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Abstract

In 2001, Leo Breiman wrote of a divide between “data modeling” and “algorithmic model-
ing” cultures. Twenty years later this division feels far more ephemeral, both in terms of
assigning individuals to camps, and in terms of intellectual boundaries. We argue that this
is largely due to the “data modelers” incorporating algorithmic methods into their toolbox,
particularly driven by recent developments in the statistical understanding of Breiman’s
own Random Forest methods. While this can be simplistically described as “Breiman won”,
these same developments also expose the limitations of the prediction-first philosophy that
he espoused, making careful statistical analysis all the more important. This paper out-
lines these exciting recent developments in the random forest literature which, in our view,
occurred as a result of a necessary blending of the two ways of thinking Breiman originally
described. We also ask what areas statistics and statisticians might currently overlook.
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1. Introduction

Twenty years after its initial publication, Breiman’s “Two Cultures” essay (Breiman et al.,
2001) remains an entertaining and enlightening read, though we are struck by how uncon-
troversial new readers in the modern era may likely find many of its prescriptions. We begin
our commentary by comparing Breiman’s views at the time with current perspectives on
data science and argue that while the field of statistics may have fallen short on some fronts,
Breiman would no doubt be pleased with a number of strides made in recent decades. In
our view, these developments have been made not because of a switch in statistical think-
ing from data to algorithmic modeling, but because rigorous statistical analysis has allowed
these methods to be understood within more traditional statistical frameworks. We detail
how the willingness to expand the statistical toolbox without sacrificing fundamental prin-
ciples has led to a rapid development of important recent studies on random forests and
urge the statistical community to continue these efforts to better understand cutting-edge
methodologies in deep learning. Throughout the remainder of this paper, quotes and refer-
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ences including only a page number are in reference to Breiman’s original essay (Breiman

et al., 2001).

2. Data Science: Breiman’s Final Prediction

“If our goal as a field is to use data to solve problems, then we need to move away from
exclusive dependence on data models and adopt a more diverse set of tools.” — Page 199

The above quote that appeared in the abstract of Breiman’s essay provides a reasonably
accurate summary of thoughts that he expounds upon in the pages that follow. To most
modern data analysts, however, the aim of “using data to solve problems” almost certainly
feels like the credo of what we would now refer to as ‘data science’, of which the field
of statistics constitutes only a proper subset. In the decades following the publication of
Breiman’s essay, the interest in solving problems via data analyses has continued to explode
along with the size and scale of the data available. Predictably, this has led to the current
climate in which researchers from across at least dozens of academic fields might rightfully
claim to be working on projects intersecting with data science.

In our view, however, the field of statistics has seen substantial growth in its own right.
Machine learning, a field described by Breiman in 2001 as having “occurred largely outside
statistics ... mostly [by| young computer scientists” (p. 200) is now a standard research
interest listed on the majority of CVs by young statisticians on the faculty job market.
We note that while this interest sometimes includes topics quite far from what would have
been described as Machine Learning in 2001, the eagerness on the part of statisticians to
plant their flag in the field is a promising development in the eyes of those sympathetic to
Breiman’s arguments for a more intense focus on algorithmic modeling . Leading statistics
journals like The Annals of Statistics, Biometrika, The Journal of the American Statistical
Association (JASA), and The Journal of the Royal Statistical Society (JRSS), have shown
a willingness, if not an enthusiasm, to publish advances in machine learning research so long
as the core contributions are fundamentally grounded in statistics. At the same time, the
Journal of Machine Learning Research (JMLR) has been established that regularly contains
individuals on the editorial staff who are unmistakable statisticians, providing researchers
a another top-tier journal venue. Measures of model accuracy as measured via test or
cross-validation error — an aspect Breiman felt was distinctly lacking (p. 204) — are now
commonplace in modern statistical publications.

Individuals and departments have also been outspoken in embracing the data science
revolution. Bin Yu, in her 2014 IMS Presidential address, urged statisticians to proudly
proclaim themselves data scientists, arguing that while statistics may not be data science,
no one does more of the job (Yu, 2014). Top statistics departments in the United States
including, for example, Carnegie Mellon, Yale, and Cornell University, now include ‘Data
Science’ in the official department name. Thus, while the field of statistics has perhaps
not expanded quickly enough in the minds of some, we think that Breiman would be very
pleased with the willingness to embrace new directions exemplified in recent decades.
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3. Merging Data and Algorithmic Modeling

“There is an old saying “If all a man has is a hammer, then every problem looks like a nail.”
The trouble for statisticians is that recently some of the problems have stopped looking like
nails.” — Page 204

