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Abstract

MITNS (Multiple-Ion Transport Numerical Solver) is a new numerical tool designed 
to perform ID simulations of classical cross-field transport in magnetized plasmas. 
Its detailed treatment of multi-species effects makes it a unique tool in the field. We 
describe the physical model it simulates, as well as its nmnerical implementation and 
performance.

1. Introduction

MITNS is a ID multiple-fluid simulation code designed to study classical cross- 
held transport physics, with a particular focus on plasmas containing multiple ion 
species. Multiple-species cross-held transport problems are important across a wide 
range of plasma applications, including nuclear fusion devices like tokamaks [1—4] 
and stellarators [5-7] as well as non-fusion technologies like plasma mass hlters [8- 
12]. MITNS is designed specifically to simulate classical transport, which means that it 
is not designed to study regimes controlled by “anomalous” transport (e.g., due to tur­
bulence) or the neoclassical effects that can arise in toroidal systems. Hence, MITNS 
is not primarily intended for tokamak or stellarator applications.

There are other plasma simulation codes that include related physics in one form 
or another. For instance, the GBS code simulates the Braginskii two-fluid equations 
(that is, for a single ion fluid and electrons) [13]. Other authors have worked with 
multiple-fluid simulations that include neutrals and one ion species [14, 15]. B2.5, 
HEDGE, and EDGE2D/U all use /V-lluid models to track different ion species’ densi­
ties and momenta independently; these codes assmne that all ion species share a single 
temperature prohle and their physical models for cross-held transport are anomalous 
rather than classical [16-21], There has also been signihcant computational work us­
ing V-fluid models to simulate unmagnetized multiple-ion plasmas [22-24], To the 
authors’ knowledge, there is no established code designed to simulate classical V-huid

Email addresses: ekolmes@princeton.edu (E.J. Kolmes), iochs@princeton.edu (I.E. Ochs)
1 Co-first authors

fg&nwzry 24, 2020



cross-field transport, including independent densities, velocities, and temperatures, for 
an arbitrary number of species.

MITNS does not model complex magnetic geometries, like a tokamak or a stel- 
larator. Rather, it is designed to capture, isolate, and aid in the understanding of the 
fundamental physics of classical cross-field transport in mixed-species plasmas. Thus 
it models a deliberately simple 1D geometry, without effects like transport parallel to 
the magnetic field or interactions with plasma-facing components.

This paper describes in detail the MITNS code: its model, its assumptions, and 
its numerical properties. As other studies begin to be released that rely on MITNS, 
this paper serves as a more detailed description of the code than would gracefully fit 
elsewhere. That includes a description of the physical model as well as its underlying 
caveats and domains of applicability. Sections 2 and 3 describe the physical model 
that MITNS simulates. Section 4 discusses the ways in which the code allows different 
physical phenomena to be turned off or scaled up and down. These details may be 
intrinsically interesting to others working on similar numerical problems; in particular, 
the implementation of the scalable thermal conductivity involves nontrivial physics and 
could be applicable to other codes.

MITNS uses finite-volume spatial discretization. It can perform time integration 
using any of three schemes: fourth-order Runge-Kutta (RK4), Adams-Moulton (AM), 
and Backwards Differentiation Formula (BDF). It relies on components of the SUN­
DIALS suite, including some data structures and implementations of the AM and BDF 
time integration [25,26]. The implementation of the code is described in Section 5 and 
its performance is discussed in Section 6.

2. Physical Model Equations

MITNS simulates 1D cross-field transport in a simple slab geometry. The coordi­
nates are chosen so that the magnetic field is in the z direction and all gradients are 
in the x direction. Velocities are assumed to be in the perpendicular (x and y) direc­
tions. This geometry is shown schematically in Figure 1. MITNS tracks and evolves 
the density, pressure, and velocity profiles of each particle species as well as evolving 
the magnetic field.

2.1. Density and Momentum
For each species s, the evolution of the density ns is specified by a continuity equa­

tion

dns
dt + V ■ (nsVs) = 0. (1)

The ion velocities vi evolve according to the momentum equation:

d_
dt

(#,#,-v,) + Vp, + V ■ (n, + min-ViVi)

= Z;en;(E + Vi x B) + m-n-^ v«(Vs - v-) + fth,i + m-n-g. (2)s
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Figure 1: This schematic shows the basic geometry and coordinates used in MITNS.

Here pt is the scalar pressure, tt,- is the viscosity tensor, Z, is the ion charge state, e is 
the elementary charge, E is the electric field, B is the magnetic field, m; is the ion mass, 
Vis is the collision frequency of species i with species s, fth,, is the thermal friction force 
density, and g(f, jc) is the gravitational acceleration.

The collision frequency vab for a species a due to interactions with a species b is 
given for any a and b (including ions and electrons) by [27]:

(3)

where log A is the Coulomb logarithm and Ts = ps/ns is the temperature of species s. 
The cross-field thermal force density on species a can be written as [1]:

(4)

where b is the unit vector in the direction of B. For systems with temperature gradients 
parallel to B, which are not considered here, there would be additional temperature- 
dependent force densities [28].

