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In a two-ion-species plasma with disparate ion masses, heavy ions tend to concentrate in the low-temperature region

of collisionally magnetized plasma and in the high-temperature region of collisionally unmagnetized plasma, respec-

tively. Moreover, collisional magnetization can be determined as the ratio of the light ion gyrofrequency to the collision

frequency of light and heavy ion species, and the behavior of this effect in the intermediate regime of partially mag-

netized plasma is predominantly dependent on this Hall parameter. Multi-ion cross-field transport has been described

before in the collisionally magnetized plasma regime, and generalized pinch relations, which describe densities of ion

species in equilibrium in that plasma, are found in the literature. In this paper, the role of collisional magnetization and

Larmor magnetization in multi-ion collisional transport is clarified and generalized pinch relations are extended to the

partially magnetized regime, in which the ion Hall parameter may be small, as long as electrons remain collisionally

magnetized. Equilibrium ion density profiles have the same dependence on external forces and on each other regardless

of collisional magnetization of ions. The expansion of the range of validity of multi-ion collisional transport models

makes them applicable to a wider range of laboratory plasma conditions. In particular, ion density profiles evolve suffi-

ciently fast for radial impurity transport to be observable around stagnation on MagLIF, leading to expulsion of heavy

ion impurities from the hotspot as long as plasma becomes sufficiently collisionally magnetized during the implosion.

I. INTRODUCTION.

In fusion devices, it is typically advantageous to concen-

trate fuel ions in the hot core of the plasma and to flush out

impurities and fusion products1–8. This is true for a broad

range of devices. For instance, a particular device where im-

purity transport is of interest6,7 is MagLIF9,10, a magnetized

Z-pinch device in Sandia. MagLIF features a cylinder of deu-

terium plasma, which is premagnetized by applying an ax-

ial B field, heated in the center by a laser and compressed

by applying a large current to the beryllium liner which en-

velops the fuel in order to reach fusion conditions. As such,

there has been significant experimental effort to identify impu-

rity mix properties6,11, as well as technological developments

such as preheat protocols to decrease the amount of impurity

introduced to the fuel hotspot6,7,11. Nevertheless, multi-ion

transport effects, i.e. impurity mix dynamics, have been over-

looked in the currently available modeling of MagLIF implo-

sions. Therefore, a relatively simple model of impurity dy-

namics is topical.

There is ample literature on similar plasmas, although they

are different in at least one qualifier. Equlibrium in multi-ion

magnetized plasmas in the absence of temperature gradients

but in the presence of external forces was found by Kolmes

et al12,13. Multi-ion plasma transport in the presence of tem-

perature gradients, but in a very strong magnetic field (such

that Hall parameters are much greater than 1) was studied by

Ochs and Fisch4,5. More recently, the transport code MITNS

has been developed14 to study evolution of multi-ion transport

in collisionally magnetized plasmas. Transport in single-ion-

species plasma with arbitrary Hall parameter of electrons was

studied by Velikovich, Giuliani, and Zalesak15,16. Multi-ion

a)Electronic mail: mmlodik@pppl.gov

species transport in unmagnetized plasmas was studied by Ka-

gan and Tang17,18, as well as by Zhdanov and Alievskii19–21.

Some progress was also made in a study of multi-ion-species

transport in a magnetized plasma in the presence of temper-

ature gradients was made by Vekshtein et al22, although the

authors did not have external forces and they had a specific

configuration in mind, which is different from this paper. The

expansion of the range of applicability of muti-ion collisional

transport models is also useful for plasma mass filters, which

are designed to separate the components of a plasma accord-

ing to mass23–33 for a variety of applications34–37.

This paper provides a simplified model to describe multi-

ion transport on devices like MagLIF. In particular, it includes

conditions on ion densities in equilibrium in partially magne-

tized (large Hall parameter electrons, arbitrarily Hall parame-

ter ions) multi-ion species plasma subjected to external forces

or a temperature gradient, and clarifies what dimensionless

parameters have the largest impact on multi-ion cross-field

transport. Also, it suggests that collisional cross-field multi-

ion transport is sufficiently fast to expel impurities from the

hotspot during late stages of implosion. The effect is more

profound if fuel plasma has collisionally magnetized ions, i.e.

if the light ion gyrofrequency is much larger than the collision

frequency between light and heavy ions.

The question of interest in this paper is how different

species adjust to a change, such as change of temperature on

the boundary (laser preheat after fuel magnetization) or the

change of external potential (corresponding to Z-pinch com-

pression and/or rotation). The problem is to find the force

equilibrium state after that change happened, as well as to es-

timate how quickly ions adjust to that change relative to each

other.

The paper is organized as follows. In Sec. II, different

regimes of multi-ion cross-field transport with respect to the

strength of the magnetic field, and, in particular, the Hall

parameter, are clarified. In Sec. III, generalized pinch rela-
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tions, which relate ion densities in the force equilibrium, are

derived in presence of both temperature gradients and exter-

nal forces, such as the centrifugal force, in a two-ion-species

plasma which has arbitrarily magnetized ions with large mass

disparity ma ≪ mb as long as the Hall parameter of elec-

trons is large, i.e. Ωe/νei ≫ 1. Generalized pinch condi-

tions turn out to depend predominantly on the Hall parame-

ter Ωa/νab. In Sec. IV, the multi-ion collisional cross-field

transport timescale τab,eq is derived in the low-β limit. The

multi-ion cross-field transport timescale turns out to be suffi-

ciently fast for impurity expulsion to occur at stagnation and

at the later stages of implosion for MagLIF-relevant plasma

parameters, even though it is much slower at the earlier stages

of implosion. In Sec. V there is a summary of these results. In

Sec. VI there is a discussion of some other potential applica-

tions of these results. The procedure to find relevant transport

coefficients is outlined in Appendix A.

II. PLASMA MAGNETIZATION.

Consider a plasma slab in a homogeneous magnetic field

B=Bẑ with species-dependent external potential Φs(x, t) with

Fs = −∇Φs (and all other gradients) in the x̂ direction. This

plasma can be described by a multiple-fluid model38,39. The

fluid momentum equation for species s is

ms

dsus

dt
= qsE+qsus ×B− ∇ps

ns

− ∇ ·πs

ns

+
∑s′ Rss′

ns

+Fs.

(1)

Here us is the flow velocity, ms is the mass, qs is the charge,

ps is the scalar part of the pressure tensor, πs is the traceless

part of the pressure tensor of species s, and Rss′ = R
u
ss′ +R

T
ss′

is the friction force, comprised of flow friction and Nernst

(“thermal") friction, between species s and s′40,41. Also,

dsus/dt = ∂us/∂ t +us ·∇us, Ωs = qsB/ms is gyrofrequency

of species s, ρs =
√

Ts/(msΩ
2
s ) is gyroradius, and b̂ = B/B.

