
SDTA: An Algebra for Statistical Data Transformation
Jie Song

University of Michigan
Ann Arbor, Michigan, United States

jiesongk@umich.edu

George Alter
University of Michigan

Ann Arbor, Michigan, United States
altergc@umich.edu

H. V. Jagadish
University of Michigan

Ann Arbor, Michigan, United States
jag@umich.edu

ABSTRACT
Statistical data manipulation is a crucial component of many data
science analytic pipelines, particularly as part of data ingestion. This
task is generally accomplished by writing transformation scripts in
languages such as SPSS, Stata, SAS, R, Python (Pandas) and etc. The
disparate datamodels, language representations and transformation
operations supported by these tools make it hard for end users to
understand and document the transformations performed, and for
developers to port transformation code across languages.

Tackling these challenges, we present a formal paradigm for
statistical data transformation. It consists of a data model, called
Structured Data Transformation Data Model (SDTDM), inspired by
the data models of multiple statistical transformations frameworks;
an algebra, Structural Data Transformation Algebra (SDTA), with the
ability to transform not only data within SDTDM but also metadata
at multiple structural levels; and an equivalent descriptive coun-
terpart, called Structured Data Transformation Language (SDTL),
recently adopted by the DDI Alliance that maintains international
standards for metadata as part of its suite of products. Experiments
with real statistical transformations on socio-economic data show
that SDTL can successfully represent 86.1% and 91.6% respectively
of 4,185 commands in SAS and 9,087 commands in SPSS obtained
from a repository.

We illustrate with examples how SDTA/SDTL could assist with
the documentation of statistical data transformation, an important
aspect often neglected in metadata of datasets. We propose a system
called C2Metadata that automatically captures the transformation
and provenance information in SDTL as a part of the metadata.
Moreover, given the conversion mechanism from a source statisti-
cal language to SDTA/SDTL, we show how functional-equivalent
transformation programs could be converted to other functionally
equivalent programs, in the same or different language, permitting
code reuse and result reproducibility, We also illustrate the possi-
bility of using of SDTA to optimize SDTL transformations using
rule-based rewrites similar to SQL optimizations.

CCS CONCEPTS
• Information systems→ Extraction, transformation and loading;
Data exchange; Mediators and data integration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM 2021, July 6–7, 2021, Tampa, FL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00
https://doi.org/10.1145/3468791.3468811

KEYWORDS
data transformation algebra, statistical data, data documentation
ACM Reference Format:
Jie Song, George Alter, and H. V. Jagadish. 2021. SDTA: An Algebra for Statis-
tical Data Transformation. In 33rd International Conference on Scientific and
Statistical Database Management (SSDBM 2021), July 6–7, 2021, Tampa, FL,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468791.
3468811

1 INTRODUCTION
Statistical data transformation is commonly performed on raw
input data to check data values, adjust outliers, re-scale selected
attributes, create summaries and aggregate columns, and even to
transform the structure of the data, through operations such as
pivoting. It is usually the core of data preparation for analysis by
data scientists, researchers, survey companies, government or even
the general public. Indeed, the "T" in "ETL" is frequently statistical
data transformation.

These data transformation operations are usually represented by
domain-specific transformation languages (DSTLs) associated with
transformation tools, the preference for which varies across user
communities. For clinical trials data, SAS is the dominant choice;
While for social science data, different sub-communities seem to
make different choices. Fig. 1 shows the number of data downloads,
by format, from Inter-university Consortium for Political and Social
Research (ICPSR).

Each DSTL has its own data model, semantic and syntactic rep-
resentations, and respective scope of transformation operations
supported. These disparities raise a communication and manipula-
tion barrier between languages. Given a complex transformation
task, users may either compose a series of transformations with a
chosen tool or reuse existing transformation scripts. However, it is
not easy for most users even to understand transformations speci-
fied in an unfamiliar language, since each language is so different.

Example 1.1. Pivoting data is a common transformation that
transposes data from multiple rows into columns of a single row,
providing a better summary of data. In Figure 2, we use three
alternative DSTLs, namely Stata, SQL Server and R, to create the
identical two-dimensional pivot data Tu for the number of people
in four age and gender groups from the source Tu.
• The embedded reshape function in Stata easily transforms
the long table Tu into a wide one by specifying the wide
keyword, the row variable i (Aдe), the column variable j
(Gender ) and the name of the column (Gender ) storing values
spanning the pivot table.
• There is no corresponding command in basic SQL. SQL
Server introduced the PIVOT operation in 2005. Since the
unique values of the column variable Gender cannot be cap-
tured by the pre-defined PIVOT command,Columns variable

109

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0001-5109-3700
https://doi.org/10.1145/3468791.3468811
https://doi.org/10.1145/3468791.3468811
https://doi.org/10.1145/3468791.3468811


SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

Figure 1: ICPSR data downloads by format (378,007 from Sep.
4, 2015 to Mar. 4. 2016)

F

Total

>20

Age

20

60<20

<20 30

Gender

>20

50

M

M

F
GenderMAge GenderF

20

6030

>20

<20

50

pivot

Tu

Tp

reshape wide Total, i(Age), j(Gender)Stata:    

SQL Server 
using pivot 
(dynamic creation):

DECLARE @Columns as VARCHAR(MAX)

SELECT @Columns =

COALESCE(@Columns + ', ','') + QUOTENAME(Gender)

FROM

   (SELECT DISTINCT Gender

    FROM   Tu

   ) AS T

ORDER BY T.Gender

DECLARE @SQL as VARCHAR(MAX)

SET @SQL = 'SELECT Age, ' + @Columns + '

FROM Tu

PIVOT

   (SUM(Total)

    FOR Gender 

    IN (' + @Columns + ')

   ) AS Tx

ORDER BY Age' 

EXEC(@SQL)

R using reshape2 and 
data.table libraries:

dcast(data=Tu, 

      formula=Age~paste0(“Gender”,Gender), 

      value.var=“Total”)

Generate 
pivoted column names 
based off data 
during runtime

Figure 2: An example of pivot table

is first declared to dynamically select these values at runtime
before pivoting. Note that the new column variable values
are updated as the concatenation of Gender with unique
Gender values to align with the Tu illustration in the figure.
• Unlike high level languages designed specifically for data
transformation, R is a more powerful low level general-
purpose programming language with powerful libraries for
data transformation and statistical manipulation. This ex-
ample leverages dcast function in the reshape2 library to
create a pivot table by specifying the input data table (Tu),
the cast formula (composed ofAдe andGender ) and the name
of the column (Total ) storing values spanning the pivot table.

The example above illustrates that even a simple common op-
eration can be represented in different ways shown in Figure 2
where SQL tries to compose from primitives while Stata and R
offers shrink-wrapped functions. This heterogeneity creates prob-
lems not just for multi-language manipulation, but also for many
basic common tasks. For example, when a user wants to understand
how some dataset was derived from the original source, she may
have to decipher a statistical manipulation script in an unfamiliar
language. Moreover, if a large data set undergoes a long sequence
of transformations there may be opportunities to improve perfor-
mance by rewriting the transformation script, but it is not usually
easy to figure out what rewrites make sense.

For database queries, effective optimization has been enabled by
relational algebra (RA). If we could find a similar algebra for sta-
tistical transformations, we could address all the issues mentioned
above.

However, developing such an abstraction is not easy. In classical
relational database theory, a relation is a set of tuples, the ordering

of which is not defined. Statistical data tables, while superficially
similar, because of their tabular form, are inherently different from
relations (and also from spreadsheets). A central characteristic of
statistical data is that both rows and columns are ordered, and the
ordering is essential for pattern tracking along the dimensions. This
ordering prevents us from using a simple set-oriented bulk algebra
like relational algebra. Due to the availability of ordering informa-
tion, rows/columns can be referenced by their position in the order,
which is not possible for rows in relational data. Even for columns,
it is typical, in the relational world, to use name rather than posi-
tion to identify a column. This is not the case in statistical data, so
maintaining and manipulating the order is critical. In consequence,
statistical packages attach more metadata to data elements than
relational databases. Therefore a model to manipulate statistical
data has to keep track of order and be more sophisticated about
metadata than the relational model.

