Provenance metadata for statistical data: An introduction to Structured Data
Transformation Language (SDTL)

George Alter?, Darrell Donakowski?, Jack Gager?, Pascal Heus?, Carson Hunter?, Sanda lonescu?, Jeremy
Iverson?, H V Jagadish?, Carl Lagoze?, Jared Lyle?!, Alexander Mueller?, Sigbjorn Revheim?, Matthew A.
Richardson?, Ornulf Risnes?, Karunakara Seelam?, Dan Smith3, Tom Smith®, Jie Song?, Yashas Jaydeep
Vaidya?, Ole Voldsater*

Abstract

Structured Data Transformation Language (SDTL) provides structured, machine actionable
representations of data transformation commands found in statistical analysis software. The
Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an
automated system that captures provenance metadata from data transformation scripts and adds
variable derivations to standard metadata files. SDTL also has potential for auditing scripts and for
translating scripts between languages. SDTL is expressed in a set of JSON schemas, which are machine
actionable and easily serialized to other formats. Statistical software languages have a number of
special features that have been carried into SDTL. We explain how SDTL handles differences among
statistical languages and complex operations, such as merging files and reshaping data tables from
“wide” to “long”.

Keywords
Metadata, provenance, statistical data

Acknowledgment
Acknowledgement: The Continuous Capture of Metadata for Statistical Data Project is funded by National
Science Foundation grant ACI-1640575.

1/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Introduction

Structured Data Transformation Language (SDTL) is a language for representing data transformation
commands found in statistical analysis and data management software. SDTL describes changes to a
dataset at both the file- and variable-level. Since SDTL is structured and machine actionable, it can be
queried to produce histories of each variable in a dataset and to answer questions like:

o Which original variables were used to construct this derived variable?
e Which commands were used in the construction of this derived variable?
e Which derived variables were affected by this original variable?

SDTL can be translated into natural language, so that researchers do not need to understand the specific
software used to process the data. SDTL can also be incorporated into versions of the PROV model that

have been extended to describe provenance at the variable- and command-level, like ProvONE (Cuevas-
Vicenttin et al., 2016).

SDTL extends the capabilities of tools used by data repositories and data producers to document and
describe data. Data repositories specializing in the social sciences maintain documentation in the Data
Documentation Initiative (DDI) metadata standard (Vardigan, 2008). Online data catalogs draw upon
content stored in DDI XML, and codebooks are translated from XML into PDF or other formats. DDI
includes features for recording data provenance, but there was no systematic way to describe data
provenance before SDTL. Variable histories expressed in SDTL can be formatted, searched, and queried.
Data users who download DDI XML from repositories can use automated tools to create new codebooks
reflecting their changes to the data. By building SDTL into their workflows, data producers can use SDTL
to create documentation and to audit the command scripts that manage their data. In the future, SDTL
may also be used to translate command scripts from one statistical analysis package to another.

SDTL was developed to work with five leading statistical packages: SPSS, Stata, SAS, R, and Python (IBM
Corp., 2019; Python Software Foundation, 2019; R Core Team, 2013; SAS Institute, 2015; StataCorp.,
2020). The Continuous Capture of Metadata for Statistical Data (C2Metadata) Project, which created
SDTL, set out to automate the creation of variable-level provenance metadata by translating scripts used
by statistical analysis software into a format compatible with metadata standards like the Data
Documentation Initiative (DDI) (Vardigan, 2008) and Ecological Metadata Language (EML) (E.H. Fegraus,
2005). (See Alter et al., 2020.) Our goal was to create a history for each variable showing its derivation
from earlier variables and all of the ways that it has been modified. SDTL serves as an intermediate
language that represents other languages in a more convenient format. Since SDTL is expressed in a
structured format (e.g., JSON) with tags and delimiters, its syntax is obvious and unambiguous, and SDTL
is easily read by computer programs without elaborate parsing algorithms. SDTL may be used to
translate between statistical languages, but it is designed for documentation and description and not as
an operational language.

The DDI Alliance, which maintains international standards for metadata, has adopted SDTL as one of its
suite of products (DDI Alliance, 2020). DDI metadata is widely used by data repositories serving the
social sciences for data discovery tools, catalogs, and codebooks. SDTL provenance descriptions can be

2/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

inserted into existing data derivation fields in the DDI metadata standards. The DDI Alliance will assure
that the SDTL is maintained and expanded in an orderly way.

We provide here an introduction to SDTL focusing on important features of the source languages that it
can represent and ways that SDTL handles differences among them. A User Guide and detailed
descriptions of SDTL commands are available at C2Metadata Project (2020b).

Statistical Packages as Data Processing Platforms

SDTL inherits a number of assumptions about how data are transformed from the languages used in
statistical analysis packages, and it is helpful to understand how those programs work. Statistical
packages differ in important ways from two other tools often used for managing data, spreadsheets and
relational databases, such as SQL. All three tools encourage users to think of data as rectangular
matrices, “tables,” but they each have different capabilities and limitations.

1. Rows and Columns
In statistical packages, each row is an individual/entity or an observation of an individual/entity, and
each column is a variable describing an attribute of an individual/entity. Asin a relational
database, columns are named and are referenced by their variable names. Statistical packages
typically do not allow users to put more than one type of information in each column as a
spreadsheet does.

2. Metadata
Statistical packages attach more metadata to each variable than either a spreadsheet or a relational
database, even if it is less metadata than most researchers need. Users control the data type
(numeric, string, date, etc.) and display format of every variable. Columns can have both variable
and value labels that appear on output. A variable label is a brief description of its content. Value
labels are text descriptions of the categories in variables. Statistical packages encourage the use of
integer codes for categorical information, but they will display the corresponding value label in
output tables. For example, a variable may be coded as 1 for ages 0 to 15, 2 for ages 15 to 65, and 3
for ages 65 and above, but tables can show these categories with labels “Children,” “Working ages,”
and “Older ages.”

