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When initially-isotropic three-dimensional (3D) turbulence is compressed along two dimensions,
the compression supplies energy directly to the flow components in the compressed directions, while
the flow component in the non-compressed direction feels the effects of compression only indirectly
through the nonlinearity of the hydrodynamic equations. Here we study such 2D compressions
using numerical simulations. For initially isotropic turbulence, we find that the nonlinearity can be
insufficient to maintain isotropy, with the energy components parallel to the compression coming to
dominate the turbulent energy, with a number of consequences. Among these are the possibilities
for stronger and more easily sustained growth of turbulent energy than in 3D compressions and for
an increasing turbulent Mach number even in a compression without thermal losses.

I. INTRODUCTION

The desire to understand the scaling of turbulent hy-
drodynamic energy under compression arises in a va-
riety of settings, including combustion, aerodynamics,
astrophysics[1–3], and inertial fusion[4–11]. Compres-
sion tends to inject energy into the turbulence, while
turbulent dissipation (for example, through viscosity) re-
moves turbulent energy. Together, the net balance of
these effects (and possibly others) at each time determine
whether the turbulence in the compression is growing or
decreasing. The amount (and properties) of the turbu-
lence then influence important dynamics in the various
settings, ranging from material mixing (combustion, in-
ertial fusion), to the density distribution (astrophysics,
Z-pinches[12]).

At present, we examine the turbulent kinetic energy
(TKE) dynamics of a three-dimensional fluid (or plasma)
undergoing compression in two dimensions. We do so by
analyzing the result from numerical simulations. Specif-
ically, we focus on the rate of change of the TKE in
2D compressions with changing volume, which is tied to
the degree to which the turbulence remains isotropic in
the compression. Of particular note is that we find a
preferential enhancement of the TKE can occur in 2D
compressions, which does not occur in 3D compressions.
Throughout this work when we refer to 3D compressions,
we mean isotropic 3D compressions.

While we consider an idealized problem, in order to iso-
late basic effects, such effects may be of relevance to lab-
oratory Z-pinch compression experiments, where a cylin-
drical plasma is compressed radially; such experiments
underlie radiation or neutron sources[13], as well as a fu-
sion experiment concept, Magnetized Liner Inertial Fu-
sion (MagLIF)[14, 15]. In the case of gas-puff Z-pinches
for radiation generation, observations suggest the pres-
ence of substantial turbulent energy at stagnation[12, 16–
18], which may be compressed during the course of the
pinch. This phenomenon is likely relevant in higher-
current gas-puff and wire-array Z-pinches[19, 20]. Laser

preheat in MagLIF experiments may generate vorticity in
the central fuel, which then undergoes substantial com-
pression during the pinch[21].

Here it is useful to consider an analogy between the
compression of TKE and the familiar case of the compres-
sion of thermal energy. In the simplest, lossless case (adi-
abatic for the thermal or turbulent energy), the thermal
energy of an ideal monatomic gas grows as V −2/3 as the
volume V is compressed. This growth is independent of
the manner of compression; that is, working in Cartesian
coordinates, we may compress in 1D (say, along x), 2D
(say, along x,y), or 3D and the energy growth as a func-
tion of volume will be the same, assuming collisions hap-
pen rapidly enough to keep the thermal motions isotropic
in the compression. The same would be true of the TKE,
as it is considered here, if it remains isotropic during the
compression. Further, the TKE would grow at the same
V −2/3 rate as the thermal energy[6, 22, 23]. In the case
of the TKE, the nonlinearity of the Navier-Stokes (NS)
equation plays the role of collisions, being the mecha-
nism by which energy injected by the compression can
equilibrate into the uncompressed flow component(s).

Here we investigate how effective the NS nonlinearity
is at maintaining or restoring the isotropy of the TKE in
compressions at various rates. If isotropy is not main-
tained, then the TKE may grow more rapidly as a func-
tion of volume than the V −2/3 scaling. In this scenario
the compression may inject more energy into the turbu-
lent energy than the thermal energy per volume decre-
ment, leading to preferential enhancement of the turbu-
lence. While, in general real systems, both the thermal
and turbulent energy dynamics are affected by a variety
of other loss (or forcing) mechanisms, this basic question
of TKE equilibration and the associated impact on TKE
growth rate can remain relevant.

We find that in 2D compressions the TKE can become
and remain highly anisotropic. As a consequence, the
TKE in 2D compressions can grow more strongly than
the ideal isotropic scaling of V −2/3, with a scaling peak-
ing at V −1. This then distinguishes the TKE not only
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from the thermal energy in an ideal compression, but
also from the TKE in a 3D compression, where isotropy
is retained and a maximum growth of TKE as V −2/3 can
occur. Further, we discuss the likelihood that the TKE
growth is more easily sustained in 2D compressions, due
to aspect ratio effects.
The paper is organized as follows. In Sec. II we

briefly cover the formulation of the 2D compression sys-
tem which we use to investigate the problem at hand.
The numerical simulations used for the study are de-
scribed in Sec. II A. Section III contains the main results,
which are broken into two parts. First, Sec. III A de-
scribes the theoretical framework we analyze the results
in, which examines the polytropic (or adiabatic) index
for a turbulent pressure under compression. Second, Sec.
III B contains simulation results and analysis, broken into
three pieces: Sec. III B 1 shows simulation results and
analysis for the 3D compression case to be contrasted
with the 2D case; Sec. III B 2 shows the 2D compression
case for the same initial conditions; Sec. III C shows the
2D compression case for an alternate initial condition, to
gain further insight. Finally, we conclude in Sec. IV.

II. FORMULATION

To study the TKE behavior in two-dimensional com-
pressions, we use an approach similar to substantial prior
work on the compression of turbulence[5, 22–25], and the
same as that described in Davidovits and Fisch [11]. This
approach is described again briefly here; more details, in
the very similar 3D formulation, can be found in the ap-
pendix of Ref. 5. Because it will be a point of comparison,
we also describe the 3D compression case simultaneously.
We take the gas or plasma behavior to be governed

by the NS equations. A compression is caused by an as-
sumed background flowfield, vi0(x, t) = Aij(t)xj , with
the complete NS flow given by vi(x, t) = vi0(x, t) +
v′i(x, t). Our goal is to solve for the behavior of the (tur-
bulent) field, v′i, given the compressing background flow,
vi0.
We will work in Cartesian coordinates throughout. A

3D, isotropic, compression occurs when Aij(t) = a(t)δij
is diagonal (δij is the Kronecker delta). A symmetric 2D
compression occurs when Aij(t) = a(t) for i = j = 1
or i = j = 2 and Aij(t) = 0 otherwise. In the present
case, for two-dimensional compression, we take the com-
pression directions to be x and y, with the z axis then
uncompressed. Here we take

a(t) = L̇/L, (1)

with the overdot indicating a time derivative, and

L(t) = L0 − 2Ubt. (2)

The effect of the background flow is as follows. In
a 3D compression, this background flow is such that a
cube of initial side length L0 placed in the background

flow and advected by it will remain a cube, with a side
length L(t) that contracts at constant velocity according
to Eq. 2. In a 2D compression, the (initial) cube will only
contract along the x and y directions, with the side length
along those axes given by L(t), while the uncompressed
z direction will have a constant side length of L0.
We will assume the perturbed flow v′i is homogeneous

under ensemble averaging, and we will ignore density per-
turbations associated with it (low Mach flow assump-
tion). With no density perturbations, the complete den-
sity behavior is then simply given by ρ2D(t) = ρ0/L̄

2 for
the 2D case and ρ3D(t) = ρ0/L̄

3 for the 3D case. Here,
L̄ is the normalized contracting side length,

L̄ = 1− 2Ubt/L0. (3)

