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ABSTRACT
An increasing number of machine learning models have been de-
ployed in domains with high stakes such as finance and healthcare.
Despite their superior performances, many models are black boxes
in nature which are hard to explain. There are growing efforts for
researchers to develop methods to interpret these black-box models.
Post hoc explanations based on perturbations, such as LIME [39],
are widely used approaches to interpret a machine learning model
after it has been built. This class of methods has been shown to
exhibit large instability, posing serious challenges to the effective-
ness of the method itself and harming user trust. In this paper, we
propose S-LIME, which utilizes a hypothesis testing framework
based on central limit theorem for determining the number of
perturbation points needed to guarantee stability of the resulting
explanation. Experiments on both simulated and real world data
sets are provided to demonstrate the effectiveness of our method.

CCS CONCEPTS
• Computing methodologies → Feature selection; Supervised
learning by classification; • Mathematics of computing → Hy-
pothesis testing and confidence interval computation.
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1 INTRODUCTION
Data Mining and machine learning models have been widely de-
ployed for decisionmaking inmany fields, including criminal justice
[54] and healthcare [35, 37]. However, many models act as “black
boxes" in that they only provide predictions but with little guidance
for humans to understand the process. It has been a desiderata
to develop approaches for understanding these complex models,
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which can help increase user trust [39], assess fairness and privacy
[4, 11], debug models [28] and even for regulation purposes [19].

Model explanation methods can be roughly divided into two cat-
egories [12, 52]: intrinsic explanations and post hoc explanations.
Models with intrinsically explainable structures include linear mod-
els, decision trees [6], generalized additive models [20], to name
a few. Due to complexity constraints, these models are usually
not powerful enough for modern tasks involving heterogeneous
features and enormous numbers of samples.

Post hoc explanations, on the other hand, provide insights after
a model is trained. These explanations can be either model-specific,
which are typically limited to specific model classes, such as split
improvement for tree-based methods [57] and saliency maps for
convolutional networks [42]; or model-agnostic that do not require
any knowledge of the internal structure of the model being exam-
ined, where the analysis is often conducted by evaluating model
predictions on a set of perturbed input data. LIME [39] and SHAP
[31] are two of the most popular model-agnostic explanation meth-
ods.

Researchers have been aware of some drawbacks for post hoc
model explanation. [25] showed that widely used permutation im-
portance can produce diagnostics that are highly misleading due
to extrapolation. [17] demonstrated how to generate adversarial
perturbations that produce perceptively indistinguishable inputs
with the same predicted label, yet have very different interpreta-
tions. [1] showed that explanation algorithms can be exploited to
systematically rationalize decisions taken by an unfair black-box
model. [40] argued against using post hoc explanations as these
methods can provide explanations that are not faithful to what the
original model computes.

In this paper, we focus on post hoc explanations based on per-
turbations [39]: one of the most popular paradigm for designing
model explanation methods. We argue that the most important
property of any explanation technique is stability or reproducibility:
repeated runs of the explanation algorithm under the same condi-
tions should ideally yield the same results. Unstable explanations
provide little insight to users as how the model actually works and
are considered unreliable. Unfortunately, LIME is not always stable.
[55] separated and investigated sources of instability in LIME. [51]
highlighted a trade-off between explanation’s stability and adher-
ence and propose a framework to maximise stability. [30] improved
the sensitivity of LIME by averaging multiple output weights for
individual images.

We propose a hypothesis testing framework based on a central
limit theorem for determining the number of perturbation samples
required to guarantee stability of the resulting explanation. Briefly,
LIME works by generating perturbations of a given instance and
learning a sparse linear explanation, where the sparsity is usually
achieved by selecting top features via LASSO [49]. LASSO is known
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to exhibit early occurrence of false discoveries [33, 47] which, com-
bined with the randomness introduced in the sampling procedure,
results in practically-significant levels of instability. We carefully
analyze the Least Angle Regression (LARS) [13] for generating the
LASSO path and quantify the aymptotics for the statistics involved
in selecting the next variable. Based on a hypothesis testing pro-
cedure, we design a new algorithm call S-LIME (Stabilized-LIME)
which can automatically and adaptively determine the number of
perturbations needed to guarantee a stable explanation.

In the following, we review relevant background on LIME and
LASSO along with their instability in Section 2. Section 3 statisti-
cally analyzes the asymptotic distribution of the statistics which is
at the heart of variable selection in LASSO. Our algorithm S-LIME
is introduced in Section 4. Section 5 presents empirical studies on
both simulated and real world data sets. We conclude in Section 6
with some discussions.

2 BACKGROUND
In this section, we review the general framework for constructing
post hoc explanations based on perturbations using Local Inter-
pretable Model-agnostic Explanations (LIME) [39]. We then briefly
discuss LARS and LASSO, which are the internal solvers for LIME
to achieve the purpose of feature selection. We illustrate LIME’s
instability with toy experiments.

