

1/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Provenance metadata for statistical data: An introduction to Structured Data

Transformation Language (SDTL)

George Alter1, Darrell Donakowski1, Jack Gager2, Pascal Heus2, Carson Hunter2, Sanda Ionescu1, Jeremy

Iverson3, H V Jagadish1, Carl Lagoze1, Jared Lyle1, Alexander Mueller1, Sigbjorn Revheim4, Matthew A.

Richardson1, Ornulf Risnes4, Karunakara Seelam1, Dan Smith3, Tom Smith5, Jie Song1, Yashas Jaydeep

Vaidya1, Ole Voldsater4

Abstract

Structured Data Transformation Language (SDTL) provides structured, machine actionable

representations of data transformation commands found in statistical analysis software. The

Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an

automated system that captures provenance metadata from data transformation scripts and adds

variable derivations to standard metadata files. SDTL also has potential for auditing scripts and for

translating scripts between languages. SDTL is expressed in a set of JSON schemas, which are machine

actionable and easily serialized to other formats. Statistical software languages have a number of

special features that have been carried into SDTL. We explain how SDTL handles differences among

statistical languages and complex operations, such as merging files and reshaping data tables from

“wide” to “long”.

Keywords

Metadata, provenance, statistical data

Acknowledgment

Acknowledgement: The Continuous Capture of Metadata for Statistical Data Project is funded by National

Science Foundation grant ACI-1640575.

https://doi.org/10.29173/iq979

2/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Introduction

Structured Data Transformation Language (SDTL) is a language for representing data transformation

commands found in statistical analysis and data management software. SDTL describes changes to a

dataset at both the file- and variable-level. Since SDTL is structured and machine actionable, it can be

queried to produce histories of each variable in a dataset and to answer questions like:

• Which original variables were used to construct this derived variable?

• Which commands were used in the construction of this derived variable?

• Which derived variables were affected by this original variable?

SDTL can be translated into natural language, so that researchers do not need to understand the specific

software used to process the data. SDTL can also be incorporated into versions of the PROV model that

have been extended to describe provenance at the variable- and command-level, like ProvONE (Cuevas-

Vicenttín et al., 2016).

SDTL extends the capabilities of tools used by data repositories and data producers to document and

describe data. Data repositories specializing in the social sciences maintain documentation in the Data

Documentation Initiative (DDI) metadata standard (Vardigan, 2008). Online data catalogs draw upon

content stored in DDI XML, and codebooks are translated from XML into PDF or other formats. DDI

includes features for recording data provenance, but there was no systematic way to describe data

provenance before SDTL. Variable histories expressed in SDTL can be formatted, searched, and queried.

Data users who download DDI XML from repositories can use automated tools to create new codebooks

reflecting their changes to the data. By building SDTL into their workflows, data producers can use SDTL

to create documentation and to audit the command scripts that manage their data. In the future, SDTL

may also be used to translate command scripts from one statistical analysis package to another.

SDTL was developed to work with five leading statistical packages: SPSS, Stata, SAS, R, and Python (IBM

Corp., 2019; Python Software Foundation, 2019; R Core Team, 2013; SAS Institute, 2015; StataCorp.,

2020). The Continuous Capture of Metadata for Statistical Data (C2Metadata) Project, which created

SDTL, set out to automate the creation of variable-level provenance metadata by translating scripts used

by statistical analysis software into a format compatible with metadata standards like the Data

Documentation Initiative (DDI) (Vardigan, 2008) and Ecological Metadata Language (EML) (E.H. Fegraus,

2005). (See Alter et al., 2020.) Our goal was to create a history for each variable showing its derivation

from earlier variables and all of the ways that it has been modified. SDTL serves as an intermediate

language that represents other languages in a more convenient format. Since SDTL is expressed in a

structured format (e.g., JSON) with tags and delimiters, its syntax is obvious and unambiguous, and SDTL

is easily read by computer programs without elaborate parsing algorithms. SDTL may be used to

translate between statistical languages, but it is designed for documentation and description and not as

an operational language.

The DDI Alliance, which maintains international standards for metadata, has adopted SDTL as one of its

suite of products (DDI Alliance, 2020). DDI metadata is widely used by data repositories serving the

social sciences for data discovery tools, catalogs, and codebooks. SDTL provenance descriptions can be

https://doi.org/10.29173/iq979

3/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

inserted into existing data derivation fields in the DDI metadata standards. The DDI Alliance will assure

that the SDTL is maintained and expanded in an orderly way.

We provide here an introduction to SDTL focusing on important features of the source languages that it

can represent and ways that SDTL handles differences among them. A User Guide and detailed

descriptions of SDTL commands are available at C2Metadata Project (2020b).

Statistical Packages as Data Processing Platforms

SDTL inherits a number of assumptions about how data are transformed from the languages used in

statistical analysis packages, and it is helpful to understand how those programs work. Statistical

packages differ in important ways from two other tools often used for managing data, spreadsheets and

relational databases, such as SQL. All three tools encourage users to think of data as rectangular

matrices, “tables,” but they each have different capabilities and limitations.

1. Rows and Columns

In statistical packages, each row is an individual/entity or an observation of an individual/entity, and

each column is a variable describing an attribute of an individual/entity. As in a relational

database, columns are named and are referenced by their variable names. Statistical packages

typically do not allow users to put more than one type of information in each column as a

spreadsheet does.