The cross-field viscous forces in a magnetized plasma tend to be much smaller than 
the other forces, in addition to being quite complicated [28], especially in the low-flow 
case [29, 30]. However, the plasma cannot relax to the global thermodynamic equilib­
rium without the inclusion of some visosity to relax the flow shear. Thus, we include 
only the multiple-species analog of the Braginskii rji component of the viscosity ten­
sor, which is both the simplest and most dominant viscous contribution in systems with 
geometric symmetries and very small .f-directed flows [31]. In the case of a slab with 
all gradients in the x direction, the Braginskii viscous force density reduces to:

(5)
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where Qi = Z^B/m,- is the ion gyrofrequency. The analogous expression for a multiple- 
ion plasma, as presented by Zhdanov [32], can be written as

V ■ na
d y ^2mamhVgh16m + 4mZa\d^gy
dxl4Q2 Z-j (mg + mb)2 V5 mg 5 mgZj dx (6)

A more detailed discussion of viscosity, including the terms neglected by MITNS, can 
be found in Appendix A.

In the force balance equation for electrons, analogous to Eq. (2), the small electron 
mass means that the inertial term and the electron viscosity can be ignored. In the 
slab geometry considered, dropping the inertial term is physically equivalent to the 
assumption that electron force balance is fast enough to be considered instantaneous. 
The resulting momentum equation is

0 = -eE - eVe X B-----— + Z meVei(Vi - Ve) +----- —, (7)
Me -M Mg

which determines the electric field E.
Thus, the continuity and momentum equations determine the evolution of the ion 

density and ion velocities, and self-consistently determine the electric field.

2.2. Heat
MITNS models the pressure evolution for each species s by

3msnsVss'2t( 2 p-)+v ■ (q,i+2 p'v')=v- ■ vp+z mS+‘m‘,‘ (T‘’- tj - "■: Vv*

z msms' nsVss-+ } (Vs, - v
ms + mS

d ■ |vs- - Vs + 3b
2Z,Z,- eB

Z»,ms>TsVTs - ZsmsTs'VTs' 
ms> Ts + ml,Tl,-

(8)

The cross-field heat flux qs±

q- = 2mQb XVT-

can be written as [1]:

+ Ps_ y______ Us_______13(
Qs^^ 1 + (msTs, /ms, Ts^2(Vs Vs,) X b

l( it + 4
ms + ms, 4

msTs
ms'Ts

+
15 m2T2 \ v±ts 
2 m2, T2/ msQs

27 ms V±Ts-
4 ms- msQs

(9)

The physics behind this expression, including the appearance of the velocity terms, is 
discussed in greater detail in Section 4.

A discussion of the viscous heating, and the approximations used by MITNS in 
modeling it, can be found in Appendix A. Ultimately, MITNS models the viscous 
heating for ion species ; by:

-n: VV = 4Qi2 Z y/2mimsVis/6m + 4m ZV\2
(m; + ms)215 m; 5 m; ZsA dx ) (10)
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This expression works equally well for the case when ms and m; are comparable and 
the case when one is much larger than the other. The corresponding expression for 
electrons would be negligible due to the smallness of the electron-ion mass ratio, so it 
is not included in the code.

The last term in Eq. (8) (written as a sum over s') is the frictional heating. The total 
frictional heating due to interactions between species s and s' - that is, including both 
the heating of s due to collisions with s' and the heating of s' due to collisions with s - is 
determined by energy conservation [33]. The expression used here splits the frictional 
heating going into s and that going into s' so that each species receives a share that is 
inversely proportional to its mass. This is the simplest expression that satisfies energy 
conservation while also matching Braginskii’s large-mass-ratio limit. Moreover, the 
dependence of the frictional heating on mass can be recovered by considering, e.g., 
the energy transfer associated with a binary collision between two particles of different 
masses.

It is sometimes helpful to understand which of these terms are associated with re­
versible processes and which are associated with irreversible processes. In the absence 
of any external source terms (such as a particle source), the entropy production rate for 
species s can be written as [33]

0 Ws _ ns : VVs q«± VT
Ts Ts Ts ^ Ts (11)

where Ws consists of the second and fourth terms of the RHS of Eq. (8) - that is, the 
inter-species temperature equilibration and the frictional heating. Note that it is possi­
ble to have collisional particle transport without producing more than an infinitesimal 
amount of entropy. For instance, the collisional particle particle transport due to flow 
friction will be linear in (vs,y - vsy) whereas the associated heating and entropy produc­
tion are quadratic in (vs,y - vsy), so sufficiently slow cross-field particle transport will 
be associated with vanishingly small time-integrated entropy production.

2.3. Maxwell Equations
The remaining governing equations can be obtained from Maxwell’s equations. 

The magnetic field evolves according to Faraday’s law of induction:

f = -Vx E. <m

Note that if all gradients are in the x direction, if Ez = 0, and if B is initially in the z 
direction, then Eq. (12) implies that B will remain purely in the z direction for all time.

