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When initially-isotropic three-dimensional (3D) turbulence is compressed along two dimensions,
the compression supplies energy directly to the flow components in the compressed directions, while
the flow component in the non-compressed direction feels the effects of compression only indirectly
through the nonlinearity of the hydrodynamic equations. Here we study such 2D compressions
using numerical simulations. For initially isotropic turbulence, we find that the nonlinearity can be
insufficient to maintain isotropy, with the energy components parallel to the compression coming to
dominate the turbulent energy, with a number of consequences. Among these are the possibilities
for stronger and more easily sustained growth of turbulent energy than in 3D compressions and for
an increasing turbulent Mach number even in a compression without thermal losses.

I. INTRODUCTION

The desire to understand the scaling of turbulent hy-
drodynamic energy under compression arises in a va-
riety of settings, including combustion, aerodynamics,
astrophysics[1-3], and inertial fusion[4-11]. Compres-
sion tends to inject energy into the turbulence, while
turbulent dissipation (for example, through viscosity) re-
moves turbulent energy. Together, the net balance of
these effects (and possibly others) at each time determine
whether the turbulence in the compression is growing or
decreasing. The amount (and properties) of the turbu-
lence then influence important dynamics in the various
settings, ranging from material mixing (combustion, in-
ertial fusion), to the density distribution (astrophysics,
Z-pinches[12]).

At present, we examine the turbulent kinetic energy
(TKE) dynamics of a three-dimensional fluid (or plasma)
undergoing compression in two dimensions. We do so by
analyzing the result from numerical simulations. Specif-
ically, we focus on the rate of change of the TKE in
2D compressions with changing volume, which is tied to
the degree to which the turbulence remains isotropic in
the compression. Of particular note is that we find a
preferential enhancement of the TKE can occur in 2D
compressions, which does not occur in 3D compressions.
Throughout this work when we refer to 3D compressions,
we mean isotropic 3D compressions.

While we consider an idealized problem, in order to iso-
late basic effects, such effects may be of relevance to lab-
oratory Z-pinch compression experiments, where a cylin-
drical plasma is compressed radially; such experiments
underlie radiation or neutron sources[13], as well as a fu-
sion experiment concept, Magnetized Liner Inertial Fu-
sion (MagLIF)[14, 15]. In the case of gas-puff Z-pinches
for radiation generation, observations suggest the pres-
ence of substantial turbulent energy at stagnation[12, 16—
18], which may be compressed during the course of the
pinch. This phenomenon is likely relevant in higher-
current gas-puff and wire-array Z-pinches[19, 20]. Laser

preheat in MagLIF experiments may generate vorticity in
the central fuel, which then undergoes substantial com-
pression during the pinch[21].

Here it is useful to consider an analogy between the
compression of TKE and the familiar case of the compres-
sion of thermal energy. In the simplest, lossless case (adi-
abatic for the thermal or turbulent energy), the thermal
energy of an ideal monatomic gas grows as V~2/3 as the
volume V' is compressed. This growth is independent of
the manner of compression; that is, working in Cartesian
coordinates, we may compress in 1D (say, along z), 2D
(say, along x,y), or 3D and the energy growth as a func-
tion of volume will be the same, assuming collisions hap-
pen rapidly enough to keep the thermal motions isotropic
in the compression. The same would be true of the TKE,
as it is considered here, if it remains isotropic during the
compression. Further, the TKE would grow at the same
V~2/3 rate as the thermal energy[6, 22, 23]. In the case
of the TKE, the nonlinearity of the Navier-Stokes (NS)
equation plays the role of collisions, being the mecha-
nism by which energy injected by the compression can
equilibrate into the uncompressed flow component(s).

Here we investigate how effective the NS nonlinearity
is at maintaining or restoring the isotropy of the TKE in
compressions at various rates. If isotropy is not main-
tained, then the TKE may grow more rapidly as a func-
tion of volume than the V~2/3 scaling. In this scenario
the compression may inject more energy into the turbu-
lent energy than the thermal energy per volume decre-
ment, leading to preferential enhancement of the turbu-
lence. While, in general real systems, both the thermal
and turbulent energy dynamics are affected by a variety
of other loss (or forcing) mechanisms, this basic question
of TKE equilibration and the associated impact on TKE
growth rate can remain relevant.

We find that in 2D compressions the TKE can become
and remain highly anisotropic. As a consequence, the
TKE in 2D compressions can grow more strongly than
the ideal isotropic scaling of V=2/3, with a scaling peak-
ing at V~'. This then distinguishes the TKE not only



from the thermal energy in an ideal compression, but
also from the TKE in a 3D compression, where isotropy
is retained and a maximum growth of TKE as V~2/3 can
occur. Further, we discuss the likelihood that the TKE
growth is more easily sustained in 2D compressions, due
to aspect ratio effects.

The paper is organized as follows. In Sec. II we
briefly cover the formulation of the 2D compression sys-
tem which we use to investigate the problem at hand.
The numerical simulations used for the study are de-
scribed in Sec. IT A. Section III contains the main results,
which are broken into two parts. First, Sec. IIT A de-
scribes the theoretical framework we analyze the results
in, which examines the polytropic (or adiabatic) index
for a turbulent pressure under compression. Second, Sec.
III B contains simulation results and analysis, broken into
three pieces: Sec. IIIB1 shows simulation results and
analysis for the 3D compression case to be contrasted
with the 2D case; Sec. III B 2 shows the 2D compression
case for the same initial conditions; Sec. III C shows the
2D compression case for an alternate initial condition, to
gain further insight. Finally, we conclude in Sec. IV.

II. FORMULATION

To study the TKE behavior in two-dimensional com-
pressions, we use an approach similar to substantial prior
work on the compression of turbulence[5, 22-25], and the
same as that described in Davidovits and Fisch [11]. This
approach is described again briefly here; more details, in
the very similar 3D formulation, can be found in the ap-
pendix of Ref. 5. Because it will be a point of comparison,
we also describe the 3D compression case simultaneously.

We take the gas or plasma behavior to be governed
by the NS equations. A compression is caused by an as-
sumed background flowfield, vio(x,t) = A;;(t)x;, with
the complete NS flow given by v;(x,t) = wvio(x,t) +
vi(x,t). Our goal is to solve for the behavior of the (tur-
bulent) field, v}, given the compressing background flow,
Vi0-

We will work in Cartesian coordinates throughout. A
3D, isotropic, compression occurs when A;;(t) = a(t)d;;
is diagonal (0;; is the Kronecker delta). A symmetric 2D
compression occurs when A;;(t) = a(t) fori = j =1
ori=j =2 and A;;(t) = 0 otherwise. In the present
case, for two-dimensional compression, we take the com-
pression directions to be x and y, with the z axis then
uncompressed. Here we take

a(t) = L/L, (1)
with the overdot indicating a time derivative, and
L(t) = Lo — 2Uyt. (2)

The effect of the background flow is as follows. In
a 3D compression, this background flow is such that a
cube of initial side length L placed in the background

flow and advected by it will remain a cube, with a side
length L(t) that contracts at constant velocity according
to Eq. 2. In a 2D compression, the (initial) cube will only
contract along the x and y directions, with the side length
along those axes given by L(t), while the uncompressed
z direction will have a constant side length of L.

