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Abstract

When a gas in an externally imposed potential field is compressed, temperature gradients appear. This has been 
called the piezothermal effect. It is possible to analytically calculate the time-dependent behavior of the piezothermal 
effect using a linearized fluid model. Quantitative differences between the fluid-model results and previous numerical 
calculations can be explained by the effects of viscosity and heat conductivity. The fluid model casts the piezothermal 
effect as a spectrum of buoyancy oscillations, which yields new physical insights into the effect.
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1. Introduction

Consider a gas at rest in a potential field. If the gas is 
compressed, it will be heated. Moreover - contrary to the 
usual intuition about compressional heating - the result­
ing temperature will be spatially nonuniform, such that re­
gions that are higher in the potential well are hotter. This 
effect was described by Geyko and Fisch [1] and called the 
piezothermal effect. Intuitively, it results from the fact 
that particles starting in equilibrium move toward (and 
further compress) regions of higher potential as they are 
heated.

In the original paper on the piezothermal effect, Geyko 
and Fisch observed the phenomenon in particle simula­
tions. Analytically, they used a toy model to explain the 
scalings and some of the quantitative behavior of the sim­
ulations. Their model described the gas as two homoge­
neous regions separated by a massive movable membrane, 
so that the two sides of the system could have different 
temperatures and densities and could exert pressure on 
one another. For the simulation tools, they used a one- 
dimensional Monte Carlo code with exact energy and mo­
mentum conservation properties and a hard-sphere binary- 
collision operator. While their models correctly described 
the essential characteristics of the effect, they left room 
for discussion and future improvement in a number of re­
spects.
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This paper analyzes the piezothermal effect by instead 
using a fluid model. The fluid approach to the piezother­
mal effect makes it possible to analytically calculate the 
behavior of the piezothermal effect in a wider range of 
scenarios, in greater detail, and using fewer simplifying 
assumptions than was done previously. Numerical fluid 
simulations confirm the validity of the analytic model and 
- when compared in detail to the results of the Monte 
Carlo code used in the original paper - help to explain 
quantitative discrepancies between the fluid-model results 
and the previous numerical results.

The piezothermal effect is closely related to the physics 
to the rotation-dependent heat capacity effect also stud­
ied by Geyko and Fisch, in which the energy required 
to compress a rotating cylinder changes when the gas is 
spinning [2, 3], That effect has applications in engine de­
sign, where it could be used to improve the efficiency of 
Otto and Diesel cycles [4], In addition, the piezothermal 
effect is phenomenologically similar to the behavior ob­
served in Ranque-Hilsch vortex tubes, which also produce 
radial temperature gradients in a rotating gas [5-12]. Vor­
tex tubes are used for spot cooling in a variety of indus­
trial applications. In general, the ability to move energy 
in rotating and compressing systems - either spatially or 
between degrees of freedom - can be of great practical 
utility [4, 13]. These effects can also be useful for under­
standing the natural world. In particular, the fluid treat­
ment of the piezothermal effect makes it clear that there 
is a strong connection between the piezothermal effect and 
Brunt-Vaisala oscillations, which are observed in a variety
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Figure 1: This schematic shows a simple setup that demonstrates 
the piezothermal effect. Compression transverse to the direction of 
gravity produces temperature gradients parallel with gravity and in 
the opposite direction.

of naturally stratified media [14-17],

2. Linearized Fluid Model for Fast Compression

For simplicity, we consider the potential field to be 
gravitational, although practical applications are more likely 
in spinning systems, where centrifugal forces take the role 
of gravitational forces. Thus, to describe the key effects 
most simply, consider a gas in a gravitational field, such 
that all quantities vary only in the direction of the field. 
Suppose the fluid is compressed in a direction perpendic­
ular to the gravitational field. The behavior of the system 
depends on four timescales: the collisional timescale rc, 
the compression timescale te, the sound timescale rs, and 
the timescale th associated with spatial heat conduction. 
Geyko and Fisch studied the piezothermal effect in a fast- 
compression scenario and in a slow-compression scenario. 
In the fast-compression scenario, rc <C te <C ts <C tE- 
The first part of this inequality implies that the gas is 
always in local equilibrium. The second inequality means 
that the input of energy due to compression happens much 
more quickly than the system can react spatially. The last 
part of the inequality states that spatial heat conductivity 
can be neglected.

