both proofs are valid. This task design entails having both arguments
available providing grounds for making the comparisons, noticing what is
the same and different, and ultimately making sense of the consequences

of these differences.
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1.2 The Setting

The task was implemented in a lab setting with four undergraduate
mathematics majors who had previously taken a course in elementary
group theory. Our goal in implementing the task in the lab setting was
to pilot and subsequently refine the task in preparation for use in a
classroom setting. The iteration of this task discussed in the following
sections was the second group of students with which this task was

implemented.

1.3 Outline of Lesson Components

While the implementation data presented in this paper was conducted
in a lab setting, we have since piloted this task in a classroom setting,

and share the approximate timings in our 80-minute classroom session.

1. Students familiarize themselves with the theorem (~15 min)

(a) Refresh on terms
(b) Determine givens and conclusions

(c) Anticipate (or share) a proof approach
2. Students produce/make sense of the proof approaches (~25 min)

(a) Students/group of students presents a G-first approach
(b) Listening students share what makes sense and what they have
a questions about
(¢) Students/group of students presents an H-first approach
(d) Listening students share what makes sense and what they have
a questions about
3. Students compare proof approaches (~25 min)

4. Students analyze and modify proofs and statements to arrive at

valid statement and proof pairings (~15 min)

Regarding (1c), for the lab setting, students anticipated a proof ap-
proach by thinking about how they would prove the theorem. We then

provided student generated proofs for them to consider in part (2). For



6 Authors

an in class implementation, an instructor may have students prepare
proofs of the theorem as part of a homework activity prior to class and
then have students share their approaches in small groups or pairs.
This task was designed to be added to existing abstract algebra
course curricula, whether that curriculum is traditionally lecture-based
or inquiry-oriented. Although this structure and the task were developed
in the setting of abstract algebra, we note that the overall structure of the
task may be suitably adapted for use with other theorems/statements
in various proof-based undergraduate mathematical content domains,

especially those that offer multiple proving approaches.

2 ILLUSTRATION OF IMPLEMENTING THE TASK

2.1 Familiarizing with Theorem and Terms

The first part of the task served to provide students access to the theorem
and anticipate student approaches. Students were given private reason-
ing time to think about the terminology in the proof, and to sketch out
how you might go about proving it. At this point, we explicitly stated we
were not wanting them to actually complete the proof. After they had
some time to digest the theorem, we began with the prompt: So what
are the types of things that we think about when we’re going to prove
something?

The students responded with the givens and what we want to prove.
We created a public record on the board notating what the students
suggested fall into each of these categories. (See Figure 3.)

We also used this time to unpack various vocabulary asking stu-
dents to explicate what the words meant in their “given” and “to prove”
statements (e.g., What does it mean for G and H to be isomorphic?). We
similarly kept a record of each of the definitions of Abelian and isomor-
phic (including one-to-one and onto) on the board. Generally, students
were able to remember the definitions. However, later in the task we re-
turn to meaning making around vocabulary connected to functions (see
Appendix A).
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Figure 3. Public Record on the Whiteboard of Student Identified “Givens”
and “Want to prove”. (Recreated for clarity.)

2.2 Presenting Approaches to the Proof

Because this was done in a lab setting, we provided the two pairs of
students with the two proof approaches found in Figures 1 and 2. Based
on prior research, we knew these were the two most common approaches.
When implementing in a full class setting, an instructor may want to
intentionally look for students taking these two approaches to share their

work. The students were prompted:

Presenting Group: Be prepared to explain this proof approach
to your classmates. This explanation should include a function

diagram that connects to the proof approaches.

Listening Group: What is one thing about this proof approach that
makes sense to you? What is something that you have a question

about?

2.2.1 Presentation of the G-First Approach

When implementing this task, we select the group presenting the G-first
approach first as this is the most common approach students take. The

partners first had time to make sense of their approach, then went to
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the board to explain the general structure of the proof. This included a
focus on the use of the homomorphism property and Abelian property

to warrant the claims. See Figure 4.
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Figure 4. Students’ Presentation of the Argument in G-First Proof

The students then created a function diagram explaining:

So, this is group G, and we have these two elements in G. And
then this maps ... to the group H, which will contain, thank you,
¢(a) *¢(b), which is equal to ¢(b) *x ¢(a). And those two elements

will map to these two elements in H. (See Figure 5.)

The listening pair of students explained that the approach made
sense and revoiced how the homomorphism was leveraged in the ar-
gument. One student asked about the role of one-to-one in the argu-
ment. A presenting student explained that “we were given that they
were isomorphic” with their partner adding that “our proof was using
the homomorphism.” We took this opportunity to ask, “the one-to-one
and onto piece wasn’t part of the approach that you were looking at?”
with the students agreeing, “[T]he only thing that we had to use was

homomorphism and abelian.”
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Figure 5. Students’ Function Diagram Representation.

