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Abstract

The element P% of the mod 2 Steenrod algebra A has the property
(P3)? = 0. This property allows one to view P} as a differential on
H,(X,F5) for any spectrum X. Homology with respect to this dif-
ferential, M (X, P3), is called the P} Margolis homology of X. In this
paper we give a complete calculation of the P3 Margolis homology of
the 2-local spectrum of topological modular forms ¢mf and identify
its IF5 basis via an iterated algorithm. We apply the same techniques
to calculate P} Margolis homology for any smash power of tmf.

Convention. Throughout this paper we work in the stable homotopy category of
spectra localized at the prime 2.

1. Introduction

The connective E., ring spectrum of topological modular forms tmf has played
a vital role in computational aspects of chromatic homotopy theory over the last
two decades [Goel0], [DFHH14]. It is essential for detecting information about the
chromatic height 2, and it has the rare quality of having rich Hurewicz image. There
is a K (2)-local equivalence [HM14]

LK(Z) tmf >~ E;LG4B y

where Fs is the second Morava E-theory at p = 2 and G4g is the maximal finite sub-
group of the Morava stabilizer group Gs. The spectrum ESG“S can be used to build
the K (2)-local sphere spectrum (see [BG18]). The homotopy groups of tmf approx-
imate both the stable homotopy groups of spheres and the ring of integral modular
forms. In many senses, tmf is the chromatic height 2 analogue of connective real
K-theory ko. Further, the homotopy groups of ¢tmf are completely known [Bau08].
Let us now recall the definition of the element P} € A. Milnor described the
mod 2 dual Steenrod algebra A, as the graded polynomial algebra [Mil58, App. 1]

A, = ]F2[§17£27§3""]’

where |¢;| = 2" — 1. The Steenrod algebra A has an Fa-basis dual to the monomial
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basis of A,. The elements of the Fs-basis of A which are dual to ftzs are denoted
by P, and the elements P? are denoted by Q;_;. When s < ¢, the elements P are
exterior power generators, i.e. (P;)? = 0. Thus, any left A-module K can be regarded
as a complex with differential given by the left multiplication by P{ (for s < t). This
leads to the following definition.

Definition 1.1 ([Mar83]). Let K be any left A-module and 0 < s < t. Let
Lpl. K — K
denote the left action by P;. The left P; Margolis homology group of K, M (K, P3),
is defined as
_ KerlP;: K » K
C ImIP: K - K
For a right A-module K, one can similarly define the right P{ Margolis homology
group of K as

ME(K,P?)

7KerRPf:K%K
- ImBP K - K’

ME(K, P:) :

where RP: is the right action by P; on K.

Notation 1.2. For a spectrum X, M(X, P$) will denote ME(H*(X),P$) or equiv-
alently MP(H,(X),Ps).

Computations of Margolis homology underly many essential computations in homo-
topy theory. For example, Adams work on BP(1) cooperations [Ada74] relies on the
computations of M(BP(1),Q;) for i = 0,1. Calculations like M (bo,Q;) for i = 0,1
are essential ingredients in the work of Mahowald on bo-resolutions [Mah81]. More
recently, Culver described BP(2) resolutions [Cul19] by understanding M(BP(2),Q;)
for i = 0,1,2. Computation of M(tmf"",Q,) is an essential ingredient in [BBBT].

The element Q; is primitive for all 7 € N. In other words, the comultiplication map
A on A sends Q; to

AQ)=QR1+1®Q;. (1)
Consequently, Q; acts on H,(X) as a derivation, namely it follows the Leibniz rule
Qi(zy) = Qi(z) -y + 2 Qi(y),

whenever X is a ring spectrum. The Leibniz rule implies the Kiinneth isomorphism
[Mar83, Proposition 17, p. 343]

MX ®Y,Q;) = M(X,Q;) @ M(Y, Q)

and hence, M(X,Q;) is an Fy algebra whenever X is a ring spectrum. As a result,
computation of Q; Margolis homology and its description is often fairly straightfor-
ward.