Explicit spatial dependence in the NS momentum
equation can be eliminated by working in coordinates,
X, that move with the background flow. In 3D, this is
x = L̄X, while in 2D it is x = L̄X , y = L̄Y and z = Z.
Writing v′i(x, t) = Vi(X, t) and p′(x, t) = P (X, t), then
for a 3D compression the NS momentum equations are,

∂Vi

∂t
+

L̇

L
Vi +

1

L̄
Vj

∂Vi

∂Xj
+

L̄2

ρ0

∂P

∂Xi
= ν0L̄µ̄3D∇2Vi, (4)

while the continuity equation for the perturbed flow is
simply the divergence free constraint, ∂Vi/∂Xi = 0.
In the case of a 2D compression, the NS momentum

equations are,

∂Vx

∂t
+

L̇

L
Vx +C(Vx) +

L̄

ρ0

∂P

∂X
= ν0µ̄2DD(Vx), (5)

∂Vy

∂t
+

L̇

L
Vy +C(Vy) +

L̄

ρ0

∂P

∂Y
= ν0µ̄2DD(Vy), (6)

∂Vz

∂t
+C(Vz) +

L̄2

ρ0

∂P

∂Z
= ν0µ̄2DD(Vz), (7)

while the continuity equation is,

1

L̄

(

∂Vx

∂X
+

∂Vy

∂Y

)

+
∂Vz

∂Z
= 0. (8)

In equations (5) – (7), we have used a shorthand operator
form for both the convective term (C) and the viscous
dissipation term (D),

C(A) =
1

L̄

(

Vx
∂A

∂X
+ Vy

∂A

∂Y

)

+ Vz
∂A

∂Z
, (9)

D(A) =
∂2A

∂X2
+

∂2A

∂Y 2
+ L̄2 ∂

2A

∂Z2
. (10)

In the moving coordinates, the equations for the per-
turbed (turbulent) flow, V , in both the 2D and 3D cases,
are similar to the usual NS equations, with the differ-
ences being time-dependent scalings appearing on some
terms, as well as forcing associated with the compres-
sion. In the 3D case, the forcing, the second term on the
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left-hand side of Eq. (4), appears for all velocity compo-
nents; each velocity component is forced the same in the
isotropic compression.

In the 2D case, Eqs. (5) – (7), the forcing only appears
in the equations for the velocity components parallel to
the compressed directions (Vx and Vy). This means that
Vz can only increase through the action of the nonlin-
ear terms (convective and pressure) in Eq. (7). Since
Vx and Vy are directly forced, we may expect an initially
isotropic flow, with equal energy in each flow component,
will only remain isotropic if the nonlinearity is effective
at transferring energy to Vz .

Note that, because we are solving for a perturbed flow
which we have assumed is of small Mach number, the
pressure appearing in the momentum equations is es-
sentially that of incompressible flow, which acts to keep
the continuity equation satisfied despite the nonlinearity.
The mean pressure in this case follows from the mean
density behavior, ρ2D(t) or ρ3D(t), coupled with the ideal
gas law and an assumption about the temperature behav-
ior in the compression (say, adiabatic, or isothermal, to
give two possible examples).

The remaining piece to specify the compressing sys-
tem(s) is the viscous behavior. The dynamic viscosity,
µ, is written as µ2D = µ0µ̄2D (similarly for 3D), and
the kinematic viscosity appearing in the 2D and 3D mo-
mentum equations is ν0 = µ0/ρ0. If we utilize the un-
magnetized Braginskii viscosity[26], then µ ∼ µ

(

T̄ , Z̄
)

,

with T̄ = T/T0 the temperature normalized to its ini-
tial value and Z̄ = Z/Z0 the ionization state normalized
to its initial (spatially uniform) value. The impact of a
changing plasma viscosity on the evolution of the TKE
has been previously investigated in three-dimensional[4–
9] and two-dimensional compressions[11].

For simplicity, consider the case of a fully ionized
plasma (constant Z). Then, for the Braginskii viscos-
ity, µ ∝ T̄ 5/2, where in the present work the temperature
is treated as spatially uniform. For an adiabatic compres-
sion, we have T̄3D = L̄−2 and T̄2D = L̄−4/3. However,
the temperature behavior growth in a real compression
can be reduced by loss mechanisms, such as conduction
or radiation, leading to weaker viscosity changes. We
can consider a general (but still power-law) temperature
behavior with compression by introducing a parameter
β such that µ̄3D = L̄−2β, while for 2D compressions
we define µ̄2D = L̄−4β/3; in either case β is a param-
eter determined by the net heating and cooling (and also
possibly ionization) processes in the compression[5, 27].
These definitions make it so that for a given β, the 2D
and 3D compressions have the same dynamic viscosity as
a function of volume, µ̄2D(V ) = µ̄3D(V ).

Our primary goal here is to examine, with the aid
of direct numerical simulations (DNS), the question of
isotropization through the nonlinearity and the associ-
ated maximum sustained TKE growth, rather than ef-
fects due to changing viscosity (the viscosity can become
quite large in certain plasma compressions, causing a
transition from high to low Reynolds number [28]). In

a truly high Reynolds number regime, changes in the
viscosity can be verified to not influence results of direct
numerical simulations (DNS) of turbulence[29]. Thus,
we would like our simulations to start and stay high
Reynolds number, however, we also want the simulations
to remain resolved at the smallest (viscous) scales as the
compression progresses.

Since the energy injection from the compression can
lead to increasing turbulent velocities, it can also then
lead to increasing Reynolds numbers (and therefore reso-
lution requirements for DNS). The Reynolds number will
also be influenced by the viscous behavior. At present,
to try to maintain both a reasonable Reynolds number
as well as numerical resolution, as well as for physical
convenience, we will study the case when β = 3/2, cor-
responding to µ̄2D = L̄−2. For a fully ionized plasma
(constant Z) with a Braginskii viscosity this corresponds
to T̄ = L̄−4/5, since the temperature dependence of the
Braginskii viscosity is ∝ T 5/2.

It is convenient, both for analysis and for numerical
simulation, to rescale the fields and the time variable in
the compressing frame momentum equations, Eq. 4 or
Eqs. (5) – (7), with a time-dependent scaling[5, 6, 30].

For the 3D case, we use the velocity scaling Vi = L̄δV̂i;
for the 2D case, we use Vx,y = L̄δV̂x,y for the x and y

directions, and Vz = L̄σV̂z for the z direction. We also
scale the pressure, P = L̄ηP̂ and the time, dt̂ = L̄τdt.

Selecting, for the 3D case, δ = −1, τ = −2, and η =
−5, we find for the momentum equation, Eq. (4),

∂V̂i

∂t̂
+ V̂j

∂V̂i

∂Xj
+

1

ρ0

∂P̂

∂Xi
= ν0L̄

3−2β∇2V̂i. (11)

Examining Eq. 11, we see that in the special case of β =
3/2, the evolution of the turbulence under compression
is determined by the solution of the NS equations for
decaying turbulence[6, 30].

In the 2D case, if we again select δ = −1, τ = −2,
and also select η = −4 and σ = −2, then the continu-
ity equation, Eq. (8) becomes simply the divergence free

constraint, ∂V̂i/∂Xi = 0. The momentum equations,
Eqs. (5) – (7), become

∂V̂x

∂t̂
+ V̂j

∂V̂x

∂Xj
+

1

ρ0

∂P̂

∂X
= ν0L̄

2−4β/3D(V̂x),

(12)

∂V̂y

∂t̂
+ V̂j

∂V̂y

∂Xj
+

1

ρ0

∂P̂

∂Y
= ν0L̄

2−4β/3D(V̂y),

(13)

∂V̂z

∂t̂
− 2L̄ ˙̄LV̂z + V̂j

∂V̂z

∂Xj
+

L̄2

ρ0

∂P̂

∂Z
= ν0L̄

2−4β/3D(V̂z).