We develop a unified representation of statistical data trans-
formations that is both simple and computationally efficient. The
intent is to cover the vast majority of transformations, even if not
all of them. Specifically, we develop an algebra, called SDTA, for
manipulating statistical data transformation in a generic data model.
We address two challenges: (i) how to define a generic data model
that is compatible with both the relational data model and statis-
tical data models, and allows information propagation along the
transformation flow, and (ii) how to define the operators in the
algebra that could preserve transformational information during
language translation to facilitate metadata documentation, and at
the same time benefit from optimization techniques as in relational
algebra. We then develop a declarative language, called SDTL, that
expresses the operators in SDTA.

Currently, both SDTA and SDTL do not support analysis opera-
tors in statistical languages.

The intellectual contributions of the paper are as follows:

• Based on the design considerations in Section 3, we build the
fundamentals of statistical data transformation by defining a
data model SDTDM and transformation model for statistical
data transformation.
• We define SDTA as an algebraic realization of the transforma-
tion model and further illustrate SDTA operators in Section
4.
• We define SDTL as a declarative statistical transformation
language in Section 5. The DDI Alliance, which maintains
international standards for metadata, has adopted SDTL as
one of its suite of products in 2020.
• On a collection of hundreds of diverse statistical transforma-
tion scripts, we experimentally evaluate the expressiveness
of SDTL, and the fidelity of translation through an SDTL
"bridge" between statistical languages in Section 6.
• In Section 7, we showcase that SDTA (and SDTL) is sim-
ple, extensible, reproducible and optimizable by use cases,
including data documentation, language translation and im-
plementation optimization. We have developed C2Metadata
(http://c2metadata.org) as a pipelined system for automatic
transformation documentation as provenance-aware meta-
data for scientific data, available for the same four languages.
Using SDTA and SDTL as bridges, we have built a mapping

110



SDTA: An Algebra for Statistical Data Transformation SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

between SDTL andmajor statistical languages (SPSS®, SAS®,
Stata® and R) for efficient language translation.

Finally, we present a discussion of related work in Section 8 and
conclusion in Section 9.

2 BACKGROUND
The heart of the relational data model is a well-defined small set
of algebraic operations over collections of tuples. (In this paper,
we will call these collections relations. We will not call them "ta-
bles", since statistical tables of interest to us are also tabular.) These
relational algebra operators provide the programmer with physi-
cal data independence, and facilitate efficient implementations of
bulk access. Our goal is to develop a similar algebra for statistical
manipulation.

Since the data is tabular in form, a first attempt may be to see if
we can use relational operators, and make any minor modifications
needed to these operators. However, we find several fundamental
differences that prevent us from following this path.

First, row order can matter in statistical tables. Some aggrega-
tions in groups, for instance, rely on the order of tuples in group.
Using Tu as an example, one may try to find the first entry whose
Total is greater than 30 for each Aдe group. Correspondingly for
insertion, users may specify the exact relative position in which
to insert a row. At first glance, matters may seem hopeless: if we
are forced to use arrays, then all the physical optimizations of rela-
tional algebra will not be possible, since they rely on the (multi-)set
property of relations. However, our requirement is weaker than
that: we do not need to maintain an array data structure: we just
have to handle relative ordering of rows when specified (which it
often may not be). This ordering information, when present, needs
to propagate through data transformations.

Tuples in a relation are identified by means of key attributes.
No two tuples in a table can have the same value for the primary
key, for example. While database management systems may permit
duplicate tuples temporarily for efficiency, these duplicates are not
semantically meaningful, they are not allowed by the model, and
are eventually removed, In contrast, statistical tables freely permit
duplicate rows. There is no concept of a key. If a tuple identifier is
required, it must be supplied externally. Otherwise, tuples can be
identified by relative position.

Turning to columns, we find similar issues. In relational algebra,
the number of columns in a relation is fixed. Changing this requires
schema update, which is a heavy-weight operation not supported
as part of standard data manipulation. In contrast, columns are
frequently added and deleted during statistical data manipulation.
Furthermore, columns may be grouped and aggregated, just as rows
are in relational algebra. Columns too may optionally be ordered.
Finally, some columns may not have names or unique names: we
can disambiguate between columns based on relative ordering.

We also have additional concerns not considered by relational
algebra. For example, databases frequently have missing values for
attributes. Relational databases use NULLs in such cases. While
the consistent interpretation of NULLs is a challenge, this is dealt
with at the database system level: there is no notion of a NULL
in the algebra abstraction. With statistical manipulation, handling
NULLs is a big concern, and is often specified in the definition

of operations in statistical transformation languages of interest.
In some languages such as SPSS and Stata, in addition to system-
level missing values, users may define missing values to their own
need for various data types, even for some selected data columns.
Computations involving missing values are also handled differently
by different languages. Such computations result in missing value in
SPSS. In some other languages, however, missing values are ignored
during computation if not specified specifically.

There are even more fundamental disparities between common
statistical languages: even in the basic logic used. SAS and Stata
have two-valued logic while SPSS and R have three-valued logic.
When it comes to logic involving missing values, SAS treats missing
values as FALSE (or negative infinity for numeric comparison)
whereas Stata treats missing values as TRUE (or positive infinity
for numeric comparison). SPSS and R treat them as a third logical
value, neither TRUE nor FALSE. Seemingly equivalent operators in
different languages are greatly affected by these disparities, often
leading to unexpected results.

3 DATA MODEL AND TRANSFORMATION
MODEL

Metadata can be used to document many aspects of data, including
data types and data structures. Our central idea is to use metadata to
capture the complexities of statistical data representation discussed
in the preceding section. Towards this end, we create SDTDM that
introduces adaptive level-dependent metadata. In SDTDM, meta-
data at different structural levels is regarded as a part of the model
that transforms along with the data.

In this section, we define the data model (SDTDM) and the trans-
formation model for generic statistical data manipulation. Data
tables and transformations in common statistical languages can
be converted to representation under these models minimizing
information loss.

3.1 The Data Model (SDTDM)
Assume that data belongs to the domain of atomic elements con-
taining alphanumeric strings. For metadata, we define a metadata
schema similar to XML schema that shapes metadata at different
structural levels, along with rules for metadata content and seman-
tics such as what attributes a metadata element can contain, which
sub elements it can contain and how many items can be present.
It can also describe the type and values that can be placed into
each metadata element or attribute as well as additional rules or
constraints. In Figure 3, we show the schema of a Meta Table. Due
to space limitation, we list a selection of common metadata names
and their cardinality constraints.

Meta Table is the logical data model for statistical data trans-
formation, a counterpart to the concept of a classical statistical
table. A meta table T = ⟨meta(T ),data(T )⟩ has table-level meta-
datameta(T ) and the table data bodydata(T ). The name of the table
is a member of the table-level metadata of string type. This meta-
data is optional according to the illustrative data model in Figure 3.
To retain the order of rows and columns, ordering functions can be
defined for the two types of structural elements respectively. When
converting a transformation from a source statistical language to
SDTA, table-level metadata such as source file, data format, source

111



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

has

1!!"

Table-level 
Metadata

id

Meta 
Table

sub

derived_from
Meta 
Row

Meta 
Column

data

missing

name

pos

index

…

derived_from

pos

data

Row-level 
Metadata

index

has

has

has

s
tru

c
tu

re
d

 b
y

1!!#

1..1

0..N

0!!#

1!!"

1..1

1..1

1..1

1..1

…

0!!#

1!!"

0!!#

1!!"

0!!#

1!!"

0!!"

0!!#

Column-level 
Metadata

name
0!!"

order_by

0!!#

…

0!!#

Figure 3: SDTA Data Model

language and provenance information can be defined when needed.
data(T ) contains Meta Rows structured by Meta Columns.

A (Meta) Column C = ⟨meta(C),data(C)⟩ is defined similarly
with column-level metadata meta(C) and the column data body
data(C). Since columns in statistical data are ordered, the order
position pos of the column is regarded as the default identifier of a
column, if no other identifiers (i.e., some required (set of) metadata
with uniqueness constraint) are available. Additional column-level
metadata such as multilevel indexes and missing values can be
defined that propagates through transformations. They could later
help with storage, searching and display of data. Meta Row is analo-
gies to Meta Column, the definition of which is ignored here for
space saving.