Because of the very fast collisional timescale, it is ap­
propriate to describe the system with a fluid model (a 
system with less frequent collisions could behave very dif­
ferently [18]). Using an adiabatic equation of state, the 
fluid density, velocity, and temperature can be modeled

dn
dt

d
9%

(m>) = 0

/ ch' chA <9(nT)
9%

— mng

/a a \ T
= 0.

(1)

(2)

(3)

Suppose the system is bounded between x = 0 and x = L. 
Define equilibrium profiles

"»<*> = (i-"l?U) <4»
Tq(x) = Tq = const (5)

%'o(z)=0. (6)

Now suppose the system is perturbed so that at 7 = 0, the 
temperature is (uniformly) changed from To to I). This 
can occur, for example, by lateral compression as shown 
in Figure 1. Define

6 =
Ti-T0

To
(7)

and suppose <5 < 1. n, T, and v can be expanded about 
equilibrium so that

ii — no T ii i T ) (8)
T = To + Ti + C(^) (9)

v = tq + 0(S2).

The initial conditions for n-i, T1; and iq are

(10)

”i|t=o = 0 (11)
(12)

Vl|t=0 = °- (13)

The initial conditions for their time derivatives can be de­
rived by combining these with the equations of motion. 
Define the equilibrium scale height z0 by

so
To_
mg

(14)

To first order in 6, the equations of motion can be written 
as

dv\
dt

dni 1 dv\-7— = — mvi - mo­

ot zq dx
1 ^ 1 To To

mzo m dx mno dx mzono
dTi
dt

(q- 1) To
no

( — ('inn
so

(15)

(16) 

(17)

Taking an additional time derivative of Eq. (16) and plug­
ging in Eqs. (15) and (17),

d2vi 7To / d2vi 1 dv\ 
dt2 in Y dx2 zq dx

(18)
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Define c° = iTo/m and f = v\e x/2zo. Then

d2=c°(dx° _ 4Z02 (19)

Applying the boundary conditions at x = 0 and x = L, f 
can be written as

f (t,x) = ^ Sn(t)sin (nLX 1

n=1 ' '

for some functions S„(t). Then Eq. (19) implies

,(«) = -cfi + 1
L2 ' 4z2/

(20)

(21)

The time-dependent coefficients are linear combinations of 
sine and cosines in time. In order to get v1 = 0 at t = 0, 
only the sine terms can survive. As such,

f (t, x) = ^2 On sin(knx) sin(w» t)

for some constants an, with kn and w„ defined by

. nn
kn = T

L2 4z2
+ ~TT = Wo\/1 + 4zokn •

(22)

(23)

(24)

Here i0 = cs/2z0. In order to determine the constants 
an, consider the initial condition on dv1/dt. Combining 
Eq. (16) with Eqs. (11), (12), and (13),

dvi
dt 9#,

t=o

dt
= gSe-x/2zo •

(25)

(26)
t=o

The sine series for e x/x is

e-z/A = E 2nnA2
L2 + n2n2 A2

[1 + (-1)n+1e L/x] sin(knx).

(27)

Using this,

dt t=o

E
n=1

gzoS
L

8kwz0
1 + 4kn z°

[1 + (_1)n+1e-L/2zo] sin(knx). (28)

Eq. (22) implies that

f
dt t=o

— ^ ] inan sin(knx) • (29)

This determines the an parameters.

f
2gz°S
Lcs E 8knz0

_(1+4kn zg)3/2

x [1 + ( —1)n+1e-L/2zo] sin(k„x) sin(i„t) 

The governing equation for T1 can be written as

ex/2zo= _(Y _ DT^f + ex

(30)