2.1 LIME
Given a black box model 𝑓 and a target point 𝒙 of interest, we
would like to understand the behavior of the model locally around
𝒙 . No knowledge of 𝑓 ’s internal structure is available but we are
able to query 𝑓 many times. LIME first samples around the neigh-
borhood of 𝒙 , query the black box model 𝑓 to get its predictions
and form a pseudo data sets D = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), . . . , (𝒙𝑛, 𝑦𝑛)}
with 𝑦𝑖 = 𝑓 (𝒙𝑖 ) and a hyperparameter 𝑛 specifying the number
of perturbations. The model 𝑓 can be quite general as regression
(𝑦𝑖 ∈ R) or classification (𝑦𝑖 ∈ {0, 1} or 𝑦𝑖 ∈ [0, 1] if 𝑓 returns a
probability). A model 𝑔 from some interpretable function spaces 𝐺
is chosen by solving the following optimization

argmin
𝑔∈𝐺

𝐿(𝑓 , 𝑔, 𝜋𝒙 ) + Ω(𝑔) (1)

where
• 𝜋𝒙 (𝒛) is a proximity measure between a perturbed instance
𝒛 to 𝒙 , which is usually chosen to be a Gaussian kernel.

• Ω(𝑔) measures complexity of the explanation 𝑔 ∈ 𝐺 . For
example, for decision trees Ω(𝑔) can be the depth of the tree,
while for linear models we can use the number of non-zero
weights.

• 𝐿(𝑓 , 𝑔, 𝜋𝒙 ) is a measure of how unfaithful 𝑔 is in approximat-
ing 𝑓 in the locality defined by 𝜋𝒙 .

[39] suggests a procedure called k-LASSO for selecting top 𝑘 fea-
tures using LASSO. In this case, 𝐺 is the class of linear models
with 𝑔 = 𝝎𝑔 · 𝒙 , 𝐿(𝑓 , 𝑔, 𝜋𝒙 ) =

∑𝑛
𝑖=1 𝜋𝒙 (𝒙𝑖 ) (𝑦𝑖 − 𝑔(𝒙𝑖 ))2 and Ω =

∞1[| |𝜔𝑔 | |0 > 𝑘]. Under this setting, (1) can be approximately
solved by first selecting K features with LASSO (using the reg-
ularization path) and then learning the weights via least square
[39].

We point out here the resemblance between post hoc explana-
tions and knowledge distillation [7, 22]; both involve obtaining
predictions from the original model, usually on synthetic examples,
and using these to train a new model. Differences lie in both the
scope and intention in the procedure. Whereas LIME produces in-
terpretable models that apply closely to the point of interest, model
distillation is generally used to provide a global compression of
the model representation in order to improve both computational
and predictive performance [18, 34]. Nonetheless, we might expect
that distillation methods to also exhibit the instability described
here; see [56] which documents instability of decision trees used to
provide global interpretation.

2.2 LASSO and LARS
Even models that are “interpretable by design" can be difficult to
understand, such as a deep decision tree containing hundreds of
leaves, or a linear model that employs many features with non-zero
weights. For this reason LASSO [49], which automatically produces
sparse models, is often the default solver for LIME.

Formally, suppose D = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), . . . , (𝒙𝑛, 𝑦𝑛)} with
𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝 ) for 1 ≤ 𝑖 ≤ 𝑛, LASSO solves the follow-
ing optimization problem:

𝛽𝐿𝐴𝑆𝑆𝑂 = argmin
𝛽


𝑛∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝∑
𝑗=1

𝑥𝑖 𝑗 𝛽 𝑗 )2 + 𝜆

𝑝∑
𝑗=1

|𝛽 𝑗 |
 (2)

where 𝜆 is the multiplier for 𝑙1 penalty. (2) can be efficiently solved
via a slight modification of the LARS algorithm [13], which gives
the entire LASSO path as 𝜆 varies. This procedure is described in
Algorithm 1 and 2 below [14], where we denote𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)
and assume 𝑛 > 𝑝 .

Algorithm 1: Least Angle Regression (LARS)

(1) Standardize the predictors to have zero mean and unit norm.
Start with residual 𝒓 = 𝒚 −𝒚, 𝛽1, 𝛽2, . . . , 𝛽𝑝 = 0.

(2) Find the predictor 𝒙 · 𝑗 most correlated with 𝒓 , and move 𝛽 𝑗
from 0 towards its least-squares coefficient ⟨𝒙 · 𝑗 , 𝒓⟩, until
some other competitors 𝒙 ·𝑘 has as much correlation with
the current residual as does 𝒙 · 𝑗 .

(3) Move 𝛽 𝑗 and 𝛽𝑘 in the direction defined by their joint least
squares coefficient of the current residual on (𝒙 · 𝑗 , 𝒙 ·𝑘 ),
until some other competitors 𝒙 ·𝑙 has as much correlation
with the current residual.

(4) Repeat step 2 and 3 until all 𝑝 predictors have been entered,
at which point we arrive at the full least squares solution.

Algorithm 2: LASSO: Modification of LARS

3a. In step 3 of Algorithm 1, if a non-zero coefficient hits zero,
drop the corresponding variable from the active set of
variables and recompute the current joint least squares
direction.