2. Metadata

Statistical packages attach more metadata to each variable than either a spreadsheet or a relational

database, even if it is less metadata than most researchers need. Users control the data type

(numeric, string, date, etc.) and display format of every variable. Columns can have both variable

and value labels that appear on output. A variable label is a brief description of its content. Value

labels are text descriptions of the categories in variables. Statistical packages encourage the use of

integer codes for categorical information, but they will display the corresponding value label in

output tables. For example, a variable may be coded as 1 for ages 0 to 15, 2 for ages 15 to 65, and 3

for ages 65 and above, but tables can show these categories with labels “Children,” “Working ages,”

and “Older ages.”

3. Variable lists and variable ranges

One of the most common features of statistics software packages is the use of “variable lists” and

“variable ranges” to simplify the application of data transformation commands to multiple variables.

For example, common value labels (e.g. 1=”Yes”, 2=”No”, 3=”NA”) may be applied to hundreds of

variables with a single command. Variable ranges refer to a group of adjacent columns by

identifying the first and last variable in the range. For example, “VAR01 TO VAR04” in SPSS or

“VAR01-VAR04” in Stata or SAS will apply a command to VAR01, VAR02, VAR03, and VAR04,

assuming that the columns appear in that order in the data. A variable list may include both

individual variables and variable ranges, such as “VAR01 VAR05 VAR11-VAR32 VAR51-VAR72”.

https://doi.org/10.29173/iq979

4/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

4. Order of rows and columns matters

Commands in statistical packages can take advantage of the order of columns and rows. The

meaning of a variable range, such as “Age TO Income” depends upon the order of the columns.

Statistical packages also process rows in sequential order, which is often used in data processing

scripts. Commands that merge files or aggregate within groups may only operate on data sorted in

advance. Statistical packages can also use values from earlier or later rows in computing variables.

For example, if the data consist of annual observations of a country or region, the SPSS LAG function

can be used to access the value in the previous year. In Stata, a command can test whether the

current row applies to the same person or place as the preceding row by using syntax like “if

districtID == districtID[_n-1]”. This is not possible in SQL relational databases, which do not permit

operations that depend on the sequential ordering of rows, but it is possible in spreadsheets, which

allow both absolute and relative cell references.

SDTL includes a command (SortCases) to change the order of rows, but it does not currently support

a command to change the order of columns. When we tested commands that sort columns in SPSS

and Stata, we discovered that they apply different sort sequences to variable names. Stata is case

sensitive and sorts variable names in ASCII order. SPSS is not case sensitive for variable names, but

it sorts names beginning with lowercase before uppercase of the same letter. For example,

SPSS sort order: aa8 aA9 Aa7 AA6 id xx3 xX4 Xx2 XX1 XX5

Stata sort order: AA6 Aa7 XX1 XX5 Xx2 aA9 aa8 id xX4 xx3

5. Missing values

The value of a variable may not be available for all rows, and all statistical packages have features

for handling these “missing values.” Statistical calculations may exclude cases with missing values

on any variable, or they may adjust for missing values in some way. Some statistical packages also

allow users to identify more than one type of missing value. In survey research some questions do

not apply to all respondents (e.g. “How many years have you been married?”), and respondents may

respond “don’t know” or simply refuse to answer. Researchers need to distinguish between “does

not apply”, “don’t know”, and “no response”.

There are also important differences among statistical packages in the ways that missing values in

logical expressions are processed. SPSS and R use three-valued logic in which a logical expression

may be true, false or missing. SAS and Stata use two-valued logic (true or false) by processing

missing values as either negative or positive infinity. Thus, if the value of varX is missing, the logical

expression “varX > 0” will be false in SAS but true in Stata.

6. Dataframes and files

When a statistical package is in operation, data may exist only in computer memory or in temporary

storage space. A data transformation script may create any number of temporary instances of the

data and save only a few of them for later use. The C2Metadata Project adopted the convention of

https://doi.org/10.29173/iq979

5/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

using “dataframe” for working versions of data stored in memory or temporary storage to

distinguish them from data in files that will persist after the transformation script is completed.

Elements of SDTL

The elements of SDTL, called “types,” are divided into groups as shown in Figure 1. Commands are

found in CommandBase, which is divided into two parts: TransformBase for commands that change data

or metadata and InformBase for types that generate messages or comments. ExpressionBase consists of

elements used to construct numeric, text, or logical expressions within commands. Types that describe

variables are in VariableReferenceBase, which is a sub-category of ExpressionBase. The last group in

Figure 1, “types for complex properties,” is used when a property of a type has more than one sub-

property. The “bases” shown in Figure 1 are hierarchical, and types inherit properties from higher

levels. For example, the messageText property is available to all types in CommandBase.6 Tables 1-5 list

the SDTL types under the headings shown in Figure 1.

FIGURE 1. SDTL TYPES HIERARCHY

TransformBase

The types belonging to TransformBase are commands that change data or provide information about

the data to a user. All commands in TransformBase also inherit properties from CommandBase:

Properties inherited from CommandBase:

command The name of a command

sourceInformation Information about the source of the transform command.

message Adds a message that can be displayed with the command.

Properties inherited from TransformBase:

producesDataframe Identifies the dataframe which this transform produces.

consumesDataframe Identifies the dataframe which this transform acts upon.

https://doi.org/10.29173/iq979

6/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

In Table 1 the commands in TransformBase are arranged into six functional sub-groups. There are only

four SDTL commands that add or modify variables without changing the structure of a dataframe (group

A), and Compute and Recode are by far the most frequently used in data transformation scripts.

Compute assigns the value of an expression to a variable. Recode converts a continuous variable into

categories.

Commands in group B operate only on metadata (names, labels, data type, display properties).

Load and Save in group C read and write data from files into dataframes.

The commands in group D modify the structure of a dataframe by changing the number of rows or

columns.

Commands that control the execution of a script (group E) are discussed below.