(31)

which is

dT1 = _ 1 - 1 2CsT0fex/2z
dt

E
n=1

L

4knz0
(1+4kn zg)3/2

[1 + ( —1)n+1e-L/2zo ]

x I sin(knx) + 2knz0 cos(knx rn sin(int) (32)

Integrating and applying the initial condition on T1,

Zl = S _ 1 _ 1 4Mex/2zo
To Y L

E
1

4knz0
(1+4kn zg)2

[1 + ( —1)n+1e-L/2zci ]

x f sin(knx) + 2zokn cos(knxrn [1 — cos(Wnt)]

Define the field-strength parameter G as 

G = _L mgL

In terms of G

Tr(t,x)
T0

= S-

E
n=1

Y — 1
Y

4nn

z0

(8GS)

T0

,(x/L)(G/2)

(33)

(34)

(G2 + 4n2n2)2
[1 + ( —1)n+1e-G/2]

x ( G sin(k„x) + 2nn cos(k„x) ) sin2 ( (35)

Qualitatively, it is clear from Eq. (35) that the shape of 
Ti(t, x) will depend strongly on G. Modes other than n = 
1 will contribute significantly when n < G/2n. When 
the n = 1 mode is dominant, the spatial and temporal 
structure are simple, with a well-defined wavelength and 
oscillation frequency. As G increases, the spatial structure 
becomes progressively more complicated.

In the weak-field G < 1 limit, Eq. (35) becomes

lim AM = S — 1—1 (4GS)
G^o T0 Y

E1+n-nr1 c*^^ (36)

n=1 n=1

— c

so
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When G < 1 and t = L/cs, sin2(int/2) ^ 1 + O(G2) 
Vn E Z. Therefore, the maximal temperature difference 
between x = 0 and x = L is

lim
G^o

T1(L/cs,L) - T1(L/cs,0)
To

Y—^ (2GS). (37)

When y = 5/3, this is 0.8GS. This is precisely the analytic 
result found by Geyko and Fisch in this limit. However, 
it disagrees with the results of their simulations, in which
AT1/TO % 0.64GS.

Simulations of the full nonlinear fluid equations given 
by Eqs. (1), (2), and (3) were performed using the 1D 
fluid code SNeuT, which uses components of the SUN­
DIALS suite [19, 20]. Figure 2 shows these simulations 
alongside the analytically predicted results from the fluid 
model; when S is small, they are in close agreement, in­
cluding the coefficient of 0.8. The origin of the discrepancy 
between these and the original paper’s results is discussed 
in Section 4.

Now consider the opposite limit, where G > 1:

limG^w To

E
n=1

=S

4nn

Y - 1
Y

(8GS) ,(x/L)(G/2)

(G2 + 4n2n2)2
G sin(knx) + 2nn cos(knx)

x sin2 ( ^ (38)

This can be converted to an integral:

T1(t,x)_ S 1 - 1 8Se(x/L)(G/2)
lim „G^w To

S -  --------- e^
Y n

4y dy
(1 + 4y2)2

(sin( ¥) +2y cos( ¥

sin

L

2 Gcs t
L

y2 + 4 (39)

o

When G becomes very large, the fluid becomes strongly 
rarefied and heated near x = L. When calculating the size 
of the temperature separation across the system, it makes 
more sense to compare the temperature at x = 0 with that 
at a scaled height x = zo log 10. The integral in Eq. (39) 
can be evaluated numerically, and the maximal difference 
between T^t, zo log 10)/To and T\(t, 0)/To is about 0.49S 
when y = 5/3 (the minimum is about -0.53S). Geyko and 
Fisch did not make an analytic prediction of this depen­
dence, but they did investigate it numerically, and their 
simulations found 0.47S for the maximum.

Formally, the analytic calculations in this section are 
done in the limit of small S. It is natural to wonder how 
small S has to be in order for the calculations to be ac­
curate. The nonlinear fluid simulations shown in Figure 2 
shed some light on this point. When S = 0.01, the fluid 
simulations are almost indistinguishable from the analytic 
results. When S is increased to 0.5, the accuracy of the 
analytic results depends strongly on G.