(14)
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A. Simulations

We now briefly describe the simulations used in the
present work, which are similar to those in Refs. 11, 27.
We utilize the pseudo-spectral code Dedalus[31] to solve
for the evolution of initially isotropic, homogeneous, tur-
bulence under two-dimensional compression, as governed
by the Eqs. (5) – (8). We use periodic boundary condi-
tions and a Fourier basis.
In Dedalus it is numerically advantageous to solve

rescaled equations, and then unscale the results appro-
priately. For β = 3/2, we numerically solve Eqs. (12) –

(14) together with the divergence free constraint on V̂ .
We generate the initial state that is compressed in two

different ways, which yield different initial spectral en-
ergy distributions. First we describe the method used
for the results shown in Secs. III B 1, III B 2, as well as
the simulations in those sections. Following that, we de-
scribe the method used for the results shown in Sec. III C.
All simulations have ρ0 = 1, L0 = 1, and ν0 = 1/600.
To generate the first initial state that is compressed,

we initialize a divergence free flow field with (uniformly
distributed) random Fourier phases, and magnitudes set
∝ k2 exp(−(kp/k)

2), with kp = 4. This state is then
allowed to decay (by the NS equations) for approximately
a turnover time. The resulting flow field has an isotropic
energy spectrum shown in the left panel of Fig. 1.
The simulation to generate the initial state through

decay uses a Fourier mode resolution of 2163, which is
1443 after 3/2 de-aliasing. The results on 3D compres-
sion, shown in the middle and right panels of Fig. 1 are
computed with this same resolution. For the 2D compres-
sion results up to L̄ = 0.03 we use a grid of 2162 × 1236
(de-aliased to 1442 × 864). The higher mode resolution
is in the z direction, which is done because the form of
the dissipation, Eq. (10), allows for much steeper gradi-
ents (in the moving coordinates) along z at a given ν0 as
L̄ shrinks in the compression. To continue 2D compres-
sions past L̄ = 0.03 we add additional kz modes at this L̄
(time) to maintain resolution in this direction, resulting
in a resolution before de-aliasing of of 2162 × 2592; this
is done for the S̄0 ≈ 1 and S̄0 ≈ 10 cases shown in Fig. 2
and following figures.
The initial field we use has the following properties,

with angle brackets denoting a spatial average. The tur-
bulent energy EK,0 = 〈ViVi/2〉 ≈ 0.85, the dissipation
ǫ0 = −ν0〈Vi∇

2Vi〉 ≈ 11.5, and a derived Taylor mi-

croscale Reynolds number Reλ = 2EK

√

5/(3ǫ0ν0) ≈ 16.
The initial decay time τd,0 = (EK/ǫ)0 ≈ 0.074.
We have also simulated 2D compressions of initial

states generated using an alternate technique, the forc-
ing method described by Lundgren [32] and Rosales and
Meneveau [33], and these results are shown in Sec. III C.
This forcing technique results in rather flat low-mode en-
ergy spectra (see the bottom left panel in Fig. 9). We
generate the initial state in this case again using a reso-
lution of 2163 (de-aliased to 1443), which is then interpo-
lated to the finer grid before the compression is started;

the finer resolution (3242 × 1236) in x, y, was used for
the compressing simulations as part of checking conver-
gence. In the case of the most dramatic compression
shown S̄0 ≈ 20, we restart part way through with a res-
olution of 3242 × 3888, to maintain resolution in the z
direction, as before.
The initial field that results from this second forcing

scheme has the following properties, with angle brackets
denoting a spatial average. The turbulent energy EK =
〈ViVi/2〉 ≈ 0.97, the dissipation ǫ = −ν0〈Vi∇

2Vi〉 ≈ 2.57,
and a derived Taylor microscale Reynolds number Reλ ≈
38.

III. ANALYSIS AND RESULTS

The primary analysis and results are contained in Secs.
III A and III B below. First, in Sec. III A we derive the
polytropic index relation for 2D compression of hydrody-
namic turbulence, and compare it with the result for 3D
compression. This provides our general framework for
considering the TKE behavior during compression. Sec-
ond, Sec. III B provides further analysis of these relations
and comparison to simulation results.

A. Turbulent polytropic (adiabatic) index

We find it useful to frame the turbulent kinetic energy
(TKE) dynamics of a compressing flow in terms of a poly-
tropic index (sometimes also referred to as the adiabatic
index and denoted by γ). Here, where the viscosity en-
ters, we write it generally, without specializing to the
power law form discussed above. We start by recalling
the familiar case of thermal pressure and energy evolu-
tion, which will be a useful point of comparison. When
a plasma or monatomic gas that is treated as ideal un-
dergoes an adiabatic compression, the thermal pressure
p obeys a polytropic law,

pV n = C, (15)

and the polytropic index n = 5/3. Here V is the vol-
ume and C is a constant. Correspondingly, the thermal
energy, U = 3pV/2 grows as V −2/3 in the compression.
Assuming we are in a regime where collisions are able
to rapidly (compared to the compression rate) isotropize
thermal motions, these thermal pressure and energy scal-
ings will hold independent of whether the compression is
1D, 2D, or 3D. That is, working in Cartesian coordinates,
we will have nthermal = 5/3 whether we compress along
only x, along x and y, or along x,y and z.
An analogous polytropic index can be defined for the

turbulence in both 3D[10] and 2D compressions. In the
case of 3D compression, we write the equation for the
time rate of change of the total TKE, dET/dt, where

ET =
∫∫∫ L0/2

−L0/2
dX(ρ0ViVi/2). This total energy is the

same as in the laboratory frame (in the laboratory frame,
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the density increases, but the volume to be integrated
decreases in a manner that balances it). We use Eq. 4
to write the equation for dET/dt, use the volume re-

lation dV = 3L2L̇dt to rewrite it in terms of the vol-
ume rate of change, and define the viscous dissipation

ǫµ = −µL̄
∫∫∫ L0/2

−L0/2
dXVi∇

2Vi. Doing so, we arrive at,

−
dET

dV
=

2

3

ET

V
− τc

ǫµ
3V

, (16)

where we have defined the (positive) compression
timescale as,

τc = −L/L̇. (17)

It is natural to define the turbulent pressure in this
3D compression as p3D = 2ET /3V , since, in Eq. (16),
it is the quantity that relates the infinitesimal volume
increment to the energy injected into the (turbulent)
flow. The polytropic relation, Eq. (15), implies n =
∂ ln p/∂ ln ρ. With p3D as just defined, and Eq. 16, we
find

n3D =
5

3
−

2

3

τc
τt

=
5

3
−

2

3

1

S̄
, (18)

where the turbulent turnover time in this case is defined
as

τt = 2ET /ǫµ = 2τd, (19)

with τd the decay timescale τd = −ET /ĖT = ET /ǫµ. We
have defined a normalized strain rate S̄ as

S̄ = τt/τc. (20)

With these definitions, an “isoturbulent” contraction
(n = 1) occurs if τc = τt or S̄ = 1 (see Ref. 5 for examples
of 3D contractions that reach this state, or for an example
in the ICF context, Ref. 27). The ratio τc/τt, S̄, can also
be written as a type of Reynolds number. A compression
is rapid if τc ≪ τt, S̄ ≫ 1, which leads to amplification
of the TKE with n3D → 5/3, the peak achievable ampli-
fication rate in this treatment. If the compression is very
slow τt ≪ τc, S̄ ≪ 1, and n3D can take negative values.
In this case, the turbulence dissipates before it feels the
compression.
For 2D compressions, we follow a similar procedure,

accounting for the volume in this case being V = L0L
2.