Definition 3.1. (Schema) Given a Meta Table T , we define
schema(T ) = ⟨schema(meta(T )), ∪r ∈data(T ) schema(r ),

∪c ∈data(T ) schema(c)⟩,

such that the schema of metadata T is composed of the schema of
its metadata and the schema of its rows and columns.

Note that meta rows/columns may have differing schemas due to
varying row/column-level metadata. Since the schema of meta table
is determined by the schema of table-level metadata, and the union
of the schemas of the rows and columns it contains, the schema of
a table is table instance dependent. Operations that add, remove, or
change metadata at any level may thus modify the schema. Such
a design decision in the definition of the data model facilitates
dynamic schema transformations that will be better elaborated in
later sections.
Example 3.1. In Figure 4a, we show a partial Meta Table repre-
sentation ofTu from Figure 2. In this example, pos can be regarded
as the unique identifier for rows/columns.

One consequence of using a SDTDM is that when converting
transformation from a source statistical language to SDTA or vice
versa, maximized functional equivalent conversion is achieved dur-
ing the propagationwhen abundantmetadata is specified. In Section
7, a systematic standardization of statistical transformations for

r1

r3

r2

r4

measuredimension dimension

c2c1 c3

TotalAge Gender

2

1

3

4

F

3

>20

1

20

60<20

<20 30

2

>20

50

M

M

F

Tu

row::data

Meta 
Column

row::pos

col::name

col::pos

Total

3

20

60

30

50

col::data

M
e
ta

 R
o

w

c3 col::index!""#$%&'()**+

measure col::index[::name=“type”]

row::index

tab::name

r1 1 <20 30F

(a) Meta Table

1

lib

name

tab

tab

name["Tu"] type[string]

row
index["r1"] type[string]
pos[1] type[int]

col

index["measure"]
name["type"] card cstr[(0, 1)]
type[string]

index["c3"]

type[string]
card cstr[(1, 1)]
uniq cstr[TRUE]
non-missing cstr[TRUE]

pos[3]
type[int]
card cstr[(1, 1)]
uniq cstr[TRUE]

name["Total"] type[string]

(b) Partial metadata element hierarchy

Figure 4: A Meta Table illustration of Tu

commonly used statistical languages is realized by the C2Metadata
system utilizing SDTDM.

3.2 The Transformation Model
To denote the transformation model, we start with the definition of
Transformation. A Transformation specifies the algorithm to obtain
a certain artefact of SDTDM, which is the result of the Transforma-
tion, starting from other existing artefacts, which are its operands.
Normally the artefact produced through a Transformation is a meta
table (considered at a logical level as a mathematical function).

Definition 3.2. (Transformation) Suppose that O denotes the set
of operators applicable to transform meta tables. Given a set of
input meta tables T = {T1,T2, ...} and a transformation operator
op ∈ O , the derived meta table(s) Tr can be obtained by

Tr ← op(T).

op can be operators defined in SDTA or other generic operators
that operates on meta tables.

Transformations defined in Definition 3.2 may introduce incon-
sistency in metadata unintentionally such that the metadata is not
correctly describing the state of data in the derived meta table(s).
Example 3.2. The insertion of a column using SDTA operator
AddCol at the ith position of a meta table (i.e., Tu in Figure 4 and
i = 3) affects the positional order of the column originally at this
position and the subsequent columns as depicted in Figure 5. Sup-
pose that the unnamed index is a required metadata for all columns
and the value of the index should be unique, the requirements are
not satisfied there forth.

In our design of operators in SDTA, we deploy a similar idea
that isolates data manipulation from metadata manipulation to the
maximum extension in case metadata is not the operational interest

112



SDTA: An Algebra for Statistical Data Transformation SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

of users. We thus define Metadata-harmonic Transformation for
consistent metadata for data in the derived meta table(s).

Definition 3.3. (Metadata-harmonic Transformation) Suppose
Om ⊂ O is the set of operators that manipulates metadata only,
Vm is the set of metadata validation rules. Given a set of input
meta tables T = {T1,T2, ...} and a transformation operator op, the
metadata-harmonized meta table(s) Tr derived from applying op is
then

Tx ← op(T)

Tr ← {opn (...op2(op1(T )))|

∧
v ∈Vm

validate(v,T ) = TRUE,T ∈ Tx,opi ∈ Om }.

The metadata of meta tables in Tr should correctly describe their
respective data and the process to derive the data. We name the
chained metadata Transformations opn (...op2(op1(.))) deriving the
metadata-harmonized metadata Tr as metadata inconsistency reso-
lution plan.

Additional chained metadata operations could harmonize incon-
sistencies in metadata to ensure that the metadata for the output
meta tables is accurate before propagation to the next transforma-
tion. In this case, default or customized metadata validation rules
and post-Transformation metadata inconsistency resolution plans
can be pre-defined for operators possible to introduce metadata
inconsistencies.
Example 3.3. Suppose that type, cardinality constraint, unique-
ness constraint and non-missing constraint are defined for the
unnamed index of columns such that every column must have a
unique string-typed unnamed index. Four possible metadata valida-
tion rules are (1) whether the value of the unnamed index is a string,
(2) whether every column has one unnamed index only, (3) whether
no duplicated unnamed index values exist and (4) whether the value
of the unnamed index is non-missing. Continue with Example 3.2,
the first two validation rules are violated after applying AddCol,
op1 adds the unnamed index to metadata (i.e., op1 =AddMetadata)
of the inserted column. As meta table T 1 violates the fourth check
rule, update its value with a unique non-missing value (i.e., op2 =
UpdateMetadata) as T 3. The process is depicted in Figure 5.

4 SDTA
Statistical data transformations are accomplished by means of an
algebra that operates on the SDTDM data model. The algebra is
inspired by relational algebra and adapted to the analysis and trans-
formation needs of general statistical operations. Next, we formally
define a set of primitive operators in SDTA. Rather than simply
defining counterparts within SDTA for six basic relational algebra
operators (ρ, σ , π , ×, ∪, −), we define operators for common statis-
tical operations. Most of the operators are composition or variants
of the operators found in classical relational algebra adapted for
meta table components.

Transformation on statistical data mainly manipulates three
structural components: columns, rows and metadata, typically only
one of these at a time. The set of basic SDTA operators operating on
the SDTDM data model focuses on four aspects: the independent
manipulation of (i) columns and (ii) rows, (iii) the manipulation
involving the change of the table structure (both columns and

rows), and (iv) metadata manipulation.The change of metadata
is minimized for operators that make changes to the first three
aspects, among which the orders of rows and columns are updated
as identifiers.

The information flow across elements in the meta data schema
permits data-metadata interaction and conversion.

4.1 Syntax
SDTA permits the declaration of variables that can range over sets
of elements of the same type at the same level as depicted in nodes of
Figure 3.We use a path like syntax, inspired by XPath [8], to identify
and navigate elements in a Meta Table along the SDTDM hierarchy.
We categorize two types of elements : (i) structural elements: meta
table, meta row and meta column and (ii) descriptive elements:
metadata elements at different levels.

Definition 4.1. (Element Selection Notations) An element is se-
lected by following a path. Suppose the set of element types in
schema(T ) is E, the set of structural element types Es = {tab, row,
col} ⊂ E and the set of descriptive element types Em = E \ Es .

(1) Structural element selection, denoted by x → y, where
x ,y ∈ Es∪{⊥}, selects structural elementsy that are children
of structural element x . When x =⊥, it selects the root struc-
tural element y. When y =⊥, it selects all children structural
elements of x .

(2) Descriptive element selection, denoted by x :: y, x ∈ Es ,
y ∈ Em∪{⊥}, selects descriptive elementsy that are children
of structural element x . When y =⊥, it selects all descriptive
elements that are children of x .

(3) Predicates, denoted by [p], are used to find a specific element
or an element that contains a specific value. They are always
embedded in square brackets.