For G = 0.1 and G =1, the S = 0.5 simulations are 
qualitatively very similar to the small-S analytic results, 
except that the oscillations appear to take place at a higher 
frequency. This results from the temperature dependence 
of the system frequencies in. In Eq. (24), these frequen­
cies are written as functions of the pre-compression tem­
perature To. However, physically, the system’s frequency 
response after compression should scale with T = (1+S)To 
rather than To (though the value of To will determine 
which modes are excited). This distinction is not impor­
tant when S is small, but as S grows larger it begins to 
matter. The simulations with G = 0.1 and G = 1 are 
dominated by the n =1 mode. If the frequency i1 is 
evaluated at T rather than To, i1 increases by about 22% 
when G = 0.1 or 1. This is consistent with the higher- 
frequency n = 1 modes observed in the simulations.

However, when S = 0.5 and G = 8, the fluid simula­
tions no longer resemble the small-S calculations. This can 
be explained by the dependence of T1 on G. T1 depends 
nonlinearly on G, but in general T1 grows larger as G in­
creases. As such, the S that is required to keep T < To 
is smaller for larger values of G. For the simulations in 
Figure 2, T - To < To when G = 0.1 and G =1, but when 
G = 8 and S = 0.5, there are regions with T - To > To 
and the perturbative model is no longer valid.

3. Arbitrary Compression Profiles

The analysis in Section 2 describes fast compression, 
so that the system starts out of equilibrium at t = 0 and 
is not driven after t = 0. It is possible to approach the 
case of more general heating profiles by instead allowing 
the system to start at equilibrium and imposing a time- 
dependent heat source. Suppose, to leading order, the 
heat source produces a spatially constant change in tem­
perature. Then Eq. (17) becomes

dT1
dt (Y - 1)

To
no

dn1
dt

1
— v1no
zo

+ X(t) (40)

for some heating function x(t). f = v1e-x/2zo can be 
defined the same way, but its governing equation now de­
pends on %:

dt2 s \ dx2
^2 ^ + — ex/2zo 
4z2 / mzo

(41)

Define $„(t) by

$n(t) TO o
dt' sin(i„t')

o
dt'' x(t'') cos(int'')

- / dt' cos(int'M dt'' x(t'') sin(int''). (42)
To o o
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Analytic and Simulated Results for (T- T0)/6T0

Analytic Results 
G = 0.1

x/L

Fluid Simulation 
G = 0.1, 6 = 0.01

x/L

Fluid Simulation 
G = 0.1, 6 = 0.5

x/L

- 1.03347
- 1.02531
- 1.01714 

|- 1.00898
I- 1.00082
1-0.99265 

B 0.98449 
B 0.97633 
B 0.96816 

0.96000

Analytic Results Fluid Simulation
G = 1 G = 1, 6 = 0.01

x/L x/L

Fluid Simulation 
G = 1, 6 = 0.5

x/L

- 1.4265
- 1.3347
- 1.2429 

1.1510
I- 1.0592 
1-0.9673 

B 0.8755 
B 0.7837 
B 0.6918 

0.6000

Analytic Results 
G = 8

x/L

Fluid Simulation 
G = 8, 6 = 0.01

Fluid Simulation 
G = 8, 6 = 0.5

1.0 

0.8 

0 0.6 

0.4 

0.2 

0.0
0.0 0.2 0.4 0.6 0.8 1.0

X/L

- 12.04 
-9.59
- 7.14 

.4.69 
I- 2.24
I—0.20

B -2.65 
B -5.10 
B -7.55 

-10.00

<-----------9

Figure 2: This figure shows analytic and numerical results for the temperature oscillations associated with the piezothermal effect. Each row 
corresponds to a different choice of G. The left, column is the analytic result from Eq. (35). The plots in the center and on the right are 
numerical solutions to the full nonlinear fluid equations described by Eqs. (1), (2), and (3) with S = 10~2 and S = 0.5, respectively. Times 
are normalized to which depends on G and Tq.
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In terms of Tn(t), the solution for T1 is

Ti %(f )df Y - 1
To Jo

E
To
4nn

(4G) ,(x/L)(G/2)

r[1 + (-1)n+1e-G/2 ]
(G2 + 4n2 n2)2

x I Gsin(knx) + 2nncos(knx) )$»(Z) . (43)

Consider the case of steady heating for an interval t . Set

X(t)
6T0/t 0 < t < t 
0 t < 0, t > t.