The foundation of Breiman’s arguments lie in the distinction between what he refers
to as “data modeling” as opposed to “algorithmic modeling”. Data modeling, according
to Breiman, is the traditional statistical modeling context wherein a basic framework like
Y = f(X) + € is assumed and simple parametric models like linear regression, logistic
regression, or the Cox model are utilized to estimate f. The algorithmic modeling culture,
by contrast, utilizes tools like decision trees and neural networks and “considers the inside
of the box complex and unknown. Their approach is to find a function f(x) — an algorithm
that operates on x to predict the responses y” (p. 199). “The commitment to data modeling,”
Breiman argues, “has prevented statisticians from entering new scientific and commercial
fields where the data being gathered is not suitable for analysis by data models” (p. 200).
“The best available solution to a data problem might be a data model; then again it might
be an algorithmic model” (p. 204).

But while the distinction between data and algorithmic models may have seemed natural
at the time, 20 years later, it feels arbitrary and unnecessary: Y = f(X)+e¢ is a data model!
Throughout the essay, Breiman seems to repeatedly conflate “data models” and “parametric
models”. It’s not clear why Breiman seemed to feel that tools like decision trees cannot or
should not be implemented in conjunction with at least some minor model assumptions, and
his reference to Grace Wahba’s foundational, and very statistical, work on nonparametric
smoothing as outside of mainstream statistics, at least in 2001, seems strange.

Breiman himself goes so far as to admit that one the primary goals in statistics is to
obtain information about the underlying data generating mechanism (p. 203, 214). And
insofar as this goal is concerned, it’s important to stress that neither the data or algorithmic
modeling approach is of any value when carried out at the extreme. A data model, though
perhaps interpretable, holds no value if the model itself is not reflective of the process that
generated the original data. On the other hand, an algorithmic model that amounts to an
impenetrable black-box, while it may produce accurate predictions, is merely a potentially
more efficient version of nature and therefore of limited scientific value — we haven’t learned
anything about the mechanisms and variables driving those predictions.

In our view, the enormous progress that has been made by statisticians in recent decades
came not from abandoning the traditional principals of data modeling, but by merging
the cultures Breiman describes. The willingness on the part of statisticians to expand
the traditional modeling toolbox without sacrificing core data analytic and uncertainty
quantification principles has led to tremendous gains in our knowledge and understanding
of modern supervised learning techniques. Random forests — the apple of Breiman’s eye —
is certainly one of the methodologies that has benefitted most from this merged mindset.
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4. Advancements with Random Forests

‘So forests are A+ predictors. But their mechanism for producing a prediction is difficult
to understand. ... Using complex predictors may be unpleasant, but the soundest path is to
go for predictive accuracy first, then try to understand why.” — Page 208

The second sentence in the above quote is perhaps the best summary of the later half
of Breiman’s essay and arguably the fundamental principle that has stimulated the recent
progress in understanding the success and inner workings of black-box learning algorithms
like random forests. At the time, much of the traditional statistical modeling culture re-
volved around formulating parametric models and making continual tweaks until the model
seemed to fit best. The process begins with an explicit and interpretable model and modi-
fications are made to try and improve accuracy. Breiman — stemming from his belief that
“...the models that best emulate nature in terms of predictive accuracy are also the most
complex and inscrutable.” (p. 208) — urged statisticians to consider the process in reverse:
begin with a an accurate but potentially obscure model and perform follow-up investigation
to uncover the impact of individual predictors on the response.

Breiman kickstarts these efforts in his work with random forests and out-of-bag (oob)
variable importance, demonstrating that “a model does not have to be simple to provide
reliable information about the relation between predictor and response variables” (pp. 209-
211). Interestingly, in doing so, he himself implicitly begins to utilize traditional data
modeling thinking in order to extract insight from complex models. In the following sections,
we detail how similar thinking has recently led to a rapid advancement in our understanding
of random forests as well as the ways in which they can be reliably used to further our
understanding of the underlying processes.

4.1 Statistical Understanding of Random Forests

“My kingdom for some good theory.” — Page 205

Breiman’s preference for algorithmic models did not lead him to abandon statistical
theory; indeed his essay explicitly recognizes the theoretical developments underpinning
both smoothing splines and support vector machines (although it unaccountably ignores
a large statistical literature on other nonparametric smoothing methods) and he sketched
such an analysis of random forests. The two decades since then have seen statistics slowly
fill in theoretical details particularly about the random forest method. It’s unclear whether
Breiman'’s essay, or their reliable “off-the-shelf” performance (or a combination of the two)
that motivated a statistical focus on random forests in particular, but our own interest in
these methods was also influenced by recognizing an appealing macroscopic structure that
could be used to develop mathematical theory.