Note that SDTDM can be further extended for “higher-order"
and “lower-order" elements depending on the data structural need
and description need. In SAS, for instance, there is a definition of
data library, which specifies a collection of data, similar to relations
in RDBMS. We can then define “higher-order" structural elements,
i.e. meta lib L = ⟨meta(L),data(L)⟩ for a collection of meta tables.
Lower-order extensions aims to help with completion of metadata
descriptions. The metadata hierarchy in Figure 4b, for instance,
defines meta-metadata value, type, card_cstr and uniq_cstr for
metadata pos of column Total . Even more lower level descriptive
elements (i.e., value and card_cstr for index name of column
Total ) could develop along the hierarchy if necessary.
Example 4.1. Given a partial metadata hierarchy example of meta
table Tu in Figure 4b, we show some path expressions for its ele-
ments selection.

(1) Select the meta table named “Tu":
tab[:: name = “Tu”]

(2) Select the name of meta columns that have integer typed
structural element children of the meta table named “Tu":
tab[:: name = “Tu”] → col[:::: type = int] :: name

The selected elements are sorted by default based on the sorted
order of the lowest-level structural elements they belong to.

113



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

1 2

50

c3

Total

20

measure

60

4

r1

r3

r2

r4

dimension dimension

c2c1

Age Gender

2

1

3

4

F

3

>20

1

24

62<20

<20 31

2

>20

53

M

M

F 30r1

r3

r2

r4

measuredimension dimension

c2c1 c3

TotalAge Gender

2

1

3

4

F

3

>20

1

20

60<20

<20 30

2

>20

50

M

M

F

Tu T2

Add
Meta

50

c3

Total

20

measure

60

4

r1

r3

r2

r4

dimension dimension

c2c1 c4

Age Gender

2

1

3

4

F

3

>20

1

24

62<20

<20 31

2

>20

53

M

M

F 30

50

c3

Total

20

measure

60

4

r1

r3

r2

r4

dimension dimension

c2c1

Age Gender

2

1

3

4

F>20

1

24

62<20

<20 31

2

>20

53

M

M

F 30

T1

Add
Col

col::pos

53

c4

Total

24

62

4

r1

r3

r2

r4

measuredimension dimension

c2c1 c3

Age Gender

2

1

3

4

F

3

>20

1

20

60<20

<20 30

2

>20

50

M

M

F 31

Update
Meta

Order
Col

T3T4

1

2 77>20

<20 93

Aggr
Col

T5

col::index[name::NULL]

3

row::pos

col::name

Figure 5: A meta table transformation examples

4.2 Add, Drop, Keep And Order Rows and
Columns

Unlike relational theory, the columns and rows of statistical data are
ordered, the preservation of ordering information after transforma-
tion is possible with the help of metadata. Since the operations on
rows and columns in this subsection are alike, we define add, drop,
keep and order operators for columns only. Analogous definitions
for rows are hidden for space saving purpose.

AddCol and DropCol, denoted πc and πc , is a pair of operators
that complements each other. The former add a data column at a
particular position while the latter drops data column(s).

Definition 4.2. (AddCol) LetT be aMeta Table,v be an ordered list
of values such that |v | = MAX (row :: pos) and i ∈ NMAX (row ::pos)
. AddCol adds column data v at position i to T as

Tr = πcv,i (T ).

v could be an ordered list of constants, or derived from applying
statistical functions to elements of T . This operator increments
col :: pos by 1 for all columns whose col :: pos >= i , and then adds
col :: pos = i to the inserted column.

Example 4.2. To derive T1 in Figure 5, add up Total value with
row order for each row as the values of the new column inserted
as the third column of T 1 such that

T 1 = πccol [::name=“Total ”]::data+row ::pos,3(Tu).

The column data in this example is derived from both data and
metadata.

Definition 4.3. (DropCol) Let T be a Meta Table, cx be a unique
identifier of a column ofT . DropCol drops column(s) c1, c2, ... from
T as

Tr =

πc
(c1,c2, ...)

(T ).

This operator decrements col :: pos of the remaining columns
by number of columns in (c1, c2, ...) whose col :: pos < i .

Note that AddCol and DropCol cannot be imitatedwith canonical
projection which requires the knowledge of the schema of the
columns in the input and/or output meta table, i.e., the column
names. As for AddCol and DropCol, only column identifier of the
columns directly involved is necessary. Other columns are copied
from the input meta table.

KeepCol is analogous to Selection (σ ) in RA, but defined for
columns.
Definition 4.4. (KeepCol) Let T be a Meta Table, p be a well-
formed Boolean keep condition. KeepCol keeps column(s) ofT that
satisfy condition p as

Tr = σcp (T ).

Statistical languages, in particular, have heterogeneous default
ordering comparison rules even for the same type of data as men-
tioned previously. With order being an inherent concept of SDTDM
and a common need, we make frequent use of the OrderCol op-
erator. Some RDBMSs readily provide an ordering or numbering
operators[25]. Some have an inherent numbering feature as they
operates on ordered relations [6].
Definition 4.5. (OrderCol) LetT be aMeta Table,ox be an ordering
pair ⟨vx , compx ⟩, where vx is a list of values such that |vx | =
MAX (col :: pos) and compx is an comparison function for ordering
vx . OrderCol reorders columns of T by o1,o2, ... as

Tr = ωc
(o1,o2, ...)

(T ).

The ordering function can be a list of elements from column-level
schema with their respective comparison function. This operation
updates col :: pos by the newly sorted order instead of physi-
cally moving the rows. Other operators may behave in an order-
preserving way if the argument taken is ordered. Otherwise, it
behaves in an order-cavalier way. We do not extensively discuss the
difference between the two here. For the order-preserving version
of the operators, the derived meta tables follow a natural order
defined for the input meta table(s).

Example 4.3. In Figure 5, columns ofT 3 are ordered by column in-
dex named “type" and the stringtified row data whose pos is 1 such
that o = (⟨col :: index[:: name = “type”], ⟩, ⟨str (row[:: pos = 1] ::
data), ⟩). For strings, the default comparison function performs a
case-sensitive ordinal comparison. Alternatively, pre-defined cus-
tomized comparison functions can be used for varying ordering
needs.

4.3 Aggregate Rows and Columns
In statistical analysis, other than the original data, summary data
information is a primary feature achievable by statistical aggrega-
tion functions such as MAX, AVG, MEAN. Extending GROUP BY in

114



SDTA: An Algebra for Statistical Data Transformation SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

RA, in addition to the vertical aggregation (column aggregation) in
relational algebra, horizontal aggregation (row aggregation) is also
a common practice. Here we define aggregation with an optional
grouping clause for columns, omitting similar definition for rows.
We further define an extensible function library for complex statis-
tical computation need of statistical data in addition to the simple
aggregation functions mentioned above. The details are elaborated
in the full documentation of SDTA.

Definition 4.6. (AggrCol) Let T be a Meta Table, cx be a column
specified by a unique identifier and fx be a column-wise aggrega-
tion function, AggrCol aggregates f1, f2, ... over groups specified
by unique value combinations of c1, c2, ... as

Tr =(c1,c2, ...) γ
c
(f1,f2, ...)

(T ).

This operator updates col :: pos of Tr columns following order
(c1, c2, ..., f1, f2, ...). The order of rows are sorted by the values of
(c1, c2, ...).

Example 4.4. For T 4 in Figure 5, the Transformation below com-
putes the in-group sum of row order and value of the column named
“Total" for groups categorized by values of the column named “Age".

Tr =(col [::name=“Aдe”]) γ
c
SUM (col [::name=“Total ”]).

4.4 Join and Reshape
We further define Join and Reshape operators that manipulates data
only. The order of columns and/or rows in the result are often not
in the desired order. They can thus be combined with subsequent
OrderRow, OrderCol operators.

The join operation is similar to the join in relational algebra.

Definition 4.7. (Join) Let T and S be Meta Tables, kx as a column
specified by a unique identifier, regarded as the join key (by default
the list of join keys are the column intersection ofT and S). Consider
each pair of rows rt from T and rs from S by looping over rows in
T and then in S in order, if rt and rs have the same value on each of
the columns specified by C , add a row r to the output Meta Table
Tr , where r has the same value as rt on T and r has the same value
as rs on S . The Join operation can be represented as

Tr = S ▷◁(k1,k2, ...) T .

