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Abstract

When a gas in an externally imposed potential field is compressed, temperature gradients appear.
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This has been

called the piezothermal effect. It is possible to analytically calculate the time-dependent behavior of the piezothermal
effect using a linearized fluid model. Quantitative differences between the fluid-model results and previous numerical
calculations can be explained by the effects of viscosity and heat conductivity. The fluid model casts the piezothermal
r—effect as a spectrum of buoyancy oscillations, which yields new physical insights into the effect.
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1. Introduction

Consider a gas at rest in a potential field. If the gas is
compressed, it will be heated. Moreover - contrary to the
usual intuition about compressional heating - the result-
ing temperature will be spatially nonuniform, such that re-
gions that are higher in the potential well are hotter. This
effect was described by Geyko and Fisch [1] and called the
piezothermal effect. Intuitively, it results from the fact
that particles starting in equilibrium move toward (and
further compress) regions of higher potential as they are
heated.

In the original paper on the piezothermal effect, Geyko
and Fisch observed the phenomenon in particle simula-
tions. Analytically, they used a toy model to explain the
scalings and some of the quantitative behavior of the sim-
ulations. Their model described the gas as two homoge-
neous regions separated by a massive movable membrane,
so that the two sides of the system could have different
temperatures and densities and could exert pressure on
one another. For the simulation tools, they used a one-
dimensional Monte Carlo code with exact energy and mo-
mentum conservation properties and a hard-sphere binary-
collision operator. While their models correctly described
the essential characteristics of the effect, they left room
for discussion and future improvement in a number of re-
spects.
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This paper analyzes the piezothermal effect by instead
using a fluid model. The fluid approach to the piezother-
mal effect makes it possible to analytically calculate the
behavior of the piezothermal effect in a wider range of
scenarios, in greater detail, and using fewer simplifying
assumptions than was done previously. Numerical fluid
simulations confirm the validity of the analytic model and
- when compared in detail to the results of the Monte
Carlo code used in the original paper - help to explain
quantitative discrepancies between the fluid-model results
and the previous numerical results.

The piezothermal effect is closely related to the physics
to the rotation-dependent heat capacity effect also stud-
ied by Geyko and Fisch, in which the energy required
to compress a rotating cylinder changes when the gas is
spinning [2, 3], That effect has applications in engine de-
sign, where it could be used to improve the efficiency of
Otto and Diesel cycles [4], In addition, the piezothermal
effect is phenomenologically similar to the behavior ob-
served in Ranque-Hilsch vortex tubes, which also produce
radial temperature gradients in a rotating gas [5-12]. Vor-
tex tubes are used for spot cooling in a variety of indus-
trial applications. In general, the ability to move energy
in rotating and compressing systems - either spatially or
between degrees of freedom - can be of great practical
utility [4, 13]. These effects can also be useful for under-
standing the natural world. In particular, the fluid treat-
ment of the piezothermal effect makes it clear that there
is a strong connection between the piezothermal effect and
Brunt-Vaisala oscillations, which are observed in a variety
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Figure 1: This schematic shows a simple setup that demonstrates
the piezothermal effect. Compression transverse to the direction of
gravity produces temperature gradients parallel with gravity and in
the opposite direction.

of naturally stratified media [14-17],

2. Linearized Fluid Model for Fast Compression

For simplicity, we consider the potential field to be
gravitational, although practical applications are more likely
in spinning systems, where centrifugal forces take the role
of gravitational forces. Thus, to describe the key effects
most simply, consider a gas in a gravitational field, such
that all quantities vary only in the direction of the field.
Suppose the fluid is compressed in a direction perpendic-
ular to the gravitational field. The behavior of the system
depends on four timescales: the collisional timescale rc,
the compression timescale 7e, the sound timescale rs, and
the timescale 77 associated with spatial heat conduction.
Geyko and Fisch studied the piezothermal effect in a fast-
compression scenario and in a slow-compression scenario.
In the fast-compression scenario, rc <C 7 <C 75 <C 7E
The first part of this inequality implies that the gas is
always in local equilibrium. The second inequality means
that the input of energy due to compression happens much
more quickly than the system can react spatially. The last
part of the inequality states that spatial heat conductivity
can be neglected.