We also took this opportunity to prompt the students to clarify their

“a and b live?” The presenting group

function diagram by asking where
argued for keeping ¢ in the domain group. We gave all the students time
to think about modifying the function diagram with their partners. After
some negotiation, they arrived at the two function diagrams in Figure

6.

2.2.2 Presentation of the H-First Approach

The students presented the second argument in two parts. First they ex-
plained the definitions of one-to-one and onto using a function diagram.
They continued to outline the proof (see Figure 7.) They then leveraged
a second function diagram to explain where the various elements were:
“So, you have ¢ defined by G mapping from the dot to the star. So, ¢
star d equals ¢(a) star ¢(b).” (see Figure 8.)

The focus of questions for this proof was about notation and opera-

tors. One student remarked:
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Figure 6. Students’ Modified Function Diagram Representation.
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Figure 7. Students’ Presentation of the Argument in the H-first Proof.
(Recreated for clarity.)

When we were talking about the operations, I thought it was re-
ally well-done, writing down the operations, what you were using,
although this equation at the bottom ... you all did switch back

and forth of operation, or dot, or star, your saying of it.

This again led to a conversation about operation and the domain in
which particular elements lied. First, one of the presenters went through
each expression to explain when the operation was from G versus when
it was from H. The student who voiced the concern suggested it might

have “been helpful to label” when elements were in G versus when they
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were in H. A lot of cross-talk erupted as the students continued to
grapple with when the operation was from which group, until reaching
a consensus after a clarification that the elements a and b are in G, but
then a whole expression was in H. In our experience, this conversation
was important as students often struggle to make sense of what exactly

the objects are in proofs.

2.3 Comparing Across Approaches

The second part of the task was the focal piece: comparing and con-
necting across the two proof approaches to provide a tool for analysis.
The students were prompted to spend time with their partners thinking
about what’s the same and what’s different about these approaches.
After the students had an opportunity to talk with their partners,
they were asked to share out to the others to motivate discussion with
the whole group. First, the students pointed out the common warrants

across the proofs:

Student A: They both use homomorphism and abelian properties.
[Instructor revoices and scribes on board ]

Student B: To prove the main portion of the proofs.

Next, the students picked up on the different ways that the elements
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were labelled as they were introduced in the proofs (“They both had
a unique way of naming elements in H after they’re mapped ... like
y’all’s came up with a whole new name, while ours we kept in terms of
mapping.”). This observation can give students an opportunity to think
about and make sense of the impact of the decision to start in G or start
in H. After a student mentioned going back-and-forth in the diagrams,
we used this moment to leverage the diagram to further articulate this

difference.

Instructor: Can I ask in this side of the diagram, because we
didn’t talk too much about your diagram, did we start with ele-
ments in G or start with elements in H?

Student B: We started in H...

Student C: Yeah, they started ... they let ¢,d be in H, and then
they said, “There exists a, and b in G.”

The students easily agreed there was a difference, but at this point,
as one student stated “I don’t think that matters.” The students also no-
ticed some other differences including that the H-first approach brought

up one-to-one and onto. (See Figure 9.)
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Figure 9. Whiteboard Record of Similarities and Differences. (Recreated for
clarity.)
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2.4 Analysis and Modification
2.4.1 Using the Proofs to Modify the Statement

After comparing the proofs, we asked students to think about modifying
the statement. To motivate modifications, we asked, So, the big question
is, did we actually need all of the assumptions in this statement?, further
prompting the students in their small group to [Clome up with a list of
which ones are actually needed to prove this statement. After some de-
bate, the students decided in their small group that the homomorphism

property was the needed part of isomorphism.

Student B: You would need everything for isomorphic, because
you need to know that it is isomorphic.

Student D: I mean, couldn’t we prove it with homomorphism?
Student B: If you say G and H are homo and if you-

Student A: But if they used-

Student C: So then you wouldn’t-

Student A: ... one-on-one and onto over there-

Student B: But your [crosstalk]-

Student D: Our proof worked.

Student B: All you need to know is that G and H are homomor-
phic.

After their discussion started to die down, we asked So, if you wanted
to rewrite the statement, so it only has the assumptions we need it to
have, what would be a different version of that statement? The students
said to keep abelian and to change “isomorphic” to “homomorphic.”
After a brief discussion of terminology, we arrived at the version of the

statement in Figure 10.

2.4.2 Using Examples to Explore Statement Modification

As anticipated, the students produced a reasonable but false conjectured
statement. We prompted them to test out their modified statement by
testing examples to see if they could find a counterexample. The students

began by asking what is lost (e.g, “Since we lost isomorphism, do we lose
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Figure 10. Whiteboard Record of Modified Statement. (Recreated for clar-

ity.)

one-to-one, onto, well-defined?”). We clarified that a homomorphism is
still a well-defined function.