The equation for the total energy in a 2D compression is,

−
dET

dV
=

E‖

V
− τc

ǫµ,2D
2L3

0L̄
2
. (21)

Here the 2D viscous dissipation is ǫµ,2D =

−µ
∫∫∫ L0/2

−L0/2
dXViD(Vi) and the “parallel” (to compres-

sion) energy E‖ =
∫∫∫ L0/2

−L0/2
dXρ0(V

2
x +V2

y)/2.

In this case, only flow in the directions parallel to the
compression (Vx, Vy) is associated with a turbulent pres-
sure; that is, the energy injected by an infinitesimal con-
traction only depends on these components. Then, the

natural definition of turbulent pressure is p2D = E‖/V .
As such, in order to find n2D = ∂ ln p2D/∂ ln ρ2D, we
use Eqs. (5) and (6) to write an equation for the time
(volume) evolution of E‖ and find for n2D,

n2D = 2 + τc
T‖

E‖
− τc

ǫµ,‖

E‖
. (22)

The parallel viscous dissipation, ǫµ,‖ =

µ
∫∫∫ L0/2

−L0/2
dX[VxD(Vx) + VyD(Vy)], while

T‖ =
∫∫∫ L0/2

−L0/2
dX[Vx(ρ0C(Vx)+ L̄∂XP)+Vy(ρ0C(Vy)+

L̄∂YP)] represents the nonlinear transfer of energy
between E‖ and the uncompressed direction energy,

E⊥ = Ez =
∫∫∫

dXρ0V
2
z /2. There is no corresponding

nonlinear transfer term appearing in n3D, Eq. (18),
because the transfer is conservative and integrates out
when the full energy evolution is considered.
As before, we can define additional timescales to write

n in terms of timescale ratios. In this case we define a
nonlinear transfer timescale τNL = −2E‖/3T‖ and the
turbulent turnover time τt,‖ = 4E‖/3ǫµ,‖. Then,

n2D = 2−
1

3

τc
τNL

−
2

3

τc
τt,‖

. (23)

The numerical coefficients in the definitions of the
timescales τNL and τt,‖ are chosen so that for τc = τNL

and τc = τt,‖ we have n = 1, and the coefficient in the
definition of τNL is selected so that n = 5/3− τcǫµ,‖/E‖

when τNL = τc.
By defining the energy ratio,

rE =
E‖

ET
=

E‖

E‖ + Ez
, (24)

it is possible to recast n2D in an alternate but equivalent
form,

n2D = 1 + rE −
∂ ln rE
∂ lnV

−
2

3

τc
τt,T

. (25)

In this case the turbulent turnover time τt,T =
4ET /3ǫµ,2D. In (statistically) isotropic turbulence, the
energy ratio rE ∼ 2/3. We will find both forms of n2D,
Eq. (23) and Eq. (25), useful in the analysis of 2D com-
pressions.

B. TKE growth and anisotropy

1. Behavior of n3D

Before addressing the values and behavior of n2D, we
discuss n3D, Eq. (18). When, as is presently the case, the
compression rate is predetermined, τc is a known function
of time, Eq. (17). Then n3D is determined by the evo-
lution of the turbulent turnover timescale, τt, Eq. (19).
In general, determining the evolution of τt is a difficult
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FIG. 1. Three-dimensional (3D) compression of an initial turbulent flowfield, see Sec. III B 1. Panels from left to right. First
panel: the isotropic power spectrum of the initial state before compression begins. Second panel: the polytropic index, n3D,
Eq. (18), versus linear compression ratio (L̄, time progresses left to right) for compression at different initial values of the
compression rate, S̄, Eq. (20). Third panel: decay of energy associated with the scaled NS momentum equation, Eq. (11),
versus a scaled time which is related to L̄ by Eq. (29); compression progresses left to right. Fourth panel: the instantaneous
inferred decay power, assuming a power-law decay for the scaled energy, Eq. (30), which is seen to increase in time (as the
compression progresses), eventually leading to the decrease in n3D observed in the second panel.

problem, requiring the solution of the (turbulent) Navier-
Stokes equation, including possibly time-varying viscos-
ity, Eq. (4), or equivalently, Eq. (11).

Existing turbulence models for 3D compression with
viscosity variation determined by the β = 5/2 case[7]
or for the general β case[6] can then be used to model
n3D. When the viscosity stays steady or increases in the
compression, the general trend for an initially fast com-
pression is as follows. In an initially fast compression,
τc,0 ≪ τt,0 (S̄0 ≫ 1), so n3D,0 ∼ 5/3. However, the tur-
bulence will tend to evolve towards faster timescales at a
rate such that the ratio S̄ decreases, and thus n3D will de-
crease in time from the initial value ∼ 5/3. When the vis-
cosity growth with compression is β > 1, the turbulence
will eventually dissipate with continued compression[5],
so that n becomes less than one (in practice n can be-
come negative). When β = 1, it can be shown that
the turbulence saturates with continued compression, so
that n3D → 1 (assuming an initial compression rate that
meets a threshold condition)[5].

The second panel of Fig. 1 shows n3D(L̄) for compres-
sion with a range of initial rates, S̄0, for the case when
β = 3/2. The trends just described are visible. Addi-
tionally, for S̄0 = 10, 100, we observe a regime with n3D

approximately constant. We now explain this plateau
regime.

Consider n3D in an initially fast compression when
β = 3/2. Initially, n3D ∼ 5/3 due to the fast compres-
sion, and ultimately n3D in this case will become less
than one as the TKE dissipates (due to the rate at which
the viscosity increases with the increasing temperature
in the compression, relative to the rate of TKE injec-
tion). Both of these behaviors can be governed by linear
effects. When the compression is rapid and n ∼ 5/3, this
is a result of the TKE evolution being controlled by the

linear forcing from the compression, the second term on
the left-hand-side of Eq. (4). When the viscosity grows
very large and n3D becomes highly negative as the TKE
dissipates, the behavior can be controlled by the linear
viscous term, the right-hand-side of Eq. (4). If the initial
Reynolds number is high enough, there exists an interme-
diate regime where nonlinear evolution of the turbulence
governs n3D.
In the β = 3/2 case, we now determine the value of

n3D in this intermediate, nonlinear, stage. For β = 3/2,
the scaled NS equation for the compression, Eq. (11),
is just the “usual” incompressible NS equation. In this
case, at high Reynolds number, the energy evolution can
be modeled as a power-law decay,

ÊT (t̂) =

∫∫∫ L0/2

L0/2

dXρ0V̂iV̂i/2 = ÊT,0(1 + t̂/t0)
−α3D ,

(26)
with a decay power α3D and a decay timescale t0. The lab
frame energy is simply related to the scaled energy, ET =
L̄−2ÊT . In general α3D depends on the slope of the TKE
power spectrum at low wavenumbers (long wavelength),
see, e.g. Ref. 34. Note that, for a given observed decay,
the value of t0 can also affect the inferred value of α3D

(see e.g. Ref. 35 for more discussion); here, motivated
by other work[36] we use t0 = τd,0 = τt,0/2 consistently
throughout, including later for 2D compressions (which
start from an identical initial state).
The third panel of Fig. 1 shows the decay of the total

TKE for the present initial condition, plotted against a
normalized time t∗,

t∗ = t̂/τd,0 = 2t̂/τt,0. (27)