The pace of these developments at times felt glacial, due somewhat to the difficulty of
developing an analysis that accounts for the greedy splitting strategies involved in building
trees. Theoretical headway has come from making a number of modifications, some arguably
beneficial, others purely focussed on mathematical tractability:

1. Methods that provide guarantees on the (geometic) size of the leaves of individual
trees, usually obtained by introducing randomly chosen splits. Originally, this in-
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volved generating tree structures largely at random (Biau et al., 2008; Biau and
Devroye, 2010; Biau, 2012). More recently, the regularity conditions of Wager and
Athey (2018) can be enforced by choosing a split at random with some probability
while otherwise allowing data-informed splitting methods to be used. Controlling leaf
dimensions provides a similar control over within-leaf bias, where the tree represents
the underlying relationship as constant and hence forms an important component of
consistency results.

. Methods that enforce independence between tree structures and leaf values. We think
of this as avoiding the problem of trees “chasing order statistics” or finding structures
that isolate exceptionally (and randomly) large values of the response. Choosing tree
structures completely at random and letting the data dictate leaf values naturally
provides this and facilitates a representation of random forests as kernel methods
(Scornet, 2016). Wager and Athey (2018) propose splitting the data between samples
used to determine tree structure and those assigning values to leaves. The theoret-
ical advantage of this separation is that it allows the values given to leaves to be
unbiased for the average response in the leaf. This completes a control of bias when
combined with controlling the size of the leaves. The authors also argue for perfor-
mance improvements in addition to theoretical guarantees based on reducing edge
bias. However, this improvement is counteracted by reducing the size of the sample
available for building trees (and hence their depth) and we thus regard that trade-off
as unclear. The standard CART split criterion (Breiman et al., 1984) seems to remain
the overwhelmingly most popular choice in practice.

. Changing the sampling structure. Breiman’s original random forest algorithm ob-
tained trees from bootstrap samples of the data. The last five years has seen a switch
to employing subsamples instead. This is motivated by the connection between ran-
dom forests based on subsamples and classical U-statistic constructions and allowed
both Mentch and Hooker (2016) and Wager and Athey (2018) to develop central limit
theorems for the predictions that random forests give. These have been refined by
analyses in Peng et al. (2019) who also provided Berry-Esseen results and Zhou et al.
(2019) who extended the analysis to subsampling with replacement and thereby ob-
tained improved variance estimates. Scornet et al. (2015) also utilize subsampling
to obtain what is arguably the “best” consistency result to date, in that it covers
estimators very closely resembling the form of random forests originally proposed by
Breiman (2001).

The switch to subsampling can be regarded as assisting Breiman’s objective of re-
ducing correlation between trees — we’d like subsamples large enough that trees can
be built to reasonable depths (to improve tree-level accuracy) but small enough that
between-tree correlation is mitigated. While this creates another tuning parameter,
Zhou et al. (2019) found that using subsamples with replacement also reduced the sen-
sitivity of results to this fraction, and that the optimal subsample size is not always
that of the training data.

We note that, similar to more classical non-parametric smoothing results, these central
limit theorems are not necessarily centered at a target f(X) = E(Y|X). The U-
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statistic argument applies quite generally to averages of any sort of learner, but specific
analysis is required to make E f (X) — f(X) small enough to be ignorable for inference
(e.g. Wager and Athey, 2018). In nonparametric smoothing, removing the bias from
a central limit theorem generally involves under-smoothing relative to the optimal
predictive model (Eubank, 1999). While we readily acknowledge the value in being
able to perform strictly formal inference (see below for examples) we also believe that
an analysis of stability has value in itself.

These developments allow us to provide results that state, for a given point of interest
x’

(@) (fal@) = ma(2)) ~ N(0,1) (1)
where particular expressions for the mean and standard deviation functions 1, (x) and ¢, ()
depend on particulars of the modification of the random forest algorithm. However, the
general framework creates the basis for the formalized inference we describe below.

None of the above modifications are strictly necessary in the sense that (1) is provably
false without them. As noted above, Scornet et al. (2015) have produced a consistency
result for estimators nearly identical to the original random forest algorithm. Such minor
modifications have largely been motivated as a means to mathematical tractability, although
in some cases they may also provide genuine improvements in predictive or inferential
performance. These ideas have also been accompanied with a wide range of modifications to
random forests that repurpose them for estimating individual treatment effects (Wager and
Athey, 2018), survival analysis (Gordon and Olshen, 1985; Segal, 1988; Davis and Anderson,
1989; Hothorn et al., 2004; Zhu and Kosorok, 2012; Steingrimsson et al., 2016), quantile
regression (Meinshausen, 2006) and multivariate outcomes (Segal and Xiao, 2011), with
similar analyses to those we outline above. Breiman’s ideas about using co-in-leaf status as
a measurement of proximity between points have also been taken up to provide local models
(Athey et al., 2019), prototypes (Tan et al., 2020) and prediction intervals (Lu and Hardin,
2019); see also Zhang et al. (2019) for prediction intervals based on conformal methods.