In the limit where ms ≪ ms′ and the Hall parameter of the

light species is large, R
T
ss′ = 3nsνss′ b̂×∇Ts/2Ωs. Collision

frequency νss′ is defined in the same way as in Ref.40:

νss′ =

(√
2e4 logΛss′

12π3/2ε2
0

)(
Z2

s Z2
s′

ms +ms′

m2
s ms′

)

×
(

msTs′ +ms′Ts

msms′

)−3/2

ns′ . (2)

The magnetic field enters Eq. (1) in two ways: explicitly in

the Lorentz force and implicitly in transport coefficients. The

magnetization can be understood in two ways: in the ρs/L

sense, as the smallness of the gyroradius compared to the

characteristic length scale of perpendicular dynamics, and in

the Ωs/νs sense, as a ratio of gyrofrequency to collision fre-

quency. Plasmas which exhibit these two types of magneti-

zation can be called Larmor magnetized (ρs/L ≪ 1) and col-

lisionally magnetized (Ωs/νs ≫ 1), respectively. Also, plas-

mas such that Ωs/νs ∼ 1 can be called partially magnetized.

In principle, there can be a few different choices of a partic-

ular collision frequency or a gyrofrequency, but later in this

paper it is found that in the case of light ion species a and

heavy ion species b the relevant Hall parameter is Ωa/νab. In

the case when collision frequencies νab and νaa are compara-

ble, plasma is collisionally magnetized when ρa/λm f p,a ≪ 1

and collisionally unmagnetized when ρa/λm f p,a ≫ 1, where

λm f p,a is mean free path length of species a. In order to see

how magnetization impacts Eq. (1), compare the inertia term

and the Lorentz term:

|ms(us ·∇)us|
|qsus ×B| ∼ u2

s/L

qsusB/ms

∼ us

ΩsL
∼ us

uth,s

ρs

L
. (3)

The ratio above shows the velocity response of plasma species

to an external force: in ρs/L ≪ 1 case the velocity is propor-

tional to the external force, while in ρs/L ≫ 1 the acceleration

is proportional to the external force. Classification of these

regimes is shown in Fig. 1. It is also possible to see it after

rewriting Eq. (1) in the following way:

ms

dsus

dt
= qsus ×B+

∑s′ R
u
ss′

ns

+Fs,total . (4)

Here Fs,total is the sum of all the forces acting on species

s which do not depend explicitly on flow velocity and the

viscous force. In Larmor unmagnetized plasma (Fig. (1a)),

Eq. (4) becomes

ms

dsus

dt
= Fs,total . (5)

In Larmor magnetized plasma, the Lorentz force is much

larger than the ion inertia, so the inertial term ms · dsus/dt

is small. In collisionally magnetized plasma (Fig. 1c), the

Lorentz force is much larger than the ion-ion friction force.

Therefore, Eq. (4) becomes

0 = qsus ×B+Fs,total . (6)

Plasma responds to the force Fs,total by having Fs,total ×B drift

in the direction perpendicular to the external force Fs,total , and

the drift velocity is such that the Lorentz force and the force

Fs,total are balanced.

In collisionally unmagnetized plasma (Fig. 1b) the ion-ion

friction force is much larger than the Lorentz force. Therefore,

Eq. (4) becomes

0 = qsus ×B+
∑s′ R

u
ss′

ns

+Fs,total . (7)

The force Fs,total is balanced by the ion-ion friction force.

Since the direction of the ion-ion friction force and the differ-

ence in the ion flow velocities are close to each other, the dif-

ference in the ion flow velocities is pointing in the similar di-

rection to the force Fs,total . The Lorentz force and the ion-ion

friction force are comparable in partially magnetized plasma.

In many systems of interest, such as Z-pinches, plasma is Lar-

mor magnetized but collisionally unmagnetized. Similarly,

timescales are such that 1/Ωs · ∂/∂ t ≪ 1 holds true. From

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
6
6
0
3



3

(a)
B

F

du/dt

(b)
B

F

u

(c)
B

F

u

FIG. 1. Classification of the response of species s to a velocity-

independent force F that is applied to a multi-ion-species plasma in a

magnetic field. From left to right, in order of increase of the magnetic

field: (a) Larmor and collisionally unmagnetized plasma ρs/L ≫ 1

(see Eq. (5)); (b) Larmor magnetized, but collisionally unmagnetized

plasma ρs/L ≪ 1,Ωs/νss′ ≪ 1 (see Eq. (7)); (c) Larmor and col-

lisionally magnetized plasma ρs/L ≪ 1,Ωs/νss′ ≫ 1 (see Eq. (6)).

Partially magnetized plasma is an intermediate regime between (b)

and (c).

now on, only Larmor magnetized plasmas are considered in

the paper.

Rearranging Eq. (1), the following expression is obtained:

us × b̂ =−E

B
+

1

Ωs

dus

dt
+

∇ps

msnsΩs

+
∇ ·πs

msnsΩs

−∑s′ Rss′

msnsΩs

− Fs

qsB
. (8)

In order to have the closure of Eq. (8), expressions for πs and

Rss′ are needed. Note, however, that the viscosity πs is small

compared to other terms so it affects only long-term behavior.

As such, in many cases it can be ignored. As far as the friction

force Rss′ goes, it can be found from the expression

Rss′ =
∫

d3
u msuCss′ ( fs, fs′) . (9)

Here Css′( fs, fs′) is a collision operator which describes colli-

sions between species s and s′. Note that the friction force de-

pends on the distribution functions fs. In the case of ε = ρi/L

being small, a perturbative expansion of distribution func-

tions in powers of ε can be performed around non-perturbed

Maxwellian with zero mean velocity, fs = fs0 + fs1 + ..., as

long as the plasma is sufficiently collisional to enforce fs1 ≪
fs0. Then fs1 satisfies the following equation40:

∑
s′

[
Css′( fs1, fs′0)+Css′( fs0, fs′1)

]
+Ωs

∂ fs1

∂ξ
=

u ·
[(

∇ps

ps

− qsE

Ts

− Fs

Ts

)
+

(
u2

u2
th,s

− 5

2

)
∇Ts

Ts

]
fs0. (10)

Here ξ is the gyrophase. The friction force, inertia term, and

viscosity do not enter the right-hand side of Eq. (10) as they

are ordered down as O(ε),O(ε2),O(ε2), respectively.