We will assume the perturbed flow v} is homogeneous
under ensemble averaging, and we will ignore density per-
turbations associated with it (low Mach flow assump-
tion). With no density perturbations, the complete den-
sity behavior is then simply given by pap(t) = po/L? for
the 2D case and p3p(t) = po/L? for the 3D case. Here,
L is the normalized contracting side length,

L =1-2U,t/Ly. (3)

Explicit spatial dependence in the NS momentum
equation can be eliminated by working in coordinates,
X, that move with the background flow. In 3D, this is
x = LX, while in 2D it is # = LX, y = LY and z = Z.
Writing v}(x,t) = V;(X,t) and p/'(x,t) = P(X,t), then
for a 3D compression the NS momentum equations are,
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Po X,
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=1yLiaspV3Vi, (4)

while the continuity equation for the perturbed flow is
simply the divergence free constraint, V;/0X; = 0.

In the case of a 2D compression, the NS momentum
equations are,
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while the continuity equation is,
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In equations (5) — (7), we have used a shorthand operator
form for both the convective term (C) and the viscous
dissipation term (D),

dA HA dA
C(A)_— (V 8X+V”8Y) +Veg, (9)
PA 924 %A
D) =55z + 572 + I 022 (10)

In the moving coordinates, the equations for the per-
turbed (turbulent) flow, V', in both the 2D and 3D cases,
are similar to the usual NS equations, with the differ-
ences being time-dependent scalings appearing on some
terms, as well as forcing associated with the compres-
sion. In the 3D case, the forcing, the second term on the



left-hand side of Eq. (4), appears for all velocity compo-
nents; each velocity component is forced the same in the
isotropic compression.

In the 2D case, Egs. (5) — (7), the forcing only appears
in the equations for the velocity components parallel to
the compressed directions (V,, and V,)). This means that
V., can only increase through the action of the nonlin-
ear terms (convective and pressure) in Eq. (7). Since
V. and V,, are directly forced, we may expect an initially
isotropic flow, with equal energy in each flow component,
will only remain isotropic if the nonlinearity is effective
at transferring energy to V..

Note that, because we are solving for a perturbed flow
which we have assumed is of small Mach number, the
pressure appearing in the momentum equations is es-
sentially that of incompressible flow, which acts to keep
the continuity equation satisfied despite the nonlinearity.
The mean pressure in this case follows from the mean
density behavior, pap(t) or psp(t), coupled with the ideal
gas law and an assumption about the temperature behav-
ior in the compression (say, adiabatic, or isothermal, to
give two possible examples).

The remaining piece to specify the compressing sys-
tem(s) is the viscous behavior. The dynamic viscosity,
i, is written as pap = pofiep (similarly for 3D), and
the kinematic viscosity appearing in the 2D and 3D mo-
mentum equations is vy = uo/po. If we utilize the un-
magnetized Braginskii viscosity[26], then p ~ p (T, Z),
with T = T/Ty the temperature normalized to its ini-
tial value and Z = Z/Z; the ionization state normalized
to its initial (spatially uniform) value. The impact of a
changing plasma viscosity on the evolution of the TKE
has been previously investigated in three-dimensional[4—
9] and two-dimensional compressions|[11].

For simplicity, consider the case of a fully ionized
plasma (constant Z). Then, for the Braginskii viscos-
ity, 11 oc T°/2, where in the present work the temperature
is treated as spatially uniform. For an adiabatic compres-
sion, we have Tsp = L2 and Top = L~*3. However,
the temperature behavior growth in a real compression
can be reduced by loss mechanisms, such as conduction
or radiation, leading to weaker viscosity changes. We
can consider a general (but still power-law) temperature
behavior with compression by introducing a parameter
B such that fisp = L~27, while for 2D compressions
we define figp = L~*8/3; in either case § is a param-
eter determined by the net heating and cooling (and also
possibly ionization) processes in the compression[5, 27].
These definitions make it so that for a given (, the 2D
and 3D compressions have the same dynamic viscosity as
a function of volume, fiop (V') = fisp(V).

Our primary goal here is to examine, with the aid
of direct numerical simulations (DNS), the question of
isotropization through the nonlinearity and the associ-
ated maximum sustained TKE growth, rather than ef-
fects due to changing viscosity (the viscosity can become
quite large in certain plasma compressions, causing a
transition from high to low Reynolds number [28]). In

a truly high Reynolds number regime, changes in the
viscosity can be verified to not influence results of direct
numerical simulations (DNS) of turbulence[29]. Thus,
we would like our simulations to start and stay high
Reynolds number, however, we also want the simulations
to remain resolved at the smallest (viscous) scales as the
compression progresses.

Since the energy injection from the compression can
lead to increasing turbulent velocities, it can also then
lead to increasing Reynolds numbers (and therefore reso-
lution requirements for DNS). The Reynolds number will
also be influenced by the viscous behavior. At present,
to try to maintain both a reasonable Reynolds number
as well as numerical resolution, as well as for physical
convenience, we will study the case when § = 3/2, cor-
responding to fiop = L~2. For a fully ionized plasma
(constant Z) with a Braginskii viscosity this corresponds
to T = L~*/5, since the temperature dependence of the
Braginskii viscosity is oc T%/2.

It is convenient, both for analysis and for numerical
simulation, to rescale the fields and the time variable in
the compressing frame momentum equations, Eq. 4 or
Egs. (5) — (7), with a time-dependent scaling[5, 6, 30].
For the 3D case, we use the velocity scaling V; = I_/‘;Vi;
for the 2D case, we use V., = L%V, , for the x and y
directions, and V, = E"Vg Afor the z direction. We also
scale the pressure, P = L"P and the time, dt = L7dt.

Selecting, for the 3D case, 6 = —1, 7 = =2, and n =
—5, we find for the momentum equation, Eq. (4),

1 0P
po 0X;
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Examining Eq. 11, we see that in the special case of § =
3/2, the evolution of the turbulence under compression
is determined by the solution of the NS equations for
decaying turbulence[6, 30].

In the 2D case, if we again select § = —1, 7 = —2,
and also select n = —4 and ¢ = —2, then the continu-
ity equation, Eq. (8) becomes simply the divergence free
constraint, BVi/aXi = 0. The momentum equations,
Egs. (5) — (7), become

ov, . oV, 10P _ R
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o v+VJan+poaz Vo (V2)

(14)



A. Simulations

We now briefly describe the simulations used in the
present work, which are similar to those in Refs. 11, 27.
We utilize the pseudo-spectral code Dedalus[31] to solve
for the evolution of initially isotropic, homogeneous, tur-
bulence under two-dimensional compression, as governed
by the Egs. (5) — (8). We use periodic boundary condi-
tions and a Fourier basis.

In Dedalus it is numerically advantageous to solve
rescaled equations, and then unscale the results appro-
priately. For 8 = 3/2, we numerically solve Eqgs. (12) —
(14) together with the divergence free constraint on V.