(44)

Here, the parameter 6 is analogous to the corresponding 
parameter in the fast-compression case. Using this choice
of X(t),

$n(0 < t < T)
t
T

sin(^wtU 6
W»T /

(45)

and

$(t > T)
1 + sm(wn^-T)) - sin^m6 (46)

^nT <nT J

In the fast-compression limit where t ^ 0, Eqs. (43) and 
(46) reduce to Eq. (35). On the other hand, in the limit 
of very slow compression,

Ti(t > T)
lim T 6

E
o
4nn

Y - 1
Y

(4G6) ,(x/L)(G/2)

r[1 + (-1)n+ie-G/2]
(G2 + 4n2n2)2

x I Gsin(knx) + 2nn cos(knx) (47)

When wnT is large, the temperature gradient is not oscil­
latory. This is consistent with the intuition that a slowly 
driven system will remain close to force equilibrium. The 
temperature difference across the system can be written in 
closed form as

lim
Ti(t > T,L) - Ti(t > T, 0)

To
^ (G6). (48)

In the limit where G < 1, the temperature difference 
across the system for slow compression will be half of the 
maximal temperature difference for fast compression. This 
agrees exactly with the analytic result of Geyko and Fisch 
in that limit, though their simulations yielded a somewhat 
smaller coefficient.

Of course, Eqs. (42) and (43) make it clear that things 
can turn out quite differently if x has a more complicated 
time dependence. It was already true in the simple case 
described by Eq. (44) that a careful choice of t could ei­
ther suppress or enhance the oscillations associated with 
a particular mode number. If, for instance, x itself were

oscillatory, then particular modes could be driven or sup­
pressed even more dramatically. Consider the oscillatory 
heating function

x(t) = 6 Q T0 sin(Ut) (49)

where Q is some positive frequency. Heating of precisely 
this form may not necessarily be practically realizable, but 
it is an informative formal example. For this choice of x,

*n(t)
[Wn — Q2 — <4 cos(Qt) + Q2 cos(wnt)]6

4 - Q2
(50)

When the driving frequency is close to wn, there is a secular 
term. To leading order in Q - wn,

^n(t) ^ 1 - cos(wnt) <nt
2 sin(wnt) 6. (51)

This holds even for higher-frequency oscillations whose 
role in the bulk behavior of the system would normally 
be small. Driving at one of the system’s natural frequen­
cies can produce temperature oscillations that (at least as 
far as the linear theory is concerned) can grow without 
bound. If the system is driven at wn, the resonant oscil­
lations will be associated with the corresponding spatial 
wavenumber kn. All of this behavior is intuitive, if the 
system’s response to x(t) is understood in terms of the 
mode decomposition that comes naturally from the fluid 
picture.

4. Comparison of the fluid and Monte Carlo sim­
ulations

As pointed out, the numerical results from the original 
paper on the piezothermal effect [4], obtained via Monte 
Carlo simulations, are qualitatively similar to the ones ob­
tained in the present work, yet deviate quantitatively in 
many cases. The main reason for this is the fact that 
the Monte Carlo code has intrinsic physical and numeri­
cal damping built in due to the finite mean free paths of 
the particles. To get a better understanding of this phe­
nomenon, we briefly review the Monte Carlo code from the 
original paper.