On the other hand, for s > 0, P} is not a primitive element of A. In particular,

A(PH=Pl®l+Q, ®Q, +1® P}

and its action on H,(X) for a ring spectrum X, does not follow the Leibniz rule.
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Instead, we have
P3(zy) = P(2)y + Qi(z) Qi (y) + = P3(y)- (2)

As a result, the product of two P} cycles may not necessarily be a P3 cycle, hence
M(X,P}) may not admit any multiplicative structure even if X is a ring spectrum.
This is the main reason why the P Margolis homology calculations are significantly
more complicated.

Let us now consider the spectrum tmf. It is well-known ([HM14], [Mat16]) that

H*(tmf7F2) = F2[<187<§7<§’<47<57 . ] - A*

is a subalgebra of A,. Here the elements (; are the images of £; under the antipode
of the Hopf algebra A, (see Section 2). The right action of Q; is given by the formula
(see [Cull9, §2] for details)

i1
Qi(Cn) = Z—i—l'

Then, since the Q; are derivations, it can be easily seen that

8 2 42
M(tmf, Qo) = F2[¢F, (3], M(tmf, Q) = %,
.Ch .

4 42 2
and M(tmf,Qz)W'

In this paper, we give a complete calculation of M(tmf"" P}) for arbitrary r > 1. In
fact, the calculation for r > 1 follows from the case r = 1, because after forgetting
the internal grading one can construct a non-canonical isomorphism (see Section 4)

M(tmf"", Py) = M(tmf, Py).

For the case r = 1, we give an iterated algorithm (see Definition 3.14) that con-
structs an Fa-basis of M(tmf,P3). We give a complete description of M(tmf,P}) in
Theorem 3.16 which is the main result of this paper. Although M (¢mf,P}) is not
an algebra, we notice that M(tmf,P3) is a module over an infinitely generated exte-
rior algebra S (see Lemma 3.1 for a description of S). Theorem 3.16 also describes
M(tmf,P}) as an S-module.

The key tool we use is the length spectral sequence (9), which we define in Section 2.
The length spectral sequence admits a d differential and a dy differential and collapses
at the F3 page. The Leibniz rule does hold for the dy, but not for ds. In order to
work around this issue, we notice that the Ey page admits an action of S (i.e. dy are
S linear) and we use it to simplify the computation of Fo, = Fj3.

We also notice that almost identical calculations lead to a complete description of
M(((BZ/2)**),,P}). The methods developed in this paper can be considered as a
blueprint for computations of P} Margolis homology of a variety of other .A-modules.

Our calculations of M (tmf”", P}) have many applications, as the spectrum ¢mf has
a wide range of applications, particularly in chromatic homotopy theory. First note
that the cohomology of tmf, as a module over the Steenrod algebra A, is isomorphic
to (see [HM14], [Mat16])

H*(tmf; Fa) = AJJ A(2), (3)
where A(2) is the subalgebra of A generated by Sq',Sq? and Sq*. This, and a change of
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rings isomorphism, imply that the E5 page of the Adams spectral sequence converging
to tmf X (for a spectrum X) is

Eg’t = Ext%!

A(g)(H*(X)7F2)~ (4)

One can detect infinite families in the E5 page via the map

q: Brt, (H*(X),F2) — Extf\’gpé)(H*(X),Fg).

The codomain of ¢ can be understood by calculating M (X, P3). Note that

E.’L’ts’t (FQ,FQ) &~ }Fz[hg’l],

A(P3)
where |he 1| = (1,6) and

Falhe 1] ® M(X,P3) C Ea:tf\’(tpé)(H*(X),IFQ)

accounts for all the elements with positive s filtration. This shows that the knowledge
of M(X,P}) is crucial in detecting patterns in the Ea-page of (4).