Note that fs1 depends on collisions with all other species

and on same-species collisions too, as long as collisions are

sufficiently frequent compared to Larmor gyration. Therefore,

if there are multiple unmagnetized or partially magnetized ion

species, the friction force Rss′ depends not only on the behav-

ior of species s and s′, but on the behavior of all species. In the

magnetized case, Eq. (10) is solved by Hinton40. The unmag-

netized case is solved by Zhdanov and Alievskii19,20, and it

has been successfully applied by Kagan and Tang17,18. In the

partially magnetized case, however, it is a challenging task to

find even a closed form expression for friction force. Never-

theless, simplifications can be made if: (1) there are two ion

species with disparate masses or (2) all ion species except for

one are in trace quantities. The aim of this paper is to elucidate

case 1.

In the case of two ion species with disparate masses ma ≪
mb, the expression for the friction force can be derived in the

following way, as long as electrons are collisionally magne-

tized, i.e. Ωe/νei ≫ 1. The distortion of the light ion dis-

tribution function fa is much larger than the distortion of fb.

As such, magnetization is determined entirely by the light ion

species. The most general form of the components of the fric-

tion force between light and heavy species which are perpen-

dicular to magnetic field is38,42

Rba =−mbnbνba

[
α⊥,ba (ub −ua)+α∧,ba (ub −ua)× b̂

]

+β⊥,bana∇⊥Ta −β∧,banab̂×∇Ta. (11)

Here ∇⊥Ta = ∇Ta − b̂
(
b̂ ·∇Ta

)
. Eq. (11) is valid for ion-ion

friction as long as electrons are collisionally magnetized, as is

shown in Appendix A. Curiously, in the case of large mass dis-

parity between ions, transport coefficients for ion-ion friction

(Eq. (11)) in two-ion-species plasma are the same as trans-

port coefficients for electron-ion friction in single-ion-species

plasma up to the following substitution: Ωe/νei → Ωa/νab,

Z̃ → nbZ2
b/(naZ2

a) (see derivation in Appendix A). Coeffi-

cients for the electron-ion friction force in the case of arbitrary

magnetization have been found by Epperlein and Haines42. In

the limit of collisionally magnetized plasma (suppressing in-

dices ba attached to the transport coefficients), Ωa/νab → ∞:

β⊥/β∧ → 0, β∧ → 3/2 ·νab/Ωa, α⊥ → 1. In the limit of col-

lisionally unmagnetized plasma, Ωa/νab → 0: β∧/β⊥ → 0,

β⊥ → const, α⊥ → const. α∧/α⊥ goes to 0 in both limits,

and never exceeds 0.2.

In partially magnetized plasma, the ion-ion friction force

has unusual terms, such as the component perpendicular both

to the magnetic field and the flow velocity difference (term

α∧,ba (ub −ua)× b̂ in Eq. (11)). Therefore, it is instructive

to provide an intuitive explanation of why this component ex-

ists in the first place. In the single-particle picture, its origin

can be attributed to the following observation. In plasma with

ion Hall parameter ∼ 1, ions’ trajectories are arcs of a Larmor

orbit, interrupted by collisions. The length of these arcs is in-

versely proportional to the collision frequency. Therefore, if

there are more collisions on the one side of the orbit than an-

other, there is going to be net motion in the perpendicular di-

rection. In comparison, in collisionally magnetized plasma a

particle makes many gyrations between successive collisions,

so the effect of collisions on the arc length is averaged out. In

collisionally unmagnetized plasma, particles’ trajectories are

close to straight lines, so there is almost no preference in the

motion perpendicular to the flow velocity difference. There-
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fore, this component of the friction force is significant only in

partially magnetized plasma regime.

B
c

d

e

ub

FIG. 2. Single-particle picture of the origin of non-collinearity of the

ion-ion friction force and their flow velocity difference in partially

magnetized plasma. Consider two particles of species a moving with

the opposite velocities and starting at the same point c. The par-

ticle which has the velocity in the same direction as flow velocity

of species b (blue trajectory) has smaller relative velocity difference

than the particle which has the velocity in the opposite direction (red

trajectory). As collision frequency in plasma decreases dramatically

with the increase of relative velocity difference, the particle on the

blue trajectory is going to collide much faster (at point d) than the

particle on the red trajectory (at point e). Therefore, the arc ce is

much larger than the arc cd.

Another way to get an intuition about the role of collisional

magnetization is to look at the direction of the distortion of

distribution function fs1 using Eq. (10) in a plasma where

there is an imbalance of x̂-direction components of flow ve-

locities of two species. To see that, consider a case of light

species a and heavy species b. Then the distribution function

of the heavy species fb is relatively unaffected by the species

a. Moreover, the spread of fb is much smaller than the spread

of the distribution function of light species fa. Therefore, light

species essentially see the delta-function distribution of heavy

species. Collisions with heavy species essentially provide a

force that pushes light species distribution toward the mean

velocity of heavy species. Moreover, it also means that the

behavior of fb1 can be ignored and all the essential physics

are concentrated in the distortion of the distribution function

of the light species fa1.

In collisionally magnetized plasma, the reaction of fa1 is

going to be in ŷ direction, perpendicular both to x̂, the direc-

tion of the flow velocity imbalance and to ẑ, the direction of

the magnetic field. Then this ŷ-directed distortion provides

x̂-directed Lorentz force, balancing the unlike-species friction

force.

In collisionally unmagnetized plasma, like-species colli-

sions push the distribution function of the light species back to

Maxwellian, and the Lorentz force is comparatively too weak.

Therefore, fa1 is in the x̂-direction.

In partially magnetized plasma, both mechanisms of push-

ing the distribution function of the light species back to

Maxwellian are equally important. Therefore, fa1 is stretched

out in both x̂ and ŷ directions. The stretching of fa1 in both di-

rections creates an asymmetry in average relative velocity dif-

ference between particles moving in the positive and the neg-

ative ŷ-direction, which in turn results in the asymmetry of the

collisional drag. Summed over all the light-species particles,

this is seen as the component of the friction force perpendicu-

lar to the direction of flow imbalance. Note that both the pres-

ence of magnetic field (creating a component of distortion in ŷ

direction) and the collision frequency dependence on relative

velocity is essential for this component of the friction force

to appear. Also, in the collisionally magnetized plasma case

the distortion of fa in ŷ-direction is much smaller than in the

partially magnetized plasma case, so the α∧,ba (ub −ua)× b̂

component of the friction force is much smaller, too.