Because of the very fast collisional timescale, it is ap-
propriate to describe the system with a fluid model (a
system with less frequent collisions could behave very dif-
ferently [18]). Using an adiabatic equation of state, the
fluid density, velocity, and temperature can be modeled

by

dn d _
dr 9% (m>) =0 )
/ch' chA <9Y(nT) mng 2
9%
/a a \ T
=0. (3)

Suppose the system is bounded between x = 0 and x = L.
Define equilibrium profiles

"W = (1-"1?U) &
To(x) = Tp = const 5)
%'0(2)=0. (6)

Now suppose the system is perturbed so that at 7 = 0, the
temperature is (uniformly) changed from 7o to I). This
can occur, for example, by lateral compression as shown
in Figure 1. Define

6 - 7i-70 ™

To

and suppose § << 1. n, 7, and v can be expanded about
equilibrium so that

ii—mno Tiii T ) 8)
T =To+ Ti+ C() 9)
v =tq + 0(S2). (10)

The initial conditions for n-i, Tl; and iq are

»ilt=0 = 0 (11)
(12)
V1jt=0 = °- (13)

The initial conditions for their time derivatives can be de-
rived by combining these with the equations of motion.
Define the equilibrium scale height z0 by

To

SO - (14)
mg

To first order in 6, the equations of motion can be written

as
3 1 dv\
G i w (15)
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Taking an additional time derivative of Eq. (16) and plug-
ging in Egs. (15) and (17),
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Define ¢2 = vTy/m and f = vie™ Then

82f7 2f 1

Applying the boundary conditions at x =0 and z =L, f
can be written as

f(t,z) = i =, (¢) sin (?) (20)

n=1

for some functions =,,(¢). Then Eq. (19) implies

.. w202 1
E.(t) = = — + = |=,.. 21
0 =-2(T 1 1) 1)

The time-dependent coefficients are linear combinations of
sine and cosines in time. In order to get v1 = 0 at t = 0,
only the sine terms can survive. As such,

[ee]

flt,z) = o sin(kyz) sin(wnt) (22)

n=1
for some constants «,, with k,, and w,, defined by
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= (23)
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Here wy = ¢5/229. In order to determine the constants
ay,, consider the initial condition on dvy/d¢. Combining
Eq. (16) with Eqgs. (11), (12), and (13),
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0
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—= = gde : (26)
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The sine series for e~ */* is
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Using this,
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Eq. (22) implies that

at
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This determines the «,, parameters.
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The governing equation for T can be written as

ory Of I\ u
=~ -um (G LY
which is
Oy v =126T00 o)
at ~ L

= 4k, e
Z {HTZZOZS/Z [1 + (—1)n+16 L/2 0]

X (sin(knx)+2knzo cos(knx)> sin(wnt)} (32)

Integrating and applying the initial condition on 77,
T1 5 Y — 1 420(561/220

4 L
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Define the field-strength parameter G as

. L mgL
G=—= . 34
- T (34)

In terms of G,

T (t, ) v—1
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Qualitatively, it is clear from Eq. (35) that the shape of
T1(t,z) will depend strongly on G. Modes other than n =
1 will contribute significantly when n < G/27x. When
the n = 1 mode is dominant, the spatial and temporal
structure are simple, with a well-defined wavelength and
oscillation frequency. As G increases, the spatial structure
becomes progressively more complicated.

In the weak-field G <« 1 limit, Eq. (35) becomes
Ty (t -1
tim 2025 Y=Ly
G—=0 Tg v
> n+1 wat
> knx)sin® [ == ). (36
><n:1 cos(kpz)sin ( 5 > (36)



When G < 1 and t = L/c,, sin®(w,t/2) — 1+ O(G?)
Vn € Z. Therefore, the maximal temperature difference
between x = 0 and z = L is
lim Ty(L/es, L) —Ti(L/cs,0)
G—0 T

oyl
- (2G5).  (37)

When v = 5/3, this is 0.8G'¢. This is precisely the analytic
result found by Geyko and Fisch in this limit. However,
it disagrees with the results of their simulations, in which
AT/ Th ~ 0.64G6.