Apart from column- or row- wise operators, the reshape oper-
ator interacts with both rows and columns by converting rows
into columns and vice versa. When called with aggregation func-
tions, it provides a close comparison of specific columns or rows
for statistical inspection. In other cases, it prepares data for down-
stream analysis that requires specific input data format, such as
repeated measures data using approaches like repeated measures
ANOVA/GLM (the multilevel model) or the linear mixed model.
This class of operation has no unified reference, commonly known
as pivot/unpivot, transpose, wide to long/long to wide in different
DSTLs, each supports similar functionalities with different support-
ing power. Creating two-way (like SQL Server PIVOT operator)
or multi-way aggregation table (like the more powerful long to
wide operator) and its reverse operation can be achieved through
this operator. Here we show ReshapeToCol, the reverse operation
ReshapeToRow is suppressed due to space limitation.

Definition 4.8. (ReshapeToCol) Let T be a Meta Table, cx be the
column kept, idxx be the index column whose values are category
labels and vx be column whose values associated with category
labels to be reshaped into new columns. ReshapeToCol restructures
values of v1,v2, ... into output Meta Table Tr whose new columns
are categorized by unique combinations of values of idx1, idx2, ...
as

Tr =(c1,c2, ...),(idx1,idx2, ...) λ
c
(v1,v2, ...)

(T ).

This operator adds a col :: index named by col :: name for each
idxx column of T to Tr . col :: pos and row :: pos are sorted such
that rows and columns are ordered by tuples consists of value
permutations of (c1, c2, ...) and (idx1, idx2, ...), respectively.

The operator encompasses a dynamic conversion from data to
metadata.

Example 4.5. We represent the pivot transformation in Figure 2
as

Tp = ρcol ::name,“Gender ”+col ::index[::name=“Gender ”](

([::name=“Aдe”]),([::name=“Gender ”)]λ
c
([::name=“Total ”])(Tu)).

ρ updates the names of columns by values of the index named
“Gender" prefixed by “Gender".

4.5 Manipulate Metadata
As mentioned before, data manipulation is designed to be isolated
from metadata manipulation to the greatest extent. The derived
meta table(s) cannot inherit metadata of input meta table(s) directly
as they do not accurately describe the derived data. By defining
metadata check rules and metadata inconsistency resolution plans,
which can often be predefined for effort saving, metadata of the
derived meta table(s) can be corrected by metadata-harmonic trans-
formation. To manipulate the metadata of Meta Tables, we define
three operators: CreateMeta, DeleteMeta and UpdateMeta.

Definition 4.9. (CreateMeta) Let T be a Meta Table, CreateMeta
adds metadata element e to T as

Tr = αe (T ).

Definition 4.10. (DeleteMeta) Let T be a Meta Table, DeleteMeta
deletes metadata e from T as

Tr =

α

e (T ).

Definition 4.11. (UpdateMeta) LetT be a Meta Table. UpdateMeta
updates metadata e of T by e ′ as

Tr = ρe,e ′(T ).

Example 4.6. To resolve the metadata inconsistencies in T 1 intro-
duced from AddCol (shown in Figure 5), we apply AddMeta and
UpdateMeta to add and assign “c4" as the value of the unnamed
index of the third column. The cardinality, uniqueness and non-
missing value constraints of the column are then satisfied.

T 2 =αcol [::pos=3]::index[::type=str inд&::card_cstr=(1,1)&
::uniq_cstr=TRU E&::non-missing_cstr=TRU E](T 1)

T 3 =ρcol [::pos=3]::index,“c4”(T 2)

The metadata operators above are defined for meta tables. For

115



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

Table 1: Major transform commands supported by SDTL

dataset level load, save, rename, create, merge,
match, transpose, format display

column/variable
level

recode, rename, aggregate, compute,
delete, label, sort, missing value, join

row/case level select, sort, add, delete, aggregate
cell level update, label
procedural if-then, do repeat loop

“higher-order"metadata concepts ofmeta table, meta library/database,
set of meta libraries/databases, etc., and associated notations, the
same set of metadata manipulation operators can be generalized.

5 SDTL
We further propose a declarative language SDTL for statistical data
transformation based on the algebraic operators defined for SDTA.

SDTL is defined by the Convention-based Ontology Generation
System (COGS) [10] information model in JSON format. It supports
the most basic and widely used data transformations in four main
statistical languages from major data production projects including
the General Social Survey , the American National Election Study
ICPSR and DataOne . Each operation is bundled with a natural
language interpretation template for better human understanding.

The majority of SDTL commands are composite operations de-
rived from nested SDTA operations, providing shortcuts for com-
monly used transformations of statistical data, permitting code
reuse and sharing with ease. There are five major categories of op-
erators manipulating: (i) input/output, (ii) data structure, (iii) data
contents, (iv) change of metadata and (v) procedural control. We list
a few commands for each category in Table 1. New operators based
on SDTL and/or SDTA operators easily can be extended. SDTL
also defines statistical computing functions in multiple categories
available in an extensible function library. It supports arithmetic
operations, logical conditions, aggregation and collapse operations,
etc. The SDTL function library maps functions in other languages
into their SDTL equivalents. Since all functions follow the same
basic syntax, applications that parse other languages can translate
functions into SDTL with a minimum of programming code.

An important Expression in SDTL is FunctionCallExpression
calling functions defined in the function library. Current function
library defines string operators, Boolean operators, validation op-
erators, conditional operators, statistical operators, etc. Statistical
functions span a wide variety of commonly adopted in statistical
analysis used in major statistical languages. Some of them work on
individual data cells, such as missing_value that convert the cell
value into missing value. Aggregation functions are generalized to
make horizontal and block aggregation possible, in addition to the
traditional vertical aggregation in SQL. An example of the horizon-
tal aggregation function working on rows is row_first, finding the
first non-missing value among values of a range of columns for each
row. Another set of popular statistical functions is the collapse func-
tion creating summary statistics of block data. col_sd is a simple
collapse function that computes the standard deviation of multiple
columns within group. Order-dependent functions are also care-
fully defined. A function that computes the difference between the
current row and its precious row of an attribute is order-dependent.

Other functions such as running sum and running average are
cumulative aggregates that are both order-dependent and size-
preserving. On the other hand, a function that takes the first n
values of an attribute is order-dependent but not size-preserving.
Order-dependent column-wise functions are also defined for rows.

The DDI Alliance, which maintains international standards for
metadata, has adopted SDTL as one of its suite of products. DDI
metadata is widely used by data repositories serving social sci-
ences and natural sciences for data discovery tools, catalogs, and
codebooks. SDTL provenance can be inserted into existing data
derivation fields in the DDI metadata standards. The DDI Alliance
will assure that SDTL is maintained and expanded in an orderly way.
More details are available at the project website (http://c2metadata.
gitlab.io/sdtl-docs/master/) and in [1].

6 EXPERIMENTAL EVALUATION
Given a statistical transformation script, we would like it to be
represented in SDTA in its entirety. We seek to evaluate experi-
mentally the expressiveness of the SDTA operators. Can they indeed
capture statistical transformations used in practice? Second, we
would like to know that there was no loss of information in this
representation. Can we recover the original script from the alge-
braic representation? Or equivalently, can we correctly derive an
equivalent script in a different language? We call this fidelity.

In this section, we evaluate the expressiveness and fidelity of
SDTL for real scripts in SAS and SPSS, two of the more popular
languages.

6.1 Data
We focused on the social science domain, because it is rich in pub-
lished transformation scripts, and because we have familiarity with
this domain. We collected test datasets from multiple public data
sources where data are published with transformation scripts in
either SAS or SPSS. Some sample scripts are drawn from Gen-
eral Social Survey (GSS), the National Survey of Family Growth
(NSFG) and the American National Election Study (ANES) used
in their data preparation workflows. Other samples are used at
ICPSR, DataONE, and journals like the American Economics Re-
view that require authors to deposit program code in conjunction
with replication datasets. In Figure 6, we show the descending num-
ber of commands (in log scale) by command category for 4,185
SAS commands and 9,087 SPSS commands respectively from test
sample scripts. For both languages, commands involving conditions
(CONDITIONAL operations for SAS and IF for SPSS) are more than
any other category of commands, followed by commands involv-
ing column computations (CONDITIONAL ASSIGNMENT, ARRAY
ASSIGNMENT, etc for SAS and COMPUTE for SPSS). The majority
of commands are statistical computations at column and row lev-
els, and metadata manipulations at column, row and table levels,
in addition to common flow controls (by loops and conditions).
SQL-style manipulations, such as aggregation and join, are rare.