Motivation I — Towards homotopy groups of K (2)-local sphere

Computation of the homotopy groups of L K(H)SO — the sphere spectrum localized
with respect to Morava K-theories K(n) at various primes p and heights n — is the
central question of chromatic homotopy theory. It is sometimes easier to compute
Ts L (n)X for finite complexes other than the sphere, although very little data like this
is known at n = p = 2 anyway. Recently, Bhattacharya and Egger introduced a family
of finite spectra Z [BE20a], and 7, Lk 2)Z has been computed [BBB", BE20b],
the first example of a finite complex at p = 2 whose K (2)-local homotopy groups are
completely determined. The finite complex Z can be constructed from the sphere
spectrum, by a succession of cofiber sequences of self-maps (see [BE20a]), the last
one of which is

ESAl/\CVAAl/\CV—)Z.

In a quest to leverage the knowledge of 7. L i (2)Z to m. L (2) S0 one must first attempt
to compute the K (2)-local homotopy groups of Ay A Cv. Very briefly, our strategy is
to use the vy-local tmf-based Adams spectral sequence

Et = vy bm(tmf /\WM NALNCv) = mi (L 2)A1 A Cv)

and compare it with that of Z. One can identify the Fi-page of the above spectral
sequence using the classical Adams spectral sequence

Byt = Ext N (H* (tmf Atmf"" A Ay A Cv),Fa) = m_o(tmf Atmf " A Ay ACv).
()
Because of (3) and the fact that H*(A; A Cv) = A(2) /A(Qq, P3), and the change of
rings isomorphism, the Es-page of the spectral sequence (5) has the form

Extst . (H*(tmf "), Fa).

A(Q2:P3)

Hence, computation of M(tmf"" P}) is essential for understanding the E,-page
of (5).
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Motivation IT — t¢mf resolution of the sphere spectrum

The connective spectrum bo is not a flat ring spectrum, hence the F, page of the
bo-based Adams spectral sequence does not have a straightforward expression like the
classical Adams spectral sequence. However, Lellmann and Mahowald [LIM87] were
able to calculate the dy differentials (also see [BBBT20]) and gave a description of
the “vi-periodic part” of the Fs-page. They identified the free Eilenberg—MacLane
summand of bo”\". To identify this free summand one needs to identify the A(1) free
summand of

H* (bo"") =2 AJJ A(1)®".

This can be done by calculating M(bo”",Qq) and M (bo™", Q;) and using the follow-
ing theorem due to Margolis.

Theorem 1.3 ([Mar83, Chapter 19, Theorem 6]). An A(n)-module K is free if and
only if M(K,P$) =0 whenever s+t <n+1 with s < t.

To emulate the strategy of Lellmann and Mahowald to understand the tmf-based
Adams spectral sequence for S° one needs to first identify the A(2)-free part of

H* (tmf"") = (A A(2)*".

Potentially, this can be identified using the knowledge of M (tmf"", Q;) for i = 0,1,2
and M(tmf"",P}), along with Theorem 1.3.

Motivation III — Infinite loop space of imf
There are A-modules J(k), called Brown-Gitler modules [BG73], which assemble
into a doubly graded .A-algebra, denoted here by J(x)*. Moreover, there is an .A-
module isomorphism J(x)* & Fy[xq, 79, ...] where z; € J(2%)! and the left A action
on J(x)* is [Sch94]
Sq(z;) = x; + x7_;.

In fact, J(k)* can be thought of as inheriting this action by virtue of being a subobject
of A. Because of this, minor modifications to methods of this paper apply to the calcu-
lation of M(J(k),P3). By [KIM13] there is a spectral sequence, obtained by studying
Goodwillie towers, relating the knowledge of H,(tmf;Fs) to that of H,(Q®tmf;F5)
(also see [HM16] which provides a spectral sequence relating the cohomology of tmf
to the cohomology of its infinite loop-space H*(2*°tmf;F3)). Roughly speaking, this
relies on computing certain derived functors, usually labeled Q%°, in the category of
unstable modules over A. It turns out that there is an isomorphism (see [Goe86] or
[HKO00))

QF T (A A@)). = Ext'yly (F2, J(+)),

so that these computations require an understanding of the J(k) as modules over
A(2), the hardest part of which is understanding how P3 acts.