By undoing the velocity and time scalings (converting
back to the non-hat variables), we can write the time (or,
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more conveniently, L̄) evolution of the lab frame TKE,
ĒT (T̄ ) = ET /ET,0 = [(1 + (−1 + 1/L̄)(2/S̄0)]

−α3D/L̄2,
and from that calculate n3D = 1 − (L̄/3ĒT )dĒT /dL̄ in
the high Reynolds limit,

n3D →
5

3
−

α3D

3

1

1 + L̄(S̄0/2− 1)
∼

5− α3D

3
. (28)

Since we have scaled time as dt̂ = L̄−2dt (for both 3D
and 2D cases), the relation between t∗ and L̄ is given by

L̄ =
1

1 + S̄0t∗/2
. (29)

The third panel of Fig. 1 shows a fit line (dash-dot)

ÊT ∼ (1+t∗)
−1.355, which can be seen to match the slope

of the decay over a period around t∗ ∼ 10 (approximately,
see below). This then corresponds to α3D ≈ 1.355. The
second panel of Fig. 1 shows (dash-dot) Eq. (28) with
this value of α3D; it agrees with the value of n3D in the
observed plateau regime.
In general, the value of α3D can change during the

compression. The fourth panel of Fig. 1 shows the in-
stantaneous inferred value of α3D as a function of t∗ dur-
ing the decay. This is calculated from the assumed power
law decay, Eq. (26) as as,

α3D(t∗) =
ln(ÊT /ÊT,0)

ln (1/(1 + t∗))
(30)

It can be seen that α3D increases in time during the
decay for this initial condition, with a plateau around
α3D ≈ 1.355, yielding n3D ≈ 1.22. An important note
is that the relation Eq. (28) is written for constant α3D;
when α3D changes in time, there should be another term
entering the equation, which depends on this rate of
change with L̄ (time). This extra term, ignored here, is
the reason the dash-dot line in the third panel of Fig. 1
only approximately matches the apparent slope of ln(ÊT )
vs 1 + t∗ in the third panel (the true fit at this time is
closer to (1 + t∗)

−1.4). Later, in Sec. III C, for the 2D
compression case, we treat the impact of time-varying α.
As previously stated, the value of α3D depends on the

slope of the power spectrum at small (Fourier) wavenum-
ber, k, ET (k) ∼ ks. For example, the Kolmogorov (or
Batchelor) decay result is α3D = 10/7 (s = 4), while the
Saffman result is α3D = 6/5 (s = 2)[37]. These then cor-
respond to n3D = 25/21 ≈ 1.19 and n3D = 19/15 ≈ 1.27,
respectively, in the nonlinear cascade regime. Rewritten
in terms of the energy growth rate, these results agree
with those given for the cascade regime in Viciconte,
Gréa, and Godeferd [7]. While we began by considering a
specific viscosity dependence, β = 3/2, this dependence
does not actually enter into the present result for n3D in
the nonlinear phase.
The high Reynolds number limit of the decay, which

is utilized to arrive at Eqs. (26) and (28), can only hold
for so long when β > 1; eventually, the viscous regime is
reached and the decay characteristics will change, with

100
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FIG. 2. Two dimensional compression of the same initial
state used for the 3D compression cases in Fig. 1, at compa-
rable initial compression rates, see Sec. III B 2. Shown are the
polytropic index, n2D, Eqs. (23), (25) versus compression ra-
tio (L̄, time progresses left to right in each plot). Also shown
is the energy ratio, rE, Eq. (24), which is a measure of the
anisotropy of the turbulent flow. Three compression rates are
shown, ranging from an initially slow compression, S̄0 ≈ 0.1,
to an initially fast compression, S̄0 ≈ 10.
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FIG. 3. For the 2D compressions shown in Fig. (2), the de-
cay of the scaled parallel energy, associated with the scaled NS
equations for 2D compression, Eqs. (12), (13); see Sec. III B 2.
The left panel shows the (scaled) energy behavior versus time
(increasing compression left to right), while the right panel
shows the instantaneous inferred decay power assuming a
power-law decay as in Eq. (30), but for E‖, α‖. Shown for
comparison is the 3D compression behavior of scaled energy
and decay power, for the identical initial condition (in the 3D
case, the plotted results hold for all initial compression rates).
The smaller, and decreasing, decay rates in 2D compression
lead to higher, and more sustained, polytropic index for the
turbulence.

α increasing, leading to a decrease in n[6, 7]. This is
observable in Fig. 1. When β = 1, the turbulence can
saturate in lengthscale at the (simulation or physical)
domain size, yielding a change in α (α → 2[38, 39]). A
more broadly applicable version of Eq. (28), capturing
these variations, is possible, e.g. through the use of more
complex decay treatments than Eq. (26)[6, 7, 40].
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2. Two dimensional compressions and n2D

Examining Eqs. (23) and (25), we can immediately
make some observations. First, from Eq. (23), we can
see that n2D > 5/3 = n3D,max may be achieved, de-
pending on the values taken by the timescales entering
the equation. Note that τc and τt,‖ are generally non-
negative, while in principle τNL can be either positive or
negative, corresponding to energy transfer out of or into
E‖, respectively. However, we consider initially isotropic
states, and in the 2D compressions only E‖ is forced;
as such, we may expect that the tendency at present is
for the nonlinearity to transfer energy from E‖ to Ez,
corresponding with τNL ≥ 0. This is what we observe
in simulations (except for very small initial compression
rates S̄0 ∼ 0.01, where the sign is observed to switch
back and forth, not shown here). Then, n2D ≤ 2, with
both the nonlinearity and the turbulent dissipation tend-
ing to decrease the rate of (parallel) energy growth in the
compression.
A second observation, from Eq. (25), is that if rE = 2/3

(the isotropic value), and stays this value in the compres-
sion, then n2D = 5/3− 2τc/3τt,T . That is, if isotropy of
the energy is maintained in the compression, the turbu-
lent growth is capped at the same rate as for 3D com-
pression, n2D ≤ 5/3, as one expects.
For β = 3/2, Fig. 2 shows the L̄ (time) evolution of

n2D and rE for 2D compressions of the same initially
isotropic state at three different rates, S̄0

S̄0 =
3

2
(
τt,T
τc

)0, (31)

with values S̄0 ≈ 0.1, 1 , 10. Note that S̄0 in Eq. (31) is
defined such that it is identical, at t = 0, L̄ = 1 to S̄ as
written in Eq. (20). In other words, the initial compres-
sion rate is normalized to the same initial turnover time
for both 2D and 3D compressions.
A few things are immediately of note in Fig. 2. First,

the fraction of the energy in the parallel components, rE ,
Eq. (24) generally increases from the equilibrium value
of 2/3 as the compression progresses in all cases, moving
towards the maximum value of rE ∼ 1. This indicates
the energy becomes highly anisotropic as the compression
progresses. Second, the fast compression, S̄0, achieves
n2D > 5/3 for a substantial duration of compression;
thus this rate exceeds the maximum growth rate for 3D
compressions, and also the adiabatic growth rate of ther-
mal energy. Third, in no cases do we see a drastic fall off
of n2D under compression (up to the minimal simulated
L̄), as we do in the 3D compressions shown in Fig. 1. We
now discuss these points in more detail.
As in the analysis of the 3D compression case, we

find it useful to examine the scaled equations, in this
case Eqs. (12) – (13), which govern the evolution of the

(scaled) parallel energy Ê‖. Recall that this energy is
simply related to the laboratory frame parallel energy
as E‖ = L̄−2Ê‖. As in the 3D case, these equations no
longer have forcing due to the compression; then, to the

10−210−1100
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100
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̄μ0=0∥1
̄μ0=1
̄μ0=10

FIG. 4. Relative contributions to n2D of transfer to Ez (T‖),
versus viscous dissipation of E‖ for the 2D compression cases
shown in Fig. 2; see Eq. (35) and Sec. III B 2. When −T‖/ǫµ,‖
(y value) is less than 1, n2D is determined primarily by viscous
dissipation of E‖; in the opposite limit, it is determined pri-
marily by transfer of energy from the compressed directions,
E‖, to the uncompressed direction energy, Ez.

extent that the nonlinearity tends to transfer energy out
of Ê‖, which we find to be the case at these compres-
sion rates (Fig. 4, discussed later), these are equations

for the decay of Ê‖ at constant viscosity (since β = 3/2
at present).
Writing this decay in the form of an (assumed) power

law, as in the 3D case,

Ê‖ = Ê‖,0(1 + t̂/t0)
−α‖ . (32)

The instantaneous decay rate α‖ can be solved for, giving

Eq. (30), but with ÊT → Ê‖, α3D → α‖.