3. Variable lists and variable ranges
One of the most common features of statistics software packages is the use of “variable lists” and
“variable ranges” to simplify the application of data transformation commands to multiple variables.
For example, common value labels (e.g. 1="Yes”, 2="No”, 3="NA”) may be applied to hundreds of
variables with a single command. Variable ranges refer to a group of adjacent columns by
identifying the first and last variable in the range. For example, “VARO1 TO VARO4"” in SPSS or
“VARO1-VARO4” in Stata or SAS will apply a command to VARO1, VAR0O2, VARO3, and VARO4,
assuming that the columns appear in that order in the data. A variable list may include both
individual variables and variable ranges, such as “VARO1 VARO5 VAR11-VAR32 VAR51-VAR72".

3/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

4. Order of rows and columns matters
Commands in statistical packages can take advantage of the order of columns and rows. The
meaning of a variable range, such as “Age TO Income” depends upon the order of the columns.
Statistical packages also process rows in sequential order, which is often used in data processing
scripts. Commands that merge files or aggregate within groups may only operate on data sorted in
advance. Statistical packages can also use values from earlier or later rows in computing variables.
For example, if the data consist of annual observations of a country or region, the SPSS LAG function
can be used to access the value in the previous year. In Stata, a command can test whether the
current row applies to the same person or place as the preceding row by using syntax like “if
districtID == districtID[_n-1]". This is not possible in SQL relational databases, which do not permit
operations that depend on the sequential ordering of rows, but it is possible in spreadsheets, which
allow both absolute and relative cell references.

SDTL includes a command (SortCases) to change the order of rows, but it does not currently support
a command to change the order of columns. When we tested commands that sort columns in SPSS
and Stata, we discovered that they apply different sort sequences to variable names. Stata is case
sensitive and sorts variable names in ASCIl order. SPSS is not case sensitive for variable names, but
it sorts names beginning with lowercase before uppercase of the same letter. For example,

SPSS sort order: aa8 aA9 Aa7 AAG6 id xx3 xX4 Xx2 XX1 XX5
Stata sort order: AA6 Aa7 XX1 XX5 Xx2 aA9 aa8 id xX4 xx3

5. Missing values
The value of a variable may not be available for all rows, and all statistical packages have features
for handling these “missing values.” Statistical calculations may exclude cases with missing values
on any variable, or they may adjust for missing values in some way. Some statistical packages also
allow users to identify more than one type of missing value. In survey research some questions do
not apply to all respondents (e.g. “How many years have you been married?”), and respondents may
respond “don’t know” or simply refuse to answer. Researchers need to distinguish between “does
not apply”, “don’t know”, and “no response”.

There are also important differences among statistical packages in the ways that missing values in
logical expressions are processed. SPSS and R use three-valued logic in which a logical expression
may be true, false or missing. SAS and Stata use two-valued logic (true or false) by processing
missing values as either negative or positive infinity. Thus, if the value of varX is missing, the logical
expression “varX > 0” will be false in SAS but true in Stata.

6. Dataframes and files
When a statistical package is in operation, data may exist only in computer memory or in temporary
storage space. A data transformation script may create any number of temporary instances of the
data and save only a few of them for later use. The C*Metadata Project adopted the convention of

4/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

using “dataframe” for working versions of data stored in memory or temporary storage to
distinguish them from data in files that will persist after the transformation script is completed.

Elements of SDTL

The elements of SDTL, called “types,” are divided into groups as shown in Figure 1. Commands are
found in CommandBase, which is divided into two parts: TransformBase for commands that change data
or metadata and InformBase for types that generate messages or comments. ExpressionBase consists of
elements used to construct numeric, text, or logical expressions within commands. Types that describe
variables are in VariableReferenceBase, which is a sub-category of ExpressionBase. The last group in
Figure 1, “types for complex properties,” is used when a property of a type has more than one sub-
property. The “bases” shown in Figure 1 are hierarchical, and types inherit properties from higher
levels. For example, the messageText property is available to all types in CommandBase.® Tables 1-5 list
the SDTL types under the headings shown in Figure 1.

CommandBase Types for Complex
%\” commands . Properties
Properties: ExpressionBase .)
K) Used in SDTL properties
command Types used in expressions .
. requiring more than one
sourcelnformation .
field
messeageText
TransformBase
Corzr:a”ds thit(;hta”ge InformBase VariableReferenceBase
Proper:ieasor metadata Commands that only Types used to add variables to
oroducesDataframe provide information expressions
consumesDatarame
FIGURE 1. SDTL TYPES HIERARCHY
TransformBase

The types belonging to TransformBase are commands that change data or provide information about
the data to a user. All commands in TransformBase also inherit properties from CommandBase:

Properties inherited from CommandBase:

command The name of a command
sourcelnformation Information about the source of the transform command.
message Adds a message that can be displayed with the command.

Properties inherited from TransformBase:
producesDataframe Identifies the dataframe which this transform produces.
consumesDataframe Identifies the dataframe which this transform acts upon.

5/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

In Table 1 the commands in TransformBase are arranged into six functional sub-groups. There are only
four SDTL commands that add or modify variables without changing the structure of a dataframe (group
A), and Compute and Recode are by far the most frequently used in data transformation scripts.
Compute assigns the value of an expression to a variable. Recode converts a continuous variable into
categories.

Commands in group B operate only on metadata (names, labels, data type, display properties).
Load and Save in group C read and write data from files into dataframes.