Simulations of the full nonlinear fluid equations given
by Egs. (1), (2), and (3) were performed using the 1D
fluid code SNeuT, which uses components of the SUN-
DIALS suite [19, 20]. Figure 2 shows these simulations
alongside the analytically predicted results from the fluid
model; when § is small, they are in close agreement, in-
cluding the coefficient of 0.8. The origin of the discrepancy
between these and the original paper’s results is discussed
in Section 4.

Now consider the opposite limit, where G > 1:

T L) B S e 1(8(;5)@(1/“(@/2)
G—ro0 T Y

— 4mn .
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This can be converted to an integral:
i D) o =188 yrycr
G—o0 TO Y s

. 4y dy . Gyzx Gyx
X/o {(1+4y2)2 <sm< i + 2y cos i
Gegt 1
in2 [ 2= /02 2V (39
X sin ( 7 \/Y +4>} (39)

When G becomes very large, the fluid becomes strongly
rarefied and heated near x = L. When calculating the size
of the temperature separation across the system, it makes
more sense to compare the temperature at x = 0 with that
at a scaled height = 2¢log 10. The integral in Eq. (39)
can be evaluated numerically, and the maximal difference
between T (¢, zg log 10) /T,y and T4 (t,0)/1y is about 0.496
when v = 5/3 (the minimum is about —0.534). Geyko and
Fisch did not make an analytic prediction of this depen-
dence, but they did investigate it numerically, and their
simulations found 0.47§ for the maximum.

Formally, the analytic calculations in this section are
done in the limit of small §. It is natural to wonder how
small § has to be in order for the calculations to be ac-
curate. The nonlinear fluid simulations shown in Figure 2
shed some light on this point. When é = 0.01, the fluid
simulations are almost indistinguishable from the analytic
results. When ¢ is increased to 0.5, the accuracy of the
analytic results depends strongly on G.

For G = 0.1 and G = 1, the § = 0.5 simulations are
qualitatively very similar to the small-§ analytic results,
except that the oscillations appear to take place at a higher
frequency. This results from the temperature dependence
of the system frequencies w,. In Eq. (24), these frequen-
cies are written as functions of the pre-compression tem-
perature Ty. However, physically, the system’s frequency
response after compression should scale with T; = (1+6)7g
rather than 7y (though the value of Ty will determine
which modes are excited). This distinction is not impor-
tant when ¢ is small, but as § grows larger it begins to
matter. The simulations with G = 0.1 and G = 1 are
dominated by the n = 1 mode. If the frequency w; is
evaluated at T rather than T}, wy increases by about 22%
when G = 0.1 or 1. This is consistent with the higher-
frequency n = 1 modes observed in the simulations.

However, when § = 0.5 and G = 8, the fluid simula-
tions no longer resemble the small-§ calculations. This can
be explained by the dependence of T} on G. T} depends
nonlinearly on G, but in general T} grows larger as G in-
creases. As such, the § that is required to keep T < Tj
is smaller for larger values of G. For the simulations in
Figure 2, T — Ty < Ty when G = 0.1 and G = 1, but when
G = 8 and § = 0.5, there are regions with T' — Ty > T
and the perturbative model is no longer valid.

3. Arbitrary Compression Profiles

The analysis in Section 2 describes fast compression,
so that the system starts out of equilibrium at ¢ = 0 and
is not driven after ¢ = 0. It is possible to approach the
case of more general heating profiles by instead allowing
the system to start at equilibrium and imposing a time-
dependent heat source. Suppose, to leading order, the
heat source produces a spatially constant change in tem-
perature. Then Eq. (17) becomes

To (8%1 1

o1y - v1n0> + x(t) (40)
20

W:(’Y— )

for some heating function x(t). f = vie %/?% can be
defined the same way, but its governing equation now de-
pends on y:

82f02<82_f_i >+
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Analytic and Simulated Results for (T- T0)/6T0

Analytic Results
G=0.1

x/L

Analytic Results
G=1

x/L

Analytic Results
G=38

x/L

Fluid Simulation
G=0.1,6=0.01

x/L

Fluid Simulation
G=1,6=0.01

x/L

Fluid Simulation
G =8, 6=0.01

1.0

0.8

0 0.6

0.4

0.2

0.0

0.0

Fluid Simulation
G¢G=01,6=0.5

x/L

Fluid Simulation
G=1,6=0.5

x/L

Fluid Simulation
G=8,6=0.5

02 04 06 038
X/L

- 1.03347
- 1.02531
-1.01714

|- 1.00898
I- 1.00082

1-0.99265

B 0.98449
0.97633
0.96816
0.96000

- 1.4265
- 1.3347
- 1.2429

1.1510
I- 1.0592

1-0.9673

B 0.8755
0.7837
B 0.6918
0.6000

- 12.04
-9.59
-7.14

4.69
I-2.24

I—0.20

B -2.65
-5.10

B -7.55
—10.00

Figure 2: This figure shows analytic and numerical results for the temperature oscillations associated with the piezothermal effect. Each row
corresponds to a different choice of G. The left, column is the analytic result from Eq. (35). The plots in the center and on the right are
numerical solutions to the full nonlinear fluid equations described by Eqgs. (1), (2), and (3) with § = 10~2 and S = 0.5, respectively. Times
are normalized to which depends on G and 70



In terms of ®,,(¢), the solution for 77 is
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Consider the case of steady heating for an interval 7. Set

oly/m 0<t< T
t) = - = 44
x(t) {0 L<0, 1> (44)

Here, the parameter § is analogous to the corresponding
parameter in the fast-compression case. Using this choice

of x(t),

B, (0<t<7)— (;-W)& (45)
and
Bt > 1) = (1 + Sm(“’:(t; ) _ Sijf“:”)a. (46)

In the fast-compression limit where 7 — 0, Egs. (43) and
(46) reduce to Eq. (35). On the other hand, in the limit
of very slow compression,

im DU s Y=L g
5

W T—00 TO
= dmn
1yt —G/2
2 @l
X (Gsin(knx) + 27rncos(knx)>} (47)

When w,, 7 is large, the temperature gradient is not oscil-
latory. This is consistent with the intuition that a slowly
driven system will remain close to force equilibrium. The
temperature difference across the system can be written in
closed form as

lim Tl(t>T7L)—T1(t>T7O

W T—+00 TO

) _y—1
= 7(G5). (48)

In the limit where G < 1, the temperature difference
across the system for slow compression will be half of the
maximal temperature difference for fast compression. This
agrees exactly with the analytic result of Geyko and Fisch
in that limit, though their simulations yielded a somewhat
smaller coefficient.

Of course, Egs. (42) and (43) make it clear that things
can turn out quite differently if x has a more complicated
time dependence. It was already true in the simple case
described by Eq. (44) that a careful choice of 7 could ei-
ther suppress or enhance the oscillations associated with
a particular mode number. If, for instance, x itself were

oscillatory, then particular modes could be driven or sup-
pressed even more dramatically. Consider the oscillatory
heating function

X(t) = 6Q Ty sin(Qt) (49)

where € is some positive frequency. Heating of precisely
this form may not necessarily be practically realizable, but
it is an informative formal example. For this choice of

[w2 — Q% —w? cos(Qt) + Q2 cos(wnt)]d

B, (t) = n o . (50)

When the driving frequency is close to w,,, there is a secular
term. To leading order in Q0 — w,,

(1) = (1 — cos(wnt) — %"t sin(wnt)>5. (51)

This holds even for higher-frequency oscillations whose
role in the bulk behavior of the system would normally
be small. Driving at one of the system’s natural frequen-
cies can produce temperature oscillations that (at least as
far as the linear theory is concerned) can grow without
bound. If the system is driven at w,, the resonant oscil-
lations will be associated with the corresponding spatial
wavenumber k,. All of this behavior is intuitive, if the
system’s response to x(t) is understood in terms of the
mode decomposition that comes naturally from the fluid
picture.