Table 1

TransformBase: SDTL Types that Change a Dataframe

A. Commands that create variables or change the values of a variable

Aggregate An aggregation summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is added to
each row of the existing dataset. The SDTL Collapse
command is used when the summary data is used to
create a new dataframe with one row per group..

Compute Assigns the value of an expression to a variable.

Recode Describes recoding values in one or more variables
according to a specified mapping. The Recode command
can either describe a recoding of one or more individual
variables, or a range of variables. When one or more
individual variables are described, a new variable name
can be specified. In this case, the original variable is left
alone, and a new variable is created with the recoded
values.

SetMissingValues Defines values that are treated as missing values for a list
of variables.

B. Commands that change the metadata associated with a variable or dataframe

Rename Rename changes the name of a variable or list of
variables.

SetDatasetProperty Changes a property of a dataframe.

https://doi.org/10.29173/iq979

7/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

SetDataType Sets the data type of a variable or list of variables.

SetDisplayFormat
Sets the display or output format for a variable or list of
variables.

SetValueLabels Describes the assignment of labels to categorical values.

SetVariableLabel Describes the assignment of a label to a variable.

C. Commands that read or write files

Load Load data from a file.

Save Writes a dataset to a file.

D. Commands that change the structure of a dataframe

AppendDatasets Combines datasets by concatenation for datasets with
the same or overlapping variables.

Collapse A collapse command summarizes data using aggregation
functions applied to data that may be grouped by one or
more variables. The resulting summary data is
represented in a new dataset. See Aggregate for adding
summary variables without changing the number of rows.

DropCases Rows that match the selection condition are deleted in
the dataset. Other rows are retained.

DropVariables Deletes variables from the dataset.

KeepCases Rows that match the selection condition are retained in
the dataset. Other rows are deleted.

KeepVariables Variables to be retained in the dataset. Variables not on
the list are deleted.

MergeDatasets Merges datasets holding overlapping cases but different
variables. The merge may be controlled by keys or
grouping variables.

NewDataframe Creates a new empty dataframe. Numbers of rows or
columns may be specified. All values are assumed to be
missing.

ReshapeLong Creates a new dataset with multiple rows per case by
assigning a set of variables in the original dataset to a
single variable in the new dataset.

https://doi.org/10.29173/iq979

8/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

ReshapeWide ReshapeWide is not supported in the current version of
SDTL, because it depends on values in the data. However,
it may be useful when values of the index variable are
available in the metadata file or the data can be
processed.

SortCases Sorts rows in the dataframe in a specified order.

E. Commands that control the flow of operations in a script

DoIf A set of commands that are performed when a logical
expression is true. May also include ElseCommands to be
performed if the logical expression is false. The
commands in DoIf are performed once, and it expects a
logical condition that applies to the entire dataframe.
Use IfRows for commands that are performed on each
row depending upon values on those rows.

Execute This command causes the system to execute preceding
commands before continuing to process the command
script.

IfRows A set of commands that are performed on each row in
the dataframe when a logical expression is true for that
row. May also include ElseCommands to be performed if
the logical expression is false. Use DoIf for a logical
condition that applies to the entire dataframe and
commands that are performed once.

LoopOverList A loop creates multiple versions of a set of commands by
iterating over a list of variables, numbers, or strings.

LoopWhile LoopWhile iterates over a set of commands under the
control of one or more logical expressions. Since the
logical conditions typically depend upon values in the
data, commands executed in a LoopWhile cannot be
anticipated and expanded in SDTL.

InformBase

Table 2 shows informational commands that do not describe changes to the data. Although SDTL does

not include commands that analyze data, these commands can be transcribed verbatim in an SDTL script

with the Analysis command. Unsupported is used for commands that our Parser cannot translate into

SDTL. Invalid is used when the parser recognizes a command in the source language but its syntax does

not conform to expectations. NoTransformOp was created for commands in the source language that

do not play a role in SDTL. For example, R and Python install libraries that may change the operation of

https://doi.org/10.29173/iq979

9/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

commands. Even though the Parser has translated these commands into SDTL, the library may be

relevant information for some data users.

Table 2.

InformBase: Commands that provide information

Analysis
Describes an analysis command. An analysis command does not result in any data

transformation.

Comment Describes a source code comment.

Invalid
Describes an invalid command. A command is invalid if it uses incorrect syntax, or is

otherwise not allowed by the executing system.

Message Inserts message text in the SDTL file.

NoTransformOp

NoTransformOp is used for a command in the original script that provides important

information but does not have a function in SDTL. For example, “library()” in R loads

a package of R functions. Since the Parser detects the library, the SDTL will reflect

the library that is used, and commands derived from the library will be translated in

the SDTL script. However, it is useful to know which library is active for auditing the

R script, even if it does not perform any data transformations.

Unsupported
Describes an unsupported command. An unsupported command is valid syntax, but

not supported by the parsing application.

ExpressionBase

The SDTL types in Table 3 (ExpressionBase) are used in expressions, which may be numeric, text, date-

time, or logical. The most powerful of these types is FunctionCallExpression, which is a reference to the

Function Library discussed below.

VariableReferenceBase (Table 4) is a subcategory of ExpressionBase used to describe the variables used

in an expression.

https://doi.org/10.29173/iq979

10/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Table 3.

ExpressionBase: SDTL Types Used in Expressions

BooleanConstantExpression BooleanConstantExpression takes values of TRUE and FALSE.

DateTimeConstant
Describes a date or date-time combination using an ISO 8601

compliant string.

FunctionCallExpression An expression evaluated by reference to the Function Library.