The commands in group D modify the structure of a dataframe by changing the number of rows or
columns.

Commands that control the execution of a script (group E) are discussed below.

Table 1

TransformBase: SDTL Types that Change a Dataframe

A. Commands that create variables or change the values of a variable

Aggregate An aggregation summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is added to
each row of the existing dataset. The SDTL Collapse
command is used when the summary data is used to
create a new dataframe with one row per group..

Compute Assigns the value of an expression to a variable.

Recode Describes recoding values in one or more variables
according to a specified mapping. The Recode command
can either describe a recoding of one or more individual
variables, or a range of variables. When one or more
individual variables are described, a new variable name
can be specified. In this case, the original variable is left
alone, and a new variable is created with the recoded
values.

SetMissingValues Defines values that are treated as missing values for a list
of variables.

B. Commands that change the metadata associated with a variable or dataframe

Rename Rename changes the name of a variable or list of
variables.
SetDatasetProperty Changes a property of a dataframe.

6/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

SetDataType Sets the data type of a variable or list of variables.

Sets the display or output format for a variable or list of

SetDisplayFormat variables.
SetValuelabels Describes the assignment of labels to categorical values.
SetVariableLabel Describes the assignment of a label to a variable.

C. Commands that read or write files

Load Load data from a file.

Save Werites a dataset to a file.

D. Commands that change the structure of a dataframe

AppendDatasets Combines datasets by concatenation for datasets with
the same or overlapping variables.

Collapse A collapse command summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is
represented in a new dataset. See Aggregate for adding
summary variables without changing the number of rows.

DropCases Rows that match the selection condition are deleted in
the dataset. Other rows are retained.

DropVariables Deletes variables from the dataset.

KeepCases Rows that match the selection condition are retained in
the dataset. Other rows are deleted.

KeepVariables Variables to be retained in the dataset. Variables not on
the list are deleted.

MergeDatasets Merges datasets holding overlapping cases but different
variables. The merge may be controlled by keys or
grouping variables.

NewDataframe Creates a new empty dataframe. Numbers of rows or
columns may be specified. All values are assumed to be
missing.

Reshapelong Creates a new dataset with multiple rows per case by

assigning a set of variables in the original dataset to a
single variable in the new dataset.

7/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

ReshapeWide

ReshapeWide is not supported in the current version of
SDTL, because it depends on values in the data. However,
it may be useful when values of the index variable are
available in the metadata file or the data can be
processed.

SortCases

Sorts rows in the dataframe in a specified order.

E. Commands that control th

e flow of operations in a script

Dolf

A set of commands that are performed when a logical
expression is true. May also include ElseCommands to be
performed if the logical expression is false. The
commands in Dolf are performed once, and it expects a
logical condition that applies to the entire dataframe.
Use IfRows for commands that are performed on each
row depending upon values on those rows.

Execute

This command causes the system to execute preceding
commands before continuing to process the command
script.

IfRows

A set of commands that are performed on each row in
the dataframe when a logical expression is true for that
row. May also include ElseCommands to be performed if
the logical expression is false. Use Dolf for a logical
condition that applies to the entire dataframe and
commands that are performed once.

LoopOverlist

A loop creates multiple versions of a set of commands by
iterating over a list of variables, numbers, or strings.

LoopWhile

LoopWhile iterates over a set of commands under the
control of one or more logical expressions. Since the
logical conditions typically depend upon values in the
data, commands executed in a LoopWhile cannot be
anticipated and expanded in SDTL.

InformBase

Table 2 shows informational commands that do not describe changes to the data. Although SDTL does
not include commands that analyze data, these commands can be transcribed verbatim in an SDTL script
with the Analysis command. Unsupported is used for commands that our Parser cannot translate into

SDTL. Invalid is used when the parser

not conform to expectations. NoTransformOp was created for commands in the source language that
do not play a role in SDTL. For example, R and Python install libraries that may change the operation of

8/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),

recognizes a command in the source language but its syntax does

IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

commands. Even though the Parser has translated these commands into SDTL, the library may be
relevant information for some data users.

Table 2.

InformBase: Commands that provide information

Analysi Describes an analysis command. An analysis command does not result in any data
nalysis
y transformation.
Comment Describes a source code comment.
invalid Describes an invalid command. A command is invalid if it uses incorrect syntax, or is
nvali
otherwise not allowed by the executing system.
Message Inserts message text in the SDTL file.
NoTransformOp is used for a command in the original script that provides important
information but does not have a function in SDTL. For example, “library()” in R loads
a package of R functions. Since the Parser detects the library, the SDTL will reflect
NoTransformOp
the library that is used, and commands derived from the library will be translated in
the SDTL script. However, it is useful to know which library is active for auditing the
R script, even if it does not perform any data transformations.
Describes an unsupported command. An unsupported command is valid syntax, but
Unsupported) o
not supported by the parsing application.

ExpressionBase

The SDTL types in Table 3 (ExpressionBase) are used in expressions, which may be numeric, text, date-
time, or logical. The most powerful of these types is FunctionCallExpression, which is a reference to the
Function Library discussed below.

VariableReferenceBase (Table 4) is a subcategory of ExpressionBase used to describe the variables used
in an expression.

9/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Table 3.

ExpressionBase: SDTL Types Used in Expressions

BooleanConstantExpression

BooleanConstantExpression takes values of TRUE and FALSE.

DateTimeConstant

Describes a date or date-time combination using an ISO 8601
compliant string.

FunctionCallExpression

An expression evaluated by reference to the Function Library.

GroupedExpression

A group of expressions to be evaluated before expressions
outside of the group. Used to control the order of operationsin a
formula.

IteratorSymbolExpression

The name of an iterator symbol used as an index in describing
the actions of a loop.