We generate the initial state that is compressed in two
different ways, which yield different initial spectral en-
ergy distributions. First we describe the method used
for the results shown in Secs. IIIB1, IIIB2, as well as
the simulations in those sections. Following that, we de-
scribe the method used for the results shown in Sec. ITI C.
All simulations have pg = 1, Ly = 1, and vy = 1/600.

To generate the first initial state that is compressed,
we initialize a divergence free flow field with (uniformly
distributed) random Fourier phases, and magnitudes set
o k*exp(—(k,/k)?), with k, = 4. This state is then
allowed to decay (by the NS equations) for approximately
a turnover time. The resulting flow field has an isotropic
energy spectrum shown in the left panel of Fig. 1.

The simulation to generate the initial state through
decay uses a Fourier mode resolution of 2163, which is
1443 after 3/2 de-aliasing. The results on 3D compres-
sion, shown in the middle and right panels of Fig. 1 are
computed with this same resolution. For the 2D compres-
sion results up to L = 0.03 we use a grid of 2162 x 1236
(de-aliased to 1442 x 864). The higher mode resolution
is in the z direction, which is done because the form of
the dissipation, Eq. (10), allows for much steeper gradi-
ents (in the moving coordinates) along z at a given vy as
L shrinks in the compression. To continue 2D compres-
sions past L = 0.03 we add additional k., modes at this L
(time) to maintain resolution in this direction, resulting
in a resolution before de-aliasing of of 2162 x 2592; this
is done for the Sy ~ 1 and Sy ~ 10 cases shown in Fig. 2
and following figures.

The initial field we use has the following properties,
with angle brackets denoting a spatial average. The tur-
bulent energy Ex o = (V;V;/2) = 0.85, the dissipation
0 = —1(ViV?V;) ~ 11.5, and a derived Taylor mi-
croscale Reynolds number Rey = 2Ek+/5/(3€eo10) = 16.
The initial decay time 740 = (Ex/€)o ~ 0.074.

We have also simulated 2D compressions of initial
states generated using an alternate technique, the forc-
ing method described by Lundgren [32] and Rosales and
Meneveau [33], and these results are shown in Sec. ITI C.
This forcing technique results in rather flat low-mode en-
ergy spectra (see the bottom left panel in Fig. 9). We
generate the initial state in this case again using a reso-
lution of 2163 (de-aliased to 1443), which is then interpo-
lated to the finer grid before the compression is started;

the finer resolution (3242 x 1236) in z, y, was used for
the compressing simulations as part of checking conver-
gence. In the case of the most dramatic compression
shown Sy ~ 20, we restart part way through with a res-
olution of 3242 x 3888, to maintain resolution in the z
direction, as before.

The initial field that results from this second forcing
scheme has the following properties, with angle brackets
denoting a spatial average. The turbulent energy Fx =
(V;Vi/2) ~ 0.97, the dissipation € = —vo(V;V?V;) ~ 2.57,
and a derived Taylor microscale Reynolds number Rey =~
38.

IIT. ANALYSIS AND RESULTS

The primary analysis and results are contained in Secs.
IIT A and ITIIB below. First, in Sec. III A we derive the
polytropic index relation for 2D compression of hydrody-
namic turbulence, and compare it with the result for 3D
compression. This provides our general framework for
considering the TKE behavior during compression. Sec-
ond, Sec. III B provides further analysis of these relations
and comparison to simulation results.

A. Turbulent polytropic (adiabatic) index

We find it useful to frame the turbulent kinetic energy
(TKE) dynamics of a compressing flow in terms of a poly-
tropic index (sometimes also referred to as the adiabatic
index and denoted by 7). Here, where the viscosity en-
ters, we write it generally, without specializing to the
power law form discussed above. We start by recalling
the familiar case of thermal pressure and energy evolu-
tion, which will be a useful point of comparison. When
a plasma or monatomic gas that is treated as ideal un-
dergoes an adiabatic compression, the thermal pressure
p obeys a polytropic law,

pV" =C, (15)

and the polytropic index n = 5/3. Here V is the vol-
ume and C'is a constant. Correspondingly, the thermal
energy, U = 3pV/2 grows as V~2/3 in the compression.
Assuming we are in a regime where collisions are able
to rapidly (compared to the compression rate) isotropize
thermal motions, these thermal pressure and energy scal-
ings will hold independent of whether the compression is
1D, 2D, or 3D. That is, working in Cartesian coordinates,
we will have Nthermal = 5/3 whether we compress along
only z, along x and y, or along z,y and z.

An analogous polytropic index can be defined for the
turbulence in both 3D[10] and 2D compressions. In the
case of 3D compression, we write the equation for the

time rate of change of the total TKE, dEt/dt, where
Er = ffffzﬁz dX(poViVi/2). This total energy is the

same as in the laboratory frame (in the laboratory frame,



the density increases, but the volume to be integrated
decreases in a manner that balances it). We use Eq. 4
to write the equation for dEr/dt, use the volume re-
lation dV = 3L2Ldt to rewrite it in terms of the vol-
ume rate of change, and define the viscous dissipation

= —uL ffsz/iz dXV;V2V;. Doing so, we arrive at,

dET 2 ET 6#

=T _ 16
av "3V sy (16)
where we have defined the (positive) compression
timescale as,

Te=—L/L. (17)

It is natural to define the turbulent pressure in this
3D compression as psp = 2E7/3V, since, in Eq. (16),
it is the quantity that relates the infinitesimal volume
increment to the energy injected into the (turbulent)
flow. The polytropic relation, Eq. (15), implies n =
dlnp/dlnp. With p3p as just defined, and Eq. 16, we
find

(18)

where the turbulent turnover time in this case is defined
as

7 = 2E7 /€, = 274, (19)

with 74 the decay timescale 7y = —ET/ET = Er/e,. We
have defined a normalized strain rate S as

S =1/7. (20)

With these definitions, an “isoturbulent” contraction
(n = 1) occursif 7. = 7, or S = 1 (see Ref. 5 for examples
of 3D contractions that reach this state, or for an example
in the ICF context, Ref. 27). The ratio 7./, S, can also
be written as a type of Reynolds number. A compression
is rapid if 7. < 7, S > 1, which leads to amplification
of the TKE with ngp — 5/3, the peak achievable ampli-
fication rate in this treatment. If the compression is very
slow 7, < 7., S < 1, and n3p can take negative values.
In this case, the turbulence dissipates before it feels the
compression.

For 2D compressions, we follow a similar procedure,
accounting for the volume in this case being V' = LoL?.
The equation for the total energy in a 2D compression is,

dEr B
av v

€1,2D
- —.
2L3L?

(21)

Here the 2D viscous dissipation is e€,2p =
—p fffL0/2 dXV;D(V3) and the “parallel” (to compres-

Lo/2
sion) energy E) = fff o /2 dXpo(VZ+V2)/2.