Using the decay equation for Ê‖, we can write n2D in
terms of the decay rate, as we did for the 3D case in
Eq. (28),

n2D →2−
α‖

2

1

1 + L̄(S̄0/2− 1)
(1 + χ) ∼ 2−

α‖

2
, (33)

χ =
∂ lnα‖

∂t∗
ln
[

(1 + t∗)
(1+t∗)

]

. (34)

While in the 3D case we assumed α was constant, here
we write the expression accounting for time (L̄) varying
decay rate. If the decay rate is constant, χ = 0. We
write χ using t∗ for conciseness, χ(L̄) is found utilizing
Eq. (29).
From Eqs. (33), (34), we see that if α‖ decreases with

compression (increasing t∗, decreasing L̄), this causes an
increase in n2D relative to the prediction assuming con-
stant α‖ at the instantaneous value. Comparing Eq. (33)
to the 3D case, Eq. (28), we can see that, if it were the
case that α‖ ∼ α3D, n2D and n3D in the nonlinear phase
would not be so different. That is, if the decay rate of the
(scaled) parallel energy in 2D were similar to the decay
rate for the (scaled) 3D energy, the differences in turbu-
lence enhancement in 2D or 3D compression would be
slight. Consider for example α = 1.355 as observed for
our 3D simulation, which yields for the nonlinear regime
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FIG. 5. Laboratory frame (unscaled) turbulent energy com-
ponents, E‖, Ez, versus compression for the 2D compression
cases shown in Fig. 2. The strong growth seen in E‖ for
the fastest initial compression rate, S̄0 ≈ 10, is associated
with sustained polytropic index above the isotropic maxi-
mum, n2D > 5/3. Nonlinear transfer of energy to Ez, while
a small component (see Fig. 4), is sufficient at times to cause
growing or sustained Ez despite there being no direct forcing
of z momentum, see Sec. III B 2 and also Sec. II.
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FIG. 6. For S̄0 = 10, contour plots of the initial (upper plot)
spectrum and a compressed (L̄ ≈ 0.03, lower plot) spectrum
for the energy in the parallel direction E‖ = (V 2

x + V 2

y )/2 in
2D, showing the development of an asymmetric energy spec-
trum. Each contour line represents a factor of 10 change,
with lighter contours representing larger values, so that the
spectral energy E‖(kx, kz) generally decreases as one moves
away from the origin (lower left corner) of each plot. The ab-
solute scale is arbitrary and hence not plotted, but the plots
may be compared; the largest value (lightest contour, lower
left) is the same in each. In the upper plot this contour for
the largest plotted value is essentially at (0, 0). The energy
spectrum Ez(kx, kz) has very similar structure. Note that for
readability we only show the quadrant with positive kx, kz,
and a subset of the z modes used the simulation.

n3D ≈ 1.22 and n2D = 1.32. This difference would be
decreased for higher decay rates (disappearing at α = 2).

Figure 3 shows, in the left panel, the time evolution
of Ê‖ for each value of S̄0 from Fig. 2, and, in the right
panel, the corresponding instantaneous decay rate α‖(t∗)
inferred from this decay. Also shown are the results from
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FIG. 7. Slices of the flow field during an initially rapid
(S̄0 ≈ 10) 2D compression. The top row shows the flow veloc-
ity components in the directions parallel to compression (x,
y), while the bottom row shows the |vz|, the flow in the non-
compressed z direction. The first three columns show vertical
(y, z) slices through the midplane (constant x) after three dif-
ferent amounts of compression (increasing left to right, value
of L̄ indicated in the label); the horizontal (y) direction is
stretched in each plot to increase visibility. The right-most
column shows a slice at constant z for the most compressed
L̄. See Sec. III B 2.
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FIG. 8. As in Fig. 7, but for the slow compression case,
S̄0 ≈ 0.1. Here the flow slices are plotted with the true aspect
ratio.

the 3D decay, from Fig. 2. Since, in all cases, the evolu-
tion is governed by similar decaying NS equations start-
ing from the same initial state, all cases are comparable
as a function of t∗. The cases differ as a function of t∗ ∝ t̂
for two reasons. First, L̄, which can be thought of as a
function of S̄0 and t̂, Eq. (29), enters into the viscous
dissipation term D, Eq. (10). And second, because L̄

appears explicitly in the evolution of V̂z , Eq. (14), which

in turn appears in the nonlinear term in the V̂x and V̂y

equations.

There are two key features to note in Fig. 3. First, the
energy decay as a function of t∗ occurs more slowly with
increasing S̄0, observed in the left panel and appearing in
the right panel as a lower inferred α‖ at later times. Sec-
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ond, α‖ tends to decrease (monotonically for S̄0 = 1, 10),
while for the 3D case for the same initial condition the
decay rate increases as the decay progresses. Taken to-
gether, these suggest that the growth rate of TKE in 2D
compressions can be both larger and more sustainable
than in 3D compressions, within the scope of the treat-
ment here.

One possible concern in interpreting these observations
is that one could make similar observations from the
linear solution to the 2D compression system. When
β = 3/2, the linear solution (including viscosity) to the
2D compression system can give n2D → 2 for large com-
pression, consistent with the scaled energy decay rate
going to zero. This occurs when the initial condition
has flow structures with variation only in the z direc-
tion (Fourier modes with kx = ky = 0), because the
energy in such modes grows ∝ L̄−2 as L̄ → 0 in the lin-
ear solution[11]. Then, the fraction of energy in these
modes grows during compression in the linear solution,
eventually dominating the energy. At present, for the
nonlinear simulations, we find that the fraction of energy
in these modes decreases as the compressions progress.
Thus, the smaller, and decreasing, decay power, and as-
sociated larger n2D observed here appear to be “real”
effects of the nonlinear system.

We now discuss a few other features observed in Figs. 2,
3 before discussing the results of simulations utilizing a
different initial condition which help to further demon-
strate the key features just discussed.

The last value of α‖ for the S̄0 ≈ 10 case in Fig. 3
is α‖ ∼ 0.74. As an illustration, we use this value to
compute n2D ∼ 2 − α‖/2 from Eq. (33), which gives
n2D ≈ 1.63. This is plotted as a dash-dot line on the
right (third) panel in Fig. 2, where it can be seen to be
slightly lower than the (true) value of n2D. This slight
discrepancy is because χ, Eq. (34) is nonzero, if small, as
reflected in the slight slope of the S̄0 ≈ 10 curve of α‖ at
late time in Fig. 3.