MissingValueConstantExpression

A missing value constant. Some languages allow multiple missing
value constants.

NumberRangeExpression

Defines a range of numeric values.

NumericConstantExpression

A numeric constant.

NumericMaximumValueExpression

Represents the largest numeric value supported by a system.

NumericMinimumValueExpression

Represents the smallest numeric value supported by a system.

StringConstantExpression

A text string.

StringRangeExpression

Defines a range of string values.

TimeDurationConstant

Describes a duration of time using an ISO 8601 compliant string.

UnhandledValuesExpression

Represents any values not previously handled (for example, in a
set of recode rules).

ValuelistExpression

Woraps a list of other expressions.

VariableReferenceBase

SDTL types used to describe variables. See Table 4.

10/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Table 4.

VariableReferenceBase: SDTL Types Used to Describe Variables in Expressions

An expression that represents all numeric variables in the

AllINumericVariablesExpression o o
dataset, similar to *_all" in SPSS or Stata.

An expression that represents all text variables in the dataset,

AllTextVariablesExpression L o
similar to *_all" in SPSS or Stata.

An expression that represents all variables in the dataset, similar

AllVariablesExpression .
to _all in SPSS or Stata.

. . . A composite variable name is used to describe a variable name
CompositeVariableNameExpression .
that is computed.

A list of variables, which may include variable names
VariableListExpression (VariableSymbolExpression) and variable ranges
(VariableRangeExpression).

. . A list of variables in adjacent columns defined by the variable
VariableRangeExpression .
names of first and last columns.

VariableSymbolExpression A reference to a variable.

Table 5 includes types that were created to represent complex properties of other commands. For
example, every type in CommandBase uses sourcelnformation to show the original language of each
command and its location in the command script. AppendDatasets and MergeDatasets, which operate
on more than one file use types AppendFileDescription and MergeFileDescription to capture a number of
properties associated with each file.

11/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Table 5.

Types for Complex Properties in SDTL Commands

AppendpFileDescription

Describes files used in an AppendDatasets command.

Describes a dataframe in the consumesDataframe or producesDataframe
types. Provides the name of the data frame and a list of variables

DataframeDescription o) .) .
(columns). DataframeDescription can also define dimensions in
dataframes that have hierarchical indexes, data cubes, or multi-indexes.

. Describes the arguments in a function as specified in the SDTL Function

FunctionArgument .

Library.
L Describes an iteration process consisting of an IteratorSymbolExpression

IteratorDescription .]
and a list of values it takes.

MergeFileDescription Describes files used in a MergeDatasets command.

RecodeRule Describes how values will be recoded.

RecodeVariable Describes a variable that will have its values recoded.

RenamePair Variable names before and after a variable is renamed.

ReshapeltemDescription

Describes a new variable created by reshaping a dataset from wide to long.

Describes a criterion by which cases are sorted, including the variable

SortCriterion
name and whether to sort ascending or descending.
. Sourcelnformation defines information about the original source of a data
Sourcelnformation
transform.
Valuelabel Associates a label with a value in a categorical variable.

Conditional Execution by Row or by File/Dataframe
Statistical languages have some commands that are executed sequentially on every row and other

commands that apply to an entire file or dataframe. The Compute command illustrated above is an

example of the first type. Compute creates or modifies a variable that will appear on every row in the

data. New variables are usually computed from other variables on the same row, but we describe

calculations that aggregate across rows in our discussion of the “Function Library” below. In contrast,

12/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

commands that load or save files or modify metadata, such as data type and display format, do not
change the number or contents of rows in the dataframe.

The difference between row-level and file/dataframe-level commands becomes very important when
the action is conditional on the value of a variable or other parameter. Consider these commands in the
Stata language:

replace varY=3 if varX>5 /*** Version 1 *****/
if varX>5 replace varY=3 /*** Version 2 ****/

Although they appear to be the same, they have very different outcomes. The condition in Version 1, “if
varX>5", is a qualifier within a Stata command (“replace”) that is executed sequentially on each row in
the dataframe. Some rows will be set to 3 and others will not be changed, depending upon the value
of “varX” on each row. In Version 2 the “replace” command is nested in an “if” command, which is a
program flow command designed for use in Stat scripts (“do-files”). The “if” command is not evaluated
separately for each row; it is evaluated only once using the value of “varX” on the first row in the
dataframe. Consequently, if “varX>5" is true for row one, “varY” is set to 4 for all rows, and if “varX>5"
is false for row one, no rows are changed regardless of the value of “varX” on other rows. Table 6
illustrates the results of these commands where only row 1 satisfies the condition “varX>5".

Table 6. Examples of Conditional Execution by Row and Dataframe in Stata

Version 1 (SDTL IfRows): Version 2 (SDTL Dolf):
Initial values replace varY=3 if varX>5 if varX>5 replace varY=3
Row varX varY varX varY varX varY
1 9 11 9 3 9 3
2 4 11 4 11 4 3
3 1 11 1 11 1 3

SDTL includes two ways of applying conditions to commands. The SDTL command I/fRows is used for
conditions that should be evaluated sequentially on every row. Dolf in SDTL is used for flow control in
scripts where the condition is evaluated once before executing a command or group of commands.
Both IfRows and Dolf can be applied to a group of commands, and both include an elseCommands
property for commands to be performed if the condition is false.