6.2 Expressiveness
To examine the expressive power of SDTL, we test the accuracy
of SDTL Translator translation at command level. More specifi-
cally, for all commands collected, we define translation accuracy

116

http://c2metadata.gitlab.io/sdtl-docs/master/
http://c2metadata.gitlab.io/sdtl-docs/master/


SDTA: An Algebra for Statistical Data Transformation SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Figure 6: Command summary of test scripts in SAS (left) and SPSS (right) Figure 7: C2Metadata workflow

(a) Graphical visualization at dataset level (b) Codebook setting at variable level

Figure 8: Transformation Tracking Examples

SAS

SQL

R

SPSS

SDTL

Stata

SAS

SQL

R

SPSS

Stata

Figure 9: Bridged translation vs.
pairwise translation

for command category c as

ACC(c) =
|Commands in c correctly translated to SDTL|

|Commands in c | .

Correct translation means that the Lexer reads the command syntax
code without error, the Parser creates abstract syntax tree (AST)
without error, and the AST walker outputs SDTL consistent with
the original command. When an error occurs, the command in the
source language is kept with corresponding error message. Though
system may continue operating to completion, we consider such
translations as failures. We test the accuracy of translation for SAS
and SPSS respectively.

The stacked bar charts in Figure 6 depict commands correctly
translated in green and wrongly translated in red. Some of the all-
red command categories, ATTRIB STATEMENT in SAS for instance,
are those whose translations are not yet supported in the current
version of the corresponding language translator. SDTL translators
for SAS and SPSS commands have an overall accuracy of 86.1%
and 91.6% including unsupported categories, and 88.6% and 91.6%
excluding unsupported categories. Command categories involving
statistical computations have a relatively lower accuracy (less than
88%) for both languages due to limited scope of function library.
Current implementation of function library supports commonly
used statistical computation only. To improve accuracy, long tail
operations can be easily added to the function library. Another
factor affecting accuracy is the limited support for command pa-
rameters. Not all parameters have their equivalents in our SDTL
implementation, even if they are theoretically expressible in SDTA.

6.3 Fidelity
We test the validity of using SDTL as the bridge for statistical lan-
guage translation from the source language to the target language
as mentioned in Section 7.2. To eliminate the effect of erroneous
translation in the first translation phase that converts commands
in the source language to SDTL, we define the fidelity as

FID =
|SDTL commands correctly translated to target|
|SDTL commands correctly translated from source| .

The fidelity is tested for two cases: translation from (1) SAS and (2)
SPSS to SDTL and then back to SPSS.

For the first case, we have no access to the ground truth of
functionally equivalent SPSS to all SAS commands collected. We
evaluate whether the same transformed data can be reproduced
from input data using the command in the source language and
the translated command in the target language. If it is a hit, these
commands are functionally equivalent. As not all commands tested
for expressiveness have associated data available, we selected 134
SAS commands among commands with data, all of which have been
correctly translated to SDTL. During the translation from SDTL to
SPSS, a fidelity score of 85.1% is achieved. Part of the problem is
caused by unrecognized parameters in SDTL.

In the second test case, we compare whether the converted com-
mand is the same as the input command for identical source and
target languages. Among all SPSS commands correctly translated to
SDTL, almost all can be converted back to their functionally equiva-
lent commands in SPSS, if not to the original commands. This high
fidelity is ensured by reversing the conversion mechanism from
the source language to SDTL.

117



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

7 USE CASES
In the preceding section, we showed that SDTA does a very good
job of representing statistical transformation programs seen in prac-
tice. However, this representation has value only if it is beneficial in
some way. In this section we present several application scenarios
where this is indeed the case. We have already built substantial
systems for the data provenance and language translation applica-
tions discussed next. After that, we briefly discuss three other uses:
execution optimization, data integration and dataset search.

7.1 Transformation Documentation
As the research community responds to increasing demands for
public access to scientific data, the need for improvement in data
documentation has become critical. Accurate and complete meta-
data is essential for data sharing and interoperability [13]. However,
the process of describing and documenting such data has remained
a tedious, manual process even when data collection is automated.

Researchers in many fields use statistics packages for data man-
agement as well as analysis. These packages, however, lack tools for
documenting variable transformations in the manner of a workflow
system or even a database. At best, the operations performed by the
statistical package are described in a script, which more often than
not is not even available to future data users. Different statistics
packages differ in data model, transformation representation and
scope of transformations covered; complicating the understanding
of the transformation process.

We have launched C2Metadata [37] as a pipelined system for
automatically documenting transformations as provenance-aware
metadata for scientific data, available for four major statistical lan-
guages: SPSS, Stata, SAS and R. A Python version is under devel-
opment. The original metadata is updated with transformation
information represented in SDTL regardless of the original lan-
guage used. The pipelined modular architecture of C2Metadata,
comprising four modules, is shown in the grey area in Figure 7,
namely SDTL Translator, Pseudo-code Generator, XMLUpdater and
Codebook Formatter. These modules convert the source language
commands to SDTL representations, translate SDTL commands to
natural language descriptions, update the metadata in XML formats
and create a human-readable codebook for online access.

Apart from the revised documentation, C2Metadata allows track-
ing of the processed transformations at four different levels: dataset
level, variable level, case level and cell level, in multiple settings
and transformation representations, along the lineage graph. Figure
8a shows the tracking of the transformation of the sample at the
dataset level in a graphical setting, where each node is a dataset after
one step of transformation. Here we present the transformation by

a_1

a_2

a_3

a_4

a_5

A (SAS)

y_1

y_2

y_3

y_4

unsupported

Y (SDTL)

b_1

b_2

b_3

b_4

B (SPSS)

Figure 10: Translation illustra-
tion from SAS to SPSS via SDTL

the original SPSS representation. By clicking on the node, the inter-
mediate transformation result will expand for inspection. Variable-,
case-level and cell-level give more provenance information of the
object of interest at the current stage or along the transformation
trace. An example of the tracking of variable Partycare1 is shown in
Figure 8b in a codebook setting. In this scenario, all transformations
applied to this variable are represented by the original language
(SPSS), SDTL and a human-readable natural language description.

We are extending C2Metadata by collaborating with DataOne’s
ProvOne project and the NCSA BrownDog project to promote track-
ing data transformations in the broader scientific data community.

7.2 Language Translation
In language translation, a pivot language (or bridge language), can
be used as an intermediary language for translation between many
different language pairs. Using SDTL (or SDTA) as the bridge, we
could build a bidirectional translation mapping between the pivot
language and major statistical languages, instead of numerous pair-
wise mappings, as shown in Figure 9 . Such translation could be
valuable for user comprehension, code reproducibility, and execu-
tion efficiency (when some operations are more efficient to imple-
ment in one language). For each transformation, we expect that
the output data should be equivalent no matter which language is
used to represent the transformation. Here we mean equivalence
in ordered data ignoring metadata.

Even if one operation in the source language can be converted to
many functional equivalent representations in the pivot language,
we construct a many-to-one mapping to simply permit the trans-
lation. We then build a one-to-one mapping between operators in
the pivot language to those in the target language ignoring het-
erogeneous conversion possibilities. The translation process from
SAS to SPSS can be illustrated by Figure 10. With the help of SDTL
Translator in C2Metadata that converts source languages to SDTL
via abstract syntax tree (AST) templated mappings, we have the
initial many-to-one mappings (grey arrows) from SAS/SPSS (A/B)
to SDTL (Y ). To convert from SDTL to SPSS, for each yi with at
least one mapping from a set of {bj } in B, we choose one of them as
the deterministic reverse mapping from yi to bj (green arrows). a4
and a5 fail the translation as no mapping from operators in SPSS to
y4, and a5 maps to Unsupported in SDTL. The translation accuracy
is thus dependent on the expressiveness of SDTL and the fidelity
of initial mappings from SAS/SPSS to SDTL, which are evaluated
in Section 6. In Figure 11, we show an example of the translation.