These results have all been focussed around random forest-like methods, but they are
hardly the only machine learning methods available. Though not shy about promoting his
own work, Breiman’s essay specifically discusses boosting (Freund et al., 1996; Freund and
Schapire, 1997; Friedman, 2001) as a rival methodology with real potential. These methods
received early attention from analogies to the LASSO in linear models (Friedman, 2001)
and initial analysis in Bithlmann (2002). Boosting is able to accommodate a wide array
of model forms and restrictions (Breiman’s comments suggest he might not approve of the
latter), some of which are explored in Hothorn et al. (2010); Lou et al. (2013); Zhou and
Hooker (2018). Nonetheless, theoretical analysis remains rudimentary and a long way from
(1). Early analyses in this direction in Zhou and Hooker (2018) try to make boosting look
more like random forests and may provide a starting point; Bayesian methods (Chipman
et al., 2010; Rockova and Saha, 2019; Hill, 2011) have also seen significant development.

4.2 Real-world Understanding from Random Forests

“Framing the question as the choice between accuracy and interpretability is an incorrect in-
terpretation of what the goal of a statistical analysis is. The point of a model is to get useful
information about the relation between the response and predictor variables. Interpretability
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is a way of getting information. But a model does not have to be simple to provide reliable
information about the relation between predictor and response variables; neither does it have
to be a data model.” — page 209

Wahile statistical understanding of the properties of random forests has focused on an-
alyzing models that are increasingly similar to Breiman’s original ideas, this has not been
the case for the tools that he advocates for deriving knowledge from them. He acknowledges
that the tools he advocates result in algebraically-complex models that do not allow hu-
man inspection, but proposes that we should first find a model that predicts well and then
reverse-engineer what it does. This proposal has been directly attacked by some (e.g. Rudin
(2018)), but the specifics of Breiman’s approaches have also been shown to be potentially
misleading. In fact, identifying, or testing, the important covariates in a random forest is
a challenging procedure with many popular methods exhibiting distinct flaws. Here we re-
view some of these and point to ways in which variable importance can be validly assessed,
and point to how improved statistical understandings of random forests have contributed
to these recommendations.

Breiman’s original proposals for eliciting information about the relation between pre-
dictor and response variables was via his out-of-bag variable importance measures. These
proceed on a tree-by-tree basis:

1. Choose those data points that were not included in the sample that the tree con-
structed. Call this data set Z.

2. Form a new data set Z™ by permuting the values of the variable of interest (X
throughout the discussion below, with X = (X1, X _1)).

3. Compare the predictive accuracy of using the current tree to predict the response in
Z to that when using Z7.

The idea of permuting features can be applied generally, but specifically permuting out-of-
bag data does, by definition, require an ensemble structure constructed via bootstrapping or
at least some form of resampling. It also means we measure accuracy of individual members
of the ensemble, not the ensemble as a whole. This general approach was critiqued by
numerous studies including both Strobl et al. (2008) and Hooker (2007) for also breaking
any relationships between X; and X_;. In particular it may lead to values in Z™ that are
far from any observed data points, thereby evaluating the ways in which a random forest
extrapolates at least as much as the signal that it picks up. Despite these early warnings,
the method proved (and unfortunately remains) popular as a variable screening tool; a
stereotypical example can be found in Diaz-Uriarte and De Andres (2006) where features
measured as least important are successively removed. This prompted us to repeat and
formalize the critique with further studies in Hooker and Mentch (2019). In those studies,
as in many of the earlier works, we found that pairs of correlated features were likely to have
their importance estimates inflated, despite having an impact that would conventionally be
regarded as smaller. We stand by our recommendation not to use these methods.

The other common measure of variable importance among random forest implementa-
tions is specific to tree structures and measures the improvement in accuracy that is obtained
each time the tree is spit (e.g. Friedman, 2001); a variable accumulates the improvements
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associated with those splits that use it. This has been critiqued for favoring variables with
more potential split points in Strobl et al. (2007)! and we admit to having been surprised
by the size of the effect found in simulation in Zhou and Hooker (2019). This, along with
other papers (Li et al., 2019; Loecher, 2020) have attempted to correct for this bias by using
out-of-sample data, but the precise interpretation of this measure is also not clear outside
of the very specific cases in Scornet (2020).