Both Algorithm 1 and 2 can be easily modified to incorporate a
weight vector𝝎 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) on the data setD, by transform-
ing it toD = {(√𝜔1𝒙1,

√
𝜔1𝑦1), (

√
𝜔2𝒙2,

√
𝜔2𝑦2), . . . , (

√
𝜔𝑛𝒙𝑛,

√
𝜔𝑛𝑦𝑛)}.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2430



2.3 Instability with LIME
Both [55] and [53] have demonstrated that the random generation
of perturbations results in instability in the generated explanations.
We apply LIME on Breast Cancer Data (see Section 5.1 for details) to
illustrate of this phenomenon. A random forests [5] with 500 trees
is built as the black box model, and we apply LIME to explain the
prediction of a randomly selected test point multiple times. Each
time 1000 synthetic data are generated around the test point and
top 5 features are selected via LASSO.We repeat the experiment 100
times and calculate the empirical selection probability of features.
The result is shown in Figure 1.

Figure 1: Empirical selection probability for features in
Breast Cancer Data. The black boxmodel is a random forests
classifier with 500 trees. LIME is run 100 times on a ran-
domly selected test point and top 5 features are selected via
LASSO.

We can see that across 100 repetitions, only three features are
consistently selected by LIME while there is considerable variability
in the remaining features. Note that this does not consider the order
of the features entered: even the top three features exhibit different
orderings in the selection process.

This experiment illustrates an important weakness of LIME: its
instability or irreproducibility. If repeated runs using the same
explanation algorithm on the same model to interpret the same
data point yield different results, the utility of the explanation is
brought into question. The instability comes from the randomness
introduced when generating synthetic samples around the input,
and the 𝑙1 penalty employed in LASSO further increases the chance
of selecting spurious features [48]. In Appendix A we show the
instability with LASSO using a simple linear model.

One way to stabilize the LIME model is to use a larger corpus
of the synthetic data, but it is difficult to determine how much
larger as a priori without repeated experiments. In the next section,
we examine how feature selection works in LASSO and LARS,
and then design a statistically justified approach to automatically
and adaptively determine the number of perturbations required to
guarantee stability.

3 ASYMPTOTIC PROPERTIES OF LARS
DECISIONS

Consider at any given step when LARS needs to choose a new
variable to enter the model. With sample size of 𝑛, let the current
residuals be given by 𝒓 = (𝑟1, 𝑟2, . . . , 𝑟𝑛), and two candidate vari-
ables being 𝒙 ·𝒊 = (𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝑛𝑖 ) and 𝒙 ·𝒋 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝑛𝑗 )
where we assume the predictors have been standardized to have
zero mean and unit norm. LARS chooses the predictor that has
the highest (absolute) correlation with the residuals to enter the
model. Equivalently, one needs to compare 𝑐1 = 1

𝑛

∑𝑛
𝑡=1 𝑟𝑡𝑥𝑡𝑖 with

𝑐2 = 1
𝑛

∑𝑛
𝑡=1 𝑟𝑡𝑥𝑡 𝑗 . We use 𝑐1 and 𝑐2 to emphasize these are finite

sample estimates, and our purpose is to obtain the probability that
their order would be different if the query points were regenerated.
To that end, we introduce uppercase symbols 𝑹,𝑿 ·𝒊,𝑿 ·𝒋 to denote
the corresponding random variables of the residuals and two co-
variates; these are distributed according to the current value of the
coefficients in the LASSO path and we seek to generate enough data
to return the same ordering as the expected values 𝑐1 = 𝐸 (𝑹 · 𝑿 ·𝒊)
and 𝑐2 = 𝐸 (𝑹 · 𝑿 ·𝒋) with high probability. Our algorithm is based
on pairwise comparisons between candidate features; we there-
fore consider the decision between two covariates in this section,
and extensions to more general cases involving multiple pairwise
comparisons will be discussed in Section 4.

By the multivariate Central Limit Theorem (CLT), we have

√
𝑛

( [
𝑐1
𝑐2

]
−
[
𝑐1
𝑐2

] )
−→ 𝑁 (0, Σ),

where

Σ = cov
[
𝑹 · 𝑿 ·𝒊

𝑹 · 𝑿 ·𝒋

]
=

[
𝜎211 𝜎212
𝜎221 𝜎222

]
.

Without loss of generality we assume 𝑐1 > 𝑐2 > 0. In general if
the correlation is negative, we can simply negate the corresponding
feature values for all the calculations involved in this section. Let
Δ̂𝑛 = 𝑐1−𝑐2 and Δ𝑛 = 𝑐1−𝑐2. Consider function 𝑓 (𝑎1, 𝑎2) = 𝑎1−𝑎2.
Delta method implies that

√
𝑛

(
𝑓

( [
𝑐1
𝑐2

] )
−
(
𝑓

[
𝑐1
𝑐2

] ))
−→ 𝑁 (0, 𝜎211 + 𝜎222 − 𝜎212 − 𝜎221) .

Or approximately,

Δ̂𝑛 − Δ𝑛 ∼ 𝑁

(
0,

�̂�211 + �̂�222 − �̂�212 − �̂�221
𝑛

)
(3)

where the variance estimates are estimated from the empirical
covariance of the values 𝑟𝑡𝑥𝑡𝑖 and 𝑟𝑡𝑥𝑡 𝑗 , 𝑡 = 1, . . . , 𝑛.