In this case, only flow in the directions parallel to the
compression (V;, V,)) is associated with a turbulent pres-
sure; that is, the energy injected by an infinitesimal con-
traction only depends on these components. Then, the

natural definition of turbulent pressure is pop = E)|/V.
As such, in order to find nop = dlnpep/0ln pap, we
use Egs. (5) and (6) to write an equation for the time
(volume) evolution of E) and find for nap,

Ty ul
Nop =24+ Te— — Te—. (22)
Ej Ej
The  parallel  viscous  dissipation, €| =

w I, aXV D(V) +  VyD(Vy)],

Lo/2
T = Jff231 aXIVa(poC Vi) + LOxP) + Vy (o C(Vy) +
LoyP)] represents the nonlinear transfer of energy
between FE) and the uncompressed direction energy,
E, = E. = [[[dXpoVZ/2. There is no corresponding
nonlinear transfer term appearing in nzp, Eq. (18),
because the transfer is conservative and integrates out
when the full energy evolution is considered.

As before, we can define additional timescales to write
n in terms of timescale ratios. In this case we define a

while

nonlinear transfer timescale 77 = —2E) / 37 and the
turbulent turnover time 7, | = 4EH/36#7H. Then,
1 7. 2 T,
=2— - - . 23
12D 37'NL 37}7” ( )

The numerical coefficients in the definitions of the
timescales 7 and Ty, are chosen so that for 7. = 7y,
and 7. = 7| we have n = 1, and the coefficient in the

definition of 7z, is selected so that n = 5/3 — 7.¢,, ||/ E)
when 71 = 7.
By defining the energy ratio,
£ B
r 24
P= = Fa (24)

it is possible to recast nop in an alternate but equivalent
form,

n =1+7 _Bln—rE_ch
b P 0mv 3T

(25)

In this case the turbulent turnover time 7pr =
4E7/3€,2p. In (statistically) isotropic turbulence, the
energy ratio rg ~ 2/3. We will find both forms of nap,
Eq. (23) and Eq. (25), useful in the analysis of 2D com-
pressions.

B. TKE growth and anisotropy
1. Behavior of n3p

Before addressing the values and behavior of nop, we
discuss nzp, Eq. (18). When, as is presently the case, the
compression rate is predetermined, 7. is a known function
of time, Eq. (17). Then nsp is determined by the evo-
lution of the turbulent turnover timescale, 7, Eq. (19).
In general, determining the evolution of 7 is a difficult
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FIG. 1. Three-dimensional (3D) compression of an initial turbulent flowfield, see Sec. IIIB 1. Panels from left to right. First
panel: the isotropic power spectrum of the initial state before compression begins. Second panel: the polytropic index, nsp,
Eq. (18), versus linear compression ratio (L, time progresses left to right) for compression at different initial values of the
compression rate, S, Eq. (20). Third panel: decay of energy associated with the scaled NS momentum equation, Eq. (11),
versus a scaled time which is related to L by Eq. (29); compression progresses left to right. Fourth panel: the instantaneous
inferred decay power, assuming a power-law decay for the scaled energy, Eq. (30), which is seen to increase in time (as the
compression progresses), eventually leading to the decrease in n3p observed in the second panel.

problem, requiring the solution of the (turbulent) Navier-
Stokes equation, including possibly time-varying viscos-
ity, Eq. (4), or equivalently, Eq. (11).

Existing turbulence models for 3D compression with
viscosity variation determined by the f = 5/2 case[T7]
or for the general 5 case[6] can then be used to model
n3p. When the viscosity stays steady or increases in the
compression, the general trend for an initially fast com-
pression is as follows. In an initially fast compression,
Teo < 7o (So > 1), s0 nap o ~ 5/3. However, the tur-
bulence will tend to evolve towards faster timescales at a
rate such that the ratio S decreases, and thus nzp will de-
crease in time from the initial value ~ 5/3. When the vis-
cosity growth with compression is 8 > 1, the turbulence
will eventually dissipate with continued compression[5],
so that n becomes less than one (in practice n can be-
come negative). When f = 1, it can be shown that
the turbulence saturates with continued compression, so
that n3p — 1 (assuming an initial compression rate that
meets a threshold condition)[5].

The second panel of Fig. 1 shows nzp(L) for compres-
sion with a range of initial rates, Sy, for the case when
B = 3/2. The trends just described are visible. Addi-
tionally, for Sy = 10, 100, we observe a regime with nzp
approximately constant. We now explain this plateau
regime.

Consider ngp in an initially fast compression when
B = 3/2. Initially, ngp ~ 5/3 due to the fast compres-
sion, and ultimately nzp in this case will become less
than one as the TKE dissipates (due to the rate at which
the viscosity increases with the increasing temperature
in the compression, relative to the rate of TKE injec-
tion). Both of these behaviors can be governed by linear
effects. When the compression is rapid and n ~ 5/3, this
is a result of the TKE evolution being controlled by the

linear forcing from the compression, the second term on
the left-hand-side of Eq. (4). When the viscosity grows
very large and nsp becomes highly negative as the TKE
dissipates, the behavior can be controlled by the linear
viscous term, the right-hand-side of Eq. (4). If the initial
Reynolds number is high enough, there exists an interme-
diate regime where nonlinear evolution of the turbulence
gOVerns ngp.

In the 8 = 3/2 case, we now determine the value of
nsp in this intermediate, nonlinear, stage. For § = 3/2,
the scaled NS equation for the compression, Eq. (11),
is just the “usual” incompressible NS equation. In this
case, at high Reynolds number, the energy evolution can
be modeled as a power-law decay,

Lo/2 o . R
Bri) = ([ aXmi¥i/2 = Bro(1+ /1),
Lo/2

(26)
with a decay power aisp and a decay timescale tg. The lab
frame energy is simply related to the scaled energy, Fr =
L=2E7. In general asp depends on the slope of the TKE
power spectrum at low wavenumbers (long wavelength),
see, e.g. Ref. 34. Note that, for a given observed decay,
the value of tg can also affect the inferred value of asp
(see e.g. Ref. 35 for more discussion); here, motivated
by other work[36] we use tg = 740 = T,0/2 consistently
throughout, including later for 2D compressions (which
start from an identical initial state).

The third panel of Fig. 1 shows the decay of the total
TKE for the present initial condition, plotted against a
normalized time t,,

te = tA/Td10 = 25/7}10. (27)

By undoing the velocity and time scalings (converting

back to the non-hat variables), we can write the time (or,



more conveniently, L) evolution of the lab frame TKE,
Er(T) = Er/Ero = [(1+ (=1 +1/L)(2/S0)] s /L2,
and from that calculate nsp = 1 — (L/3E7p)dEp/dL in
the high Reynolds limit,

" _>§_043D 1 5—a3p
P33 1+ L(S0/2- 1) 3

(28)

Since we have scaled time as df = L~2d¢ (for both 3D
and 2D cases), the relation between ¢, and L is given by

1

L=—— 29
1+ Sot./2 (29)

The third panel of Fig. 1 shows a fit line (dash-dot)

Er ~ (1+t,)~ 1355 which can be seen to match the slope
of the decay over a period around ¢, ~ 10 (approximately,
see below). This then corresponds to agp =~ 1.355. The
second panel of Fig. 1 shows (dash-dot) Eq. (28) with
this value of a3p; it agrees with the value of n3p in the
observed plateau regime.