Some of the flaws in the above methods are surprising while others, in retrospect, ap-
pear foreseable. So are there ways to more appropriately and rigorously assess variable
importance? Yes, though none are as computationally or algorithmically simple as those
above.

The primary problem with the out-of-bag approaches outlined above is that models are
constructed only on the original data — inspections are made by altering (permuting) test
data, but never by altering the training data and reconstructing the model. We refer to this
general idea as “permute-and-repredict” in Hooker and Mentch (2019). In most practical
applications, however, when one asks whether a particular feature — say X; —is “important”,
they are really asking whether the model estimate (learning procedure, algorithm) could
be just as accurate without it. Investigating this question directly thus necessarily involves
the more computationally intensive idea of rebuilding the model under alterations to the
training data.

In our earlier work on random forests (Mentch and Hooker, 2016), we proposed a hy-
pothesis test for variable importance based on exactly this idea: we construct one random
forest on the original data, then another where X7 is removed from the dataset and compare
the difference in predictions between the two models. Noticing that predictions are some-
times affected by the dimension of the feature space, we advocated that the test be carried
by permuting X7 in the data used by the second random forest rather than removing it from
the model entirely. In more recent work, Coleman et al. (2019) proposed a more computa-
tionally efficient version of this test that measures the difference in accuracy between the
two forests rather than the difference in raw predictions. This kind of idea as also appeared
in the conformal inference literature where Lei et al. (2018) proposed LOCO (Leave-One-
Covariate-Out) tests that follow exactly the same intuition and in a model-agnostic test
recently proposed in Williamson et al. (2020).

While the “drop-and-rebuild” and “permute-and-rebuild” approaches both improve upon
the “permute-and-repredict” framework, neither is perfect in practical settings because in
addition to breaking the relationship between the feature and response, we also break the
relationship between the feature and all remaining features. A natural further fix is thus
to replace X7 with a copy generated from its distribution conditional on X _1. This was, to
our knowledge, first advocated in Strobl et al. (2008) and holds some resemblance to the
new literature on knockoffs (Barber et al., 2015), conditional randomization tests (Candes
et al., 2018; Liu and Janson, 2020), and holdout randomization tests (Tansey et al., 2018).
However, while such an approach is certainly theoretically appealing, the task of generating
conditional simulations of X1|X_; is non-trivial; a number of potential methods exist to do
this, but more work needs to be done here and we anticipate this research area will remain
very important in the coming years.

1. This critique also motivated the GUIDE procedure (Loh, 2002).
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Finally, we note that the definition of variable importance itself remains somewhat
murky and, much to our frustration, commonly undefined in practical applications. Con-
ditional generation implicitly suggests that we are primarily interested in the predictive
ability of X beyond that provided by the other covariates. We could, instead, simulate
X_1|X1, or some subset of the covariates. To this end, Shapley values (Lundberg and Lee,
2017) have been suggested as representing the marginal improvement in predictive accuracy
given by X7, averaged over the order of inclusion. Alternative functional ANOVA methods
(Hooker, 2007), relate variable importances to statistically-familiar types of sums of squares,
allow the examination of interactions and can account for covariate distributions, albeit at
a potentially prohibitive computational cost.

4.3 Formalized Inference from Random Forests

“an algorithmic model can produce more and more reliable information about the structure
of the relationship between inputs and outputs than data models.” — page 200

While statistical theory and insight has helped to understand and improve our methods
of extracting information from a random forest, we can go further and start to use random
forests explicitly for statistical inference. The CLT in (1) can be used to provide confidence
intervals about individual predictions (Mentch and Hooker, 2016) or other quantities av-
eraged over some covariate distribution (Wager and Athey, 2018). However, ideas such as
variable importance suggest hypotheses about structure along the lines of

Ho : n(X1,X_1) =n"(X_1) (2)

for some function n*. Here we can use the extension of (1) to multivariate or process
distributions over the input space. In particular, Mentch and Hooker (2016) provide formal
tests of this form by evaluating the differences

D(X) = ST (X) - T (X)) 3)

between trees T build with the original data, and T™ that used a permuted version of Xj.
Since the D(X) have a joint multivariate central limit theorem, we can form a y-square test
of their values at a set of equation points.