4. Comparison of the fluid and Monte Carlo sim-
ulations

As pointed out, the numerical results from the original
paper on the piezothermal effect [4], obtained via Monte
Carlo simulations, are qualitatively similar to the ones ob-
tained in the present work, yet deviate quantitatively in
many cases. The main reason for this is the fact that
the Monte Carlo code has intrinsic physical and numeri-
cal damping built in due to the finite mean free paths of
the particles. To get a better understanding of this phe-
nomenon, we briefly review the Monte Carlo code from the
original paper.

The object of the simulations is a set of ideal particles
that move in a one-dimensional box in a constant gravi-
tational field g = —g&. The box is considered infinite or
periodic in the perpendicular directions ¢ and 2, and of the
length L in the Z direction. Particle velocities, however,
have all three components (v, vy, and v,) for the sake of
preserving the proper value of the adiabatic gas constant
~v = 5/3. A particle’s motion is exactly integrated for ev-
ery time step &t, and takes into account the possibility of
multiple particle-wall collisions on the box floor.

A non-interacting ensemble of particles does not rep-
resent a fluid-like motion. Instead, it will produce com-
plex but uncorrelated behavior, like the density waves de-
scribed in [18]. In order to make the system behave like



a fluid, particle collisions are added. In the code, only
binary elastic collisions are considered, such that energy,
momentum, and angular momentum are conserved up to
machine precision for each individual collision and, as a
result, for the whole system. The main problem of such
a collision operator is that any two particles are never lo-
cated at the same point in space. In principle, a given
pair of particles can be tracked and the time of the true
collision can be found, yet this is too complicated if all
the particles are required to collide every time step. Thus,
some nearly located particles are picked for each collision.
The domain is divided in the & direction into a number of
cells, each of the same length L. for simplicity. Since the
particles are not at exactly the same point, the collision
should be acting along the direction ¢ connecting the cen-
ters of the two particles, otherwise the angular momentum
will not be conserved. One can think about this type of
collision as an instantaneous force acting between the two
particles, like gravitational attraction. This force should
change somehow the projections of particle velocities vy,
and v9p in such a way that the total kinetic energy and mo-
mentum are conserved. For identical particles, it is done
by exchanging their velocity projections: viy — wge and
v9e — v1p. Since the two particles are picked at random
inside a cell, the distance d between them is of the order
of L.. The angle between the direction ¢ and 7 is #, and
it is picked at random but is typically about ¢ ~ 7/3 or
similar, because the perpendicular displacement is picked
uniformly in both directions from —L. to L..

This collision operator exactly conserves energy, mo-
mentum and angular momentum, but suffers from numer-
ical heat and momentum transfer due to finite cell size ef-
fects. This can be understood in the following way: imag-
ine the cell size is equal to the box height, and a hot pop-
ulation of the particles is sitting at the bottom. In this
case, the numerical thermalization would occur instantly,
and the particles on the top would get hot even faster than
a sound wave can travel across the domain.

To be more specific, consider two particles inside a cell
located at coordinates x1 and x4, respectively. For highly
collisional gas, which is of interest here, a Maxwellian dis-
tribution can be assumed, with temperature 7'(z), mean
velocity u(z)#, and density n(x). As a collision occurs, an
instantaneous transfer of the momentum from the second
particle to the first one can be written as

% :/d3111f1(V17$1)/dgvzfz(vzﬁz)[% -vil, (52)

where v is a projection of the velocity to the ¢ direction
v = é(@ -v). Integrals with respect to v, and v, vanish,
because the integrated function is antisymmetric, and the
integral with respect to v, yields

Ap = mll, (u(zs) — u(zy)), (53)

where only Ap, is of interest since the other two compo-

nents vanish, as an averaging over s performed, thus,
Ap = Ap, = mcos” () (u(zy) — u(zy)). (54)

For a particle at a given position Z inside the cell (z =0
at the center of the cell), the total momentum transfer
from all the particles around is found as a mass weighed
integral over all the cell of Eq. (54), where density and
velocity are Taylor expanded around the cell-center point
z.. This integral should be also multiplied by a collision
rate parameter ., which is proportional to the number of
collisions occurred in the given cell each time step.