The electron velocities can be determined from Ampere’s law. In a plasma where 
the Alfven velocity vA is much smaller than the speed of light, the displacement current 
is an O(v2A/c2) correction and can be neglected, so that Ampere’s law becomes:

V X B = e^of Z ZiniVi - n/Vej. (13)
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Since the evolution of B and vz- are already determined, this can be used to obtain ve. 
Moreover, since B = Bz and all gradients are in the X direction, the X component of 
Eq. (13) becomes

vex
1

n
^ j Zinivix. (14)

This allows the electron continuity equation given by Eq. (1) to be rewritten as

d_
dt

[ne - ^ Zi-n^ = 0. (15)

If the plasma is initially quasineutral, then this can be replaced (for all times) with a 
simple quasineutrality condition:

ne = ^ I Zini. (16)

Thus, Maxwell’s equations and quasineutrality determine the evolution of the mag­
netic field, and self-consistently determine the electron density and velocity.

3. Normalization and Dimensionless Parameters

Physical parameters are normalized to characteristic values, such as the character­
istic density n0, temperature T0, and magnetic field B0. The ion mass is normalized 
to mp, the proton mass. Define the characteristic proton thermal velocity and gyrofre- 
quency by Vthpo = ^T0/mp and Opo = eBo/m-p, respectively. Then define the following 
normalized quantities:

_ . ns
n s = — 

n0
(17)

f. . Ts
T0

(18)

ps = no To (19)

t = Op0t (2O)

d . Vthpo d
dX Opo dx

(21)

v s = Vthpo (22)

E = E„
VthpO BO

(23)

b=BB (24)

G(t, X) = Ot, X)'X .
OpOVthpO

(25)
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no, To, Bo, Vthpo, and Opo will not appear explicitly in the governing equations, except 
in a few combinations. These will be the physically relevant dimensionless parameters 
for the simulations. First, each species is associated with a gyrofrequency ratio

Ws =
ZseBo
msOpO

(26)

(here and elsewhere, use Zs = -1 for electrons).
To evaluate the inverse Hall parameter vab/OpO for species a and b, it is convenient 

to decompose the inverse Hall parameter into a part which is a global constant for all 
species; a part which depends on the choice of species but not on any spatially local 
information; and a part that depends on local values of the densities and temperatures. 
As such, let

C = W2e4log A V no \
O = 1 12^ Am^OpJ

and

so that, as per Eq. (3),

Cab = Za2Zb2?2 mb mp
ma ma + mb

vab
Q

= Co C
po

o Cab
/mbTa + maTb \ 3/2_
------------------- nb.

\ ma + mb /

(27)

(28)

(29)

The last major dimensionless parameter, which appears in the nondimensional form 
of Ampere’s law, is defined by

A =
BO

j^ono To
(3o)

Physically, A can be interpreted as twice the inverse plasma 3, evaluated at the charac­
teristic density, temperature, and magnetic field (no, To, and Bo, respectively), where3 
is the ratio of the plasma pressure to the magnetic field energy density.

The governing equations of the system can be rewritten in terms of these dimen­
sionless quantities. The ion density evolution described by Eq. (1) becomes

%
w

d_
dx

(Mi-Vix).

The electron density is set instantaneously by Eq. (16), which becomes

(31)

ne %. (32)

Eq. (2) defines the evolution of the ion momenta. Its X component can be written as

dt
-Vi, ^ + W,(E, + Vi,B) -

dx mi n,- dx
/ msTi + m.Ts \-3/2,+ V CoC,nJmsTi' + miTsr (Vsx -Vix) + G
\ m, + mi /

(33)
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and its y component is

dViy dViy^t^ = -V^ + Ws(Ey + V,B)

V2c0 m _d_[ p_ V m»mpCj»n» /m»Tj + m.-Ts\-3/2Z6 + 4 m Z \dVy 

4Zi2ni m2 cmB2 (mi + ms)2 x ms + m, / x5 m, 5 m, Zs / dX

V _ | msT; + m;Ts \-3/2
> . CoCisns -----------------

ms + mi

(Vsy - Viy) + -
31 1 1 dTi Z,m; Ts dTs

2 Z'B 1 + (m;Ts/msT;0 \ dx ZsmsT; dx

The electron velocities are set by Eq. (13), which is

Vex = —
1 V Zi Ai Vi;
7„ t—L

(34)

(35)

and

+

+

Vey = — + — V ZiniViy.= AdB
Vey ne dx ne (36)