If ions do not have disparate masses (ma ∼ mb), the form

of the friction force in general is more complicated, because

distortion of the distribution function of heavy species fb be-

comes important. Therefore, subsequent analysis of multi-

ion collisional transport becomes more complicated. How-

ever, it is possible to estimate the error introduced by taking

ma/mb ≪ 1 limit in the collisionally magnetized case. In that

case, the accurate form of the thermal force is known1,14,19,40

to be

R
T
ab =

3naνab

2Ωa

1

1+(maTb/mbTa)
b̂×

(
∇Ta −

Za

Zb

ma

mb

Tb

Ta

∇Tb

)
.

(12)

In this paper, corrections of the order O
(
ZamaT 2

b /ZbmbT 2
a

)

and O (maTb/mbTa) are ignored. They can be incorporated

in the generalized pinch relations in Sec. III in collision-

ally magnetized case. However, generalization in the par-

tially magnetized case is more complicated. From the form

of collision operator Cab (e.g. Eq. (131) in Ref.40) and

Eq. (10), a reasonable assumption is that the size of the er-

ror is O
(
m2

aT 2
b /m2

bT 2
a · (νaa +νab +Ωa)/(νba +νbb +Ωb)

)
.

III. EQUILIBRIUM AND GENERALIZED PINCH
RELATIONS.

Consider a magnetized multiple-ion species slab of plasma

which is subjected to a slow (∂/∂ t ≪ νss′ ,Ωs) change in the

applied potential or temperature in the direction perpendicular

to the magnetic field (i.e. ∂Ts/∂ t ≪ νss′Ts; ∂Ts/∂ t ≪ ΩsTs).

Then cross-field dynamics are governed by collisional trans-

port.

On the fast collisional transport timescales (see derivation

of τab,eq in Sec. IV; these timescales are fast compared to the

viscous transport timescale, which is L2/ρ2
i slower than the

ion-ion collisional transport timescale) momentum equation

for species s (Eq. (1)) has the following form in the equilib-

rium:

0 = qsE+qsus ×B− ∇ps

ns

+
∑s′ Rss′

ns

+Fs. (13)

Suppose all the gradients are in the x-direction and the mag-

netic field is in the z-direction. Then in equilibrium, when

there is no more collisional cross-field transport in the direc-

tion of gradients, usx = 0 for all species s and Eq. (13) becomes

0 = qsEy +
∑s′ Rss′,y

ns

. (14)
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Summing Eq. (14) over all species, the condition that Ey = 0 is

obtained (no inductive E field in the equilibrium). Therefore,

there are s equilibrium conditions: ∑s Rss′,y = 0. These equi-

librium conditions can be shown to provide relations between

densities of plasma constituents, which can be called gener-

alized pinch relations. At much longer timescales, viscosity

plays a role, and plasma evolves to the state of thermodynamic

equilibrium.

A. Transitivity of Generalized Pinch Relations.

Transitivity is a property of generalized pinch relations

when the equilibrium state of any pair of species is indepen-

dent of the properties of the other species which comprise

the plasma. In general, the force equilibrium conditions are

∑s′ Rss′,y = 0 and generalized pinch relations do not possess

transitivity. However, transitivity is present in two important

cases: (a) no more than three species or (b) uniform tem-

perature ∇T = 0, when force equilibrium conditions can be

replaced with pairwise friction force cancellation Rss′,y = 0.

If there are three or fewer species, the ∑s′ Rss′,y = 0 condi-

tion together with Rss′,y = −Rs′s,y provides a sufficient num-

ber of constraints to uniquely determine Rss′,y, and Rss′,y = 0

is the equilibrium. If there is no temperature gradient, Rss′,y =
Ru

ss′,y ∝ us′y − usy, so in equilibrium all flow velocities us are

the same, and therefore Rss′,y = 0.

In a system with N species in force equilibrium, the zero-

friction-force conditions will provide N −1 independent con-

straints. The last constraint, which is needed to determine den-

sity profiles of all species, depends on timescales and β ; see

Sec. IV for more details.

In plasma of arbitrary magnetization without temperature

gradients, the maximum-entropy approach13 gives the follow-

ing result:

(
naeΦa/T

)1/Za

∝

(
nbeΦb/T

)1/Zb

. (15)

In collisionally magnetized plasma this condition is equiva-

lent to setting the friction force between each pair of species

to zero, see Ref.12,38,43,44. Also, in a collisionally magnetized

plasma there are results about pinch relations with temper-

ature gradients41,45–51. However, this is the first time that

Eq. (15) has been derived for plasma that is not in the col-

lisionally magnetized regime. In fact, the analysis in this sec-

tion provides the first new, nontrivial test of the maximum-

entropy derivation of Eq. (15) since that approach was pre-

sented in Ref.13. A partially magnetized plasma fulfills all

of the requirements given in Ref.13 for a system to satisfy

Eq. (15), and we have shown here (independently of any en-

tropy considerations) that indeed Eq. (15) is satisfied by the

equilibrium for this system.

B. Generalized Pinch Relations in Two-Ion-Species Plasma.

In the presence of temperature gradients, generalized pinch

relations become less tractable as the expression for the fric-

tion force becomes complicated and the maximum-entropy

principle is no longer directly applicable. However, in the

two-ion-species plasma case, equilibrium requires pairwise

friction force cancellation: Rab,y = Rae,y = Rbe,y = 0.

Different species also can move across magnetic field lines

at different rates. Therefore, in some cases14,52, there is sep-

aration of timescales in collisional transport. In particular,

in collisionally magnetized plasma ions equilibrate between

each other faster than with electrons. Such fast transport

timescale equilibrium (in which generalized pinch relations

are satisfied for a subset of species, but not for all of them)

will have Rab,y = 0, but not necessarily Rae,y = Rbe,y = 0. In

the case of such an equilibrium, ion densities na and nb obey

generalized pinch relations between each other, but not neces-

sarily with electrons. The question of transport timescales is

addressed in more detail in Sec. IV and V.

In the case of two ion species with disparate masses ma ≪
mb and collisionally magnetized electrons (i.e. Ωe/νei ≫ 1),

generalized pinch conditions can be found explicitly using the

expression for the friction force (Eq. (11)). In equilibrium, the

conditions Rab,y = 0 and uax = ubx = 0 can be combined with

Eq. (11) as

−mbnbνbaα⊥,ba

(
uby −uay

)
−β∧,banaT ′

a = 0. (16)

Here and later in the paper, f ′ = ∂ f/∂x for any physical quan-

tity f . Define

β⋆,ba = β⊥,ba +
β∧,baα∧,ba

α⊥,ba

. (17)

Then Eq. (16) can be used to find that in equilibrium

Rba,x = β⋆,banaT ′
a . (18)

Note that in collisionally magnetized plasma the friction force

decays quickly (∝ (Ωa/νab)
−5/3, see Ref.42 and Appendix A).