At early times (t∗ . 1) in Fig. 3, faster compressions

show higher decay rates. Equation (14) for V̂z has a linear
damping term that is proportional to the compression
rate, but also decreases with L̄. We hypothesize that the
faster initial decay rate of the parallel energy in the scaled
equations is caused by stronger early-time damping of
V̂z at higher compression rates, combined with nonlinear
transfer of parallel energy to this damped component.
Since these increased rates are only present for a short
time, their net effect on the energy is small, as can be
observed in the left panel in Fig. 3.

We return now to the behavior of rE in Fig. 2. In
the case of slow compression, rE ∼ 2/3 for a substantial
amount of time t∗ . 5, L̄ . 0.8, consistent with an initial
decay that is similar to the 3D case (Fig. 3). In late
times (small L̄) the three cases have rE growing towards
1; it natural to wonder in this regime about the relative
contributions to n2D of transfer to z versus direct viscous
dissipation through Vx and Vy. We make this comparison

by writing Eq. (22) as

n2D = 2−
τcǫµ,‖

E‖

(

1 +
−T‖

ǫµ,‖

)

. (35)

Then, the relative contribution of transfer to Ez com-
pared to dissipation by viscosity is given by comparing
−T‖/ǫµ,‖ to 1. This quantity is plotted versus L̄ in Fig. 4.

We can see that, in the case of S̄0 ≈ 10, it hovers around
0.1 during the period when rE ≈ 0.98.
Figure 5 shows the behavior of the lab frame TKE

components as a function of compression for the three
compression rates. Evident here is that, for the initially
fast compression, S̄0 ≈ 10, this small comparative trans-
fer of energy from the growing E‖ is sufficient to support
growing Ez .
For the case S̄0 = 10, we plot in Fig. 6 con-

tours of the energy spectrum for the parallel energy,
E‖ = (V 2

x + V 2
y )/2, after summing over the y direction,

E‖(kx, kz). In the upper plot the contours of E‖(kx, kz)
reflect the isotropy of the initial condition. The lower
plot shows contours of E‖(kx, kz) after compression to

L̄ ≈ 0.03. By comparing the upper and lower plots, it
can be observed that energy has primarily been added to
modes with smaller kx but across many values of kz, with
this fact causing a substantial stretching of the contours
along the horizontal axis. This difference between the
kx and kz spectral directions likely stems from the fact
that dissipation at a given scale (in the moving frame) is
smaller along z, as indicated by the form of Eq. (10). The
change in mode structure with compression is very simi-
lar for Ez(kx, kz), although the changes in magnitude are
much less dramatic, as would be indicated by the overall
energy changes in Fig. 5 for S̄0 = 10 at L̄ ≈ 0.03.
Figure 7 shows slices (vertical plane, y-z) of the flow-

field at three points during the compression; at the last
data point, it also shows slices in the x-y midplane. Here
the accumulation of energy in kz modes is observed in
the fine vertical structure of the flow fields after com-
pression. It can also be seen here that while E‖ (Vx, Vy)
dominates the energy after compression, the velocity in
the non-compressed direction (z) grows as substantially
as well. Because of the large amount of compression, the
slices are stretched for visibility. For comparison, we also
show, in Fig. 8, flowfield slices for the S̄0 ≈ 0.1, where
we can keep the actual aspect ratio.

C. Additional simulations for n2D

Here we present results for 2D compression at vary-
ing rates, as above in Sec. III B 2, but for an initial flow
state that has a different energy spectrum, shown in the
bottom left of Fig. 9. The key features observed previ-
ously are again observed in the bottom middle and bot-
tom right panels of Fig. 9. Namely, the scaled energy
decays more slowly as a function of t∗ with increasing
initial compression rate, S̄0, and the associated instan-
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is the simple flow structure of the parallel (to compression)
flow components, observed in a slice of the compression plane
x, y, the top right panel. See Sec. IIIC.

taneous inferred decay rate α‖ decreases in time (as the
compression progresses).
In the case of a very slow initial compression rate, S̄0 ≈

0.02, we see the opposite trend, of an increasing decay
rate in time up to the end of the simulated compression
(bottom right panel), consistent with the 3D case shown
in Fig. 1. For this 2D compression case (S̄0 ≈ 0.02) we
may expect this trend to eventually reverse, as the aspect
ratio of the domain becomes large and the x, y plane flow
becomes simple (see the discussion below), although the
(lab frame) TKE will have decayed very substantially
from its initial value by this time.

The 2D compression results for n2D and rE are shown
in the top row of Fig. 9. The slow compression case,
S̄0 ≈ 0.02 has rE fluctuating around the isotropic value
of 2/3, while the S̄0 ≈ 2, ≈ 20 cases show growing rE ,
with both cases eventually reaching rE ≈ 1, and n2D ≈ 2.
The S̄0 ≈ 20 case shows an intermediate plateau

regime in n, and in rE . Since L̄ is small during this
regime, we can ignore the contribution of L̄(S̄0/2− 1) in
the denominator of n2D as written in Eq. (33). We define
an effective α‖,

α‖,eff = α‖(1 + χ), (36)

so that,

n2D ∼ 2−
α‖,eff

2
. (37)

In other words, α‖,eff is the apparent power of the as-

sumed decay, Eq. (32) when α‖ changes in time (L̄).
In the bottom right panel of Fig. (9), we show both

α‖ (green, solid) and α‖,eff (red, dashed) for S̄0 = 20.
Since α‖ decreases in time, χ, Eq. (34), is negative, and
α‖,eff < α‖, Eq. (36).
There is an approximate plateau at α‖,eff ≈ 0.35 (pur-

ple dash-dot line), which matches the apparent slope of

Ê‖ in the bottom middle panel of Fig. (9). This figure
also shows, in the top right panel, that n2D calculated us-
ing this value of α‖,eff , through Eq. (37), matches n2D

during the plateau regime, n2D ≈ 1.83.
Flow slices for the S̄0 ≈ 20 case are shown in Fig. 10,

including, in the second column, slices during this plateau
regime (at L̄ ≈ 0.01). During this time rE ≈ 0.98, and we
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find −T‖/ǫµ,‖ ∼ 0.3, indicating transfer of energy to the
z direction still plays a roll during this stage, Eq. (35),
before falling off as n2D ∼ 2.
The x-y flow slices in Fig. 10 (right column) show that,

at the last simulated point (L̄ ≈ 0.002, t∗ ≈ 50), the Vx,
Vy flow consists primarily of flow with a single oscillation
in the domain (kx ∼ ky ∼ 2π). Compare this with the
x-y flow slices (right column) in Fig. 7, for the previously
discussed initial condition, which are shown after a simi-
lar magnitude of initial decay times, t∗ ≈ 42; this initial
condition shows higher-mode (kx, ky) structure still at
this time. Thus, the pre-compression initial state used in
this section, for the results in Figs. 9, 10, reaches a long-
wavelength dominated state more quickly, owing to its
initial spectrum, and this state is seen to be associated
with n2D ∼ 2.
Although a detailed analysis is beyond the scope of

the present work, we now discuss, qualitatively, a pos-
sible explanation for the observed smaller (compared to
3D) decay rates of the scaled energy, and for the fact
that these rates decrease during the compression. It is
these key features that are associated with larger n2D,
which can apparently be sustained even during compres-
sion at initially modest rates, S̄0 ∼ 1, 2, unlike in the 3D
compression case.
As L̄ becomes smaller, there is a tendency for the Vx

and Vy equations, Eqs. (5), (6), to have reduced relative
influence from Vz and Z derivatives, as evidenced by the
L̄ scaling factors in the equations (including the conti-
nuity equation as well). If we took this to the extreme,
we would drop the Z derivative term (last term) from
the convective term, Eq. (9), dissipation term, Eq. (10),
and continuity equation, Eq. (8). After rescaling Vx, Vy

to V̂x, V̂y, as before, we would then have a system that,
for β = 3/2, is the (unforced) 2D NS equations (we can
write an equation for the scaled z vorticity to eliminate
the pressure).
In true 2D turbulence, the energy decay can become

negligible at high Reynolds numbers[41, 42]. At present,
if the energy decay in the scaled variables becomes neg-
ligible, we would find n2D → 2. Thus, if the effects
of 2D contraction lead to a tendency toward decoupling
from the Vz flow, we may expect a reduced decay of the
scaled energy compared to the 3D case, and an associ-
ated large and sustained growth rate for the (unscaled)
energy. Since in general Vz is not decoupled from the
dynamics, the 2D compression system is perhaps more
akin to other 3D systems exhibiting partially reduced
dimensionality[42, 43].