Currently, we mind these minor disparities across languages
in terms of data types, missing values, logical expressions, and
functions defined in function libraries. Since we could not name
all translation mappings, to ensure equivalent output data, a post-
translation validation step executes the original operation in the
source language and the translated operation in the target language
for comparison. Mappings of cases failing the validation are recon-
sidered during the development workflow. Some source language
operations may not be fully expressed in the target language. For
example, one can add label to rows in SAS but not in SPSS. These
complications are generally caused by the undefined base operation
or undefined unit of operation (SPSS has no definition of row label
in its data model) in the bridge language or in the target language.

118



SDTA: An Algebra for Statistical Data Transformation SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

data Teaches;

  set Teaches1 Teaches2 Teaches3;

  Young = Age<20; 

//Missing values treated as 

//negative infinity

run;

{ “sourceLanguage”: “SAS”,

  “commands”:[{

    “command”: “appendDatasets”,

    “fileName”: [

      “Teaches1”,

      “Teaches2”,

      ”Teaches3”

    ],

    “saveAs”: “Teaches”,

  …

}

Add Files FILE=‘Teaches1’ 

/FILE=‘Teaches2’ 

/FILE=‘Teaches3’.

dataset name Teaches.

//Return system missing 

//when missing involved

do if MISSING(Age). 

  COMPUTE Young=TRUE.

else.

  Compute Young=Age<20.

end if.

SAS:    SDTL:    SPSS:    

Figure 11: Sample of translation derivingTeaches from SAS to SPSS via SDTL

7.3 Optimization, Integration and Search
Statistical data transformation represented by SDTA operators can
facilitate optimization of execution . We consider two cases: execu-
tion optimization for (1) a single transformation and (2) a series of
transformations. As statistical transformations are generally writ-
ten in scripts, bulk execution of a series of transformations are
performed in order. These transformations take the input data or
intermediate data generated from transformations one or more
steps back as input. We can thus create the logical execution plan
based on the lineage graph of Meta Tables, depicting what trans-
formations need to be executed after an action has been called
as constraints. The transformations can then be decomposed into
primitive operators to form a query tree for optimization using clas-
sical SQL optimization techniques and order-based optimization
techniques such as sort elimination [35], sort move-around [36]
and other techniques for order in array databases [21].

Though data integration has been massively explored, past ef-
forts do not emphasize enough the integration of metadata, nor
the integration of transformational information. To generate more
value from shared data, the emerging research around dataset
search has drawn more attention on developing frameworks, meth-
ods and tools to help match a data need against datasets. Dataset
search is largely keyword based over published metadata in a single
repository or across multiple repositories. A standard representa-
tion of data transformations, SDTL or SDTA for instance as part
of the metadata for documenting data provenance, could promote
better integration and search of such datasets.

8 RELATED WORK
There is no shortage of algebras for data transformation. Both Statis-
tical Databases (SDBs) and OLAP (On-Line Analytical Processing)
are related to our work as they provide statistical summarizations
over dimensions of multidimensional data, though motivated by
different types of applications: socio-economic analysis and busi-
ness data transactions respectively. SDBs emphasize conceptual
modeling with classification structures, involving management of
metadata of the category values and their hierarchical associations.
They can be represented as tables, with a graph model and/or with
the data cube model. SDB-specific concerns include aggregation
over one or more dimensions, data sparsity, advanced statistical
computations and privacy[28, 33, 34]. Both the original data and the
summarized data in tabular model can be represented by SDTDM
with multi-index metadata and statistical computation support.

Recent attention has been drawn to scientific data such as sensor,
image and geographical data that are often multi-dimensional in
nature (also known as raster data, gridded data or datacubes). The

need of the ability to handle complex analytics based on core lin-
ear algebra operations on large data is noticed. To support arrays,
array databases (such as RasDaMan[3], MonetDB[11], SciDB[38]
and Google Earth Engine[14]) have been developed specifically for
their storage, management and analysis. Other efforts haven been
made to extend RDBMSs to support array data handling (such as
PostgreSQL with PostGIS[30] and Oracle GeoRaster[26]). A num-
ber of array models and algebraic languages including AQL, AML,
Array Algera and RAM [2, 22, 24, 28, 39] have been proposed and
tailored for array data. Though these models provide the support
for ordered data, arrays are uniform in that all cells in a given array
have the same data structure and the operations they focus are
heavily dependent on this uniform feature (such as matrix opera-
tions, sub-array extraction, reduce an array to a scalar value), which
is different from the data and the operations we are targeting in this
paper. Since the data stored in array databases are often large and
multi-dimensional, scalability is the primary concern. There are
thus many papers studying physical organization, storage-based
optimization and access methods underlying specific implementa-
tions of these algebras, which we will not describe here since our
focus is on the conceptual modeling of data.

More broadly, relational algebra (RA) [9] lays the theoretical
foundation for SQL, which is the most widely used data manipu-
lation language for databases. Despite its extending support for
limited data transformations and analytics, it is primarily used for
answering queries regarding data in situ where data can be highly
normalized. Extensions of relational algebra adapt RA for various
data manipulation purposes as data types, structures and other
aspects of data evolve [23, 27, 31]. Works accommodating statis-
tical analysis[28, 33, 34], ordered data[4], metadata manipulation
[20, 43], tabular data structures [5], null value handling [15, 44] are
more closely related to our work. Recent tools like Potter’s Wheel
[29], Wrangler [19], Foofah [18] provide an interactive interface for
less technical users with more specific transformation needs such
as data wrangling, data warehousing and data cleaning. However,
their emphasis is syntactic transformation rather than preparation
for statistical analysis.

More targeted tools have been widely adopted in the data sci-
ence community over the past half century. During the 1980’s, there
were a number of studies in Statistical Databases, focusing mainly
on socio-economic data in need of complex statistical operations
not fully supported by relational databases. Statistical packages
like SPSS® , Stata® , SAS®, R(by packages like dplyr [42], tidy-
verse [41] and reshape2 [40]) and Python are more popular for
statistical data transformation for tabular data. Though simple data
conversion (opening data file written in one language by another

119



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA Jie Song, George Alter, and H. V. Jagadish

language using tools like Stat/Transfer[7]) is straightforward, the
transformation syntax conversion between these languages is not
easily realizable. Attempts for embedding one language in other
languages is not new for statistical data. Major commercial statisti-
cal software such as SAS and SPSS include a built-in interface for
calling R functions[12, 17]. Other attempts [16] have been made to
communicate data and results interactively in language interfacing.
These attempts, however, are tailored to the characteristics of lan-
guages involved, and are often between statistical languages and a
more general programming language for operation decomposition.

Standard representations of statistical data transformation have
been proposed regardless of the transformation engine used. The
Validation and Transformation Language (VTL) [32] is such a lan-
guage that defined validation and transformation rules for statistical
data at the abstract level. It primarily supports exchange of vali-
dation rules for data quality specification and validation purposes
accounting for part of the data transformation purpose but not all.
Since it is not information-preserving, VTL cannot serve as the
bridging language for inter-conversion of statistical languages.

9 CONCLUSION
Statistical data transformations are a critical component of the data
science pipeline. Due to their heterogeneity and complexity, they
have been relegated to scripts operating outside the managed con-
fines of DBMSs. Here, we introduce an algebra, SDTA, which has
only a few operators covering the majority of statistical transforma-
tions. SDTA has been implemented, with syntactic sugar added, as
a language SDTL used for several applications, including data docu-
mentation and translating scripts between languages. We presented
experimental numbers supporting the value of our approach.

REFERENCES
[1] George Alter, Darrell Donakowski, Jack Gager, Pascal Heus, Carson Hunter,

Sanda Ionescu, Jeremy Iverson, HV Jagadish, Carl Lagoze, Jared Lyle, et al. 2020.
Provenance metadata for statistical data: An introduction to Structured Data
Transformation Language (SDTL). IASSIST Quarterly 44, 4 (2020).