Since electrons are substantially more magnetized than ions,

electron-ion friction force is much smaller than ion-ion fric-

tion force if ions are out of generalized pinch equilibrium and

electrons are collisionally magnetized.

The momentum equation in x-direction is

0 = qsEx +qsusyB− p′s
ns

+
∑s′ Rss′,x

ns

+Fsx. (19)

Adopting Ωs = qsB/ms, F⋆
s = Fs − p′s/ns,

usy =−Ex

B
− F⋆

s

msΩs

− ∑s′ Rss′,x

msnsΩs

. (20)

Combined with Eq. (16):

− F⋆
b

mbΩb

− Rba,x +Rbe,x

mbnbΩb

+
F⋆

a

maΩa

+
Rab,x +Rae,x

manaΩa

+
β∧,banaT ′

a

mbnbνbaα⊥,ba

= 0. (21)

Together with manaνab = mbnbνba and the fact that electron-

ion friction force can be ignored as long as Ωe/νei ≫ 1,

F⋆
a

maΩa

+
β∧,baΩa

α⊥,baνab

T ′
a

maΩa

− Rba,x

manaΩa

(
1+

Zana

Zbnb

)
=

F⋆
b

mbΩb

.

(22)
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Eq. (22) can be rewritten as

1

Zb

(
p′b
nb

−Fbx

)
=

1

Za

(
p′a
na

−Fax +λT ′
a

)
, (23)

where

λ = β⋆,ba

(
1+

Zana

Zbnb

)
− β∧,baΩa

α⊥,baνab

(24)

is the temperature screening coefficient. λ describes the ef-

fect of the thermal force on the equilibrium density profiles. In

collisionally unmagnetized plasma, λ is positive, while in col-

lisionally magnetized plasma λ is negative. The way in which

thermal force affects multi-ion transport in partially magne-

tized plasma is shown in Fig. 3.

(a)
B

∇T

R
T
ab

ua ub

a b

(b)
B

∇T

R
T
ab

ua ub

a b

(c)
B

∇T

R
T
ab

ua ub

a b

FIG. 3. Thermal force and impurity pinch. In collisionally unmag-

netized plasma (a), where ion Hall parameter is small Ωa/νab ≪ 1,

both thermal force and flow velocity are collinear with the tempera-

ture gradient. As a result, heavy ions tend to concentrate in a hotter

region of plasma. In collisionally magnetized plasma (c), where ion

Hall parameter is large Ωa/νab ≫ 1, thermal force is perpendicular

to the direction of temperature gradient. However, ion flow velocity

is perpendicular to the thermal force in this case. As a result, heavy

ions tend to concentrate in a colder region of plasma. In partially

magnetized plasma (b) , where Ωa/νab ∼ 1, both thermal force and

flow velocity are not collinear to the temperature gradient or to each

other. In all cases, collisional cross-field transport due to temperature

gradient conserves charge locally, i.e. Zaua +Zbub = 0.

Eq. (23) can be called the generalized pinch relation in par-

tially magnetized plasma. It provides a constraint on densities

of ion species a and b in force equilibrium, as long as ma ≪mb

and Ωe/νei ≫ 1. The generalized pinch relation makes it pos-

sible to analyze characteristics of impurity transport in plasma

with arbitrary collisional magnetization of ions.

In limiting cases, Eq. (23) reduces to the forms known in

the literature. In collisionally magnetized plasma, λ = −3/2

and Eq. (23) is reduced to (see Ref.4,12,38,43,44)

1

Zb

(
p′b
nb

−Fbx

)
=

1

Za

(
p′a
na

−Fax −
3

2
T ′

a

)
. (25)

In isothermal plasma it is reduced to Eq. (15), as could be

expected from the maximum-entropy principle13.

The collisionally unmagnetized plasma limit of Eq. (23)

can also be found (β⊥,ba > 0):

1

Zb

(
p′b
nb

−Fbx

)
=

1

Za

(
p′a
na

−Fax +β⊥,ba

(
1+

Zana

Zbnb

)
T ′

a

)
.

(26)

In order to find out the dependence of the heavy species’

density profile on temperature and the meaning of the temper-

ature screening coefficient λ , consider the case of no external

forces acting on the plasma: Fa = Fb = 0. Then Eq. (23) be-

comes

1

Zb

p′b
nb

=
1

Za

(
p′a
na

+λT ′
a

)
, (27)

It can be reorganized to see the dependence on density and

temperature gradients separately (using equation of state ps =
nsTs):

n′b
nb

=
Zb

Za

Ta

Tb

n′a
na

+(λ +1)
ZbTa

ZaTb

T ′
a

Ta

− T ′
b

Tb

. (28)

If species a and b have the same temperature Ta = Tb = T ,

Eq. (28) can be simplified further.

n′b
nb

=
Zb

Za

n′a
na

+

[
(λ +1)

Zb

Za

−1

]
T ′

T
. (29)

It is clear from Eq. (29) that the density gradient of light ion

species a and the temperature gradient act provide two inde-

pendent contributions to the density gradient of heavy species

b. As follows from Eq. (29), heavy species are expelled from

high-T regions when plasma is collisionally magnetized and

λ →−3/2. However, they are concentrated in high-T regions

instead when plasma is collisionally unmagnetized. Eq. (24)

determines the boundary between these qualitatively different

types of plasma behavior. Note, however, that in general the

sign of the effect changes at the point λ = Za/Zb −1 and not

at the point λ = 0, as the temperature gradient is also present

in p′s terms, while λ describes only the contribution of the

thermal force. It turns out that the temperature screening co-

efficient λ depends predominantly on the ion Hall parameter

Ωa/νab, since transport coefficients in Eq. (24) vary signifi-

cantly with the change of Ωa/νab and comparatively weakly

with the Ze f f = nbZ2
b/(naZ2

a) (see Ref.42 and Appendix A for

details). Therefore, Ωa/νab is the criterion to determine colli-

sional magnetization of plasma.

Note that the dependence of heavy species’ density on light

species’ density and on external forces, such as the centrifugal

force, is the same regardless of whether plasma is collisionally

magnetized or not. Aside from that, this section provides an

extensive overview of the impact of collisional magnetization

on temperature gradient-driven multi-ion transport.