Alternatively, the functional ANOVA methods in Hooker (2007) were turned into formal
tests in Mentch and Hooker (2017). Specifically, we interpret the hypothesis in (2) as

Ho: n(Xi1, Xg,—1) =n(Xj1, Xk,—1)

over a set of covariate values (X;1,X; —1). This creates a grid of function evaluations for
which Hj is a linear contrast that can be again tested via a multivariate y-square statistic.
The same techniques can be extended to examine interactions by testing hypotheses of the
form

Hy: n(Xin, Xj2, X —a,2)) = m(Xins Xi—(1,2)) + 12(Xj2, Xi —(1,2))-

Any of these testing frameworks require evaluation at a large number of covariate values,
making variance estimates unstable, and Mentch and Hooker (2017) resorted to random
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projection methods (Srivastava et al., 2016) to stabilize them. They also rely heavily on
asymptotic normality results and on a fixed set of evaluation points. Coleman et al. (2019)
considered using the two forests that contribute to (3), but developed a permutation test
based on randomly swapping trees between forests and measuring the change in differences
in error, meaning that far fewer trees need to be constructed, thus allowing for very large
test sets.

We hope to show by these methodological developments that Breiman’s notions of “al-
gorithmic modeling” can be accommodated and used readily within classical statistical
paradigms, and refer to Chipman et al. (2010) for parallel Bayesian developments. Some
of the methods have described lean heavily on at least the ensemble structure of random
forests, but others are more general provided a result of the form of (1) is available. When
“algorithmic models” are understood as non-parametric regression methods, the chasm that
Breiman perceived within statistics can be crossed with only a few well-placed stepping
stones.

4.4 Why do Random Forests Work?

“But when a model is fit to data to draw quantitative conclusions... the conclusions are
about the model’s mechanism, and not about nature’s mechanism.” — Page 202.

Despite the enormous progress made on the statistical front in recent years, the question
that has perhaps proved the most elusive is also the simplest: Why do random forests seem
to work so well in practice? In their recent review paper, Biau and Scornet (2016) note
that “present results are insufficient to explain in full generality the remarkable behavior
of random forests.” And indeed, studies have long demonstrated the surprisingly robust
accuracy of the random forest method. The most recent and impressive large-scale empirical
comparison of methods was provided in Ferndndez-Delgado et al. (2014) where the authors
compare a total of 179 classifiers across 121 datasets — the entirety of the UCI database
(Dua and Graff, 2017) at the time. They found that not only did random forests perform
the best overall, but 3 of the top 5 classifiers were some variant of random forests, leading
them to declare that “the random forest is clearly the best family of classifiers.”

Until very recently however, few if any explanations for random forest success had
been offered that pushed beyond Breiman’s original intuition of reducing the between-tree
correlation. Wyner et al. (2017) focused on classification settings and hypothesized that
their success was due to interpolation — a kind of purposeful overfitting that, in their view,
was beneficial because perhaps real-world data are not as noisy as statisticians generally
believe.

Mentch and Zhou (2020a) were critical of this explanation, noting in particular that in
regression settings, the opposite appears to be true: random forests appear to be most useful
in settings where the signal-to-noise ratio (SNR) is low. The authors proposed an alternative
explanation based on degrees of freedom wherein the additional node-level randomness in
random forests implicitly regularizes the procedure, making it particularly attractive in
low SNR settings. Based on this idea, they demonstrate empirically that the advantage of
random forests over bagging is most pronounced at low SNRs and disappears at high SNRs;
when the trees in random forests are replaced with linear models, these kind of implicit
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regularization claims and can be proved formally. This finding deals a serious blow to the
widely held belief shared by both Breiman (2001) and Wyner et al. (2017) that random
forests simply “are better” than bagging as a general rule. Perhaps most surprisingly, the
authors also demonstrate that when a linear model selection procedure like forward selection
incorporates a similar kind of random feature availability at each step, the resulting models
can be substantially more accurate and even routinely outperform classical regularization
methods like the lasso.

In follow-up work, Mentch and Zhou (2020b) build on this implicit regularization to
introduce another surprising result: the predictive accuracy of both bagging and random
forests can sometimes be dramatically and systematically improved (particularly at low
SNRs) by including additional noise features in the model which, by construction, hold no
additional information about the response beyond that contained in the original features.
The authors refer to these kinds of procedures as augmented bagging and show that even the
formal hypothesis testing procedures above will, correctly but counterintuitively, recognize
large groups of noise features as making a significant contribution to the predictive accuracy
of the model.

This last point is quite surprising and easy to misinterpret; readers seeing this for the first
time might reasonably ask whether these kinds of hypothesis tests should really be trusted
if they routinely identify noise features as predictively significant. We stress, however, that
these tests are merely evaluating whether there is a significant improvement in accuracy
when additional noise features are added to the model. This does indeed appear to be the
case in some settings — models with additional noise features really can make the models
more accurate. Thus, in those settings, by identifying such noise features as predictively
helpful, it’s important to realize that these tests are not making an error. Rather, as
discussed at length in Mentch and Zhou (2020b), it is not the tests themselves that are
wrong but the common (mis)interpretations of those tests.