We have found that during our implementations of this task, students
struggled with where to begin to test examples and potentially find
a counterexample. To scaffold their attempts, we provided targeted
questions: What would a counterexample to this statement even look
like? ... what would be true about G, what would be true about H,
and what would be true about ¢ in this counterexample? From here the
students were able to identify they wanted a group G that was Abelian,
¢ to be a homomorphism and H to be non-Abelian. The students then
worked with their partners and began suggesting potential domain and

co-domain groups. (See Figure 11).
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Figure 11. Whiteboard Record of Suggested Counterexamples. (Recreated
for clarity.)

As a group, we decided to explore the example of {—1, 1} under mul-
tiplication for G, and Dg in the role of H. The next challenge was to

create homomorphisms between these two groups. We used a function
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diagram to support and notate their suggestions (see Figure 12). The
diagram served a crucial role as students tend to need additional support
to create the homomorphism. This is unsurprising as even at this level
students often desire explicit-symbolic rules for functions [2]. We took
this moment to emphasize finding “the easiest” map. We also reminded
students that we know homomorphisms preserve identity. The first sug-
gested map was to map 1 to the identity in the dihedral group, and —1

to another element (s, representing a “flip”).

D]\ne.ém\

$-\\% Dinedcah 5 =8¢
D% & 8 dt\it\ﬁ&

Figure 12. Sketch of Counterexample. (Recreated for clarity.)

The counterexample made it clear it is insufficient that ¢ is merely a
homomorphism. We asked the students What other things do we need to
be able to make this argument? They recognized that “onto” was needed,
but after a great deal of debate remained unsure whether “one-to-one”

was important with several students feeling “You need both of them.”

2.4.3 Using Proofs to Explore Statement Modification

At this point, we redirected them to using the proof attempts as a tool
for analysis by prompting students to identify where the one-to-one and
onto assumptions would be needed, by asking Where in the argument
is onto and one-to-one used? The students easily recognized the role of
the onto assumption pointing out the line “So, Ja,b such that ¢(a) = ¢

and ¢(b) = d” where onto is “utilize[d] ..to create our images.”
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However, the students struggled to identify a portion of the proof
that used one-to-one ultimately making statements in their group like

the following:

I think that’s the biggest thing, it’s not really used in the proof
itself, but the argument part of it is just stated.

We used this as an opportunity to prompt students to segment the proof
in order to identify which parts were setting up the assumptions and

which was part of the actual proof argument. (See Figure 13.)
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Figure 13. One Student’s Segmented Proof.

After continued discussion, the students determined that “onto” was
used in the argument, but one-to-one was not. At this point, we endorsed
the fact that one-to-one was not needed to extinguish lingering doubt.
The students then updated their modified statement to include an “onto

homomorphism.”

2.4.4 Patching the Proof

After determining that the onto assumption was needed and the one-

to-one assumption was not, the last part of our task was to return to
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the proof where the use of onto was not explicit and figure out if there
was a way to fix the proof so that the “onto” warrant is leveraged. The

partners started talking back-and-forth in analyzing the G-first proof:

Student C: So, they let a,b € G.

Student B: They just let the [inaudible]?

Student C: So, how do you know that ¢(a) is mapping? ...
Student B: To ¢(a)?

Student C: To ¢(a)? Because it’s onto, but they didn’t say that.

A student from the other partner team similarly asked, “So, then,
just a final statement saying ... ¢(a)... where the pre-image of ¢(a) maps
to a? Because it’s onto? Because then that’s the only thing we need is
saying that ¢(a) is actually- was mapped from something” identifying
the crux of the issue.

We had conjectured that the students would alter the last line of
the proof to include surjectivity, but during the discussion the students
decided that would be “convoluted.” Rather, they ultimately suggested
to modify the G-first approach to begin with ¢ and d in H as in the
second approach.

We then asked, Thinking back to what our statement is, that we’re
trying to prove, why is [it] helpful to introduce a “c”, something from H,
before introducing something from G? Student C explained in response,
“Because then we can show for certain that two elements, arbitrary two

”

elements, are abelian [commute].” To verify that all the students saw
this realization, we asked them to sketch a function diagram to highlight
where the concern is about starting with arbitrary elements of G. The
students offered the diagram in Figure 14. The diagram does indeed
highlight that without the onto assumption, simply considering the im-
ages of elements of G will not necessarily include all possible elements
of H. (We note that while talking through the diagram, Student D rec-
ognized that the element ¢(b) in the group H is not the value of the
function ¢ at b.)

We used this realization and recognition to emphasize the importance

of using the conclusion of the statement to structure a proof, similar to
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Figure 14. One Student’s Function Diagram Demonstrating the Necessity of

Surjectivity.

the concept of proof framework by [6]. This was a major breakthrough
point and illustrated that the students had arrived at the importance
of starting with arbitrary elements from H, a structuring choice that
we found uncommon amongst abstract algebra students in our prior

research [1].