GroupedExpression

A group of expressions to be evaluated before expressions

outside of the group. Used to control the order of operations in a

formula.

IteratorSymbolExpression
The name of an iterator symbol used as an index in describing

the actions of a loop.

MissingValueConstantExpression
A missing value constant. Some languages allow multiple missing

value constants.

NumberRangeExpression Defines a range of numeric values.

NumericConstantExpression A numeric constant.

NumericMaximumValueExpression Represents the largest numeric value supported by a system.

NumericMinimumValueExpression Represents the smallest numeric value supported by a system.

StringConstantExpression A text string.

StringRangeExpression Defines a range of string values.

TimeDurationConstant Describes a duration of time using an ISO 8601 compliant string.

UnhandledValuesExpression
Represents any values not previously handled (for example, in a

set of recode rules).

ValueListExpression Wraps a list of other expressions.

VariableReferenceBase SDTL types used to describe variables. See Table 4.

https://doi.org/10.29173/iq979

11/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Table 4.

VariableReferenceBase: SDTL Types Used to Describe Variables in Expressions

AllNumericVariablesExpression
An expression that represents all numeric variables in the

dataset, similar to `_all` in SPSS or Stata.

AllTextVariablesExpression
An expression that represents all text variables in the dataset,

similar to `_all` in SPSS or Stata.

AllVariablesExpression
An expression that represents all variables in the dataset, similar

to _all in SPSS or Stata.

CompositeVariableNameExpression
A composite variable name is used to describe a variable name

that is computed.

VariableListExpression

A list of variables, which may include variable names

(VariableSymbolExpression) and variable ranges

(VariableRangeExpression).

VariableRangeExpression
A list of variables in adjacent columns defined by the variable

names of first and last columns.

VariableSymbolExpression A reference to a variable.

Table 5 includes types that were created to represent complex properties of other commands. For

example, every type in CommandBase uses sourceInformation to show the original language of each

command and its location in the command script. AppendDatasets and MergeDatasets, which operate

on more than one file use types AppendFileDescription and MergeFileDescription to capture a number of

properties associated with each file.

https://doi.org/10.29173/iq979

12/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Table 5.

Types for Complex Properties in SDTL Commands

AppendFileDescription Describes files used in an AppendDatasets command.

DataframeDescription

Describes a dataframe in the consumesDataframe or producesDataframe

types. Provides the name of the data frame and a list of variables

(columns). DataframeDescription can also define dimensions in

dataframes that have hierarchical indexes, data cubes, or multi-indexes.

FunctionArgument
Describes the arguments in a function as specified in the SDTL Function

Library.

IteratorDescription
Describes an iteration process consisting of an IteratorSymbolExpression

and a list of values it takes.

MergeFileDescription Describes files used in a MergeDatasets command.

RecodeRule Describes how values will be recoded.

RecodeVariable Describes a variable that will have its values recoded.

RenamePair Variable names before and after a variable is renamed.

ReshapeItemDescription Describes a new variable created by reshaping a dataset from wide to long.

SortCriterion
Describes a criterion by which cases are sorted, including the variable

name and whether to sort ascending or descending.

SourceInformation
SourceInformation defines information about the original source of a data

transform.

ValueLabel Associates a label with a value in a categorical variable.

Conditional Execution by Row or by File/Dataframe

Statistical languages have some commands that are executed sequentially on every row and other

commands that apply to an entire file or dataframe. The Compute command illustrated above is an

example of the first type. Compute creates or modifies a variable that will appear on every row in the

data. New variables are usually computed from other variables on the same row, but we describe

calculations that aggregate across rows in our discussion of the “Function Library” below. In contrast,

https://doi.org/10.29173/iq979

13/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

commands that load or save files or modify metadata, such as data type and display format, do not

change the number or contents of rows in the dataframe.

The difference between row-level and file/dataframe-level commands becomes very important when

the action is conditional on the value of a variable or other parameter. Consider these commands in the

Stata language:

replace varY=3 if varX>5 /*** Version 1 *****/

if varX>5 replace varY=3 /*** Version 2 ****/

Although they appear to be the same, they have very different outcomes. The condition in Version 1, “if

varX>5”, is a qualifier within a Stata command (“replace”) that is executed sequentially on each row in

the dataframe. Some rows will be set to 3 and others will not be changed, depending upon the value

of “varX” on each row. In Version 2 the “replace” command is nested in an “if” command, which is a

program flow command designed for use in Stat scripts (“do-files”). The “if” command is not evaluated

separately for each row; it is evaluated only once using the value of “varX” on the first row in the

dataframe. Consequently, if “varX>5” is true for row one, “varY” is set to 4 for all rows, and if “varX>5”

is false for row one, no rows are changed regardless of the value of “varX” on other rows. Table 6

illustrates the results of these commands where only row 1 satisfies the condition “varX>5”.

Table 6. Examples of Conditional Execution by Row and Dataframe in Stata

Initial values

Version 1 (SDTL IfRows):

replace varY=3 if varX>5

Version 2 (SDTL DoIf):

if varX>5 replace varY=3

Row varX varY varX varY varX varY

1 9 11 9 3 9 3

2 4 11 4 11 4 3

3 1 11 1 11 1 3

SDTL includes two ways of applying conditions to commands. The SDTL command IfRows is used for

conditions that should be evaluated sequentially on every row. DoIf in SDTL is used for flow control in

scripts where the condition is evaluated once before executing a command or group of commands.

Both IfRows and DoIf can be applied to a group of commands, and both include an elseCommands

property for commands to be performed if the condition is false.