Pressure evolution is set for all species by Eq. (8). This can be written as

% _ 5 d 2_ dps
W = -3 dX(Vsxp^ + 3 VsxW

d ms/mp
dx ZsB 1

psns'
+ (msTs^ /ms' Ts)

m$. 1

CoCs
I ms^ Ts + msTf \ 3/2

ms + ms

ms + ms/ ZsB
13 8 msTs/
——+ —----- -—+ 5

m2T2: \ dt _ 9 ms dTs

6 3 ms Ts m2 T2 x 2 ms/ x

Z2msnsns' .r, .r,
----- :------ voC$,
ms + ms

I ms' Ts + msTs' \ 3/21 
V ms + ms' ) 1 Ts' Ts

+ 1 ms'
3m

(Vs' x - Vsx) + (Vs'y - Vsy) +
3(Vs'y - Vsy) Zs/ ms/ Tsdj(^s - ZsmsTs' dj(^s'

2ZsZs' Bt ms ^s + ms^^sz
V2
6 Zs2Bt 2 mp

21 f

\ dx /

V msms' ns' ^ ^ I ms- Tv + msTs' ^ 3/216 + 2_4 Z^
ms + m.(ms + ms' )2

CoCs . + 2 
5 ms 5 ms Z :) • (37)

+

X <Vsy - Vs'y -

+

where the final term (the viscous heating) is neglected for electrons. The magnetic field 
evolution, which is described by Eq. (12), can be written as

dB = _ dEy
dt = - dX. (38)
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Finally, the electric field, which is set by Eq. (7), can be expressed as

and

Ex = -VeyB - —-dX + — V COCeiniTe 3/2(Vix - Vex)
ne dx mpey ne dx m^ o ei ; e

Ey = VexB + ^^ V CoCe^T,-3/2
mmp i

(Viy - Vey) - “T^T
31 dTe

2 B dx

(39)

(4o)

4. Tunable Physics and the Ettingshausen Effect

It is often very useful to be able to turn on or turn off different physical effects in a 
simulation. MITNS includes a number of options to either turn off or to continuously 
scale down different physical effects (or to scale them up). Most of these are quite 
simple. For instance, MITNS has a flag which can turn off temperature evolution, so 
that Ts = To = constant for all species. It also has a parameter that can scale the 
electron collisionality, which it accomplishes by sending Cie ^ aCie and Cei ^ aCei 
for all ion species i. This is particularly useful when studying physics that relies on the 
separation between the ion-ion and ion-electron collisional timescales. Similarly, it has 
a viscosity scaling parameter which sends V ■ n; ^ V ■ an, in the momentum equation 
and -n; : Vv; ^ -an, : Vv; in the heat equation.

One feature of MITNS which is useful but physically nontrivial is the way in which 
it scales the thermal conductivity. When studying effects which deposit heat in different 
regions of the plasma, it is sometimes desirable to see what the temperature profiles 
would look like if the cross-field conductivity were reduced or removed. The collisional 
part of the particle flux rs and the heat flux qs (not including the effects of viscosity) 
can be expressed as

frs\ = /A11 A12| /{vs - vs'i
\qs/collisional W1 AW\ {VTs'} , (41)

where the components Ajk are written as vectors because the collisional fluxes for 
species s will depend on the velocities and temperature gradients of all species s'. 
When seeking to scale the cross-field conductivity by some factor a, the most immedi­
ately intuitive solution would be to take

A11 A121 /An A12 
A21 A22I \A21 aA22

(42)

As it turns out, this is not the right approach, and in general the resulting system will 
be unstable.

To see why, consider the physics of the Ettingshausen effect. The Ettingshausen ef­
fect is generally invoked to explain the appearance of vs - vs' terms in the heat flux (that 
is, the A21 terms in the transport matrix) [27, 28]. It provides the Onsager-symmetric 
heat flux to correspond with the thermal force. The effect follows from the dependence 
of collisionality on kinetic energy. Higher-energy particles tend to be less collisional,
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so if collisions are driving a particle flux, the flux will tend to preferentially move 
lower-energy particles. This results in a heat flux in the direction opposite that of the 
collisional particle flux.

However, the collisional particle flux also has a component that depends on tem­
perature gradients (A12). This results from thermal friction, and is also essentially the 
result of the temperature dependence of the collision frequency [27, 28]. If the particle 
flux depends on VTs' via thermal friction, and the heat flux has a part that depends 
on the particle flux via the Ettingshausen effect, then there is a temperature gradient- 
dependent heat flux (part of A22) that is not due to heat conduction at all but rather to 
energy-dependent particle fluxes that happen to be driven by temperature gradients.

As the system approaches equilibrium, the net collisional particle fluxes will be­
come small. The collisional cross-field flux for species a can be obtained from the X 
component of Eq. (2):

collisional =n V Os
(Vs'y - Vsy) +

3 Zs' ms' TsTs - ZvmvTs' T'
2ZsZs' eB m s' Ts + ms Ts'

(43)

It is sometimes convenient to denote the individual terms in this sum by r^', so that 
rmihsionai = £ s r^'. If rs°llisional ~ O, then the velocity differences (V/y - Vsy) - and, by 
extension, the collisional heat flux term A21 ■ {vs - vs'} in Eq. (41) - will be approxi­
mately proportional to some combination of the temperature gradients VTs. Depending 
on the particular scenario being simulated, this means that the A21 ■ {vs - vs'} heat flux 
can act either as a heat diffusion or as an anti-diffusion. If the coefficient A22 has been 
removed, then the system is missing its conventional cross-field thermal conductivity 
and the Ettingshausen Ts heat flux. The first of these is diffusive and the second tends 
to cancel the A21 heat flux when the system is close to equilibrium. If the A21 heat flux 
is anti-diffusive, and if A22 has been removed or sufficiently reduced, then the system 
will be unstable.