In similar spirits of [56], we assess the probability that Δ̂𝑛 > 0
will still hold in a repeated experiment. Assume we have another
independently generated data set denoted by {𝑟∗𝑡 , 𝑥∗𝑡𝑖 , 𝑥

∗
𝑡 𝑗
}𝑛
𝑡=1. It

follows from (3) that

Δ̂∗
𝑛 − Δ̂𝑛 ∼ 𝑁

(
0, 2 ·

�̂�211 + �̂�222 − �̂�212 − �̂�221
𝑛

)
,

which leads to the approximation that

Δ̂∗
𝑛

���� (Δ̂𝑛 = 𝑐1 − 𝑐2
)
∼ 𝑁

(
𝑐1 − 𝑐2, 2 ·

�̂�211 + �̂�222 − �̂�212 − �̂�221
𝑛

)
.
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In order to control 𝑃 (Δ̂∗
𝑛 > 0) at a confidence level 1 − 𝛼 , we need

𝑐1 − 𝑐2 > 𝑍𝛼

√
2
�̂�211 + �̂�222 − �̂�212 − �̂�221

𝑛
, (4)

where 𝑍𝛼 is the (1 − 𝛼)-quantile of a standard normal distribution.
For a fixed confidence level 𝛼 and 𝑛, suppose we get the corre-

sponding 𝑝-value 𝑝𝑛 > 𝛼 . From (4) we have
√
𝑛

𝑐1 − 𝑐2√
2(�̂�211 + �̂�222 − �̂�212 − �̂�221)

= 𝑍𝑝𝑛 .

This implied we would need approximately 𝑛′ samples to get a
significant result where √

𝑛

𝑛′
=
𝑍𝑝𝑛

𝑍𝛼
. (5)

4 STABILIZED-LIME
Based on the theoretical analysis developed in Section 3, we can run
LIME equipped with hypothesis testing at each step when a new
variable enters. If the testing result is significant, we continue to
the next step; otherwise it indicates that the current sample size of
perturbations is not large enough. We thus generate more synthetic
data according to Equation (5) and restart the whole process. Note
that we view any intermediate step as conditioned on previous
obtained estimates of 𝛽 . A high level sketch of the algorithm is
presented below in Algorithm 3.

In practice, we may need to set an upper bound on the number of
synthetic samples generated (denoted by𝑛𝑚𝑎𝑥 ), such that whenever
the new 𝑛′ is greater than 𝑛𝑚𝑎𝑥 , we’ll simply set 𝑛 = 𝑛𝑚𝑎𝑥 and
go though the outer while loop one last time without testing at
each step. This can prevent the algorithm from running too long
and wasting computation resources in cases where two competing
features are equally important in a local neighborhood; for example,
if the black box model is indeed locally linear with equal coefficients
for two predictors.

We note several other possible variations of the Algorithm 3.
Multiple testing. So far we’ve only considered comparing a

pair of competing features (the top two). But when choosing the
next predictor to enter the model at step𝑚 (with𝑚 − 1 active fea-
tures), there are 𝑝 −𝑚 + 1 candidate features. We can modify the
procedure to select the best feature among all the remaining can-
didates, by conducting pairwise comparisons between the feature
with largest correlation (𝑐1) against the rest (𝑐2, . . . , 𝑐𝑝−𝑚+1). This is
a multiple comparisons problem, and one can use an idea analogous
to Bonferroni correction. Mathematically:

• Test the hypothesis𝐻𝑖,0 : 𝑐1 ≤ 𝑐𝑖 , 𝑖 = 2, . . . , 𝑝 −𝑚+1. Obtain
𝑝-values 𝑝2, . . . , 𝑝𝑝−𝑚+1.

• Reject the null hypothesis if
∑𝑝−𝑚+1
𝑖=2 𝑝𝑖 < 𝛼 .

Although straightforward, this Bonferroni-like correction ignores
much of the correlation among these statistics and will result in
a conservative estimate. In the experiments, we only conduct hy-
pothesis testing for top two features without resorting to multiple
testing, as it is more efficient and empirically we do not observe
any performance degradation.

Efficiency. Several modifications can be made to improve the
efficiency of Algorithm 3. At each step when 𝑛 is increased to 𝑛′,

Algorithm 3: S-LIME
Input :A black box model 𝑓 , data sample to explain 𝒙 ,

initial size for perturbation samples 𝑛0,
significance level 𝛼 , number of features to select 𝑘 ,
proximity measure 𝜋𝒙 .

Output :Top 𝑘 features selected for interpretation.
Generate D = {𝑛0 synthetic samples around 𝒙} and
calculate weight vector 𝝎 using 𝜋𝒙 ;
Set 𝑛 = 𝑛0;
while True do

Run Algorithm 2 on D with weight 𝝎 along with
hypothesis testing at each step:

while active features less than 𝑘 do
Select top two predictors most correlated with the
current residual from remaining covariates, with
covariance 𝑐1 and 𝑐2;

Calculate test statistic:

𝑡 = 𝑐1 − 𝑐2 − 𝑍𝛼

√
2
�̂�211 + �̂�222 − �̂�212 − �̂�221

𝑛

if 𝑡 >= 0 then
Continue with this selection;

else

Calculate 𝑛′ = 𝑛 ∗
(
𝑍𝛼

𝑍𝑝𝑛

)2
and set 𝑛 = 𝑛′;

Break;
end

end
if active features less than 𝑘 then

Generate D = {𝑛′ synthetic samples around 𝒙} and
calculate weight vector 𝝎 using 𝜋𝒙 ;

else
Return 𝑘 selected features;

end
end

we can reuse the existing synthetic samples and only generate addi-
tional 𝑛′ −𝑛 perturbation points. One may also note that whenever
the outer while loop restarts, we conduct repetitive testings for the
first several variables entering the model. To achieve better effi-
ciency, each new run can condition on previous runs: if a variable
enters the LASSO path in the same order as before and has been
tested with significant statistics, no additional testing is needed.
Hypothesis testing is only invoked when we select more features
than previous runs, or in some rare cases, the current iteration
disagrees with previous results. In our experiments, we do not im-
plement the conditioning step for implementation simplicity, as we
find the efficiency gain is marginal when selecting a moderate size
of features.