Function Library

Although the number of data transformation commands in statistical packages is small, the power of

these commands is magnified by “functions,” which are available in every language. Functions are

https://doi.org/10.29173/iq979

14/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

available in most computer languages as a convenient way to invoke common operations. In the same

way that a mathematical equation may use “sine(x)” to refer to the corresponding trigonometric

function, “sine(varX)” may be used in a statistical package to insert the sine of variable “varX” in a

computation or comparison. There are thousands of functions in statistical packages, and programming

C2Metadata parsers and updaters to reproduce all of them would have been an enormous job.

Fortunately, our goal is to describe data transformations not to perform them. We devised a simple

way to add an unlimited number of functions to SDTL with minimal impact on the code required to

translate a script into SDTL. This was accomplished by creating a Function Library, which serves as a

crosswalk between SDTL and the various statistical packages. The Function Library is a file that can be

maintained in a spreadsheet and accessed as a JSON file.

Functions in computer languages normally have two parts: a function name followed by parameters

enclosed in parentheses. The function invokes program code that replaces the function with a value

computed from the parameters. The computed value of a function may be a number, text, or logical

(Boolean) constant. For example, sine(varX) will return the sine of an angle equal to the value of varX,

and gt(varX, varY) will return TRUE if varX is greater than varY and FALSE otherwise. Each parameter is

used in a specific way by the computer code that evaluates the function.

Parameters may be specified in two ways. Sometimes, parameters are given in a defined order

separated by a delimiter, usually a comma, which is included even if the parameter is omitted.

Parameters may also be identified by name. For example, in Stata “std(varX), mean(10) std(3)” will

standardize the values of varX so that the transformed values have mean=10 and standard deviation=3.

In this case the first parameter (varX) is given by position, but the other two parameters (“mean” and

“std”) are specified by name. In SDTL parameters may be specified by position or by name. We

currently use EXP1, EXP2, EXP3, … as parameter names in SDTL, but these names are arbitrary and

meaningful mnemonics could be used.

Some functions operate on a list items of the same type, which makes them appear to have an

indeterminate number of parameters. For example, mean(varX, varY, varZ) would compute the mean of

three variables. To avoid parameter lists of indefinite length, the SDTL Function Library uses the

VariableListExpression and ValueListExpression types in SDTL. A VariableListExpression packages a list of

variables into a single SDTL type that is treated as one parameter in an SDTL function. A

VariableListExpression has a single property (variables) defined as a JSON array that can consist of any

combination of individual variables (VariableSymbolExpression) or variable ranges

(VariableRangeExpression).

The Function Library maps the names and parameters of SDTL functions to functions in other languages.

Every function is described with the SDTL name of the function and the order and names of its

parameters. The SDTL function is also mapped to the same function in SPSS, Stata, SAS, R, and Python.

This table compares functions that compute a random number from a uniform distribution in SDTL and

five other languages:

https://doi.org/10.29173/iq979

15/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

SDTL random_variable_uniform(EXP1, EXP2)

SPSS RV.UNIFORM(EXP1, EXP2)

Stata runiform(EXP1 EXP2)

SAS RANUNI(seed)

R runif(n, min=EXP1, max=EXP2)

Python numpy.random.uniform(low= EXP1, high= EXP2)

SDTL and most of these languages specify the minimum (EXP1) and maximum (EXP2) of the range of the

random number. In SAS the range is always 0 to 1, which is the default range in other languages. The

Function Library entry for SAS specifies that 0 and 1 are passed to SDTL as values for parameters EXP1

and EXP2. Computer programs often use mathematical formulas to approximate random numbers, and

the SAS version of this function allows users to specify a “seed” for its random number generator. Since

the seed is specific to the implementation in SAS, it is not included in SDTL. In R the “runif” function

creates a vector of random numbers of length “n”. We assume that the random number will be either a

single number used in an expression or a vector added to the dataframe as a new variable, which makes

this parameter unnecessary in SDTL.

The Function Library partitions functions into four groups corresponding to different SDTL commands:

Function Library

group

SDTL command Meaning

Horizontal Compute Calculates a value from variables on the same row.

Rows are processed sequentially.

Vertical Aggregate Calculates a new variable by aggregating across rows in

a group. Every row in the group has the same value.

Collapse Collapse Calculates a new variable by aggregating across rows in

a group in a new dataframe with one row per group.

Logical DoIF

IfRows

KeepCases

DropCases

Functions used in logical conditions.

https://doi.org/10.29173/iq979

16/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Horizontal functions operate sequentially by row using variables appearing on each row. Vertical and

Collapse functions operate on groups of rows by aggregating values within columns (see Figure 2).

Vertical functions used in an SDTL Aggregate command add new variables (columns) to a dataframe by

applying the result of a computation to every row in a group. The Collapse command does the same

computation, but it reduces the number of rows by creating one row per group. For example, suppose

that groups are defined by variable “YearsOfEducation,” and we compute mean(AnnualIncome). The

Aggregate command will add mean AnnualIncome to every row, and the Collapse command will create

one row for every value of YearsOfEducation including both YearsOfEducation and mean

AnnualIncome. Thus, Vertical functions do not change the number of rows in the dataframe, and

Collapse functions create a new dataframe with fewer rows.

Figure 2. Illustrations of Aggregate and Collapse

All functions have unique names in SDTL, but other languages sometimes use the same function name in

different contexts with different outcomes. A good illustration is a function for computing means, which

has three different meanings in both SPSS and Stata.

https://doi.org/10.29173/iq979

17/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

 Compute Aggregate Collapse

SDTL mean(EXP1) agg_mean(EXP1) col_mean(EXP1)

SPSS mean(EXP1)

Context: COMPUTE

mean(EXP1)

Context: AGGREGATE with

MODE=ADDVARIABLES

mean(EXP1)

Context: AGGREGATE

Stata rowmean(EXP1)

Context: generate, replace

mean(EXP1)

Context: egen

 “(mean)” statistic option

Context: collapse

Flow Control, Loops, and Macros

Statistical software packages include extensive programming capabilities. Stata and SAS have powerful

macro features, and R and Python are very capable programming languages. There are two ways of

handling these programming features in SDTL.