Function Library
Although the number of data transformation commands in statistical packages is small, the power of
these commands is magnified by “functions,” which are available in every language. Functions are

13/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

available in most computer languages as a convenient way to invoke common operations. In the same
way that a mathematical equation may use “sine(x)” to refer to the corresponding trigonometric
function, “sine(varX)” may be used in a statistical package to insert the sine of variable “varX” in a
computation or comparison. There are thousands of functions in statistical packages, and programming
C?Metadata parsers and updaters to reproduce all of them would have been an enormous job.
Fortunately, our goal is to describe data transformations not to perform them. We devised a simple
way to add an unlimited number of functions to SDTL with minimal impact on the code required to
translate a script into SDTL. This was accomplished by creating a Function Library, which serves as a
crosswalk between SDTL and the various statistical packages. The Function Library is a file that can be
maintained in a spreadsheet and accessed as a JSON file.

Functions in computer languages normally have two parts: a function name followed by parameters
enclosed in parentheses. The function invokes program code that replaces the function with a value
computed from the parameters. The computed value of a function may be a number, text, or logical
(Boolean) constant. For example, sine(varX) will return the sine of an angle equal to the value of varX,
and gt(varX, varY) will return TRUE if varX is greater than varY and FALSE otherwise. Each parameter is
used in a specific way by the computer code that evaluates the function.

Parameters may be specified in two ways. Sometimes, parameters are given in a defined order
separated by a delimiter, usually a comma, which is included even if the parameter is omitted.
Parameters may also be identified by name. For example, in Stata “std(varX), mean(10) std(3)” will
standardize the values of varX so that the transformed values have mean=10 and standard deviation=3.
In this case the first parameter (varX) is given by position, but the other two parameters (“mean” and
“std”) are specified by name. In SDTL parameters may be specified by position or by name. We
currently use EXP1, EXP2, EXP3, ... as parameter names in SDTL, but these names are arbitrary and
meaningful mnemonics could be used.

Some functions operate on a list items of the same type, which makes them appear to have an
indeterminate number of parameters. For example, mean(varX, varY, varZ) would compute the mean of
three variables. To avoid parameter lists of indefinite length, the SDTL Function Library uses the
VariableListExpression and ValuelistExpression types in SDTL. A VariableListExpression packages a list of
variables into a single SDTL type that is treated as one parameter in an SDTL function. A
VariableListExpression has a single property (variables) defined as a JSON array that can consist of any
combination of individual variables (VariableSymbolExpression) or variable ranges
(VariableRangeExpression).

The Function Library maps the names and parameters of SDTL functions to functions in other languages.
Every function is described with the SDTL name of the function and the order and names of its
parameters. The SDTL function is also mapped to the same function in SPSS, Stata, SAS, R, and Python.
This table compares functions that compute a random number from a uniform distribution in SDTL and
five other languages:

14/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

SDTL

random_variable_uniform(EXP1, EXP2)

SPSS

RV.UNIFORM(EXP1, EXP2)

Stata

runiform(EXP1 EXP2)

SAS

RANUNI(seed)

runif(n, min=EXP1, max=EXP2)

Python

numpy.random.uniform(low= EXP1, high= EXP2)

SDTL and most of these languages specify the minimum (EXP1) and maximum (EXP2) of the range of the

random number. In SAS the range is always 0 to 1, which is the default range in other languages. The

Function Library entry for SAS specifies that 0 and 1 are passed to SDTL as values for parameters EXP1

and EXP2. Computer programs often use mathematical formulas to approximate random numbers, and
the SAS version of this function allows users to specify a “seed” for its random number generator. Since

the seed is specific to the implementation in SAS, it is not included in SDTL. In R the “runif” function

creates a vector of random numbers of length “n”. We assume that the random number will be either a
single number used in an expression or a vector added to the dataframe as a new variable, which makes

this parameter unnecessary in SDTL.

The Function Library partitions functions into four groups corresponding to different SDTL commands:

Function Library
group

SDTL command

Meaning

Horizontal Compute Calculates a value from variables on the same row.
Rows are processed sequentially.
Vertical Aggregate Calculates a new variable by aggregating across rows in
a group. Every row in the group has the same value.
Collapse Collapse Calculates a new variable by aggregating across rows in
a group in a new dataframe with one row per group.
Logical DolF Functions used in logical conditions.
IfRows
KeepCases
DropCases

15/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Horizontal functions operate sequentially by row using variables appearing on each row. Vertical and
Collapse functions operate on groups of rows by aggregating values within columns (see Figure 2).
Vertical functions used in an SDTL Aggregate command add new variables (columns) to a dataframe by
applying the result of a computation to every row in a group. The Collapse command does the same
computation, but it reduces the number of rows by creating one row per group. For example, suppose
that groups are defined by variable “YearsOfEducation,” and we compute mean(Annuallncome). The
Aggregate command will add mean Annuallncome to every row, and the Collapse command will create
one row for every value of YearsOfEducation including both YearsOfEducation and mean
Annuallncome. Thus, Vertical functions do not change the number of rows in the dataframe, and
Collapse functions create a new dataframe with fewer rows.

Aggregate adds a new column computed by group

grouplD X grouplD X agg_count_X agg_mean_X

1 11 1 11 2 11.5
1 12 1 12 2 11.5
2 21 _ 2 21 3 22.0
2 27 | — 2 22 3 22.0
2 23 2 23 3 22.0
3 31 3 31 2 31.5
3 3 2 31.5
3 32 3 32 2 31.5

groupID X Collapseresults in one row per group

1 11

1 12 grouplD col_count_X col_mean_X
2 21 1 2 11.5

2 22 > 2 3 22.0

2 23 3 2 31.5

3 31

3

3 32

Figure 2. lllustrations of Aggregate and Collapse

All functions have unique names in SDTL, but other languages sometimes use the same function name in
different contexts with different outcomes. A good illustration is a function for computing means, which
has three different meanings in both SPSS and Stata.