In order to scale down the cross-field conductivity without making the system un­
stable, the solution is evidently to keep some Ts-dependent heat flux from A22 in order 
to cancel the potentially antidiffusive contribution from A21. However, there is no sin­
gle unambiguously correct way of splitting A22. One option would be to keep the part 
of A22 that comes from the Ettingshausen effect; one might expect a combined heat flux 
term that looks like qs, Ettingshausen ~ T2 drs/<9Ts (since the Ettingshausen effect arises 
from the difference in fluxes for hotter and colder particles). The prospect of partition­
ing the heat conductivity based on the underlying physical mechanisms is appealing. 
However, this approach has a downside: the contributions to rs from the flow friction 
and the thermal friction scale differently with Ts, so drss' /<9Ts does not necessarily 
vanish when rss' ^ O.

An alternative approach - and the one that is implemented in MITNS - is instead 
to split A22 based on the criterion that the heat flux due to collisions between species s

1o



and s' should vanish when the corresponding particle flux rss' does:

qsx
37$ ______ r$s_______
2 1 + (msTs' /ms' Ts)

Vss'
a Os 1 + (msTs, /ms' Ts)

X ms
m» + ms

+ 4 -v^ + ^ m2T2, \

2 m2' Tf/ —sOs

27 —s dxTs' 
4 —s' —sOs

9 —s' Ts dxTs
4 —s' Ts + —sTs' —sOs

9 Zs -sTy' dxTs' | (44)
4 Zs' —s' Ts + —sTs' —sOj'

Eq. (44) reduces to the full heat flux given in Eq. (9) when a = 1. When a ^ O, each 
term in the sum vanishes when rss' does. Moreover, the Onsager symmetry between 
A12 and A21 is preserved for any choice of a. Eq. (44) is arguably the simplest possible 
expression with all of these properties.

5. Numerical Implementation

The current version of MITNS discretizes space using a uniform 1D grid. Some 
physical quantities («s, Vsy, T„ ps, B, and Ex) are tracked in the interior of each grid 
cell; others (vsx and Ey) are tracked on the edges. The electron density, electron veloc­
ity, electric field, and the temperatures can all be inferred at any given time from other 
quantities, so MITNS only needs to store and evolve the ion densities «;, ion veloci­
ties Vix and Viy, all species’ pressures ps, and the magnetic field B. As a result, for a 
simulation with Ng grid cells and N ion species, MITNS solves a coupled system of 
(4Ni + 2)Ng + Ni ODEs.

When a cell-centered value is required for a quantity that is tracked on cell edges 
(or vice versa), the value is linearly interpolated from its two neighboring edges (or 
cells). Spatial derivatives are implemented using a centered second-order finite differ­
ence, where the derivative of a cell-centered quantity is defined as being edge-centered 
and vice versa. As a result, the system of ODEs has a banded structure, with the evo­
lution of the dynamical variables in any given cell (or on any given edge) depending 
only on the values in their own cell (or on their own edge) and on the values in both 
the nearest-neighbor cells and the nearest-neighbor edges. Of course, the structure is 
slightly different for boundary cells and edges. The simulations enforce boundary con­
ditions that do not allow flux through the top or bottom of the system, so Vsx and the 
heat flux qsx vanish on the boundary edges.

In the current version of the code, this no-flux condition is enforced by treating 
the system as mirror-symmetric at each boundary. This means that the quantities ns, 
Ts, and Bz are symmetric at each boundary, while the quantities Vsx, Vsy, Ey, and Ex 
are antisymmetric at each boundary. These boundary symmetries must be handled 
differently for cell and edge centered values. For cell-centered values, the first ghost 
cell must be equal to the boundary cell, while for edge-centered values, the first ghost 
edge must be equal to the second-to-last edge from the boundary. The centering and 
boundary symmetries of each variable are listed in Table 1.
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Variable Centering Boundary Symmetry
ns Cell Symmetric
Ts Cell Symmetric
Vsx Edge Antisymmetric
Vsy Cell Antisymmetric
Ex Cell Antisymmetric
Ey Edge Antisymmetic
Bz Cell Symmetric

Table 1: Centering and boundary symmetries for the various variables in MITNS. The electromagnetic 
variables can be understood by comparing to the field configuration for Yee’s PIC scheme [34].