First, whenever possible the Parser will expand macros and other programming code into simpler

commands. For example, if a loop applies a Compute command to four variables, it can be converted

into four Compute commands. This may make the SDTL long and verbose, but it simplifies the work of

finding which commands affect every variable.

Second, SDTL does include types for describing loops (LoopOverList, LoopWhile), which are the most

common kind of flow control, and IteratorSymbolExpression was created to describe an index used in a

loop.

SDTL does not have arrays, which may be used in loops, but it does have functions that operate like

arrays. The VariableArrayDereference and ValueArrayDereference functions allow an SDTL script to use

an expression to select an entry in a list. The first parameter of each function points to the position of

an entry in a variable or value list given as the second parameter. The operation of these functions can

be illustrated by this simplified example, in which “[Age, Sex, Education, Income]” is a list of variable

names:

VariableArrayDereference(3, [Age, Sex, Education, Income])

The value of this function would be “Education”, which is the third item in the list. Since the contents of

the list is not stored anywhere, the full list must be repeated every time that the function is used.

However, the index parameter could be an IteratorSymbolExpression in a loop.

Appending, Merging, and Updating Datasets

The five languages covered by the C2Metadata Project offer a wide variety of ways of combining

datasets. AppendDatasets is used to concatenate rows (cases) from datasets that have the same

columns (variables) (Figure 3). MergeDatasets combines columns from datasets that have the same

https://doi.org/10.29173/iq979

18/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

rows. These operations are complicated by features that resolve conflicts, such as merging files with

overlapping column names or unmatched rows. Datasets are usually merged by joining rows with the

same keys, but some statistical packages will merge rows sequentially when keys are not specified.

MergeDatasets can also be used to update a dataset by replacing its current values with values from a

different dataset. Both AppendDatasets and MergeDatasets use subtypes (AppendFileDescription,

MergeFileDescription) to describe actions that apply to specific input datasets. For example, the merge

commands in SPSS and SAS allow users to rename variables, select variables, and select cases at the

time of the merge without changing the input dataset.

Figure 3. Appending Datasets

R (dplyr) and Python (Pandas) use “joins” like those in SQL to merge dataframes. Rows in the output

dataset are created by comparing one or more key variables specified in a “by” parameter. Joins in R

and Python are implicitly Cartesian joins that create every possible combination of rows with the same

keys. For example, caseID=2 is repeated in DS_A and caseID=1 is repeated in DS_B. The Cartesian join

of DS_A and DS_B by caseID is DS_C (Figure 4), in which there are two rows for both caseID=1 and

caseID=2. Note that caseID=3 and =4 are not included in DS_C, because they do not exist in both input

datasets. DS_C is the result of an “inner” join, and the unmatched rows can be included by specifying

“outer”, “left”, or “right” joins. Following the model of SQL, R and Python are agnostic about the order

in which the data are sorted, and all joins are Cartesian.

https://doi.org/10.29173/iq979

19/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Figure 4. Cartesian Inner Join

In SPSS, SAS, and Stata merging is often a sequential process on files that are sorted before they are

merged. Even when the merge involves matching on key variables, SPSS, SAS, and Stata require the

input files to be sorted before they can be merged, and the user must determine whether keys are

unique (one-to-one) or repeated (one-to-many or many-to-many). A sequential merge of DS_A and

DS_B without keys produces DS_D (Figure 5), which is very different from the result of a Cartesian join

(Figure 4).

Figure 5. Sequential Merge

https://doi.org/10.29173/iq979

20/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

SDTL uses three properties (mergeType, newRow, and update) to represent all of these possibilities.

These properties are found in MergeFileDescription, which means that they are specified for each input

dataset.

The mergeType property describes how rows from the input datasets are combined in the output data.

Most merge types (e.g. OneToOne, OneToMany) involve matching rows on key variables, which are

specified with mergeByVariables (in MergeDatasets) and mergeByNames (in MergeFileDescription).

Sequential merges assume that the input files are already sorted.

The newRow property determines when the rows contributed by an input file generate a row in the

output file. When newRow is TRUE, all rows in this dataset are included in the output dataset,

regardless of whether they were matched to another input dataset on the mergeByVariables. When

newRow is FALSE, only rows that have been matched are included. An inner join is represented in SDTL

by setting newRow to FALSE on all input datasets, and newRow is TRUE for all input datasets to describe

an outer join. Left and right-joins are created by using TRUE and FALSE on different inputs.

mergeType

Sequential Match rows from each input dataframe in the order in sequential order.

OneToOne Create one row for each value of the MergeByVariables. If a combination
of the MergeByVariables is repeated, only one row is matched. Rows
with repeated combinations of the MergeByVariables may or may not be
included in the output file depending on the NewRow property.

OneToMany Create a row in the output dataframe by matching rows in this dataframe
to every row in other dataframes with the same value of
MergeByVariables. Note that OneToMany implies that one of the other
input datarames is set to ManyToOne.

ManyToOne Create a row in the output dataframe by matching all rows in this
dataframe
to the one row in the other dataframe with the same value of
MergeByVariables.

Cartesian Create a new row in the output dataframe for every possible
combination of rows having the same value of MergeByVariables. This is
equivalent to a many to many merge.