16/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

Compute Aggregate Collapse

SDTL mean(EXP1) agg_mean(EXP1) col_mean(EXP1)
SPSS mean(EXP1) mean(EXP1) mean(EXP1)
Context: COMPUTE Context: AGGREGATE with Context: AGGREGATE

MODE=ADDVARIABLES

Stata | rowmean(EXP1) mean(EXP1) “(mean)” statistic option

Context: generate, replace | Context: egen Context: collapse

Flow Control, Loops, and Macros

Statistical software packages include extensive programming capabilities. Stata and SAS have powerful
macro features, and R and Python are very capable programming languages. There are two ways of
handling these programming features in SDTL.

First, whenever possible the Parser will expand macros and other programming code into simpler
commands. For example, if a loop applies a Compute command to four variables, it can be converted
into four Compute commands. This may make the SDTL long and verbose, but it simplifies the work of
finding which commands affect every variable.

Second, SDTL does include types for describing loops (LoopOverlList, LoopWhile), which are the most
common kind of flow control, and IteratorSymbolExpression was created to describe an index used in a
loop.

SDTL does not have arrays, which may be used in loops, but it does have functions that operate like
arrays. The VariableArrayDereference and ValueArrayDereference functions allow an SDTL script to use
an expression to select an entry in a list. The first parameter of each function points to the position of
an entry in a variable or value list given as the second parameter. The operation of these functions can
be illustrated by this simplified example, in which “[Age, Sex, Education, Income]” is a list of variable
names:

VariableArrayDereference(3, [Age, Sex, Education, Income])

The value of this function would be “Education”, which is the third item in the list. Since the contents of
the list is not stored anywhere, the full list must be repeated every time that the function is used.
However, the index parameter could be an IteratorSymbolExpression in a loop.

Appending, Merging, and Updating Datasets

The five languages covered by the C2Metadata Project offer a wide variety of ways of combining
datasets. AppendDatasets is used to concatenate rows (cases) from datasets that have the same
columns (variables) (Figure 3). MergeDatasets combines columns from datasets that have the same

17/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

rows. These operations are complicated by features that resolve conflicts, such as merging files with
overlapping column names or unmatched rows. Datasets are usually merged by joining rows with the
same keys, but some statistical packages will merge rows sequentially when keys are not specified.
MergeDatasets can also be used to update a dataset by replacing its current values with values from a
different dataset. Both AppendDatasets and MergeDatasets use subtypes (AppendFileDescription,
MergeFileDescription) to describe actions that apply to specific input datasets. For example, the merge
commands in SPSS and SAS allow users to rename variables, select variables, and select cases at the
time of the merge without changing the input dataset.

DS_X DS 2

1 11 caselD X A
2 | 12 1 | u
2 | 13 2 =
3 | 14 2 | B3
3 | 14
DS Y 5 21
6 22
5 | 21 7 23
6 22 8 23
7 | 23
8 | 24

Figure 3. Appending Datasets

R (dplyr) and Python (Pandas) use “joins” like those in SQL to merge dataframes. Rows in the output
dataset are created by comparing one or more key variables specified in a “by” parameter. Joinsin R
and Python are implicitly Cartesian joins that create every possible combination of rows with the same
keys. For example, caselD=2 is repeated in DS_A and caselD=1 is repeated in DS_B. The Cartesian join
of DS_A and DS_B by caselD is DS_C (Figure 4), in which there are two rows for both caselD=1 and
caselD=2. Note that caselD=3 and =4 are not included in DS_C, because they do not exist in both input
datasets. DS_C is the result of an “inner” join, and the unmatched rows can be included by specifying
“outer”, “left”, or “right” joins. Following the model of SQL, R and Python are agnostic about the order
in which the data are sorted, and all joins are Cartesian.

18/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

caselD X

caselD Y

Figure 4. Cartesian Inner Join

In SPSS, SAS, and Stata merging is often a sequential process on files that are sorted before they are
merged. Even when the merge involves matching on key variables, SPSS, SAS, and Stata require the
input files to be sorted before they can be merged, and the user must determine whether keys are
unique (one-to-one) or repeated (one-to-many or many-to-many). A sequential merge of DS_A and
DS_B without keys produces DS_D (Figure 5), which is very different from the result of a Cartesian join
(Figure 4).

DS A

caselD Y

Figure 5. Sequential Merge

19/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

SDTL uses three properties (mergeType, newRow, and update) to represent all of these possibilities.
These properties are found in MergeFileDescription, which means that they are specified for each input
dataset.

The mergeType property describes how rows from the input datasets are combined in the output data.
Most merge types (e.g. OneToOne, OneToMany) involve matching rows on key variables, which are
specified with mergeByVariables (in MergeDatasets) and mergeByNames (in MergeFileDescription).
Sequential merges assume that the input files are already sorted.

The newRow property determines when the rows contributed by an input file generate a row in the
output file. When newRow is TRUE, all rows in this dataset are included in the output dataset,
regardless of whether they were matched to another input dataset on the mergeByVariables. When
newRow is FALSE, only rows that have been matched are included. An inner join is represented in SDTL
by setting newRow to FALSE on all input datasets, and newRow is TRUE for all input datasets to describe
an outer join. Left and right-joins are created by using TRUE and FALSE on different inputs.

mergeType

Sequential Match rows from each input dataframe in the order in sequential order.

OneToOne Create one row for each value of the MergeByVariables. If a combination
of the MergeByVariables is repeated, only one row is matched. Rows
with repeated combinations of the MergeByVariables may or may not be
included in the output file depending on the NewRow property.

OneToMany Create a row in the output dataframe by matching rows in this dataframe
to every row in other dataframes with the same value of
MergeByVariables. Note that OneToMany implies that one of the other
input datarames is set to ManyToOne.