5 EMPIRICAL STUDIES
Rather than performing a broad-scale analysis, we look at several
specific cases as illustrations to show the effectiveness of S-LIME in
generating stabilized model explanations. Scikit-learn [36] is used
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for building black box models. Code for replicating our experiments
is available at https://github.com/ZhengzeZhou/slime.

5.1 Breast Cancer Data
We use the widely adopted Breast Cancer Wisconsin (Diagnostic)
Data Set [32], which contains 569 samples and 30 features1. A ran-
dom forests with 500 trees is trained on 80% of the data as the black
box model to predict whether an instance is benign or malignant.
It achieves around 95% accuracy on the remaining 20% test data.
Since our focus is on producing stabilized explanations for a spe-
cific instance, we do not spend additional efforts in hyperparameter
tuning to further improve model performance.

Figure 1 in Section 2.3 has already demonstrated the inconsis-
tency of the selected feature returned by original LIME. In Figure 2
below, we show a graphical illustration of four LIME replications
on a randomly selected test instance, where the left column of each
sub figure shows selected features along with learned linear param-
eters, and the right column is the corresponding feature value for
the sample. These repetitions of LIME applied on the same instance
have different orderings for the top two features, and also disagree
on the fourth and fifth features.

(a) Iteration 1 of LIME (b) Iteration 2 of LIME

(c) Iteration 3 of LIME (d) Iteration 4 of LIME

Figure 2: Four iterations of LIME on Breast Cancer Data. The
black boxmodel is a random forests classifier with 500 trees.
LIME explanations are generatedwith 1000 synthetic pertur-
bations.

To quantify the stability of the generated explanations, we mea-
sure the Jaccard index, which is a statistic used for gauging the
similarity and diversity of sample sets. Given two sets 𝐴 and 𝐵

(in our case, the sets are selected features from LIME), the Jaccard
coefficient is defined as the size of the intersection divided by the
size of the union:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | .

One disadvantage of the Jaccard index is that it ignores order-
ingwithin each feature set. For example, if top two features returned
from two iterations of LIME are𝐴 = {𝑤𝑜𝑟𝑠𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟, 𝑤𝑜𝑟𝑠𝑡 𝑎𝑟𝑒𝑎}
and 𝐵 = {𝑤𝑜𝑟𝑠𝑡 𝑎𝑟𝑒𝑎, 𝑤𝑜𝑟𝑠𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 }, we have 𝐽 (𝐴, 𝐵) = 1 but

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_
cancer.html

it does not imply LIME explanations are stable. To better quantify
stability, we look at the Jaccard index for the top 𝑘 features for
𝑘 = 1, . . . , 5. Table 1 shows the average Jaccard across all pairs
for 20 repetitions of both LIME and S-LIME on the selected test
instance. We set 𝑛𝑚𝑎𝑥 = 10000 for S-LIME.

Table 1: Average Jaccard index for 20 repetitions for LIME
and S-LIME. The black box model is a random forests with
500 trees.

Position LIME S-LIME
1 0.61 1.0
2 1.0 1.0
3 1.0 1.0
4 0.66 1.0
5 0.59 0.85

As we can see, for top four positions the average Jaccard index
of S-LIME is 1, meaning the algorithm is stable across different
iterations. There is some variability in the fifth feature selected, as
two featuresmean radius and worst concave points have pretty close
impact locally. Further increasing 𝑛𝑚𝑎𝑥 will make the selection of
fifth variable more consistent. Figure 3 shows the only two explana-
tions we observed in simulations for S-LIME, where the difference
is at the fifth variable.

(a) Iteration 1 of S-LIME (b) Iteration 2 of S-LIME

Figure 3: Two iterations of S-LIME on Breast Cancer Data.
The black box model is a random forests classifier with 500
trees.

As a contrast, we’ve already seen instability for LIME even for
the first variable selected. Although LIME consistently selects the
same top two and the third feature, there is much variably for the
fourth and fifth feature. This experiment demonstrates the stability
of S-LIME compared to LIME. In Appendix B.1, we apply S-LIME on
other types of black box models. Stability results on a large cohort
of test samples are included in Appendix B.2.