IV. TIMESCALES IN PARTIALLY MAGNETIZED
PLASMA.

Sec. III describes the equilibrium state of multi-ion-species

plasma. However, it is of significant interest whether the

knowledge of relationship between ion density profiles can

also be extended to laboratory plasmas which are dynamically

evolving. In this section, there is an estimate of the timescale

of relative relaxation of ion density profiles toward the equilib-

rium, as well as an example of laboratory plasma where this

timescale is sufficiently fast to make the multi-ion transport

effects observable.
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A. Timescale of Ion-Ion Force Equilibration.

In general, as plasma evolves due to cross-field transport,

all densities and temperatures are subject to change. There-

fore, it is not easy to describe the resulting evolution of

plasma. However, in the special case of low-β isothermal

plasma (Ts = T = const across the plasma for all species s;

β ≪ 1 is the ratio of plasma pressure to magnetic pressure),

which is slightly out of equilibrium and is subjected to small

forces (FsL ≪ T for all species s, where L is a size of the

plasma system in the direction perpendicular to the magnetic

field), it is possible to track the plasma behavior as a function

of time. In this particular case, Eq. (23) prescribes that den-

sities are close to being uniform, i.e. |∇ns|/ns ≪ 1/L, and

magnetic field evolution due to ion-ion cross-field transport

can be neglected. Then, in order to linearize the momentum

and continuity equations, assume ns = ns0 + ñs, us = us0 + ũs,

where ns0 and us0 are the equilibrium density and flow veloc-

ity of species s, respectively. Moreover, ∇ns/ns ≈ ∇ñs/ns0.

The friction force can also be linearized in the same way:

Rss′ = Rss′0 + R̃ss′ . Then in partially magnetized plasma

Eq. (8) becomes

ũs × b̂ =
T ∇ñs

msns0Ωs

− ∑s′ R̃ss′

msns0Ωs

. (30)

Continuity equation:

∂ ñs

∂ t
+∇ · (ns0ũs) = 0. (31)

The expression for the perturbation of the friction force be-

tween light species a and heavy species b can be inferred from

Eq. (11):

R̃ba =−mbnbνba

[
α⊥,ba (ũb − ũa)+α∧,ba (ũb − ũa)× b̂

]
.

(32)

Define transport timescale τab,eq as a characteristic timescale

of plasma solely due to friction between species a and b, ig-

noring interactions with other species. Then Eqs. (30) and

(31) can be combined to get the fact that frictional transport is

ambipolar:

Zaña +Zbñb = 0. (33)

Moreover, Eqs. (30) and (32) can be combined (omitting index

ab in α⊥ and α∧) as

T

mana0Ωa

∇ña −
T

mbnb0Ωb

∇ñb =−(ũb − ũa)× b̂

+

(
νab

Ωa

+
νba

Ωb

)(
α⊥ (ũb − ũa)+α∧ (ũb − ũa)× b̂

)
. (34)

If all the gradients are in one direction, these equations can be

combined to get a diffusion equation

∂ ña

∂ t
+∇ · (Dab∇ña) = 0, (35)

where the diffusion coefficient is

Dab =
α⊥

(
νabρ2

a +νbaρ2
b

)
[
1−α∧

(
νab
Ωa

+ νba
Ωb

)]2

+α2
⊥

(
νab
Ωa

+ νba
Ωb

)2
. (36)

Here ρ2
s = T/(msΩ

2
s ) is the gyroradius of species s. In

the limit of collisionally magnetized plasma (Ωa/νab ≫
1,Ωb/νba ≫ 1), Eq. (36) reduces to

Dab = νabρ2
a +νbaρ2

b . (37)

In the limit of collisionally unmagnetized plasma, α∧ ≪ α⊥,

so the diffusion coefficient is similar to what could be ex-

pected (D ∼ νλ 2
m f p):

Dab =
νabρ2

a +νbaρ2
b

α⊥
(

νab
Ωa

+ νba
Ωb

)2
. (38)

In the limit of trace heavy impurities, nb → 0, Ωa/νab → ∞,

so the diffusion coefficient attains limit value

Dab =
νba

ν2
ba +Ω2

b

T

mb

. (39)

Eq. (35) can be solved by spectral decomposition. In a

cylinder of radius r the timescale of equilibration of the lowest

mode due to radial ion-ion transport is

τab,eq =
1

j2
1,1

r2

Dab

. (40)

Here 1/ j2
1,1 = 0.06811... is a geometric factor (the square

of the first zero of the first-order Bessel function); this geo-

metric factor should be 1/π2 in slab geometry. In the limit of

collisionally magnetized plasma (Ωa/νab ≫ 1,Ωb/νba ≫ 1),

it is the same as in Ref.52 up to a geometric factor.

Eq. (40) has been found in the limit of low-β isothermal

plasma. In high-β plasma, by analogy to neutral gas53,54,

there can be other ways in which plasma evolves to the equi-

librium, such as magnetosonic waves. Another way to intro-

duce complications to the dynamics would be to include evo-

lution of B and T . Nevertheless, Eq. (40) provides an idea

about how long it takes for densities of ion species to adjust

relative to each other once some change has been applied to

the system. Another feature to note in Eqs. (36) and (40) is

that τab,eq approaches a constant value in the limit of trace

impurity species b.

Another way to interpret transport timescale τss′,eq is that

it is the timescale of relaxation of the friction force Rss′ to-

ward zero, after which generalized pinch condition Eq. (23)

for species s,s′ can be used. If one of the species s,s′ is elec-

trons, temperature screening coefficient is λ = −3/2 in the

range of applicability of the results in this paper.

B. Timescales of Z-pinch Implosion Around Stagnation.

One important area of applicability of generalized pinch

relations is impurity transport in magnetized Z-pinch experi-

ments, such as MagLIF, where plasma is Larmor magnetized,
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but not necessarily collisionally magnetized. MagLIF implo-

sions start with magnetization and preheat of fuel, forming a

hotter and less dense region of plasma in the center, called the

hotspot. Then the implosion itself happens, compressing the

fuel until stagnation.

log(r0/r)

log(τab,eq)

νab/Ωa + νba/Ωb ∼ 1

τab,eq = τimp

∼ (r0/r)
−10/3

∼ (r0/r)
2/3

FIG. 4. Evolution of radial multi-ion transport timescale τab,eq

(Eq. (40) with Dab from Eq. (36)) in a typical magnetized Z-pinch

implosion, assuming γ = 5/3. Initially, plasma is collisionally un-

magnetized and radial particle transport is too slow compared to the

duration of the implosion. Then collisional transport becomes much

faster, until sum of ion Hall parameters becomes ∼ 1. Afterward,

transport timescale starts to increase. Increase of Hall parameter dur-

ing the implosion also means that impurities tend to be expelled from

the hotspot more and more as Z-pinch approaches stagnation phase.