ManyToOne Create a row in the output dataframe by matching all rows in this
dataframe

to the one row in the other dataframe with the same value of
MergeByVariables.

Cartesian Create a new row in the output dataframe for every possible
combination of rows having the same value of MergeByVariables. This is
equivalent to a many to many merge.

Unmatched Create a new row for every row that cannot be matched on the
MergeByVariables

SASmatchMerge SAS uses a merging approach that combines matching keys and
sequential merges within groups.

20/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

newRow

TRUE Always include rows from this dataframe, even if the MergeFileVariables do
not match a row in any other dataframe.

FALSE Only include rows from this dataframe, if the MergeFileVariables match a
row in another dataframe.

There is even more diversity in the responses of different languages when the datasets to be merged
contain a variable (column) with the same name. R and Python follow SQL by including both variables
with modified names, which can be handled by using the renameVariables property in the
MergeFileDescription. However, SPSS, Stata, and SAS will include only one variable in the output data,
and they may use the omitted variable to update values in the included variable. The update property
of MergeFileDescription is used to specify how values from the omitted version of the variable will be
handled. If update is set to Ignore, a variable that is also found in the Master dataset will have no effect
on the output dataset. If update is set to FilINew, values from the repeated variable will only appear on
new rows not found in the Master dataset. UpdateMissing replaces only missing values in the Master
dataset, and Replace changes all values on matched rows in the Master dataset.

update
Master This dataframe is the Master dataframe.
Ignore If a column with the same name exists in the Master dataframe, ignore the
values in this dataframe.
FillNew If a column with the same name exists in the Master dataframe, use the

values from this dataframe only in new rows created from this dataframe.

UpdateMissing | If a column with the same name exists in the Master dataframe, use values
from this dataframe when the value in the Master dataframe is missing.

Replace If a column with the same name exists in the Master dataframe, use values
from this dataframe.

Reshapelong, ReshapeWide, and CompositeVariableNameExpression

All of the statistical packages covered by the C2Metadata project have commands to reshape files
between “wide” and “long” formats. Figures 6 and 7 illustrate the difference between wide and long
format for data describing a mother and her children. In the wide format (Figure 6) there is one row for
each mother, and each child is described by two variables, age and sex. Data for each child are
identified by including birth order in the variable name, e.g. agel, age2, etc. The wide format requires a

21/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

column for every variable for each child, and we must allow enough variables to describe the largest
family in the data. If one woman had 20 children, the dataset in Figure 6 would have 40 columns: agel,
sexl, ..., age20, sex20. Consequently, datasets in wide format usually have many empty cells. In long
format, Figure 7, there is a row for each child and information about mothers is repeated on the rows
for each of their children. The long format includes an additional variable, birthOrder that uniquely
identifies children within each family. Since the information in each format is identical, the choice
between wide and long depends upon the types of analysis to be performed and convenience.

| motheriD | motherAge | agel | sex | age2 | sexz | age3 | sex | aged [sexs

0001 32 5 Male 3 Female

0002 44 13 Female 16 Male 13 Male 10 Female

Figure 6. Wide Format

motherlD mnthemge birthOrder _“

0001 Male
0001 32 2 3 Female
0002 44 1 18 Female
0002 44 2 16 Male
0002 44 3 13 Male
0002 44 4 10 Female

Figure 7. Long Format

The information in Figures 5 and 6 can also be stored in separate datasets for mothers and children by
using the motherlD variable as a key for linking children to their mothers. In a relational database the
two-table approach would be used to remove repetition and “normalize” the database. However,
unlike SQL, most statistical analysis software cannot compute results on data contained in more than
one table. Data from the mothers table and the children table would need to be merged before any
analysis is performed.

SDTL includes features for operating on wide and long format data. The
CompositeVariableNameExpression is used to describe repeated variable names in wide-format data,

n u

such as agel, age2, etc. Composite names consist of a “stub” (e.g. “age”, “sex”) and an index value.
Composite names are described in a ReshapeltemDescription, which is a complex property used in the

ReshapeWide and ReshapeLong SDTL commands.

22/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

The C2Metadata Project has implemented the Reshapelong but not the ReshapeWide command. When
we convert data from wide to long, we know how many rows to create, because each row corresponds
to a set of identical variables described in the metadata file. But we cannot reshape data from long to
wide format without knowing the maximum number of columns to create, which is not included in the
metadata file of a long format dataset. Since the scope of the C2Metadata Project has been limited to
metadata-only operations, ReshapeWide is not currently supported.

Pseudocode Library and Translator

The Pseudocode Library is a simple and extensible way to create natural language versions of SDTL
scripts. Every type in SDTL consists of a set of properties. Each of these properties can be resolved into
text -- a variable name, a number, or a string. The Pseudocode Library is a set of templates for SDTL
types with text to include before and/or after each property in a command. Templates look like this:

“starting text {propertyl} more text {property2} even more text”

The translation involves inserting text created from each property into the corresponding space in the
template, where property names surrounded by curly brackets. For example, the pseudocode
templates for the Rename command and the RenamePair type are:

Rename Rename variables: {renames}

RenamePair \n\t from {oldVariable} to {newVariable};

In this case, RenamePair is a complex type used to fill the renames property of the Rename command. If
we rename varA to varAlpha, the RenamePair becomes.

\n\t from varA to varAlpha;

and the Rename command becomes

Rename variables: \n\t from varA to varAlpha;
If we evaluate \n as a new line and \t as a tab, we get

Rename variables:
from varA to varAlpha;

Pseudocode templates for functions are included in the Function Library.