Unmatched Create a new row for every row that cannot be matched on the
MergeByVariables

SASmatchMerge SAS uses a merging approach that combines matching keys and
sequential merges within groups.

https://doi.org/10.29173/iq979

21/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

newRow

TRUE Always include rows from this dataframe, even if the MergeFileVariables do
not match a row in any other dataframe.

FALSE Only include rows from this dataframe, if the MergeFileVariables match a
row in another dataframe.

There is even more diversity in the responses of different languages when the datasets to be merged

contain a variable (column) with the same name. R and Python follow SQL by including both variables

with modified names, which can be handled by using the renameVariables property in the

MergeFileDescription. However, SPSS, Stata, and SAS will include only one variable in the output data,

and they may use the omitted variable to update values in the included variable. The update property

of MergeFileDescription is used to specify how values from the omitted version of the variable will be

handled. If update is set to Ignore, a variable that is also found in the Master dataset will have no effect

on the output dataset. If update is set to FillNew, values from the repeated variable will only appear on

new rows not found in the Master dataset. UpdateMissing replaces only missing values in the Master

dataset, and Replace changes all values on matched rows in the Master dataset.

update

Master This dataframe is the Master dataframe.

Ignore If a column with the same name exists in the Master dataframe, ignore the
values in this dataframe.

FillNew If a column with the same name exists in the Master dataframe, use the
values from this dataframe only in new rows created from this dataframe.

UpdateMissing If a column with the same name exists in the Master dataframe, use values
from this dataframe when the value in the Master dataframe is missing.

Replace If a column with the same name exists in the Master dataframe, use values
from this dataframe.

ReshapeLong, ReshapeWide, and CompositeVariableNameExpression

All of the statistical packages covered by the C2Metadata project have commands to reshape files

between “wide” and “long” formats. Figures 6 and 7 illustrate the difference between wide and long

format for data describing a mother and her children. In the wide format (Figure 6) there is one row for

each mother, and each child is described by two variables, age and sex. Data for each child are

identified by including birth order in the variable name, e.g. age1, age2, etc. The wide format requires a

https://doi.org/10.29173/iq979

22/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

column for every variable for each child, and we must allow enough variables to describe the largest

family in the data. If one woman had 20 children, the dataset in Figure 6 would have 40 columns: age1,

sex1, …, age20, sex20. Consequently, datasets in wide format usually have many empty cells. In long

format, Figure 7, there is a row for each child and information about mothers is repeated on the rows

for each of their children. The long format includes an additional variable, birthOrder that uniquely

identifies children within each family. Since the information in each format is identical, the choice

between wide and long depends upon the types of analysis to be performed and convenience.

Figure 6. Wide Format

Figure 7. Long Format

The information in Figures 5 and 6 can also be stored in separate datasets for mothers and children by

using the motherID variable as a key for linking children to their mothers. In a relational database the

two-table approach would be used to remove repetition and “normalize” the database. However,

unlike SQL, most statistical analysis software cannot compute results on data contained in more than

one table. Data from the mothers table and the children table would need to be merged before any

analysis is performed.

SDTL includes features for operating on wide and long format data. The

CompositeVariableNameExpression is used to describe repeated variable names in wide-format data,

such as age1, age2, etc. Composite names consist of a “stub” (e.g. “age”, “sex”) and an index value.

Composite names are described in a ReshapeItemDescription, which is a complex property used in the

ReshapeWide and ReshapeLong SDTL commands.

https://doi.org/10.29173/iq979

23/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

The C2Metadata Project has implemented the ReshapeLong but not the ReshapeWide command. When

we convert data from wide to long, we know how many rows to create, because each row corresponds

to a set of identical variables described in the metadata file. But we cannot reshape data from long to

wide format without knowing the maximum number of columns to create, which is not included in the

metadata file of a long format dataset. Since the scope of the C2Metadata Project has been limited to

metadata-only operations, ReshapeWide is not currently supported.

Pseudocode Library and Translator

The Pseudocode Library is a simple and extensible way to create natural language versions of SDTL

scripts. Every type in SDTL consists of a set of properties. Each of these properties can be resolved into

text -- a variable name, a number, or a string. The Pseudocode Library is a set of templates for SDTL

types with text to include before and/or after each property in a command. Templates look like this:

 “starting text {property1} more text {property2} even more text”

The translation involves inserting text created from each property into the corresponding space in the
template, where property names surrounded by curly brackets. For example, the pseudocode
templates for the Rename command and the RenamePair type are:

Rename Rename variables: {renames}

RenamePair \n\t from {oldVariable} to {newVariable};

In this case, RenamePair is a complex type used to fill the renames property of the Rename command. If
we rename varA to varAlpha, the RenamePair becomes.

\n\t from varA to varAlpha;

and the Rename command becomes

Rename variables: \n\t from varA to varAlpha;

If we evaluate \n as a new line and \t as a tab, we get

Rename variables:

from varA to varAlpha;

Pseudocode templates for functions are included in the Function Library.

Limitations and Future Developments

The DDI Alliance has created an SDTL Working Group to manage SDTL as one of its suite of standards.

Modifications and additions to the SDTL standard will follow an orderly process with opportunities for

community review and a published calendar for new versions. This framework assures that SDTL will

evolve in response to new developments in source languages and new applications of the language.

https://doi.org/10.29173/iq979

24/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

The Function Library provides a simple way to expand the reach of SDTL without changing the language

itself. The Function Library can be updated to include new functions in SDTL or to map additional

functions in source languages to existing SDTL functions. In most cases, additions to the Function Library

do not require changes to the program code in applications that translate source languages into SDTL.