In general, the value of agzp can change during the
compression. The fourth panel of Fig. 1 shows the in-
stantaneous inferred value of as3p as a function of ¢, dur-
ing the decay. This is calculated from the assumed power
law decay, Eq. (26) as as,

ap(t.) = 30)

It can be seen that asp increases in time during the
decay for this initial condition, with a plateau around
asp =~ 1.355, yielding ngp ~ 1.22. An important note
is that the relation Eq. (28) is written for constant asp;
when asp changes in time, there should be another term
entering the equation, which depends on this rate of
change with L (time). This extra term, ignored here, is
the reason the dash-dot line in the third panel of Fig. 1
only approximately matches the apparent slope of In(E7)
vs 1+ t, in the third panel (the true fit at this time is
closer to (1 + t.)~'4). Later, in Sec. IIIC, for the 2D
compression case, we treat the impact of time-varying a.

As previously stated, the value of azp depends on the
slope of the power spectrum at small (Fourier) wavenum-
ber, k, Ep(k) ~ k*. For example, the Kolmogorov (or
Batchelor) decay result is asp = 10/7 (s = 4), while the
Saffman result is azp = 6/5 (s = 2)[37]. These then cor-
respond to ngp = 25/21 ~ 1.19 and n3p = 19/15 ~ 1.27,
respectively, in the nonlinear cascade regime. Rewritten
in terms of the energy growth rate, these results agree
with those given for the cascade regime in Viciconte,
Gréa, and Godeferd [7]. While we began by considering a
specific viscosity dependence, 5 = 3/2, this dependence
does not actually enter into the present result for n3p in
the nonlinear phase.

The high Reynolds number limit of the decay, which
is utilized to arrive at Eqs. (26) and (28), can only hold
for so long when g > 1; eventually, the viscous regime is
reached and the decay characteristics will change, with
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FIG. 2.

Two dimensional compression of the same initial
state used for the 3D compression cases in Fig. 1, at compa-
rable initial compression rates, see Sec. III B 2. Shown are the
polytropic index, n2p, Eqgs. (23), (25) versus compression ra-
tio (L, time progresses left to right in each plot). Also shown
is the energy ratio, rg, Eq. (24), which is a measure of the
anisotropy of the turbulent flow. Three compression rates are
shown, ranging from an initially slow compression, Sy ~ 0.1,
to an initially fast compression, Sy ~ 10.
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FIG. 3. For the 2D compressions shown in Fig. (2), the de-
cay of the scaled parallel energy, associated with the scaled NS
equations for 2D compression, Egs. (12), (13); see Sec. III B 2.
The left panel shows the (scaled) energy behavior versus time
(increasing compression left to right), while the right panel
shows the instantaneous inferred decay power assuming a
power-law decay as in Eq. (30), but for £y, a). Shown for
comparison is the 3D compression behavior of scaled energy
and decay power, for the identical initial condition (in the 3D
case, the plotted results hold for all initial compression rates).
The smaller, and decreasing, decay rates in 2D compression
lead to higher, and more sustained, polytropic index for the
turbulence.

« increasing, leading to a decrease in n[6, 7]. This is
observable in Fig. 1. When g = 1, the turbulence can
saturate in lengthscale at the (simulation or physical)
domain size, yielding a change in o (o — 2[38, 39]). A
more broadly applicable version of Eq. (28), capturing
these variations, is possible, e.g. through the use of more
complex decay treatments than Eq. (26)[6, 7, 40].



2. Two dimensional compressions and na2p

Examining Egs. (23) and (25), we can immediately
make some observations. First, from Eq. (23), we can
see that nap > 5/3 = n3p maes may be achieved, de-
pending on the values taken by the timescales entering
the equation. Note that 7. and 7; || are generally non-
negative, while in principle 7y, can be either positive or
negative, corresponding to energy transfer out of or into
E), respectively. However, we consider initially isotropic
states, and in the 2D compressions only F) is forced;
as such, we may expect that the tendency at present is
for the nonlinearity to transfer energy from Ej to E.,
corresponding with 7z > 0. This is what we observe
in simulations (except for very small initial compression
rates Sop ~ 0.01, where the sign is observed to switch
back and forth, not shown here). Then, naop < 2, with
both the nonlinearity and the turbulent dissipation tend-
ing to decrease the rate of (parallel) energy growth in the
compression.

A second observation, from Eq. (25), is that if rp = 2/3
(the isotropic value), and stays this value in the compres-
sion, then nop = 5/3 — 27./37,p. That is, if isotropy of
the energy is maintained in the compression, the turbu-
lent growth is capped at the same rate as for 3D com-
pression, nop < 5/3, as one expects.

For 8 = 3/2, Fig. 2 shows the L (time) evolution of
naop and rp for 2D compressions of the same initially
isotropic state at three different rates, Sy

- 3

So = (2L, (31)

2° 7,

with values Sy =~ 0.1, 1,10. Note that Sy in Eq. (31) is
defined such that it is identical, at t =0, L =1 to S as
written in Eq. (20). In other words, the initial compres-
sion rate is normalized to the same initial turnover time
for both 2D and 3D compressions.

A few things are immediately of note in Fig. 2. First,
the fraction of the energy in the parallel components, rg,
Eq. (24) generally increases from the equilibrium value
of 2/3 as the compression progresses in all cases, moving
towards the maximum value of rg ~ 1. This indicates
the energy becomes highly anisotropic as the compression
progresses. Second, the fast compression, Sy, achieves
nap > 5/3 for a substantial duration of compression;
thus this rate exceeds the maximum growth rate for 3D
compressions, and also the adiabatic growth rate of ther-
mal energy. Third, in no cases do we see a drastic fall off
of nop under compression (up to the minimal simulated
L), as we do in the 3D compressions shown in Fig. 1. We
now discuss these points in more detail.

As in the analysis of the 3D compression case, we
find it useful to examine the scaled equations, in this
case Eqgs. (12) — (13), which govern the evolution of the
(scaled) parallel energy E||. Recall that this energy is
simply related to the laboratory frame parallel energy
as B = E‘2E|‘. As in the 3D case, these equations no
longer have forcing due to the compression; then, to the

N — 5,=01
0 J -
10 \\ — =1
\ -
= N\ - — So =10
g - —_—— .
= S ~
|:10—1_ “~_———__.—
| \
\
1072 41— T T
10° 107! 1072
L

FIG. 4. Relative contributions to nap of transfer to £, (1)),
versus viscous dissipation of F) for the 2D compression cases
shown in Fig. 2; see Eq. (35) and Sec. IIIB2. When —Tj /¢,
(y value) is less than 1, nap is determined primarily by viscous
dissipation of Ej; in the opposite limit, it is determined pri-
marily by transfer of energy from the compressed directions,
E), to the uncompressed direction energy, E..

extent that the nonlinearity tends to transfer energy out
of Ej, which we find to be the case at these compres-
sion rates (Fig. 4, discussed later), these are equations
for the decay of EAH at constant viscosity (since § = 3/2
at present).

Writing this decay in the form of an (assumed) power
law, as in the 3D case,

E” = EA‘”’O(l + f/fo)_a‘l. (32)

The instantaneous decay rate o can be solved for, giving
Eq. (30), but with ET — E|\’ a3p — «.
Using the decay equation for E”, we can write nop in

terms of the decay rate, as we did for the 3D case in
Eq. (28),

Q| 1 Q|
9 - (1 ~2 -1 33
112D 2 1+L(SO/2—1)( ) 2 (33
Olnq
[ (1+t*)
X =5 In |(1+4+t,) } (34)

While in the 3D case we assumed « was constant, here
we write the expression accounting for time (L) varying
decay rate. If the decay rate is constant, x = 0. We
write x using t, for conciseness, X(f/) is found utilizing
Eq. (29).