5.2 MARS Test Function
Here we use a modification of the function given in [15] (to test the
MARS algorithm) as the black boxmodel sowe know the underlying
true local weights of variables. Let 𝑦 = 𝑓 (𝒙) = 10 sin(𝜋𝑥1𝑥2) +
20(𝑥3 − 0.05)2 + 5.2𝑥4 + 5𝑥5, where X ∼ 𝑈 ( [0, 1]5). The test point 𝒙
is chosen to be (0.51, 0.49, 0.5, 0.5, 0.5). We can easily calculate the
local linear weights of the five variables around 𝒙 and the expected
selection order is (𝑥3, 𝑥1, 𝑥2, 𝑥4, 𝑥5). Note here the specific choice of
parameters in 𝑓 (𝑥) and the location of test point 𝒙 makes it difficult
to distinguish between 𝑥1, 𝑥2 and 𝑥4, 𝑥5.
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Table 2 presents the average Jaccard index for the selected feature
sets by LIME and S-LIME, where LIME is generated with 1000
synthetic samples and we set 𝑛0 = 1000 and 𝑛𝑚𝑎𝑥 = 10000 for
S-LIME. The close local weights between 𝑥1, 𝑥2 and 𝑥4, 𝑥5 causes
some instability in LIME, as can be seen from the drop in the index
at position 2 and 4. S-LIME outputs consistent explanations in this
case.

Table 2: Average Jaccard index for 20 repetitions for LIME
and S-LIME on test point (0.51, 0.49, 0.5, 0.5, 0.5). The black box
model is MARS.

Position LIME S-LIME
1 1.0 1.0
2 0.82 1.0
3 1.0 1.0
4 0.79 1.0
5 1.0 1.0

5.3 Early Prediction of Sepsis From Electronic
Health Records

Sepsis is a major public health concern which is a leading cause
of death in the United States [3]. Early detection and treatment
of a sepsis incidence is a crucial factor for patient outcomes [38].
Electronic health records (EHR) store data associated with each
individual’s health journey and have seen an increasing use re-
cently in clinical informatics and epidemiology [46, 50]. There have
been several work to predict sepsis based on EHR [16, 21, 29]. In-
terpretability of these models are essential for them to be deployed
in clinical settings.

We collect data from MIMIC-III [26], which is a freely accessible
critical care database. After pre-processing, there are 15309 patients
in the cohort for analysis, out of which 1221 developed sepsis based
on Sepsis-3 clinical criteria for sepsis onset [43]. For each patient,
the record consists of a combination of hourly vital sign summaries,
laboratory values, and static patient descriptions. We provide the
list of all variables involved in Appendix C. ICULOS is a timestamp
which denotes the hours since ICU admission for each patient, and
thus is not used directly for training the model.

For each patient’s records, missing values are filled with the most
recent value if available, otherwise a global average. Negative sam-
ples are down sampled to achieve a class ratio of 1:1. We randomly
select 90% of the data for training and leave the remaining 10% for
testing. A simple recurrent neural network based on LSTM [23]
module is built with Keras [9] for demonstration. Each sample fed
into the network has 25 features with 24 timestamps, then goes
through a LSTM with 32 internal units with dropout rate 0.2, and
finally a dense layer with softmax activation to output a probability.
The network is optimized by Adam [27] with an initial learning
rate of 0.0001 and we train it for 500 epochs on a batch size of 50.

The model achieves around 0.75 AUC score on the test set. Note
that we do not fine tune the architecture of the network through
cross validation. The purpose of this study is not on achieving a su-
perior performance as it usually requires more advanced modeling
techniques for temporal data [16, 29] or exploiting missing value

patterns [8]. Instead, we would like to demonstrate the effectiveness
of our proposed method in reliably explaining a relatively large
scale machine learning model applied to medical data.

To deal with temporal data where each sample in the training
set is of shape (𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠), LIME reshapes the data
such that it becomes a long vector of size𝑛_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 × 𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 .
Essentially it transforms the temporal data to the regular tabular
shape while increasing the number of features by a multiple of
available timestamps. Table 3 presents the average Jaccard index
for the selected feature sets by LIME and S-LIME on two randomly
selected test samples, where LIME is generated with 1000 synthetic
samples and we set 𝑛0 = 1000 and 𝑛𝑚𝑎𝑥 = 100000 for S-LIME.

LIME exhibits undesirable instability in this example, potentially
due to the complex black box model applied and the large number
of features (24 × 25 = 600). S-LIME achieves much better stability
compared to LIME, although we can still observe some uncertainty
in choosing the fifth feature in the second test sample.

Table 3: Average Jaccard index for 20 repetitions for LIME
and S-LIME on two randomly selected test samples. The
black box model is a recurrent neural network.

Position LIME S-LIME
1 0.37 1.0
2 0.29 1.0
3 0.33 1.0
4 0.25 0.89
5 0.26 1.0
(a) test sample 1

Position LIME S-LIME
1 0.31 1.0
2 0.24 1.0
3 0.19 1.0
4 0.17 0.96
5 0.18 0.78
(b) test sample 2

Figure 4 below shows the output of S-LIME on two different test
samples. We can see that for sample 1, most recent temperatures
play an important role, along with the latest pH and potassium
values. While for sample 2, latest pH values are the most important
ones.

We want to emphasize that extra caution must be taken by prac-
titioners in applying LIME, especially for some complex problems.
The local linear model with a few features might not be suitable
to approximate a recurrent neural network built on temporal data.
How to apply perturbation based explanation algorithms to tempo-
ral data is still an open problem, and we leave it for future work.
That being said, the experiment in this section demonstrates the
effectiveness of S-LIME in producing stabilized explanations.