Limitations and Future Developments

The DDI Alliance has created an SDTL Working Group to manage SDTL as one of its suite of standards.
Modifications and additions to the SDTL standard will follow an orderly process with opportunities for
community review and a published calendar for new versions. This framework assures that SDTL will
evolve in response to new developments in source languages and new applications of the language.

23/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

The Function Library provides a simple way to expand the reach of SDTL without changing the language
itself. The Function Library can be updated to include new functions in SDTL or to map additional
functions in source languages to existing SDTL functions. In most cases, additions to the Function Library
do not require changes to the program code in applications that translate source languages into SDTL.

Version 1.0 of SDTL is being released with two limitations that are due to the limited scope of the
C?Metadata Project. First, the C*Metadata Project adopted a metadata-only approach. We assume
that the pre-transformation data are well described in a standard metadata schema, such as DDI or EML,
and we do not access the data at any time. For this reason, SDTL can describe reshaping data from long
to wide, but C2Metadata parsers do not support that command. When data are changed from long to
wide, the number of columns in the new dataframe depends upon the values of the index variables in
the original dataframe. The only way to know the range of these index variables is to inspect the actual
data, and this requires integration of SDTL into statistical analysis software. We hope that this
integration will happen in the future, especially for the open source packages R and Python.

Second, SDTL does not yet describe variables created by statistical analysis commands. SDTL was
created to describe data and not tables, graphs or other analytical results. Since statistical analysis
packages have many more analysis commands than data transformation commands, representing
analysis commands was not on the agenda of the C*Metadata Project. However, we acknowledge that
analysis commands can also produce data. For example, estimated regression models are often used to
construct predicted values and residuals. In view of the number and diversity of analytical commands,
SDTL may be linked to an external ontology of statistical tests, such as the STATO ontology (ISA
Commons, 2020).

SDTL was designed to document data transformations, and it is not intended to be an executable
language. SDTL provides enough information for a human to understand changes to a file or a variable,
but this may not be sufficient for a computer to perform these operations. In addition, a command
script may be translated into SDTL in more than one way. SDTL, like other complex languages, often
provides several methods for accomplishing a specific result. For example, the functions performed by
the SDTL Recode command can also be achieved by IfRows and Compute statements or by the cut()
function found in some languages.

Discussion

SDTL provides a new level of transparency for data processed and managed by statistical analysis
packages. SDTL was created to simplify the automated creation of provenance metadata at the variable
level. The C2Metadata Project is providing open-source code for translating SPSS, SAS, Stata, R, and
Python into SDTL, as well as code for translating SDTL into natural language (C2Metadata Project,
2020a). Software applications that create data catalogs, codebooks, and tools to reconstruct data
provenance can read SDTL rather than interpreting each of the different statistical languages. For data
producers, these tools simplify the process of describing the steps in preparing raw data for publication.
Data repositories will receive more detailed machine-actionable metadata to improve the
documentation their collections. Researchers will be able to understand how variables were created
regardless of the software used in their production.

24/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

References

Alter, G., Donakowski, D., Gager, J., Heus, P., Hunter, C., lonescu, S., . . . Voldsater, O. (2020).
Automating the Capture of Data Transformation Metadata from Statistical Analysis Software.
ICPSR. University of Michigan. Ann Arbor MI. Retrieved from
http://hdl.handle.net/2027.42/156014

C2Metadata Project. (2020a). Gitlab Repository: c2metadata. Retrieved from
https://gitlab.com/c2metadata

C2Metadata Project. (2020b). Structured Data Transformation Language. Retrieved from
http://c2metadata.gitlab.io/sdtl-docs/

Cuevas-Vicenttin, V., Ludascher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., & Leinfelder, B.
(2016). ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance. [Online].
Available: http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-
Documentation-trunk/ws/provenance/ProvONE/v1/provone.html

DDI Alliance. (2020). Structured Data Transformation Language. Retrieved from
https://ddialliance.org/products/sdtl/1.0

E.H. Fegraus, S. A., M.B. Jones, M. Schildhauer. (2005). Maximizing the value of ecological data with
structured metadata: an introduction to ecological metadata language (EML) and principles for
metadata creation. Bulletin of the Ecological Society of America, 86, 158—168.

IBM Corp. (2019). IBM SPSS Statistics for windows, version 26.0. Armonk, NY: IBM Corp.

ISA Commons. (2020). STATO: an Ontology of Statistical Methods. Retrieved from http://stato-
ontology.org/

Python Software Foundation. (2019). Python Language Reference, version 3.8. Beaverton, OR. Retrieved
from https://www.python.org/

R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

SAS Institute. (2015). SAS®9.4 Product Documentation. Cary, NC: SAS Institute Inc. Retrieved from
http://support.sas.com/documentation/94/index.html

StataCorp. (2020). Stata Statistical Software: Release 16.1. College Station, TX: StataCorp LP.

Vardigan, M. (2008). Beyond the codebook: Documenting survey research on the Web. Paper presented
at the International Conference on Survey Methods in Multinational, Multiregional, and
Multicultural Contexts (3MC), Berlin, Germany.

25/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979
http://hdl.handle.net/2027.42/156014
https://gitlab.com/c2metadata
http://c2metadata.gitlab.io/sdtl-docs/
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
https://ddialliance.org/products/sdtl/1.0
http://stato-ontology.org/
http://stato-ontology.org/
https://www.python.org/
http://www.r-project.org/
http://support.sas.com/documentation/94/index.html

Endnotes

! University of Michigan

2 Metadata Technologies North America

3 Algenta Technologies

4 Norwegian Centre for Research Data

5 NORC

® We show SDTL types in italic font beginning with uppercase, like Compute. Properties within types are
in italic font beginning with a lowercase letter, like sourcelnformation.

26/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

https://doi.org/10.29173/iq979