The object of the simulations is a set of ideal particles 
that move in a one-dimensional box in a constant gravi­
tational field g = -gx. The box is considered infinite or 
periodic in the perpendicular directions y and z, and of the 
length L in the x direction. Particle velocities, however, 
have all three components (vx, vy, and vz) for the sake of 
preserving the proper value of the adiabatic gas constant 
Y = 5/3. A particle’s motion is exactly integrated for ev­
ery time step 6t, and takes into account the possibility of 
multiple particle-wall collisions on the box floor.

A non-interacting ensemble of particles does not rep­
resent a fluid-like motion. Instead, it will produce com­
plex but uncorrelated behavior, like the density waves de­
scribed in [18]. In order to make the system behave like

6



a fluid, particle collisions are added. In the code, only 
binary elastic collisions are considered, such that energy, 
momentum, and angular momentum are conserved up to 
machine precision for each individual collision and, as a 
result, for the whole system. The main problem of such 
a collision operator is that any two particles are never lo­
cated at the same point in space. In principle, a given 
pair of particles can be tracked and the time of the true 
collision can be found, yet this is too complicated if all 
the particles are required to collide every time step. Thus, 
some nearly located particles are picked for each collision. 
The domain is divided in the x direction into a number of 
cells, each of the same length Lc for simplicity. Since the 
particles are not at exactly the same point, the collision 
should be acting along the direction t connecting the cen­
ters of the two particles, otherwise the angular momentum 
will not be conserved. One can think about this type of 
collision as an instantaneous force acting between the two 
particles, like gravitational attraction. This force should 
change somehow the projections of particle velocities vu 
and v2£ in such a way that the total kinetic energy and mo­
mentum are conserved. For identical particles, it is done 
by exchanging their velocity projections: vM ^ v2£ and 
v2£ ^ vi£. Since the two particles are picked at random 
inside a cell, the distance d between them is of the order 
of Lc. The angle between the direction t and x is 0, and 
it is picked at random but is typically about 0 % n/3 or 
similar, because the perpendicular displacement is picked 
uniformly in both directions from -Lc to Lc.

This collision operator exactly conserves energy, mo­
mentum and angular momentum, but suffers from numer­
ical heat and momentum transfer due to finite cell size ef­
fects. This can be understood in the following way: imag­
ine the cell size is equal to the box height, and a hot pop­
ulation of the particles is sitting at the bottom. In this 
case, the numerical thermalization would occur instantly, 
and the particles on the top would get hot even faster than 
a sound wave can travel across the domain.

To be more specific, consider two particles inside a cell 
located at coordinates x1 and x2, respectively. For highly 
collisional gas, which is of interest here, a Maxwellian dis­
tribution can be assumed, with temperature T(x), mean 
velocity u(x)x, and density n(x). As a collision occurs, an 
instantaneous transfer of the momentum from the second 
particle to the first one can be written as

^p = / d3vifi(vi,xi) / d3v2f2(v2,x2)[v2 - vi], (52)

where v is a projection of the velocity to the t direction 
v = t(t • v). Integrals with respect to vy and vz vanish, 
because the integrated function is antisymmetric, and the 
integral with respect to vx yields

Ap = mttx (u(x2) - u(xi)), (53)

where only Apx is of interest since the other two compo­

nents vanish, as an averaging over t is performed, thus,

Ap = Apx = m cos2(0) (u(x2) - u(xi)). (54)

For a particle at a given position x inside the cell (x = 0 
at the center of the cell), the total momentum transfer 
from all the particles around is found as a mass weighed 
integral over all the cell of Eq. (54), where density and 
velocity are Taylor expanded around the cell-center point 
xc. This integral should be also multiplied by a collision 
rate parameter Rc, which is proportional to the number of 
collisions occurred in the given cell each time step.

Lc/2
Aptot = mRc y cos2 0 ^nc + n'f + n^

— Lc/2

U(f - x) + y(f2 - x2) df. (55)

The result of expression (55) depends on the value of x, 
however for any x there always present a term proportional 
to mRcnc«"L;!. Notice that ncLc % Np, where Np is the 
number of particles in the cell, and the momentum transfer 
found in Eq. (55) happens in a time step 6t. Therefore, 
there is a momentum transfer term with

dp mRcNpL2 d2u
dt * 6t a? • (56>

and Eq. (2) then reads as

/ dv dv A d(nT) d2u
mnU + ''ax) = --mng + vm"a?, (57)

where v is the derived numerical viscosity with v * RcL;;/6t. 
The derivation of numerical heat conductivity is very sim­
ilar to the one for viscosity, and therefore is omitted here.