However, this observation does confound two separate questions: whether the feature
improved the predictive accuracy of a model, and whether it is associated with the response
by real-world processes. Alternatively: is the feature uniquely helpful: do we need to include
the same measurements, or would the current value of the microwave background radiation
be just as useful? ”What is your model for the data?” — the question Breiman objected to
— in fact becomes essential: are we measuring a property of the world that generated the
data, or the algorithm used to analyze it? Both are reasonable to measure, but they are
not the same, and can’t be assessed by the same methods. Crucially, Breiman’s standard
of predictive accuracy, while applying to properties of the algorithm, is not necessarily
indicative of real-world processes. We expect that deeper studies in the general area of
variable importance will continue to remain an important topic of study in future years as
data becomes larger and more complex and black-box models are increasingly relied upon
as a result.

5. Illustration

“It maybe revealing to understand how I became a member of the small second culture... My
experiences as a consultant formed my views about algorithmic modeling.” — page 200
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Brieman illustrates the development of his views on how to approach data through
a series of examples and David Cox, his strongest critic, also notes the paucity of data
that actually appears in the highest profile statistics journals. The conversation between
statistical theory and applied practice is of vital importance, particularly in discussing
broader questions about modeling philosophy, and we here provide a précis of a project to
which we contributed and which we believe demonstrates well the fusion of both machine
learning methods and statistical thinking. The interested reader is referred to Coleman
et al. (2020) for full details.

The ebird project at the Cornell Laboratory of Ornithology (www.ebird.org) collects
data from amateur birdwatchers across the United States. This data repository has been
used to estimate over-all changes in bird abundance, provide maps of bird migration, and
explore the dependence of bird distributions on ecological features. It has been a significant
motivation for our own research. The project we describe used these data to assess the
impact of local weather conditions on the timing tree swallows’ ( Tachycineta bicolor) fall
migration. Specifically, daily maximum temperature was expected to drive tree swallow
migration through its (unobserved) effect on the abundance of flying insects that make up
the greatest part of their food source.

Modeling migration effects is made challenging by complex spatio-temporal effects along
with high-order interactions among other landscape and land-use features (Zuckerberg et al.,
2016). This makes machine learning models particularly useful, and these have be exten-
sive explored, for example in Fink et al. (2020). In this project we had a data set of 25727
observations collected after day 200 on each year from 2008 through 2013 in six wildlife
refuges along the north eastern United States coast. These observations recorded the pres-
ence or absence of tree swallow sightings, the time and day of the recording, and the time
and distance effort put into data collection. We also collected local landcover and eleva-
tion summaries from remote sensing systems as well as the daily maximum temperature,
providing a total of 30 variables for each observation.

Within this data set, daily maximum temperature is strongly associated with day of
year to the extent that there is little evidence of its predictive utility. This relationship also
makes permuting the maximum temperature values problematic in creating unrealistically
warm December days and very chilly Augusts. Instead, we replace maximum temperature
with its difference from the average for that day and location over the six year period. This
orthogonalization isolates the effect of weather from other temporal drivers, both allowing
a machine learning algorithm to make use of the signal and reducing the effect of permuting
the difference.

We assessed whether maximum temperature had a discernible affect on tree swallow
abundance by examining the differences in predictions between tree ensembles obtained
from the original data and those obtained using a permuted version of maximum temper-
ature difference. This was done at 25 time-locations pairs in each of the wildlife refuges
in which we used a multivariate version of (1) to develop a x? test for each 25-vector of
prediction differences. This revealed strong evidence of an effect at 4 of the regions with
much attenuated evidence in the most northerly and southerly regions where we expect
migration timing and climate to already reduce the role of temperature.

This study illustrates the combining of the modeling cultures that Breiman describes:
statistical considerations play a key role in designing the covariates we used, the development
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of our tests, and our assessment of evidence, but we avoided the need for extensive and
complex models by using algorithmic tools: treating these as statistical models is not a large
leap. Debates around causality and fairness in machine learning have equally demonstrated
the need to combine schools in this way and we expect the gap that Breiman perceived to
become increasingly invisible.

6. What is the New Algorithmic Modeling?

“This is a fascinating enterprise, and I doubt if data models are applicable. Yet I would
enter this in my ledger as a statistical problem.” — page 214

Breiman’s essay clearly displays his frustration with the conservativism of a statistics
community unwilling to engage with unfamiliar ideas and methods. This same sentiment
is not unfamiliar to us but it is also hardly unique to statistics, as many statisticians who
have received reviews from the computer science conferences promoted by Breiman can
attest. We do not subscribe to the sentiment that “Statistics lost Machine Learning”, but
the statement does lead us to ask what other areas we might currently be going overlooked.