[2] Peter Baumann. 1994. Management of multidimensional discrete data. The VLDB
Journal 3, 4 (Oct. 1994), 401–444.

[3] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. 1998. The
Multidimensional Database System RasDaMan. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data (Seattle, Washington,
USA) (SIGMOD ’98). Association for Computing Machinery, New York, NY, USA,
575–577. https://doi.org/10.1145/276304.276386

[4] Peter Baumann and Sönke Holsten. 2011. A Comparative Analysis of Array
Models for Databases. FGIT-DTA/BSBT (2011).

[5] Peter Baumann and Sönke Holsten. 2011. A comparative analysis of array models
for databases. In Database theory and application, bio-science and bio-technology.
Springer, 80–89.

[6] Peter A Boncz and Martin L Kersten. 1999. MIL primitives for querying a frag-
mented world. The VLDB Journal 8, 2 (1999), 101–119.

[7] Inc Circle Systems. 2015. Stat/Transfer (version 14). https://stattransfer.com
[8] James Clark, Steve DeRose, et al. 1999. XML path language (XPath).
[9] Edgar F Codd. 2002. A relational model of data for large shared data banks. In

Software pioneers. Springer, 263–294.
[10] Colectica. 2017. Convention-based Ontology Generation System (COGS) 1.0.

http://cogsdata.org/docs/.
[11] Roberto Cornacchia, Sándor Héman, Marcin Zukowski, Arjen P de Vries, and

Peter A Boncz. 2008. Flexible and efficient IR using array databases. VLDB J.
(2008).

[12] Catherine Dalzell. 2013. Calling R from SPSS. https://developer.ibm.com/
tutorials/ba-call-r-spss/

[13] Boris Glavic and Klaus R Dittrich. 2007. Data Provenance: A Categorization of
Existing Approaches.. In BTW, Vol. 7. 227–241.

[14] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and
Rebecca Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis

for everyone. Remote Sensing of Environment (2017). https://doi.org/10.1016/j.
rse.2017.06.031

[15] Georg Gottlob and Roberto Zicari. 1988. Closed World Databases Opened
Through Null Values. VLDB (1988).

[16] EF Haghish. 2019. Seamless interactive language interfacing between R and Stata.
The Stata Journal 19, 1 (2019), 61–82.

[17] SAS Institute Inc. 2016. Calling Functions in the R Language. https://support.
sas.com/rnd/app/studio/statr.pdf

[18] Zhongjun Jin, Michael R Anderson, Michael J Cafarella, and H V Jagadish. 2017.
Foofah - Transforming Data By Example. SIGMOD Conference (2017).

[19] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2011.
Wrangler - interactive visual specification of data transformation scripts. CHI
(2011).

[20] Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. 1996.
SchemaSQL-a language for interoperability in relational multi-database systems.
In VLDB, Vol. 96. Citeseer, 239–250.

[21] Alberto Lerner and Dennis E Shasha. 2003. AQuery - Query Language for Ordered
Data, Optimization Techniques, and Experiments. VLDB (2003).

[22] Leonid Libkin, Rona Machlin, and Limsoon Wong. 1996. A Query Language
for Multidimensional Arrays - Design, Implementation, and Optimization Tech-
niques. SIGMOD Conference (1996).

[23] Nikos A Lorentzos and Roger G Johnson. 1988. Extending relational algebra to
manipulate temporal data. Information Systems 13, 3 (1988), 289–296.

[24] Arunprasad P Marathe and Kenneth Salem. 1997. A Language for Manipulating
Arrays. VLDB (1997).

[25] Jim Melton. 2003. Advanced SQL: 1999: Understanding object-relational and other
advanced features. Morgan Kaufmann.

[26] Chuck Murray, Janet Blowney, J Xie, T Xu, and S Yuditskaya. 2003. Oracle Spatial
GeoRaster, 10 g Release 1. Oracle Corporation (2003), 2–31.

[27] GÖzsoyoğlu, ZMÖzsoyoğlu, and VictorMatos. 1987. Extending relational algebra
and relational calculus with set-valued attributes and aggregate functions. ACM
Transactions on Database Systems (TODS) 12, 4 (1987), 566–592.

[28] Gultekin Özsoyoglu and Z Meral Özsoyoglu. 1985. Statistical Database Query
Languages. IEEE Trans. Software Eng. (1985).

[29] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s Wheel - An
Interactive Data Cleaning System. VLDB (2001).

[30] P Ramsey, VB Columbia Refractions Research Inc, and 2005. [n.d.]. Introduction
to PostGIS. drm.cenn.ge ([n. d.]).

[31] Mark A Roth, Herry F Korth, and Abraham Silberschatz. 1988. Extended algebra
and calculus for nested relational databases. ACM Transactions on Database
Systems (TODS) 13, 4 (1988), 389–417.

[32] SDMX. 2018. Validation and Transformation Language (VTL). https://sdmx.org/
?page_id=5096

[33] Arie Shoshani. 1982. Statistical Databases - Characteristics, Problems, and some
Solutions. VLDB (1982).

[34] Arie Shoshani. 1997. OLAP and Statistical Databases - Similarities and Differences.
PODS (1997).

[35] David Simmen, Eugene Shekita, and TimothyMalkemus. 1996. Fundamental tech-
niques for order optimization. In the 1996 ACM SIGMOD international conference.
ACM Press, New York, New York, USA, 57–67.

[36] SlivinskasGiedrius, JensenChristian S, and SnodgrassRichard Thomas. 2002.
Bringing order to query optimization. ACM SIGMOD Record (June 2002).

[37] Jie Song, George Alter, and H. V. Jagadish. 2019. C2Metadata: Automating the
Capture of Data Transformations from Statistical Scripts in Data Documentation.
Proceedings of the 2019 International Conference on Management of Data (2019).

[38] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The
Architecture of SciDB. SSDBM (2011).

[39] Alex R van Ballegooij. 2004. RAM: A Multidimensional Array DBMS. In Cur-
rent Trends in Database Technology - EDBT 2004 Workshops. Springer, Berlin,
Heidelberg, Berlin, Heidelberg, 154–165.

[40] Hadley Wickham. 2007. Reshaping Data with the reshape Package. Journal of
Statistical Software 21, 12 (2007), 1–20. http://www.jstatsoft.org/v21/i12/

[41] Hadley Wickham. 2017. tidyverse: Easily Install and Load the ’Tidyverse’. https:
//CRAN.R-project.org/package=tidyverse R package version 1.2.1.

[42] HadleyWickham, Romain François, Lionel Henry, and Kirill MÃŒller. 2018. dplyr:
A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr
R package version 0.7.6.

[43] Catharine M Wyss and Edward L Robertson. 2005. Relational languages for
metadata integration. ACM Transactions on Database Systems (TODS) 30, 2 (2005),
624–660.

[44] Carlo Zaniolo. 1984. Database Relations with Null Values. J. Comput. Syst. Sci.
(1984).

120

https://doi.org/10.1145/276304.276386
https://stattransfer.com
http://cogsdata.org/docs/
https://developer.ibm.com/tutorials/ba-call-r-spss/
https://developer.ibm.com/tutorials/ba-call-r-spss/
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://support.sas.com/ rnd/app/studio/statr.pdf
https://support.sas.com/ rnd/app/studio/statr.pdf
https://sdmx.org/?page_id=5096
https://sdmx.org/?page_id=5096
http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=dplyr

	Abstract
	1 Introduction
	2 Background
	3 Data Model and Transformation Model
	3.1 The Data Model (SDTDM)
	3.2 The Transformation Model

	4  SDTA
	4.1 Syntax
	4.2 Add, Drop, Keep And Order Rows and Columns
	4.3 Aggregate Rows and Columns
	4.4 Join and Reshape
	4.5 Manipulate Metadata

	5  SDTL
	6 Experimental Evaluation
	6.1 Data
	6.2 Expressiveness
	6.3 Fidelity

	7 Use Cases
	7.1 Transformation Documentation
	7.2 Language Translation
	7.3 Optimization, Integration and Search

	8 Related Work
	9 Conclusion
	References