6 DISCUSSIONS
An important property for model explanation methods is stability:
repeated runs of the algorithm on the same object should output
consistent results. In this paper, we show that post hoc explana-
tions based on perturbations, such as LIME, are not stable due to the
randomness introduced in generating synthetic samples. Our pro-
posed algorithm S-LIME is based on a hypothesis testing framework
and can automatically and adaptively determine the appropriate
number of perturbations required to guarantee stability.

The idea behind S-LIME is similar to [56] which tackles the
problem of building stable approximation trees in model distillation.
In the area of online learning, [10] uses Hoeffding bounds [24] to
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(a) test sample 1

(b) test sample 2

Figure 4: Output of S-LIME for two randomly selected test
samples. The black boxmodel is a recurrent neural network.

guarantee correct choice of splits in a decision tree by comparing
two best attributes. We should mention that S-LIME is not restricted
to LASSO as its feature selection mechanism. In fact, to produce
a ranking of explanatory variables, one can use any sequential
procedures which build a model by sequentially adding or removing
variables based upon some criterion, such as forward-stepwise or
backward-stepwise selection [14]. All of these methods can be
stabilized by a similar hypothesis testing framework like S-LIME.

There are several works closely related to ours. [55] identifies
three sources of uncertainty in LIME: sampling variance, sensitivity
to choice of parameters and variability in the black box model.
We aim to control the first source of variability as the other two
depend on specific design choices of the practitioners. [51] highlight
a trade-off between explanation’s stability and adherence. Their
approach is to select a suitable kernel width for the proximity
measure, but it does not improve stability given any kernel width.
In [53], the authors design a deterministic version of LIME by only
looking at existing training data through hierarchical clustering
without resorting to synthetic samples. However, the number of
samples in a dataset will affect the quality of clusters and a lack
of nearby points poses additional challenges; this strategy also
relies of having access to the training data. Most recently, [45]
develop a set of tools for analyzing explanation uncertainty in
a Bayesian framework for LIME. Our method can be viewed as
a frequentist counterpart without the need to choose priors and
evaluate a posterior distribution.

Another line of work concerns adversarial attacks to LIME. [44]
propose a scaffolding technique to hide the biases of any given
classifier by building adversarial classifiers to detect perturbed
instances. Later, [41] utilize a generative adversarial network to
sample more realistic synthetic data for making LIME more robust

to adversarial attacks. The technique we developed in this work is
orthogonal to these directions, as . We also plan to explore other
data generating procedures which can help with stability.
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A INSTABILITY WITH LASSO
Instability with LASSO has been studied previously by several
researchers. [33] introduce stability selection based on subsampling
which provides finite sample control for some error rates of false
discoveries. [48] find that sequential regression procedures select
the first spurious variable unexpectedly early, even in settings of
low correlations between variables and strong true effect sizes. [47]
further develop a sharp asymptotic trade-off between false and true
positive rates along the LASSO path.

We demonstrate this phenomenon using a simple linear case.
Suppose 𝑡 = 𝜌1𝑥1 + 𝜌2𝑥2 + 𝜌3𝑥3, where 𝑥1, 𝑥2 and 𝑥3 are indepen-
dent and generated from a standard normal distribution N(0, 1).
Note that we do not impose any additional noise in generating
the response 𝑦. We choose 𝜌1 = 1, 𝜌2 = 0.75 and 𝜌3 = 0.7, such
that when one uses LARS to solve LASSO, 𝑥1 always enter the
model first, while 𝑥2 and 𝑥3 have closer coefficients and will be
more challenging to distinguish.

We focus on the ordering of the three covariates entering the
model. The “correct" ordering should be (𝑥1, 𝑥2, 𝑥3). For multiple
runs of LASSO with 𝑛 = 1000, we observe roughly 20% of the
results have order (𝑥1, 𝑥3, 𝑥2) instead. Figure 5 below shows two
representative LASSO paths.

(a) Variable ordering in LASSO
path: (𝑥1, 𝑥2, 𝑥3) .

(b) Variable ordering in LASSO
path: (𝑥1, 𝑥3, 𝑥2) .

Figure 5: Two cases of variable ordering in LASSO path.
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This toy experiment demonstrates the instability of LASSO itself.
Even in this ideal noise-free setting where we have an indepen-
dent design with Gaussian distribution for the variables, 20% of
the time LASSO exhibits different paths due to random sampling.
Intuitively, the solutions at the beginning of the LASSO path is
overwhelmingly biased and the residual vector contains many of
the true effects. Thus some less relevant or irrelevant variable could
exhibit high correlations with the residual and gets selected early.
𝑛 = 1000 seems to be a reasonable large number of samples to
achieve consistency results, but when applying the idea of S-LIME,
the hypothesis testing is always inconclusive at the second step
when it needs to choose between 𝑥2 and 𝑥3. Increasing 𝑛 in this
case can indeed yield significant testing results and stabilize the
LASSO paths.

B ADDITIONAL EXPERIMENTS
B.1 S-LIME on other model types
Besides the randomness introduced in generating synthetic per-
turbations, the output of model explanation algorithms is also de-
pendent on several other factors, including the black box model
itself. There may not be a universal truth to the explanations of a
given instance, as it depends on how the underlying model captures
the relationship between covariates and responses. Distinct model
types, or even the same model structure trained with random ini-
tialization, can utilize different correlations between features and
responses [2], and thus result in different model explanations.