Suppose for simplicity that the implosion is an uniform ra-

dial compression with convergence ratio C = r0/r of a cylin-

drical plasma column which has adiabatic index γ . Then

plasma parameters in the fuel have the following scaling:

n ∝ C2, T ∝ nγ−1 ∝ C2(γ−1), B ∝ C2. Gyrofrequencies and col-

lisional frequencies have Ωs ∝ C2 and νss′ ∝ n/T 3/2 ∝ C5−3γ

scaling, respectively. Dimensionless parameters that char-

acterize magnetization in various ways have the following

scalings: β ∝ nT/B2 ∝ C2(γ−2), Ωa/νab ∝ C3(γ−1), ρa/r ∝

T 1/2B−1r−1 ∝ Cγ−2. As such, the plasma becomes more

collisionally magnetized during the implosion. In the col-

lisionally unmagnetized plasma limit τab,eq ∝ r2νab/v2
th ∝

C−5(γ−1); in the collisionally magnetized plasma limit τab,eq ∝

r2/
(
νabρ2

b

)
∝ Cγ−1.

Collisional radial transport of heavy impurities in a Z-pinch

implosion can be understood as the following (see also Fig. 4).

Initially, even after the axial magnetic field is applied to the

fuel, plasma is still collisionally unmagnetized (Ωa/νab ≪ 1)

and transport timescale τab,eq is too slow compared to the im-

plosion time for collisional multi-ion transport to have much

impact. Then, as implosion progresses, τab,eq drops dramati-

cally (∝ C−10/3 if γ = 5/3). Therefore, impurities start to be

drawn into the hotspot due to temperature gradients and ex-

pelled from the hotspot due to density gradients. Then, when

plasma becomes partially magnetized and, afterwards, colli-

sionally magnetized, the generalized pinch effect flips sign.

Therefore, heavy ion impurities get expelled from the hotspot

both due to temperature and density gradients, as hotspot is

both hotter and less dense than the surrounding plasma. More-

over, ion-ion transport timescale is sufficiently fast for the im-

purities to actually get expelled. After that, τab,eq starts to

increase.

This analysis could be applied to a general class of mag-

netized Z-pinch configurations. For example, assume plasma

parameters similar to the recent high-performance shot z3040

on Z machine, as described in Ref.55. In that shot, initially

ρR = 0.68 mg/cm2, r = 2.3 mm, B = 10 T . If the impu-

rity concentration is nBe = 0.1nD and the ion temperature is

Ti = 100 eV , then νD,Be/ΩD = 71.6 and τBeD,eq ≈ 9 µs, i.e.

radial multi-ion collisional transport is too slow. It would

be even slower if impurity concentration is smaller or fuel

is colder. Therefore, collisional radial transport cannot be

expected to be prominent in the beginning of the implosion.

Also, Ωe/νei ≈ 0.5 in this plasma, so the plasma is initially

out of the regime of applicability of the model in this paper.

However, during the compression, the plasma becomes par-

tially magnetized and then collisionally magnetized, so the

impurity transport can be described by the model presented

in this paper in the later stages of compression.

In particular, if plasma parameters at stagnation BR =
0.2 MG · cm, r = 60 µm (which corresponds to B = 3.3 kT ),

fuel density is ρR = 0.4 g/cm2, Ti = 2.6 keV are considered,

both ion Hall parameter and transport timescale are much

more favorable. In particular, if there is nBe = 0.05nD, then

ΩD/νD,Be = 0.78 and τBeD,eq = 2.1 ns. If nBe = 0.01nD, then

ΩD/νD,Be = 3.75 and τBeD,eq = 3.7 ns. The multi-ion radial

transport timescale is comparable to the burn time (∼ 2 ns)

and is much smaller than the implosion timescale (∼ 100 ns).

As such, significant impurity transport can be expected to oc-

cur. Hall parameter for electrons is Ωe/νei ≈ 28 in this case,

well in the range of applicability of the transport model used

in this paper.

This paper describes what happens to impurities when

Ωe/νei ≫ 1 and ma ≪ mb. These conditions are satisfied in

later stages of implosion and around stagnation in the cur-

rent experiments. However, this is precisely when impurity

transport matters the most. Moreover, the preliminary results

presented here are promising: both density and temperature

gradients tend to expel impurities from the hotspot as long as

Ωa/νab ≫ 1, and transport timescale τab,eq is sufficiently short

for this to happen.

V. SUMMARY.

Multi-ion cross-field transport has been studied in the lit-

erature in the limit of collisionally magnetized ions. There is

also literature on the role of collisional magnetization of elec-

trons in the single-ion species plasma, as well as on multi-ion

transport in unmagnetized plasma. However, the intermediate

regime of partially magnetized plasma has largely not been
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addressed until now.

This paper provides a rigorous classification of different

magnetization regimes and their role in multi-ion transport.

Moreover, it gives the conditions on density profiles in equi-

librium in the case of partially magnetized plasma, thereby ex-

tending multi-ion collisional transport models to a new regime

of applicability. Temperature gradient dependence of gen-

eralized pinch relations allows to recover both the collision-

ally magnetized limit, where heavy ions are expelled from the

high-T region of plasma, and the collisionally unmagnetized

limit, where heavy ions are drawn in the high-T region of

plasma. Moreover, in the case of light ion species a and heavy

ion species b the sign of this effect depends almost exclusively

on the Hall parameter Ωa/νab, while like-species Hall param-

eter Ωa/νaa changes only the magnitude of the effect. To

some extent, the results in this paper can be generalized to the

case of multiple heavy impurity species, as long as they are in

trace quantities, such that their collision frequencies with one

another are negligible compared to their collision frequencies

with bulk ions.

The extension of the parameter space where multi-ion colli-

sional transport is understood expands the range of applicabil-

ity of transport models to more laboratory plasmas. In partic-

ular, the results in this paper are promising in terms of under-

standing impurity transport in Z-pinches, such as the MagLIF

experiment. More generally, multi-ion collisional transport

leads to a significant radial expulsion of heavy ion impurities

if two conditions are satisfied: (i) Hall parameter Ωa/νab & 1

being large at stagnation; (ii) transport timescale τab,eq being

comparable to or faster than the length of the stagnation and

late implosion phases.

VI. DISCUSSION.

In low-β collisionally magnetized plasma, there is separa-

tion of timescales between ion-ion transport timescale τab,eq

and electron-ion transport timescale τei,eq: τab,eq ≪ τei,eq.