Version 1.0 of SDTL is being released with two limitations that are due to the limited scope of the

C2Metadata Project. First, the C2Metadata Project adopted a metadata-only approach. We assume

that the pre-transformation data are well described in a standard metadata schema, such as DDI or EML,

and we do not access the data at any time. For this reason, SDTL can describe reshaping data from long

to wide, but C2Metadata parsers do not support that command. When data are changed from long to

wide, the number of columns in the new dataframe depends upon the values of the index variables in

the original dataframe. The only way to know the range of these index variables is to inspect the actual

data, and this requires integration of SDTL into statistical analysis software. We hope that this

integration will happen in the future, especially for the open source packages R and Python.

Second, SDTL does not yet describe variables created by statistical analysis commands. SDTL was

created to describe data and not tables, graphs or other analytical results. Since statistical analysis

packages have many more analysis commands than data transformation commands, representing

analysis commands was not on the agenda of the C2Metadata Project. However, we acknowledge that

analysis commands can also produce data. For example, estimated regression models are often used to

construct predicted values and residuals. In view of the number and diversity of analytical commands,

SDTL may be linked to an external ontology of statistical tests, such as the STATO ontology (ISA

Commons, 2020).

SDTL was designed to document data transformations, and it is not intended to be an executable

language. SDTL provides enough information for a human to understand changes to a file or a variable,

but this may not be sufficient for a computer to perform these operations. In addition, a command

script may be translated into SDTL in more than one way. SDTL, like other complex languages, often

provides several methods for accomplishing a specific result. For example, the functions performed by

the SDTL Recode command can also be achieved by IfRows and Compute statements or by the cut()

function found in some languages.

Discussion

SDTL provides a new level of transparency for data processed and managed by statistical analysis

packages. SDTL was created to simplify the automated creation of provenance metadata at the variable

level. The C2Metadata Project is providing open-source code for translating SPSS, SAS, Stata, R, and

Python into SDTL, as well as code for translating SDTL into natural language (C2Metadata Project,

2020a). Software applications that create data catalogs, codebooks, and tools to reconstruct data

provenance can read SDTL rather than interpreting each of the different statistical languages. For data

producers, these tools simplify the process of describing the steps in preparing raw data for publication.

Data repositories will receive more detailed machine-actionable metadata to improve the

documentation their collections. Researchers will be able to understand how variables were created

regardless of the software used in their production.

https://doi.org/10.29173/iq979

25/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

References

Alter, G., Donakowski, D., Gager, J., Heus, P., Hunter, C., Ionescu, S., . . . Voldsater, O. (2020).
Automating the Capture of Data Transformation Metadata from Statistical Analysis Software.
ICPSR. University of Michigan. Ann Arbor MI. Retrieved from
http://hdl.handle.net/2027.42/156014

C2Metadata Project. (2020a). Gitlab Repository: c2metadata. Retrieved from
https://gitlab.com/c2metadata

C2Metadata Project. (2020b). Structured Data Transformation Language. Retrieved from
http://c2metadata.gitlab.io/sdtl-docs/

Cuevas-Vicenttín, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., & Leinfelder, B.
(2016). ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance. [Online].
Available: http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-
Documentation-trunk/ws/provenance/ProvONE/v1/provone.html

DDI Alliance. (2020). Structured Data Transformation Language. Retrieved from
https://ddialliance.org/products/sdtl/1.0

E.H. Fegraus, S. A., M.B. Jones, M. Schildhauer. (2005). Maximizing the value of ecological data with
structured metadata: an introduction to ecological metadata language (EML) and principles for
metadata creation. Bulletin of the Ecological Society of America, 86, 158–168.

IBM Corp. (2019). IBM SPSS Statistics for windows, version 26.0. Armonk, NY: IBM Corp.
ISA Commons. (2020). STATO: an Ontology of Statistical Methods. Retrieved from http://stato-

ontology.org/
Python Software Foundation. (2019). Python Language Reference, version 3.8. Beaverton, OR. Retrieved

from https://www.python.org/
R Core Team. (2013). R: A Language and Environment for StatisticalComputing. Vienna, Austria: R

Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
SAS Institute. (2015). SAS®9.4 Product Documentation. Cary, NC: SAS Institute Inc. Retrieved from

http://support.sas.com/documentation/94/index.html
StataCorp. (2020). Stata Statistical Software: Release 16.1. College Station, TX: StataCorp LP.
Vardigan, M. (2008). Beyond the codebook: Documenting survey research on the Web. Paper presented

at the International Conference on Survey Methods in Multinational, Multiregional, and
Multicultural Contexts (3MC), Berlin, Germany.

https://doi.org/10.29173/iq979
http://hdl.handle.net/2027.42/156014
https://gitlab.com/c2metadata
http://c2metadata.gitlab.io/sdtl-docs/
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
https://ddialliance.org/products/sdtl/1.0
http://stato-ontology.org/
http://stato-ontology.org/
https://www.python.org/
http://www.r-project.org/
http://support.sas.com/documentation/94/index.html

26/26 Alter, et al. (2020) Provenance metadata for statistical data: An Introduction to Structured Data Transformation Language (SDTL),
IASSIST Quarterly 44(4), pp. 1-26. DOI: https://doi.org/10.29173/iq979

Endnotes

1 University of Michigan
2 Metadata Technologies North America
3 Algenta Technologies
4 Norwegian Centre for Research Data
5 NORC
6 We show SDTL types in italic font beginning with uppercase, like Compute. Properties within types are
in italic font beginning with a lowercase letter, like sourceInformation.

https://doi.org/10.29173/iq979