From Egs. (33), (34), we see that if o) decreases with
compression (increasing ., decreasing L), this causes an
increase in nyp relative to the prediction assuming con-
stant o at the instantaneous value. Comparing Eq. (33)
to the 3D case, Eq. (28), we can see that, if it were the
case that Q) ~ asp, N2p and n3p in the nonlinear phase
would not be so different. That is, if the decay rate of the
(scaled) parallel energy in 2D were similar to the decay
rate for the (scaled) 3D energy, the differences in turbu-
lence enhancement in 2D or 3D compression would be
slight. Consider for example o = 1.355 as observed for
our 3D simulation, which yields for the nonlinear regime
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FIG. 5. Laboratory frame (unscaled) turbulent energy com-
ponents, F), E., versus compression for the 2D compression
cases shown in Fig. 2. The strong growth seen in Ej for
the fastest initial compression rate, So =~ 10, is associated
with sustained polytropic index above the isotropic maxi-
mum, nep > 5/3. Nonlinear transfer of energy to E., while
a small component (see Fig. 4), is sufficient at times to cause
growing or sustained F. despite there being no direct forcing
of z momentum, see Sec. III B2 and also Sec. II.
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FIG. 6. For Sy = 10, contour plots of the initial (upper plot)
spectrum and a compressed (L = 0.03, lower plot) spectrum
for the energy in the parallel direction Ej = (V7 + V,})/2 in
2D, showing the development of an asymmetric energy spec-
trum. Each contour line represents a factor of 10 change,
with lighter contours representing larger values, so that the
spectral energy I (kz,k.) generally decreases as one moves
away from the origin (lower left corner) of each plot. The ab-
solute scale is arbitrary and hence not plotted, but the plots
may be compared; the largest value (lightest contour, lower
left) is the same in each. In the upper plot this contour for
the largest plotted value is essentially at (0,0). The energy
spectrum F.(ks, k) has very similar structure. Note that for
readability we only show the quadrant with positive ks, k-,
and a subset of the z modes used the simulation.

n3p ~ 1.22 and nep = 1.32. This difference would be
decreased for higher decay rates (disappearing at o = 2).

Figure 3 shows, in the left panel, the time evolution
of B for each value of So from Fig. 2, and, in the right
panel, the corresponding instantaneous decay rate aj ()
inferred from this decay. Also shown are the results from

L=0.005 (ty = 42.4)
re=0.98

>

>
i

U

1.00
0.75
0.50

« 0.25

I

0.000.25 0.0 0.5 1.0
63.8xy 63.8xx

0.00
0.0 0.5

0.000.25
6.7xy 20.0xy

FIG. 7. Slices of the flow field during an initially rapid
(So =~ 10) 2D compression. The top row shows the flow veloc-
ity components in the directions parallel to compression (z,
y), while the bottom row shows the |v.|, the flow in the non-
compressed z direction. The first three columns show vertical
(y, z) slices through the midplane (constant x) after three dif-
ferent amounts of compression (increasing left to right, value
of L indicated in the label); the horizontal (y) direction is
stretched in each plot to increase visibility. The right-most
column shows a slice at constant z for the most compressed
L. See Sec. IIIB2.
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FIG. 8. As in Fig. 7, but for the slow compression case,
So ~ 0.1. Here the flow slices are plotted with the true aspect
ratio.

the 3D decay, from Fig. 2. Since, in all cases, the evolu-
tion is governed by similar decaying NS equations start-
ing from the same initial state, all cases are comparable
as a function of t,. The cases differ as a function of ¢, o ¢
for two reasons. First, L, which can be thought of as a
function of Sy and #, Eq. (29), enters into the viscous
dissipation term D, Eq. (10). And second, because L
appears explicitly in the evolution of V., Eq. (14), which
in turn appears in the nonlinear term in the V, and \A/y
equations.

There are two key features to note in Fig. 3. First, the
energy decay as a function of ¢, occurs more slowly with
increasing S, observed in the left panel and appearing in
the right panel as a lower inferred | at later times. Sec-



ond, o tends to decrease (monotonically for So = 1,10),
while for the 3D case for the same initial condition the
decay rate increases as the decay progresses. Taken to-
gether, these suggest that the growth rate of TKE in 2D
compressions can be both larger and more sustainable
than in 3D compressions, within the scope of the treat-
ment here.

One possible concern in interpreting these observations
is that one could make similar observations from the
linear solution to the 2D compression system. When
B = 3/2, the linear solution (including viscosity) to the
2D compression system can give nop — 2 for large com-
pression, consistent with the scaled energy decay rate
going to zero. This occurs when the initial condition
has flow structures with variation only in the z direc-
tion (Fourier modes with k, = k, = 0), because the
energy in such modes grows oc L=2 as L — 0 in the lin-
ear solution[11]. Then, the fraction of energy in these
modes grows during compression in the linear solution,
eventually dominating the energy. At present, for the
nonlinear simulations, we find that the fraction of energy
in these modes decreases as the compressions progress.
Thus, the smaller, and decreasing, decay power, and as-
sociated larger mop observed here appear to be “real”
effects of the nonlinear system.

We now discuss a few other features observed in Figs. 2,
3 before discussing the results of simulations utilizing a
different initial condition which help to further demon-
strate the key features just discussed.

The last value of o) for the So ~ 10 case in Fig. 3
is ) ~ 0.74. As an illustration, we use this value to
compute nop ~ 2 — /2 from Eq. (33), which gives
nop ~ 1.63. This is plotted as a dash-dot line on the
right (third) panel in Fig. 2, where it can be seen to be
slightly lower than the (true) value of nop. This slight
discrepancy is because x, Eq. (34) is nonzero, if small, as
reflected in the slight slope of the Sy ~ 10 curve of o) at
late time in Fig. 3.

At early times (t. < 1) in Fig. 3, faster compressions

show higher decay rates. Equation (14) for V. has a linear
damping term that is proportional to the compression
rate, but also decreases with L. We hypothesize that the
faster initial decay rate of the parallel energy in the scaled
equations is caused by stronger early-time damping of
V., at higher compression rates, combined with nonlinear
transfer of parallel energy to this damped component.
Since these increased rates are only present for a short
time, their net effect on the energy is small, as can be
observed in the left panel in Fig. 3.

We return now to the behavior of rp in Fig. 2. In
the case of slow compression, rg ~ 2/3 for a substantial
amount of time ¢, <5, L < 0.8, consistent with an initial
decay that is similar to the 3D case (Fig. 3). In late
times (small L) the three cases have rg growing towards
1; it natural to wonder in this regime about the relative
contributions to nop of transfer to z versus direct viscous

dissipation through V,, and V,,. We make this comparison

10
by writing Eq. (22) as

n2D:2—

% <1+__Tll>. (35)

I €l

Then, the relative contribution of transfer to E. com-
pared to dissipation by viscosity is given by comparing
—T) /€y, to 1. This quantity is plotted versus L in Fig. 4.
We can see that, in the case of Sy &~ 10, it hovers around
0.1 during the period when rg = 0.98.