In order to evolve this system of coupled ODEs in time, MITNS can use any of three 
solvers. The first is a fourth-order Runge-Kutta solver; it is typically the slowest of the 
three, but its relative simplicity is sometimes convenient for benchmarking. The second 
is a variable-order, variable-timestep Adams-Moulton solver, using functional iteration 
for its nonlinear solve step. The third is a variable-order, variable-timestep Backwards 
Differentiation Formula solver, with Newton iteration for its nonlinear solve. The AM 
and BDF solvers both use implementations from the CVODE package [25, 26].

6. Sample Output and Performance Analysis

One simple example that demonstrates some of the capabilities of MITNS, and 
which can be used to benchmark the performance of the code, is the accumulation of 
impurities in the presence of a mass-dependent potential. In the limit where VTs/Ts is 
small compared to Vns/ns, different species’ density profiles are analytically expected 
[35, 36] to satisfy

( \1 /Za ( \ 1/Zb|nae°a/r^ % , (45)

where 0s is the total potential applied to species s. Consider a scenario in which an 
initially uniform plasma composed of hydrogen and helium-4 is subjected to a potential

(t, x) given by

$s(f, x)
—gOl Ianh4' '(—) =4 t)

' ^amp ' XL/
(46)

for some potential strength parameter go and ramp time tramp. The time dependence 
is chosen to be smooth and so that the potential will saturate after t % tramp. The 
behavior of the ion densities can be seen in Figure 2, with tramp = 3OO O4 and go = 
OpO VthpO/1OO. Figure 3 shows the agreement between these profiles and the predictions 
from Eq. (45).

Simulations of this scenario can be used to benchmark the numerical performance 
of the code. The spatial and temporal discretization of the system of equations will each 
be associated with some numerical error. The error from the temporal evolution can be 
controlled with tolerance parameters passed to CVODE and is essentially independent

12



10 15 20 0 5 10
tQp / 1000 t Op / 1000

Figure 2: Density evolution of a plasma containing a mix of hydrogen and helium-4 in a gravitational po­
tential. The time coordinate is normalized to one thousand proton gyroperiods and the spatial coordinate is 
normalized to a proton gyroradius (evaluated at the characteristic magnetic held Bo, density no, and temper­
ature To described earlier). This figure shows the relative motion of the ions described by Eq. (45), where 
the ion species with the higher m/Z initially falls in the potential while the species the the lower m/Z initially 
rises. Later, the simulation begins to show both species fall as collisions between ions and electrons become 
important. This simulation used a ramp-up time of 300 fTy for the potential. After that, the ions equilibrate 
with one another on a characteristic timescale that scales like v/ls,I?/p:Ls. Electron-ion frictional equilibra­
tion takes about 80 times longer than ion-ion equilibration, so we don't see full electron-ion equilibrium 
here, but the system begins to move toward it.

Timeslice of Densities
Hydrogen Density (simulated) 
Helium-4 Density (simulated) 

■ l Helium-4 Density (predicted)
C 0.90

_Q 0.85

in 0.75

~0 0.70

-a 0.60

0.6

0.5

2
c
=J

-riS_
ro

0.4

in
0.3 Q) 

T3 
Tt

0.2 £
_D
IDo.i x

x/Plp

Figure 3: This figure shows how the ion density profiles at a particular timeslice (t « 120012^) correspond 
to the analytic prediction given by Eq. (45). The green curve shows the simulated hydrogen profile. The 
magenta shows the simulated helium-4 profile. The dashed cyan curve shows the helium-4 profile that 
would be predicted by combining Eq. (45) with the simulated hydrogen profile. The simulated and predicted 
helium-4 profiles show good agreement.
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from the implementation of MITNS itself. The error from the spatial discretization, on 
the other hand, is set by the second-order finite volume scheme described in Section 5.

To evaluate the code’s performance, we conducted simulations on increasingly fine 
grids in powers of two, from N = 4 to N = 512. Simulations were performed for 
a 70% Hydrogen- 30% Helium mix, in a system with L/pLp = 20, where pLp is the 
characteristic proton Larmor radius. We then calculated both the estimated error and 
runtime associated with these simulations.

To estimate error, we calculated the pseudoerror, which does not require knowing 
the analytical solution to the problem. To calculate the pseudoerror, the finest grid 
(in our case, N = 512) is taken to represent the canonical solution; we then calculate 
error relative to these points. To facilitate such analysis, the output of MITNS is edge- 
centered; thus, the spatial point xn associated with the nth gridpoint on a grid with N 
cells (and N + 1 edges) is the same as the spatial point x2n on a grid with 2N cells 
(and 2N + 1 edges). Thus, every point on a coarse grid has a corresponding point on 
the finest grid. For a function y(t, x) on this grid, with numerical solutions yti,xj and 
corresponding finest-grid solutions Yuxci, the pseudoerror e(N) is then given by:

e(N) = V 2 V(yt-x - YW ' (47)

Uj

Here, V is the total number of points in t and x that are summed over. For the purpose 
of this analysis, we calculated the pseudoerror for the variables nH, , and vxH. The 
result of this pseudoerror analysis is shown in Fig. 4. While both the Adams-Moulton 
and BDF schemes initially converge as e(N) ~ N-2, as expected for a second-order 
scheme, they converge more slowly above N = 64. This slowing convergence is par­
ticularly pronounced for the BDF method.