Lo/2
Apioy = mR. / cos® 0 Knc +n'¢+ %52>
—L./2
: (u/(ﬁ — )+ %ﬁ(ﬁz —~ xz)ﬂ d¢. (55)

The result of expression (55) depends on the value of z,
however for any = there always present a term proportional
to mR.n.u”L3. Notice that n.L, ~ N,, where N, is the
number of particles in the cell, and the momentum transfer
found in Eq. (55) happens in a time step 6t. Therefore,
there is a momentum transfer term with

Op  mR.N,L? 8%u

- — 56
ot 6t dx?’ (56)
and Eq. (2) then reads as
dv n dv\  9(nT) n 2u (57)
mn| o Fuas | = ——a ming +vmn e,

where v is the derived numerical viscosity with v oc R.L? /dt.
The derivation of numerical heat conductivity is very sim-
ilar to the one for viscosity, and therefore is omitted here.
Apart from numerical viscosity and heat conductivity,
driven mainly by a finite cell size, there is a physical mech-
anism of heat conductivity due to finite particle mean free
path. The last is determined be the collision rate R, the
time step &t, and the mean particle velocity v, and does
not depend on the cell size. Indeed, consider a generalized
version of Eq. (3) with heat transfer term included in it

n oT oT dv 2, oT

Here, W is the heat conductivity coefficient, given in terms
of the mean free path Apgp as ¥ & nAmepvicy/3. Eq. (58)
reduces to Eq. (3) if ¥ = 0. When ¥ > 0, heat diffusion
leads to wave dissipation and system equilibration.

Notice that the aforementioned arguments are not a
rigorous derivation of the numerical viscosity and heat con-
ductivity in the Monte Carlo code. They can only provide
some insights on why Monte Carlo simulations sometimes
produce different results. However, even such a simpli-
fied picture is enough to explain, for example, why the
piezothermal coefficient

. Ti(Ljes, L) = Ty(L/es,0)
re GoTh

(59)
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Figure 3: Evolution of the temperature difference 7(L) — 7¢{0) normalized to GS70 in a series of Monte Carlo and fluid simulations. The grid

parameter Nc is varied for the Monte Carlo simulations. The viscosity ?;

and heat conductivity T are varied for the fluid simulations. All

other code parameters are fixed. The listed values of and T are normalized to the product of the system height and the sound speed.

was 0.64 instead of 0.8 (see Eq. (37)) in the numerical
results from the original paper. In particular, we are in-
terested in how « depends on the length Lc, which was
described by a parameter Nc in the code, where NCL( = 1.

Figure 3 shows how the piezothermal temperature dif-
ference evolves as a function of time in a series of simu-
lations using two different codes: one performing Monte
Carlo simulations and the other performing fluid simu-
lations. The Monte Carlo simulations, denoted by plus
marks, show the temperature difference for four different
values of N¢, while all other parameters of the code were
fixed, namely, St = 0.001, 70 = 0.3698, Rc = 10 (collisions
per particle per cell), G = 1.352, S7T0 = 0.0518. Only for
Nc = 240 the first peak of the oscillations is sufficiently
close to the predicted value 0.8, yet the oscillations nev-
ertheless slowly damp in time. For low values of NVc¢ fluid
oscillations are very quickly damped, and the system de-
cays to a new equilibrium.

The solid lines in Figure 3 show a corresponding se-
ries of fluid simulations. In these simulations, the field
strength parameter G and the heating parameter S are
chosen to match the values in the Monte Carlo simula-
tions. Each of these fluid simulations includes a spatially
constant viscosity and heat conductivity T. Of course,
discretization error is not a phenomenon unique to Monte
Carlo algorithms. Fluid simulations also have finite-grid-
size effects. The fluid simulations shown here use suffi-
ciently fine-grained grids that these errors are negligible
compared to the corresponding effects in the Monte Carlo
code (in this example, the fluid simulations used 128 cells).