Figure 5 shows the behavior of the lab frame TKE
components as a function of compression for the three
compression rates. Evident here is that, for the initially
fast compression, Sy ~ 10, this small comparative trans-
fer of energy from the growing F) is sufficient to support
growing F..

For the case Sy = 10, we plot in Fig. 6 con-
tours of the energy spectrum for the parallel energy,
By = (V2 +V}?)/2, after summing over the y direction,
E)(ks, k). In the upper plot the contours of Ej(ky,k.)
reflect the isotropy of the initial condition. The lower
plot shows contours of Ej(k.,k.) after compression to
L ~ 0.03. By comparing the upper and lower plots, it
can be observed that energy has primarily been added to
modes with smaller k, but across many values of k., with
this fact causing a substantial stretching of the contours
along the horizontal axis. This difference between the
k. and k, spectral directions likely stems from the fact
that dissipation at a given scale (in the moving frame) is
smaller along z, as indicated by the form of Eq. (10). The
change in mode structure with compression is very simi-
lar for E, (k,, k.), although the changes in magnitude are
much less dramatic, as would be indicated by the overall
energy changes in Fig. 5 for Sp = 10 at L ~ 0.03.

Figure 7 shows slices (vertical plane, y-z) of the flow-
field at three points during the compression; at the last
data point, it also shows slices in the -y midplane. Here
the accumulation of energy in k, modes is observed in
the fine vertical structure of the flow fields after com-
pression. It can also be seen here that while £ (V, V)
dominates the energy after compression, the velocity in
the non-compressed direction (z) grows as substantially
as well. Because of the large amount of compression, the
slices are stretched for visibility. For comparison, we also
show, in Fig. 8, flowfield slices for the Sy ~ 0.1, where
we can keep the actual aspect ratio.

C. Additional simulations for na2p

Here we present results for 2D compression at vary-
ing rates, as above in Sec. III B2, but for an initial flow
state that has a different energy spectrum, shown in the
bottom left of Fig. 9. The key features observed previ-
ously are again observed in the bottom middle and bot-
tom right panels of Fig. 9. Namely, the scaled energy
decays more slowly as a function of ¢, with increasing
initial compression rate, Sy, and the associated instan-
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FIG. 9. Quantities of interest for 2D compression at various initial rates, as in Figs. 2, 3 (see also 3D compression in Fig. 1);
here a different scheme is used to generate the initial state (see Sec. I A), resulting in an initial-state energy spectrum with
energy more concentrated in long-wavelength modes, compare the bottom left panel here to the left panel in Fig. 1, with the
latter used in the prior 3D and 2D compression results. For discussion see Sec. 111 C.
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FIG. 10. Slices of the domain showing the flowfield in a 2D
compression at an initially fast rate (So ~ 20), as in Fig. 7,
but with the alternate initial condition used in Fig. 9. Of note
is the simple flow structure of the parallel (to compression)
flow components, observed in a slice of the compression plane
x, y, the top right panel. See Sec. IIIC.

taneous inferred decay rate o decreases in time (as the
compression progresses).

In the case of a very slow initial compression rate, Sy ~
0.02, we see the opposite trend, of an increasing decay
rate in time up to the end of the simulated compression
(bottom right panel), consistent with the 3D case shown
in Fig. 1. For this 2D compression case (S &~ 0.02) we
may expect this trend to eventually reverse, as the aspect
ratio of the domain becomes large and the x, y plane flow
becomes simple (see the discussion below), although the
(lab frame) TKE will have decayed very substantially
from its initial value by this time.

The 2D compression results for nop and rg are shown
in the top row of Fig. 9. The slow compression case,
So ~ 0.02 has rp fluctuating around the isotropic value
of 2/3, while the Sy ~ 2, ~ 20 cases show growing 7z,
with both cases eventually reaching rg =~ 1, and nap =~ 2.

The Sy ~ 20 case shows an intermediate plateau
regime in n, and in rg. Since L is small during this
regime, we can ignore the contribution of L(Sp/2—1) in
the denominator of nap as written in Eq. (33). We define
an effective q,

A err = ay(l+Xx), (36)
so that,
a [
Nop ~ 2 — % (37)

In other words, o .rs is the apparent power of the as-
sumed decay, Eq. (32) when o) changes in time (L).

In the bottom right panel of Fig. (9), we show both
o (green, solid) and «ay .s; (red, dashed) for Sy = 20.
Since «a decreases in time, x, Eq. (34), is negative, and
Qleff < O, Eq. (36).

There is an approximate plateau at o .y =~ 0.35 (pur-
ple dash-dot line), which matches the apparent slope of
E” in the bottom middle panel of Fig. (9). This figure
also shows, in the top right panel, that nop calculated us-
ing this value of o ., through Eq. (37), matches nap
during the plateau regime, nop ~ 1.83.

Flow slices for the Sy &~ 20 case are shown in Fig. 10,
including, in the second column, slices during this plateau
regime (at L ~ 0.01). During this time rg ~ 0.98, and we



find =T} /e, ~ 0.3, indicating transfer of energy to the
z direction still plays a roll during this stage, Eq. (35),
before falling off as nop ~ 2.

The z-y flow slices in Fig. 10 (right column) show that,
at the last simulated point (L ~ 0.002, t, ~ 50), the Vj,
V,, flow consists primarily of flow with a single oscillation
in the domain (k; ~ k, ~ 2m). Compare this with the
2-y flow slices (right column) in Fig. 7, for the previously
discussed initial condition, which are shown after a simi-
lar magnitude of initial decay times, t, &~ 42; this initial
condition shows higher-mode (kg, k,) structure still at
this time. Thus, the pre-compression initial state used in
this section, for the results in Figs. 9, 10, reaches a long-
wavelength dominated state more quickly, owing to its
initial spectrum, and this state is seen to be associated
with nap ~ 2.

Although a detailed analysis is beyond the scope of
the present work, we now discuss, qualitatively, a pos-
sible explanation for the observed smaller (compared to
3D) decay rates of the scaled energy, and for the fact
that these rates decrease during the compression. It is
these key features that are associated with larger nap,
which can apparently be sustained even during compres-
sion at initially modest rates, Sy ~ 1, 2, unlike in the 3D
compression case.

As L becomes smaller, there is a tendency for the V,
and V, equations, Egs. (5), (6), to have reduced relative
influence from V., and Z derivatives, as evidenced by the
L scaling factors in the equations (including the conti-
nuity equation as well). If we took this to the extreme,
we would drop the Z derivative term (last term) from
the convective term, Eq. (9), dissipation term, Eq. (10),
and continuity equation, Eq. (8). After rescaling V, V,,
to Vm, Vy, as before, we would then have a system that,
for = 3/2, is the (unforced) 2D NS equations (we can
write an equation for the scaled z vorticity to eliminate
the pressure).