Therefore, plasma exhibits curious effects on τab,eq, such as

charge incompressibility and the heat pump effect14,52. More

generally, in partially magnetized plasma, when electrons are

still collisionally magnetized, but ions are only partially mag-

netized, the ratio of cross-field transport timescales is the fol-

lowing:

τei,eq

τab,eq

=
Dab

Dei

. (41)

Eqs. (36) and (41) can be combined to identify the parameter

space where there is separation of transport timescales. In

particular, in the case of trace heavy ion species b and bulk

light ion species a, timescales separation exists if

(
νab

Ωa

+
νba

Ωb

)2

.
νab

νae

. (42)

Timescales separation between multi-ion transport and

electron-ion transport potentially makes it possible to observe

charge incompressibility and the heat pump effect even in par-

tially magnetized plasma.

Even though magnetized Z-pinches are providing an excel-

lent testbed for the application of the theory of multi-ion col-

lisional transport in partially magnetized plasma, they do not

exhaust the potential upside of the knowledge of heavy ion

density profiles. In particular, the tendency of heavy ions to

concentrate in the region of Ωa/νab ∼ 1 due to a temperature

gradient can be used for ion separation using compression or

heating. Another potential application of the multi-ion trans-

port models in partially magnetized plasma is to identify the

range of applicability of the idea of introducing trace ions to

increase the fuel concentration in the hotspot, as shown by

Kim et al in Ref.56. In Ref.56, H ions were used on Omega ex-

periment (unmagnetized) to increase the concentration of DT

fuel in the hotspot and reduce demixing, as heavier ions tend

to concentrate in high-T region of plasma in that case. How-

ever, the prescription would be the opposite in the partially

magnetized or collisionally magnetized plasma. Therefore, in

these plasmas the use of H ions would lead to the opposite

result of fuel concentration in low-T region of plasma, and

heavy ions should be used instead. The model presented in

this paper makes it possible to identify the threshold when

this effect changes sign.

A potential extension of this work is to include finite-β
effects on the time-dependent evolution of multi-ion trans-

port, which would allow more accurate quantitative predic-

tions of the evolution of the density profiles, complementing

the knowledge about the multi-ion equilibrium in this paper.

Another interesting extension would be to include the role of

particle fluxes on the generalized pinch relations57 to the par-

tially magnetized plasma regime.
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Appendix A: Expression for Ion-Ion Friction Force through
Electron-Ion Transport Coefficients.

One of the ways to simplify the calculation of density pro-

files is to use the same expression for the ion-ion friction force

as for the electron-ion friction in a single-ion-species plasma.

Consider plasma that has two ion species a and b, such that

ma ≪ mb. In this Appendix, u is an argument of the particle

distribution function, not the flow velocity as in the rest of the

paper. Then the friction force between species a and b is

Rab =
∫

d3
u mauCab( fa, fb). (A1)

The friction force Rab comes from distortion of distribution

functions fa and fb. But in the ma ≪ mb case, species a

does not see a distortion of fb because the thermal spread

of fb is much smaller than the spread of fa. Therefore,

only distortion of fa contributes to the friction force. Sup-

pose that the distortion of fa from Maxwellian distribution is

small, fa1 ≪ fa0. Then fa satisfies the following relation (see
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Eq. (173) in Hinton40, or Eq. (10)):

Caa( fa, fa)+Cab( fa, fb)+Cae( fa, fe)+Ωa

∂ fa1

∂ξ
=

u ·
[(

∇pa

pa

− qaE

Ta

)
+

(
u2

u2
th,a

− 5

2

)
∇Ta

Ta

]
fa0. (A2)

Here uth,a =
√

2Ta/ma. Since Cae ∝ νae, it is a small correc-

tion relative to the other terms on the LHS. As long as Cae

term can be ignored,

Caa( fa, fa)+Cab( fa, fb)+Ωa

∂ fa1

∂ξ
=

u ·
[(

∇pa

pa

− qaE

Ta

)
+

(
u2

u2
th,a

− 5

2

)
∇Ta

Ta

]
fa0. (A3)

Here Caa is a same-species collision operator, and Cab is a

collision operator between light and heavy species (e.g. pitch-

angle scattering operator). In comparison, in a single-ion-

species plasma equation for fe is

Cee( fe, fe)+Cei( fe, fi)+Ωe

∂ fe1

∂ξ
=

u ·
[(

∇pe

pe

− qeE

Te

)
+

(
u2

u2
th,e

− 5

2

)
∇Te

Te

]
fe0. (A4)

The RHS as a function of u/uth,s is the same up to index

change e → a. Therefore, if the coefficients are such that all

the terms on the LHS of Eqs. A3 and A4 are proportional,

distortion of distribution function satisfies the same equation

(since operators Caa and Cee are similar, the same is true for

Cab and Cei). Then the solution for fa1 is also the same as the

solution for fe1, or at least these solutions are proportional to

each other. Therefore, the corresponding friction forces Rab

and Rei are also proportional to each other.

Then Cab can be split into terms 1Cab and 2Cab that de-

pend on fa1 and ub, respectively (using Eq. (121) in Ref.40

as the expression for Cab), and collision operators and fa can

be rewritten in dimensionless form (adorned by tilde), moving
2Cab to the other side:

νaaC̃aa( f̃a, f̃a)+νab
1C̃ab( f̃a1)+Ωa

∂ f̃a1

∂ξ
=

u ·
[(

∇pa

pa

− qaE

Ta

)
+

(
u2

u2
th,a

− 5

2

)
∇Ta

Ta

−
u3

th,a

u3

νabub

u2
th,a

]
f̃a0.

(A5)

Therefore, if the ratios Ωa/νab and νaa/νab are the same in

the two-ion-species case and in the electron-ion case, the so-

lution f̃ (u/uth,a) is also the same, and the expression for the

friction force Rab is the same. As long as ma ≪mb, νab/νaa =√
2nbZ2

b/(naZ2
a). If species a are electrons, and species b

are ions, then Ωa/νab = ωτ , νab/νaa =
√

2nbZ2
b/na =

√
2Zb.

Usually (e.g. in Braginskii38 or in Epperlein and Haines42)

transport coefficients are found in terms of ωτ and Z.

Therefore, the expression for the ion-ion friction force be-

tween light species a and heavy species b is the same as

the expression for the electron-ion friction force in single-

ion-species plasma up to substitutions Ωa/νab → ωτ and

Z̃ = νab/(
√

2νaa) = nbZ2
b/(naZ2

a).
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