We apply S-LIME on other model types to illustrate two points:
• Compared to LIME, S-LIME can generate stabilized explana-
tions, though for some model types more synthetic pertur-
bations are required.

• Different model types can have different explanations for the
same instance. This does not imply that S-LIME is unstable
or not reproducible, but practitioners need to be aware of
this dependency on the underlying black box model when
apply any model explanation methods.

We use support-vector machines (SVM) and neural networks
(NN) as the underlying black box models and apply LIME and S-
LIME. Basic setups is similar to Section 5.1. For SVM training, we
use default parameters2 where rbf kernel is applied. The NN is
constructed with two hidden layers, each with 12 and 8 hidden
units. ReLU activations are used between hidden layers while the
last layer use sigmoid functions to output a probability. The network
is implemented in Keras [9]. Both models achieve over 90% accuracy
on the test set.

Table 4 lists the average Jaccard index across 20 repetitions for
each setting on a randomly selected test instance. LIME is generated
with 1000 synthetic samples, while for S-LIME we set 𝑛𝑚𝑎𝑥 =

100000 for SVM and 𝑛𝑚𝑎𝑥 = 10000 for NN. Compared with LIME,
S-LIME achieves better stability at each position.

Figure 6 shows the graphical exhibition of the explanations gen-
erated by S-LIME for both SVM and NN being the black box models.
We can see that they differ in the features selected.

One important observation is that the underlying black box
model also affects the stability of local explanations. For example,

2https://scikit-learn.org/stable/modules/svm.html#svm-classification

Table 4: Average Jaccard index for 20 repetitions for LIME
and S-LIME. The black box models are SVM and NN.

Position SVM NN
LIME S-LIME LIME S-LIME

1 1 1.0 0.73 1.0
2 0.35 0.87 0.87 1.0
3 0.23 0.83 0.71 0.74
4 0.19 1.0 0.66 1.0
5 0.18 0.67 0.55 1.0

(a) S-LIME on SVM.

(b) S-LIME on NN.

Figure 6: S-LIME on Breast Cancer Data with SVM and NN
as black box models.

the original LIME is extremely unstable for SVM. S-LIME needs a
larger 𝑛𝑚𝑎𝑥 to produce consistent results.

B.2 A large cohort of test samples
Most of the experiments in this paper are targeted at a randomly
selected test sample, which allows us to examine specific features
easily. That being said, one can expect the instability of LIME and
the improvement of S-LIME to be universal. In this part we conduct
experiments on a large cohort of test samples for both Breast Cancer
(Section 5.1) and Sepsis (Section 5.3) data.

In each application, we randomly select 50 test samples. For each
test instance, LIME and S-LIME are applied for 20 repetitions and
we calculate average Jaccard index across all pairs out of 20 as
before. Finally, we report the overall average Jaccard index for 50
test samples. The results are shown in Table 5. LIME explanations
are generated with 1000 synthetic samples.

For Breast Cancer Data, we pick 𝑛𝑚𝑎𝑥 = 10000 as in Section
5.1. We can see that in general there is some instability from the
features selected by LIME, while S-LIME can improve stability. By
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further increasing 𝑛𝑚𝑎𝑥 we may get better stability metrics, but at
the cost of computational costs.

For the sepsis prediction task, LIME performs much worse ex-
hibiting undesirable instability across 50 test samples at all 5 po-
sitions. S-LIME with 𝑛𝑚𝑎𝑥 = 100000 achieves obviously stability
improvement. The reason for invoking a larger value of 𝑛𝑚𝑎𝑥 is
due to the fact that there are 600 features to select from. It is an
interesting future direction to see how one can use LIME to explain
temporal models more efficiently.

Table 5: Overall average Jaccard index for 20 repetitions for
LIME and S-LIME across 50 randomly chosen test samples.

Position LIME S-LIME
1 0.90 0.98
2 0.85 0.96
3 0.82 0.92
4 0.81 0.96
5 0.80 0.84

(a) Breast Cancer Data

Position LIME S-LIME
1 0.54 1.0
2 0.43 1.0
3 0.37 0.78
4 0.35 0.90
5 0.34 0.99

(b) Sepsis Data

C VARIABLES LIST FOR SEPSIS DETECTION

Table 6: Variables list and description for data used in sepsis
prediction.

# Variables Description
1 Age age(years)
2 Gender male (1) or female (0)
3 ICULOS ICU length of stay (hours since ICU admission)
4 HR hea1t rate
5 Potassium potassium
6 Temp temperature
7 pH pH
8 PaCO2 partial pressure of carbon dioxide from arterial blood
9 SBP systolic blood pressure
10 FiO2 fraction of inspired oxygen
11 SaO2 oxygen saturation from arterial blood
12 AST aspartate transaminase
13 BUN blood urea nitrogen
14 MAP mean arterial pressure
15 Calcium calcium
16 Chloride chloride
17 Creatinine creatinine
18 Bilirubin bilirubin
19 Glucose glucose
20 Lactate lactic acid
21 DBP diastolic blood pressure
22 Troponin troponin I
23 Resp respiration rate
24 PTT partial thromboplastin time
25 WBC white blood cells count
26 Platelets platelet count
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