The corresponding runtime results (from a 2019 15” Macbook Pro) for the same 
simulations are shown in Fig. 5. The runtime initially increases as T ~ N1'6 with the 
number of cells, with AM running slightly faster. For large grids, however, the BDF 
runs much faster, scaling as T ~ N after N = 64.

For large grids, the BDF scheme runs faster but with higher error than the AM 
scheme. It is thus natural to compare the error scaling with runtime for both methods, 
which is shown in Fig. 6. The relative speed of the BDF method for large grids is 
more pronounced than its relative increase in error, so that the BDF method has better 
error-vs-runtime performance.

Interestingly, the deviation from N-2 error convergence at large grid sizes appears 
to be related to diffusion-like terms, specifically the viscosity and thermal conductiv­
ity. Since these are tunable parameters, we can turn them off; doing so results in N-2 
convergence to larger grid sizes (Fig. 7). Exactly why the errors and runtimes scale 
this way at large N is a matter of active research. However, for the vast majority of 
problems, grid sizes N < 64 will be more than sufficient to get results to the desired 
accuracy.

It is important to emphasize that the results we have shown are for a special class 
of potentials that are smooth and continuous at the boundaries, taking into account the 
periodicity of the potential. When the potential is not smooth at each boundary, as 
for a constant gravitational field with potential % |x|, the analytic solution for the
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Figure 4: Pseudoerror vs. number of grid points in MITNS simulations, for several variables, for both 
Adams-Moulton and BDF integrators. The black line represents a scaling of v ~ N~2. The pseudoerror 
initially scales as e(N) ~ N~2, but this convergence slows around N = 64. The slowing is more pronounced 
for the BDF method.

# BDF

64 128 256 512
Number of Cells N

Figure 5: Runtime vs. grid size for each integration method. The black dashed line represents an N1 6 
scaling, while the dark gray solid line represents N1 scaling. Although both methods initially scale as N16, 
the BDF integrator runtime scaling becomes linear at N = 64.
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Figure 6: Combined data from Figs. 4 and 5, showing pseudoerror vs. runtime for each integration method. 
The black solid line represents a scaling of T ~ . Because the BDF method runs faster but with less
accuracy than the AM method for large grids, the error vs. runtime is comparable for the two methods.
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Figure 7: Pseudoerror vs. number of grid points in MITNS simulations, as in Fig. 4, but with viscosity and 
thermal conductivity turned off. The black line represents a scaling of y ~ N~2. The pseudoerror is reduced 
by almost an order of magnitude relative to the case with the diffusive terms.
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Number of Cells N

Figure 8: Pseudoerror vs. number of grid points in MITNS simulations, as in Fig. 4, but for a constant 
gravitational potential d>s cc |x|. Dashed lines show error considering all grid points, while solid lines exclude 
the two points closest to the boundaries. The error for n and P is much greater than the smooth case, due to 
the discontinuous forces at the boundaries, but this error is strongly concentrated in the boundary region.

density and pressure will also not be smooth at the boundary, and so there will be error 
introduced by the reflection conditions for the ghost cells. This leads to slightly slower 
runtimes and much greater error (Fig. 8). However, this error is strongly concentrated 
in the endpoints, so that the solution at other points remains robust.

An alternate implementation of the boundary conditions (not currently included in 
the main version of the code), which linearly extrapolates the values of cell-centered 
variables at the outer-boundary edges from the neighboring inner values, seems to im­
prove the error associated with non-periodic potentials. Of course, for practical pur­
poses, it is already relatively straightforward to reduce the error to acceptable levels 
without having to go to an excessively large grid.

7. Discussion

In its current form, MITNS is focused on a particular niche: the detailed fluid treat­
ment of classical cross-field transport in a plasma with multiple ion species. The code 
is not designed to include the effects of turbulence or of transport in the direction paral­
lel to B (or, for that matter, transport in more than one of the perpendicular directions). 
It is also not designed to study the behavior of weakly magnetized or umnagetized sys­
tems. With that in mind, MITNS has already begun to be useful for problems within 
its purview. As far as we are aware, there is no established code in the field with the 
same capabilities.

Future development is unlikely to change the focus of the code or its simple ID 
geometry. However, there are a number of possible avenues for future improvement 
of the code’s treatment of cross-field transport. One possibility would be to add the
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capability to simulate plasma undergoing compression. There are a number of labora­
tory experiments that involve compressing magnetized plasmas, and there is significant 
upside potential in understanding and controlling differential ion transport in these de­
vices [37, 38]. These upsides could include the control of fuel mix and impurities in 
fusion devices and the control of high-Z species in compression devices used for X-ray 
generation.

A similar extension would be to allow for a greater variety of boundary conditions 
and source terms. This could make it possible to model a greater variety of physical 
scenarios without losing the geometric simplicity of the current code.