IV. SUMMARY

Here we have studied the 2D compression of initially-
isotropic 3D turbulence, and made comparison to the
(isotropic) 3D compression of such turbulence. In anal-
ogy with thermal energy, we may define a “turbulent
pressure” associated with the incremental work done on

(or by) the turbulence in an incremental change of vol-
ume. Then, we can write a polytropic relation for this
pressure, pV n = C and find the polytropic (or adiabatic)
index, n, associated with the turbulent pressure in com-
pressions.

In the case of 3D (isotropic) compressions, n3D for the
turbulent pressure is n3D ≤ 5/3; then, in a compres-
sion that is adiabatic for the thermal energy, we will find
that the rate of growth (nth) of the thermal energy is at
least as large as the turbulent growth. Since, in a self-
consistent adiabatic model, dissipated turbulent energy
will appear as thermal energy, we expect that in general
for 3D compressions nthermal > n3D.

On the other hand, in a 2D compression, the compres-
sion only does work against flows in the compressed di-
rection; if energy input into these flows is not efficiently
equilibrated into the uncompressed third direction, the
polytropic index for the turbulence, n2D may exceed the
isotropic, adiabatic, value of 5/3, n2D > 5/3. As a re-
sult, energy input by the compression may preferentially
flow into the turbulence even in a compression with adi-
abatic temperature growth. We find that n2D > 5/3 can
occur in 2D compressions. This is a result of sustained
anisotropy of the turbulence, which we find here becomes
highly anisotropic in energy content, with the vast ma-
jority of energy parallel to the plane of compression.

Moreover, we find that, compared to 3D compression
at a similar rate, turbulence in 2D compressions can be
more easily sustained or enhanced; this is reflected by the
behavior of the scaled energy at late times. In 3D, this
scaled energy experiences an increasing decay rate in late
time (large compression), associated with late stage de-
cay of turbulence. In 2D, the comparable scaled energy
experiences a decreasing decay rate in late time (large
compression); this decrease is likely due to the large as-
pect ratio of such 2D compressions at late time, which
causes a tendency toward “two-dimensionalization”.

When n2D > 5/3, the turbulent Mach number may
increase with compression as the turbulence is preferen-
tially enhanced relative to the thermal energy. We can
make a simple estimate of an extreme (adiabatic) case by
taking n2D = 2, and nth = 5/3. Then the Mach number
(normalized to initial value, M̄) for the parallel flow will
scale as M̄ ∼ V̄ (nth−n2D)/2 ∼ V̄ −1/6; a doubling would
require a compression in volume (V̄ = V/V0) by a factor
of approximately 64. This simple estimate ignores the
flow of dissipated turbulence into thermal energy, which
would tend to increase nthermal, but which diminishes as
n2D → 2. It also assumes adiabatic increase of the ther-
mal energy; in general, conduction, radiation, or other
loss mechanisms will reduce the polytropic (adiabatic)
index of the thermal energy in the compression, enhanc-
ing the effect.

Throughout, we have used periodic boundary condi-
tions. One result of this is that kx = ky = 0 Fourier
modes, which can be linearly important in the 2D com-
pression problem[11], are permitted, however we find the
energy in such modes generally decreases in the present



13

simulations. More generally, physical boundary condi-
tions, say, associated with a cylindrical liner in MagLIF
experiments, should be considered; such boundary condi-
tions may provide damping at large scales, which could,
for instance, reduce the observed values of n2D. The
present treatment neglects any electric or magnetic fields;
some existing laboratory experiments which compress
plasma in 2D have (strong) applied magnetic fields, the
effects of which may then be important in turbulence dy-
namics. Nevetheless, if they do not tend to help maintain
isotropy, some of the intuition from the present work may
still hold.
The compressions considered here proceed with a con-

stant (compression) velocity, L ∝ Ubt, Eq. (2). This
preserves spatial homogeneity in the equations when
the background pressure is assumed to be uniform in
space[5, 24, 30], greatly simplifying the present analy-
sis of the turbulence. In various compression experi-
ments, including Z-pinch compressions such as MagLIF,
the compression velocity changes in time. This case can
be treated in the present framework by considering a
background pressure which depends on space[5, 24, 30],
but then for consistency with the ideal gas law, the
temperature (and therefore viscosity) would depend on
space, breaking homogeneity. Nevertheless, to the ex-
tent the turbulence results do not depend on the chang-
ing viscosity (due to high Reynolds number), the present
framework could treat this case.
More generally, if we allow for density perturbations, a

term associated with the accelerating compression enters
the momentum equation[30]. We now roughly estimate
the size of this term compared with the compression forc-
ing term due to volumetric contraction considered here
(e.g., the second term on the LHS of Eq. (4) and similarly
for 2D), for a specific case. The ratio of this accelera-
tion term to the volumetric forcing is of the magnitude
(ρ′/(ρ̄ + ρ′))(L̈x/L̇v′). Here ρ′ is the density perturba-
tion and ρ̄ the mean density. Suppose we assume the
flows are relatively compressible so that ρ′ ∼ ρ̄ and this
term is order unity, leaving us with the ratio (L̈x/L̇v′).
As an example, we estimate this ratio in the case of an

analytic liner solution used in Slutz et al. [14], where the
liner radius r = r0(1− τ4), with r0 the initial radius and
τ a normalized time, τ ∈ [0, 1]. While the acceleration
term varies spatially (for example, vanishing at x = 0),
we take x ∼ r. Then we take the perturbed velocity
v′ ∝ ṙ (in a special case of 3D compression, it can be
shown that v′ nonlinearly saturates slightly above the
compression velocity, see Ref. 5; in the present 2D case,
the tendency toward “two-dimensionalization” may relax
this saturation cap). With these assumptions we will find

L̈x/L̇v′ ∼ (1− τ4)/τ4.
In this estimation, for this particular analytic liner

solution, the acceleration term is more important for
r & r0/2, while the volumetric forcing considered here
is more important for r . r0/2. If density perturbations
are small compared to the mean density, then the relative

magnitude of this acceleration term will be reduced and
the compression term will be dominant for a larger frac-
tion of the compression. In any event, we note that the
2D compression momentum equations considered here,
Eqs. (5) – (7), depend explicitly on L̄(t), and so even if
the acceleration term can be dropped, the time history
of the compression will matter in general.
While we have highlighted potential relevance to var-

ious Z-pinch compression experiments, the present work
may find relevance elsewhere as well. For example, pos-
sibly in astrophysical situations that produce (quasi)
2D contractions in elongated structures (such as shock-
compressed gas pillars in molecular clouds or jets), or
in perhaps in contractions in gas dynamics, though the
Z-pinch contractions tend to cause much larger total vol-
ume contraction than many other applications.
Overall, we hope the present work helps to call atten-

tion to essential differences in the behavior of bulk turbu-
lence under compression when compressed in 2D versus
3D, and the possibility for anisotropy to lead to enhance
turbulent growth in 2D when compared to 3D.
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