In true 2D turbulence, the energy decay can become
negligible at high Reynolds numbers[41, 42]. At present,
if the energy decay in the scaled variables becomes neg-
ligible, we would find nop — 2. Thus, if the effects
of 2D contraction lead to a tendency toward decoupling
from the V. flow, we may expect a reduced decay of the
scaled energy compared to the 3D case, and an associ-
ated large and sustained growth rate for the (unscaled)
energy. Since in general V, is not decoupled from the
dynamics, the 2D compression system is perhaps more
akin to other 3D systems exhibiting partially reduced
dimensionality[42, 43].

IV. SUMMARY

Here we have studied the 2D compression of initially-
isotropic 3D turbulence, and made comparison to the
(isotropic) 3D compression of such turbulence. In anal-
ogy with thermal energy, we may define a “turbulent
pressure” associated with the incremental work done on
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(or by) the turbulence in an incremental change of vol-
ume. Then, we can write a polytropic relation for this
pressure, pV"™ = C and find the polytropic (or adiabatic)
index, n, associated with the turbulent pressure in com-
pressions.

In the case of 3D (isotropic) compressions, ngp for the
turbulent pressure is ngp < 5/3; then, in a compres-
sion that is adiabatic for the thermal energy, we will find
that the rate of growth (n,) of the thermal energy is at
least as large as the turbulent growth. Since, in a self-
consistent adiabatic model, dissipated turbulent energy
will appear as thermal energy, we expect that in general
for 3D compressions nipermal > N3D-

On the other hand, in a 2D compression, the compres-
sion only does work against flows in the compressed di-
rection; if energy input into these flows is not efficiently
equilibrated into the uncompressed third direction, the
polytropic index for the turbulence, nop may exceed the
isotropic, adiabatic, value of 5/3, nap > 5/3. As a re-
sult, energy input by the compression may preferentially
flow into the turbulence even in a compression with adi-
abatic temperature growth. We find that nop > 5/3 can
occur in 2D compressions. This is a result of sustained
anisotropy of the turbulence, which we find here becomes
highly anisotropic in energy content, with the vast ma-
jority of energy parallel to the plane of compression.

Moreover, we find that, compared to 3D compression
at a similar rate, turbulence in 2D compressions can be
more easily sustained or enhanced; this is reflected by the
behavior of the scaled energy at late times. In 3D, this
scaled energy experiences an increasing decay rate in late
time (large compression), associated with late stage de-
cay of turbulence. In 2D, the comparable scaled energy
experiences a decreasing decay rate in late time (large
compression); this decrease is likely due to the large as-
pect ratio of such 2D compressions at late time, which
causes a tendency toward “two-dimensionalization”.

When nap > 5/3, the turbulent Mach number may
increase with compression as the turbulence is preferen-
tially enhanced relative to the thermal energy. We can
make a simple estimate of an extreme (adiabatic) case by
taking nop = 2, and ny, = 5/3. Then the Mach number
(normalized to initial value, M) for the parallel flow will
scale as M ~ V(mr=n20)/2  \7=1/6. 5 doubling would
require a compression in volume (V = V/V;) by a factor
of approximately 64. This simple estimate ignores the
flow of dissipated turbulence into thermal energy, which
would tend to increase n¢permai, but which diminishes as
nop — 2. It also assumes adiabatic increase of the ther-
mal energy; in general, conduction, radiation, or other
loss mechanisms will reduce the polytropic (adiabatic)
index of the thermal energy in the compression, enhanc-
ing the effect.

Throughout, we have used periodic boundary condi-
tions. One result of this is that k, = k, = 0 Fourier
modes, which can be linearly important in the 2D com-
pression problem[11], are permitted, however we find the
energy in such modes generally decreases in the present



simulations. More generally, physical boundary condi-
tions, say, associated with a cylindrical liner in MagLIF
experiments, should be considered; such boundary condi-
tions may provide damping at large scales, which could,
for instance, reduce the observed values of nop. The
present treatment neglects any electric or magnetic fields;
some existing laboratory experiments which compress
plasma in 2D have (strong) applied magnetic fields, the
effects of which may then be important in turbulence dy-
namics. Nevetheless, if they do not tend to help maintain
isotropy, some of the intuition from the present work may
still hold.

The compressions considered here proceed with a con-
stant (compression) velocity, L o Upt, Eq. (2). This
preserves spatial homogeneity in the equations when
the background pressure is assumed to be uniform in
space[5, 24, 30|, greatly simplifying the present analy-
sis of the turbulence. In various compression experi-
ments, including Z-pinch compressions such as MagLIF,
the compression velocity changes in time. This case can
be treated in the present framework by considering a
background pressure which depends on space[5, 24, 30],
but then for consistency with the ideal gas law, the
temperature (and therefore viscosity) would depend on
space, breaking homogeneity. Nevertheless, to the ex-
tent the turbulence results do not depend on the chang-
ing viscosity (due to high Reynolds number), the present
framework could treat this case.

More generally, if we allow for density perturbations, a
term associated with the accelerating compression enters
the momentum equation[30]. We now roughly estimate
the size of this term compared with the compression forc-
ing term due to volumetric contraction considered here
(e.g., the second term on the LHS of Eq. (4) and similarly
for 2D), for a specific case. The ratio of this accelera-
tion term to the volumetric forcing is of the magnitude
(p'/(p+ p'))(La/Lv"). Here p' is the density perturba-
tion and p the mean density. Suppose we assume the
flows are relatively compressible so that p’ ~ p and this
term is order unity, leaving us with the ratio (Lx/Lv’).

As an example, we estimate this ratio in the case of an
analytic liner solution used in Slutz et al. [14], where the
liner radius r = ro(1 — 74), with 7o the initial radius and
7 a normalized time, 7 € [0,1]. While the acceleration
term varies spatially (for example, vanishing at « = 0),
we take x ~ r. Then we take the perturbed velocity
v" o 7 (in a special case of 3D compression, it can be
shown that v’ nonlinearly saturates slightly above the
compression velocity, see Ref. 5; in the present 2D case,
the tendency toward “two-dimensionalization” may relax
this saturation cap). With these assumptions we will find
La/Lv' ~ (1 —1%)/7%

In this estimation, for this particular analytic liner
solution, the acceleration term is more important for
r 2 10/2, while the volumetric forcing considered here
is more important for r < ro/2. If density perturbations
are small compared to the mean density, then the relative
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magnitude of this acceleration term will be reduced and
the compression term will be dominant for a larger frac-
tion of the compression. In any event, we note that the
2D compression momentum equations considered here,
Egs. (5) — (7), depend explicitly on L(t), and so even if
the acceleration term can be dropped, the time history
of the compression will matter in general.

While we have highlighted potential relevance to var-
ious Z-pinch compression experiments, the present work
may find relevance elsewhere as well. For example, pos-
sibly in astrophysical situations that produce (quasi)
2D contractions in elongated structures (such as shock-
compressed gas pillars in molecular clouds or jets), or
in perhaps in contractions in gas dynamics, though the
Z-pinch contractions tend to cause much larger total vol-
ume contraction than many other applications.

Overall, we hope the present work helps to call atten-
tion to essential differences in the behavior of bulk turbu-
lence under compression when compressed in 2D versus
3D, and the possibility for anisotropy to lead to enhance
turbulent growth in 2D when compared to 3D.
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