An obvious answer is “deep learning” (viewed at the time of Breiman’s essay as being
somewhat played out) and indeed we are aware of starkly little statistical involvement in
this intensely hot area of machine learning research where the greatest performance gains
over the past decade — Breiman’s primary metric of validity — have come from. The work
that we are aware of (e.g. Barron and Klusowski, 2018; Bai et al., 2020) focusses on shallow
networks and largely ignores the algorithms used to learn weights. This seems analogous
to the original work on random forests and we hope that it will similarly lead to steadily
more practical results, but also expect progress will require new ways of representing the
problem.

However, rather than the mathematical properties of neural networks, the aspect we
most worry about statisticians ignoring is the type of data where these tools excel: images,
text, sound and other natural data types that are both highly structured — e.g. pixels are
next to other pixels — and where individual numbers have little to no individual interpretive
value. (The large statistical literature on medical imagining requires making images compa-
rable on a value-by-value or at least region-by-region level. Similar comments can be made
about inference with many other non-Euclidean objects where defining a distance appears
to be a starting point.) We have seen little statistical interest in the way deep learning is
applied to these types of complex data objects where questions about manifold structure,
the stability of explanation methods, or structuring models that extract information could
all benefit from statistical perspectives, even as we freely acknowledge that we, ourselves,
have not contributed.

Outside of these specifics, we expect that Breiman would have welcomed the broadening
of interests associated with the field of Data Science. Statistics has a long history of worrying
about the design or causal issues in data provenance and the biases associated with data
collection, and a somewhat more limited engagement with data privacy. Much more of this
is sorely needed as the emerging issues in ethical Al are making clear. We think the adjacent
areas of data merging and data cleaning are both ripe for more formal study; developing
methods and analyzing their consequences. There are surely other tasks of which we haven’t
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thought, but we really do need to encourage the discipline to expand beyond our collective
intellectual comfort zone.

7. Discussion

“The roots of statistics, as in science, lie in working with data and checking theory against
data. I hope in this century our field will return to its roots. There are signs that this hope
is not illusory. Over the last ten years, there has been a noticeable move toward statistical
work on real world problems and reaching out by statisticians toward collaborative work with
other disciplines. I believe this trend will continue and, in fact, has to continue if we are
to survive as an energetic and creative field.” — Page 214

Looking around today at the emerging field of data science and the resulting shifts
within the statistics community, it’s easy to see the impact of Breiman’s thinking. As
faculty members in statistics departments who are active in data science education at both
the undergraduate and graduate levels, we frequently interact with students who are new
to the field, many of whom are reading Breiman’s seminal essay for the first time. In the
vast majority of cases, we find that these young statistics students are puzzled as to why it
was ever considered a controversial work. “Isn’t it obvious that this is what we’re supposed
to be doing?” Ironically, perhaps the best indication of Breiman’s lasting impact through
his “T'wo Cultures” essay is its lessened relevance today.

Just as the field of statistics has begrudgingly opened it’s mind to problems outside
the classical modeling framework, computer scientists and machine learning researchers
deserve credit for expanding their horizons as well. A newfound interest in interpretability
(e.g. “explainable AI”), causality, and fairness is commonly on display at each of the most
notable machine learning conferences, each of which hearkens back to fundamental ideas
and philosophical considerations in traditional statistical modeling.

It’s worth noting that while the boundaries of these fields may have softened, it remains
the case that their respective directions are not unified. Computer scientists remain largely
driven by the “what” (predictive accuracy); statisticians the “how” and “why.” We still
observe a separation of concerns: global interpretations versus local explanations mirrors
scientific knowledge versus actions. In our view, however, so long as we resist dogmatic
aversions to alternative ways of thinking, unity shouldn’t be seen as a necessity for (or
perhaps even the optimal route to) continued progress.

Finally, there are likely some statisticians who, like David Cox’s commentary in the
original paper, remain skeptical of the recent trends in our field towards data science, fearing
that it signifies a surrender of the theoretical school of statistics and traditional modeling.
We do not think so; rather it is the realization that both sides might have something to tell
the other. Rather than seeing these trends as shifting away from classical statistical ideas,
we urge skeptical colleagues to consider these recent developments an expansion of those
ideas. This, we firmly believe, is the central theme of Breiman’s essay and is ultimately
what allowed for the exciting recent developments detailed in the previous sections.
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