Apart from numerical viscosity and heat conductivity, 
driven mainly by a finite cell size, there is a physical mech­
anism of heat conductivity due to finite particle mean free 
path. The last is determined be the collision rate Rc, the 
time step 6t, and the mean particle velocity vt and does 
not depend on the cell size. Indeed, consider a generalized 
version of Eq. (3) with heat transfer term included in it

n
Y-1

dT dT
dt + "dx + nT

dv
dx

^^dT
dx r dx (58)

Here, ^ is the heat conductivity coefficient, given in terms 
of the mean free path Amfp as # % nAmfpvtcv/3. Eq. (58) 
reduces to Eq. (3) if ^ = 0. When # > 0, heat diffusion 
leads to wave dissipation and system equilibration.

Notice that the aforementioned arguments are not a 
rigorous derivation of the numerical viscosity and heat con­
ductivity in the Monte Carlo code. They can only provide 
some insights on why Monte Carlo simulations sometimes 
produce different results. However, even such a simpli­
fied picture is enough to explain, for example, why the 
piezothermal coefficient

K
Ti(L/c„L) - Tj(L/c„ 0) 

G6To
(59)
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Figure 3: Evolution of the temperature difference T(L) — T{0) normalized to GSTq in a series of Monte Carlo and fluid simulations. The grid 
parameter Nc is varied for the Monte Carlo simulations. The viscosity ?; and heat conductivity T are varied for the fluid simulations. All 
other code parameters are fixed. The listed values of and T are normalized to the product of the system height and the sound speed.

was 0.64 instead of 0.8 (see Eq. (37)) in the numerical 
results from the original paper. In particular, we are in­
terested in how « depends on the length Lc, which was 
described by a parameter Nc in the code, where NCLC = 1.

Figure 3 shows how the piezothermal temperature dif­
ference evolves as a function of time in a series of simu­
lations using two different codes: one performing Monte 
Carlo simulations and the other performing fluid simu­
lations. The Monte Carlo simulations, denoted by plus 
marks, show the temperature difference for four different 
values of Nc, while all other parameters of the code were 
fixed, namely, St = 0.001, T0 = 0.3698, Rc = 10 (collisions 
per particle per cell), G = 1.352, ST0 = 0.0518. Only for 
Nc = 240 the first peak of the oscillations is sufficiently 
close to the predicted value 0.8, yet the oscillations nev­
ertheless slowly damp in time. For low values of Nc fluid 
oscillations are very quickly damped, and the system de­
cays to a new equilibrium.

The solid lines in Figure 3 show a corresponding se­
ries of fluid simulations. In these simulations, the field 
strength parameter G and the heating parameter S are 
chosen to match the values in the Monte Carlo simula­
tions. Each of these fluid simulations includes a spatially 
constant viscosity and heat conductivity T. Of course, 
discretization error is not a phenomenon unique to Monte 
Carlo algorithms. Fluid simulations also have finite-grid- 
size effects. The fluid simulations shown here use suffi­
ciently fine-grained grids that these errors are negligible 
compared to the corresponding effects in the Monte Carlo 
code (in this example, the fluid simulations used 128 cells).

Both the Monte Carlo simulations and the fluid simu­
lations show oscillations that are “lopsided,” in the sense 
that they are asymmetric about their extrema. The asym­
metry is most apparent in the Nc = 240 case. This re­
sults from the same nonlinearity discussed at the end of

Section 2, in which 6 and G are large enough for the oscil­
lations not to be small perturbations. It is worth noting 
that these asymmetric oscillations still appear even in fluid 
simulations without any viscosity or heat conductivity (not 
shown in Figure 3).