A third possibility would be to allow for transitions between charge states as well 
as neutral particles. This could be particularly important for plasma mass filters. These 
devices often rely on collisional transport to achieve species separation, and they tend to 
operate in regimes with significant populations of neutral and partially ionized particles 
[8-12].

Finally, we could include the z-component of the momentum equation. This would 
involve adding many additional viscous and heating terms, but it would allow us to 
study transport in sheared-flow Z pinches [39-41].
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Appendix A. Viscosity in a Simple Slab

Consider a slab geometry with all gradients in the x direction and all velocities in 
the x and y directions. Define

= % + dxa- 3 v

where Sap is the Kronecker delta. In this simple geometry, Wap becomes

(A.1)

Wo@ - 3
(4 vX 3 vy 0
3 vy -2 vX 0

l 0 0 -2 vj
(A.2)
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where v'a — dva/dx. Then the Braginskii viscosity tensor [28] is 

1
na/3 —

-2^0 vx - 6%1 vx - 6ns vy -6^1 vy + 6ns vx 0
-6^1 vy + 6n3 vx -2n0 vx + 6n1 vx + 6n3 vy 0

0 0 4n0 v'x
(A.3)

where for ions, to leading order in the inverse Hall parameter e — vii/Qi,

6

n0
0.96 V2pi

Vii
— 3 vupi

10 V2 ^2

pi
n3 - 2ni.

(A.4)

(A.5)

(A.6)

To leading order, keeping in mind that n1/n3 ~ ns/no ~ e, the viscous force density in 
this system is

. d / n0 dvx dvy \ „ d / dvy dvx— -x--- 1  ----------+ n —- j - y — —- - n-----^ n — -x T dX + n3 dx y dX ln1 dx n3
dx,

(A.7)

Braginskii’s treatment was for a plasma with a single ion species. Zhdanov [32] gives 
the generalizations of these coefficients to a multiple-ion plasma. The expression for 
ni3 is identical to the one found in Braginskii. ni1 becomes

pi
4^2 z

V2m;msV;s / 6 m^ + 4 \
(mi + ms)215 mi 5 mi Zs)' (A.8)

The expression for the multiple-species ni0 involves more complicated numerical coef­
ficients, which are described in detail by Zhdanov [32]. However, like nn and no, the 
multiple-species form of ni0 scales in essentially the same way (e.g. in the combined 
ion Hall parameter) as its single-species counterpart.

Of the four terms in Eq. (A.7), only the third is included in MITNS. It plays a qual­
itatively significant role over the longest timescales, since it prevents the system from 
fully relaxing until vy contains no shear. The other terms can reasonably be dropped.

The first term in Eq. (A.7) is negligible compared to the pressure force. Define r„ 
as the characteristic timescale over which the ion density profiles evolve and define l 
as the gradient scale length. The continuity equation implies that vix /l ~ 1/r„. Then

d_ / nc dvx \ pi
dxl 3 dx) lr„ vu

whereas

dpi pi
dx l

(A.9)

(A.10)

In other words, this part of the viscosity is negligible so long as the ions collide many 
times over the timescale r„. This assumption is already necessary in order to use a 
high-collisionality closure.
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The second term in Eq. (A.7) can be ignored for similar reasons. If vthi is the 
characteristic thermal velocity of species i and pLi is the characteristic Larmor radius,

d_ Z dviy \ pyVi^ pij
dx\ni3 l vthi l (A.11)

Barring extraordinarily fast flows in the y direction, this will be small compared to the 
pressure force density.

The fourth term in Eq. (A.7) is also small compared to the pressure force density 
(even smaller than the first term was), but since it is oriented in the y direction, it is 
most useful to compare it with another term in the y momentum equation. This part of 
the viscous force density scales like

d Z dv# \ pivix
dx ^ Oil2 (A.12)

while the corresponding component of the v x B force scales like

ZjenivixB
pivix
QiPL-'

(A.13)

Again, the viscous term in question will be comparatively small. Moreover, neither this 
nor either of the other two terms in Eq. (A.7) not included in MITNS have the same 
kind of qualitative importance that the third term does.

The leading-order viscous heating for species i is

Qvisc — ni • ^vi
ni0 zdvix \2 z aviy \2
Yl + 4 ax).

(A.14)

(A.15)

Using the continuity equation and defining Tn in the same way as before,

% / dvx _p_
^ dx / ViiTn '

Meanwhile, the compressional heating scales like

Scompressional Pi_ 
Tn '

(A.16)

(A.17)

So long as viiTn » 1, the vx-dependent term in Eq. (A.15) can be neglected. The vy- 
dependent term will often also be small, but it is less clear that it will be small in all 
cases, so it is included in the code.

Of course, there is no reason why the code could not also include sub-dominant 
terms that we do not expect to be important. Indeed, future versions may do so. But 
there are some advantages in a simpler system of equations: they make the code easier 
to implement and easier to test, and they make the code’s physics output more straight­
forward to understand.
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