3 Student Impressions

After completing the task, we prompted the students to reflect on the
different activities that they engaged with and how they related to them
and their own thinking about proof. We gave them the following prompt:
Did any of these activities that we did make you think about how you,

yourself, work with proofs?
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The students responded positively explaining a number of aspects
they appreciated. One student noted that they had not previously fo-

cused on what needs to actually be proven, explaining:

I always follow definitions, so if it was last semester when I was
proving this was abelian, I would’ve proved it was one-to-one, I
would’ve proved it was onto, I would’ve proved it was homomor-
phism, then would’ve gone to abelian. But then now, you can

skip some stuff.

She noted that proving this way would be twice as fast.
Another student focused on statement modification and thinking
about how this type of activity was similar to their research experiences

in mathematics:

That’s what I like about research, is trying to remove strengths.
Is this stronger? Can I like in topology thats all we talked about

was counterexamples and ... do I really need to use all I'm given?
Another student commented on the metacognition involved:

I don’t think about it near as openly. I'm like, “Let me just prove
this real quick.” I don’t think about as far as “why does it do
that?” I don’t ask myself, “Why does it work? What could we

tune, what could make it...”

In general, these students focused on aspects of writing proofs that
we were aiming to highlight: the importance of analyzing the statement
to be proven, using proofs to modify statements, and exploring the im-
portance of making sense of the “why” behind the proof. These student
impressions highlight the potential value of this teaching activity. By
engaging the students with the material, encouraging them to discuss
the relevant terms, compare proof approaches, and analyze/modify the
proofs; we see students engaging in more authentic mathematical activ-
ities than in a traditional lecture-based classroom. Not only do we see
evidence of students engaging in these activities, but also evidence that

they are aware of and valued these activities.
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4 Facilitation Reflection

As facilitators of this activity, we found a couple aspects of best practices
particularly fruitful. First, the role of public records was huge in the
implementation of this task. The students frequently referenced back to
our four main records: givens and what we want to prove, the similarities
and differences, the outlines of the proofs, and the function diagrams.
By leaving these available to students, they could continue to reason
from them.

We then found the choice to select and sequence student ideas pow-
erful. This is an approach to orchestrating classes quite prevalent in
the K-12 literature (e.g., [8]). We purposefully had students explore
two approaches to the proof with a lot of similarities (same set of war-
rants), but fundamental differences (starting in G versus H, explicitly
using the onto assumption). Students could focus on comparing across
strategies in ways that make the difference more apparent. This led to
productive discussions around the necessity of the one-to-one and onto
assumptions and the difference in proof and statement alignment across
the two student approaches. As such, we see this task as supporting
the K-12 literature results: it’s productive for students to compare and
contrast strategies.

Finally we note the crucial role of visual representations (function
diagrams) and example generation. It was through these visuals that
students developed examples and counterexamples, and made connec-
tions from the context of the proof to their understanding of functions.
It also provided a common ground that the instructor and students could
discuss key elements of the proof such as the role of the onto assumption

and how elements were selected.
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APPENDIX: A NOTE ON FUNCTIONS

In all implementations of this task, at some point the definition of func-
tion served a crucial role. This occurred in two ways: attending to
everywhere-defined and attending to well-defined. Implementing a task
like this provides grounds for a just-in-time need to talk about what
properties functions have. (Function properties came up at different
times with different students.) Here is some sample dialogue from the
implementation in this paper:

On everywhere-defined. The notion that a function is defined
everywhere on its domain came up early in the implementation. As the
first group presented the G-first approach, it became clear they were
unsure what guarantees that the elements a and b can be mapped to

their image in H. We removed the isomorphism requirement and just
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asked if ¢ is a function (not necessarily injective or surjective) whether
we can map a to ¢(a) and b to ¢(b). The students doubted this was the

case. One student voiced:

My only concern is because it matters what kind of function we’re

dealing with in this instance. For instance, % ... if say, G worked
for integers, and the function is % well zero doesn’t exist, so we
can’t always say for certain, “a and b will just map to whatever

that is.”

This provided us the opportunity to discuss a function being defined
everywhere on its domain.

On well-defined. Later in the activity, when the students were
attempting to identify where one-to-one was leveraged in the proof, the
notion of well-defined was explored. In particular, the students often
conflated the properties of being one-to-one and well-defined. The stu-
dents conjectured that ab = ba implying ¢(ab) = ¢(ba) was “the only
place where one-to-one is.”

We took this time to address that this property was quite similar
to one-to-one, but in a way it was “backwards.” Another student then
suggested this was the “well-defined” property of a function. This led to
a brief digression into what well-defined means and how this property is

different than one-to-one.
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