In any case, there are two major conclusions to be 
drawn from the comparison in Figure 3. First, the finite- 
cell-size effects seen in the Monte Carlo simulations appear 
to be equivalent to an effective viscosity and heat conduc­
tivity. Second, the effective viscosity and heat conductivity 
become small when Nc is large.

5. Discussion and Conclusions

Using a fluid model, we have derived analytic expres­
sions for the temperature gradients of the piezothermal 
effect as they evolve in time. The fluid solutions recover 
the original analytic model’s predictions for G < 1 and 
they make it possible to make predictions when G is not 
small. Similarly, they recover the original model’s qual­
itative predictions for very slow and very fast compres­
sion while also handling more general compression pro­
files, including compression that is not constant in time 
and compression that is neither very fast nor very slow. 
The analytic solutions to the fluid equations are in very 
good agreement with fluid simulations performed using the 
SNeuT fluid code.

There are places where the results from fluid models 
disagree quantitatively with some of the numerical results 
from the original paper. The comparison between the 
present fluid and the original Monte Carlo simulations pro­
vides some explanation for why the previous results were 
different, and what can be done in order to improve them 
in the Monte Carlo model. In general, a small time step 
and a very large number of cells are required in order to
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sufficiently suppress numerical and physical heat diffusion 
and viscosity in the Monte Carlo simulations. That brings 
extra complication for the total number of particles in the 
system, as the number of particles in a cell should be large 
enough to mitigate statistical noise. However, there is ev­
idence that (in the appropriate limit) the Monte Carlo 
simulations converge to results that agree with the fluid 
model.

The fluid model used in this paper makes assumptions. 
The strict timescale ordering means that viscosity and heat 
conductivity are neglected (with the exception of the sim­
ulations used to produce Figure 3, which included both), 
though the calculation in Section 3 makes it possible to re­
lax the requirement for an ordering between the compres­
sion timescale te and the sound timescale ts . The analytic 
calculations presented here use linearized fluid equations; 
they become invalid when the compression parameter S is 
large. However, these assumptions were also necessary for 
the model used in the original paper.

The mode structure of the analytic solutions helps to 
provide intuition for the behavior of the piezothermal ef­
fect. The critical dependence of the effect on the field- 
strength parameter G can be explained by the mode struc­
ture: as G increases, modes other than n =1 become im­
portant when n < G/2n. When G is small, the piezother- 
mal effect is dominated by a single frequency and a sin­
gle wavenumber; when G is large, many frequencies and 
wavenumbers contribute, and the oscillations can become 
much more complicated.

The characteristic frequencies are closely related 
to the Brunt-Vaisala frequency, which is important in a 
variety of geophysical, astrophysical, oceanographic, and 
atmospheric contexts [14-17]. Brunt-Vaisala oscillations 
occur when a fluid element is displaced within a strati­
fied background. For a parcel of air displaced in a dry, 
isothermal atmosphere, the Brunt-Vaaisaalaa frequency can 
be written as [14]

gTd
T

g2 = 2wp
CpT ’

(60)

where rd is the dry adiabatic lapse rate and cp is the spe­
cific heat capacity.

The scenario being considered here is not quite identi­
cal to the prototypical Brunt-Vaisala buoyancy oscillation; 
for one thing, the entire system is displaced, rather than 
a small fluid element within the system. However, the os­
cillations associated with the piezothermal effect can be 
understood as a spectrum of buoyancy oscillations which 
are closely related to Brunt-Vaaisaalaa oscillations.

83228-10966 [Prime No. DOE (NNSA) DE-NA0003764].
The SNeuT simulation code uses the CVODE package, an 
open source software package which is part of Lawrence 
Livermore National Laboratory’s SUNDIALS suite. SNeuT 
is a fork of the MITNS plasma transport code [21]. Au­
thors are thankful to Eric Emdee, Mike Mlodik, and Jace 
Waybright for fruitful discussions, and to Ian Ochs for 
fruitful discussions and for involvement in code develop­
ment.
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