Both the Monte Carlo simulations and the fluid simu-
lations show oscillations that are “lopsided,” in the sense
that they are asymmetric about their extrema. The asym-
metry is most apparent in the MNc 240 case. This re-
sults from the same nonlinearity discussed at the end of

Section 2, in which 6 and G are large enough for the oscil-
lations not to be small perturbations. It is worth noting
that these asymmetric oscillations still appear even in fluid
simulations without any viscosity or heat conductivity (not
shown in Figure 3).

In any case, there are two major conclusions to be
drawn from the comparison in Figure 3. First, the finite-
cell-size effects seen in the Monte Carlo simulations appear
to be equivalent to an effective viscosity and heat conduc-
tivity. Second, the effective viscosity and heat conductivity
become small when Ne is large.

5. Discussion and Conclusions

Using a fluid model, we have derived analytic expres-
sions for the temperature gradients of the piezothermal
effect as they evolve in time. The fluid solutions recover
the original analytic model’s predictions for G << | and
they make it possible to make predictions when G is not
small. Similarly, they recover the original model's qual-
itative predictions for very slow and very fast compres-
sion while also handling more general compression pro-
files, including compression that is not constant in time
and compression that is neither very fast nor very slow.
The analytic solutions to the fluid equations are in very
good agreement with fluid simulations performed using the
SNeuT fluid code.

There are places where the results from fluid models
disagree quantitatively with some of the numerical results
from the original paper. The comparison between the
present fluid and the original Monte Carlo simulations pro-
vides some explanation for why the previous results were
different, and what can be done in order to improve them
in the Monte Carlo model. In general, a small time step
and a very large number of cells are required in order to



sufficiently suppress numerical and physical heat diffusion
and viscosity in the Monte Carlo simulations. That brings
extra complication for the total number of particles in the
system, as the number of particles in a cell should be large
enough to mitigate statistical noise. However, there is ev-
idence that (in the appropriate limit) the Monte Carlo
simulations converge to results that agree with the fluid
model.

The fluid model used in this paper makes assumptions.
The strict timescale ordering means that viscosity and heat
conductivity are neglected (with the exception of the sim-
ulations used to produce Figure 3, which included both),
though the calculation in Section 3 makes it possible to re-
lax the requirement for an ordering between the compres-
sion timescale 75 and the sound timescale 7,. The analytic
calculations presented here use linearized fluid equations;
they become invalid when the compression parameter ¢ is
large. However, these assumptions were also necessary for
the model used in the original paper.

The mode structure of the analytic solutions helps to
provide intuition for the behavior of the piezothermal ef-
fect. The critical dependence of the effect on the field-
strength parameter G can be explained by the mode struc-
ture: as G increases, modes other than n = 1 become im-
portant when n < G/2x. When G is small, the piezother-
mal effect is dominated by a single frequency and a sin-
gle wavenumber; when G is large, many frequencies and
wavenumbers contribute, and the oscillations can become
much more complicated.

The characteristic frequencies w, are closely related
to the Brunt-Vaisila frequency, which is important in a
variety of geophysical, astrophysical, oceanographic, and
atmospheric contexts [14-17]. Brunt-Viisila oscillations
occur when a fluid element is displaced within a strati-
fied background. For a parcel of air displaced in a dry,
isothermal atmosphere, the Brunt-Vaiisala frequency can
be written as [14]

2
opy =[St = [ L= ()
T\ /yme,
where I'y is the dry adiabatic lapse rate and c, is the spe-
cific heat capacity.

The scenario being considered here is not quite identi-
cal to the prototypical Brunt-Viisala buoyancy oscillation;
for one thing, the entire system is displaced, rather than
a small fluid element within the system. However, the os-
cillations associated with the piezothermal effect can be
understood as a spectrum of buoyancy oscillations which
are closely related to Brunt-Vaiisala oscillations.
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