Organization of the paper

In Section 2, we recall some facts about the Steenrod algebra and its dual. We
introduce the spectral sequence (9), which computes the P} Margolis homology of
tmf, and discuss the dy differentials in it.
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In Section 3, we compute the F3 = E., page of the spectral sequence (9). We
do that by introducing building blocks Mj; and computing M (My,P}). Then we
establish the relationship between M(tmf,P}) and M(M,P}) in Theorem 3.16.

In Section 4, we show how to apply the same methods to calculate P Margolis
homology for tmf"" and ((BZ/2)**),. Theorem 3.16 essentially gives the complete
answer in these cases.
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2. Action of P} and the length spectral sequence

The dual Steenrod algebra A, = m.(HF2 A HF3) has the structure of a graded
commutative algebra which Milnor [Mil58] showed to be a polynomial algebra

A* = F2[€17§27£37"']7

where [&;| = 2¢ — 1. Milnor defined Sq(r1,72,...) € A as the dual of £'&5? ... and
showed that they form an Fy basis of the Steenrod algebra A, known as the Milnor
basis. The P; elements are defined as

0, it

P; =Sq(ry,...), where r; =
¢ =Salr,--) {25, i=t

The action of an element a € A on an A-algebra follows the product rule given by
the Cartan formula, i.e.

a(z - y) = Siaj(z) - af (y),

where A(a) = 3;a} ® af is the comultiplication in the Hopf algebra A.

Remark 2.1. We would like to note that standard commonly used notation for the
generators of the dual Steenrod algebra at p =2 differs from the notation in the
original paper [Mil58], and we are grateful to John Rognes for explaining this to us.
In [Mil58, Appendix 1], Milnor denotes the polynomial generators of the dual Steenod
algebra at p = 2 by (;, so that A, = F5[(1, (2, ...] and defines Sq(r1, 72, ...) as dual to
the element ¢]*(5? - - - . It has since become standard in the literature [MT68, Ada74,
Mar83] to use a different notation and to denote the polynomial generators which
were denoted by ¢; in [Mil58, Appendix 1] by &;, in order to match the notation for
the odd primary Steenrod algebra. Hence in current standard notation Sq(r1,rs,...)
is dual to £]*&5% ---. The symbol ¢; is now usually used to denote the image of &;
under the antipode of the Hopf algebra x: A, — A, induced by the ‘flip map’ on



THE P21 MARGOLIS HOMOLOGY OF CONNECTIVE TOPOLOGICAL MODULAR FORMS 385

HFy A HF5. The elements (; = Xx(&;) can be computed recursively using the formula
Z §fjx(§j) = 0, together with the assumption that £, =1 and & = 0 when i < 0.
iti=k
The homology of tmf is the subalgebra of A, ([HM14], [Mat16, Theorem 5.13])
T := H.(tmf;Fa) = (A A2)). = F2[¢}, (5, ¢3,Ca, G5 )

Thus the action of A4 on ¥ is simply the restriction of the action of A on A.,.
The right action of A on A, is determined by the action of the total squaring
operation Sq =1+, ,Sq" [Peal4, Lemma 3.6]

C)Sa=G+G 1+ o+ -+ +1 (6)
which is a ring homomorphism.

Remark 2.2 (Action of the total squaring operation). There are multiple ways to
define the action of A on A,. While we will be using the action defined by (6), we
would like to collect other commonly used actions here. By [Mah81], the right and
left actions of Sq on &; are given by the formulas

Sq(&) = & + &4, (&)Sa =& + &1,
while the left action on (; is
Sq(Gi) =G+ Gim1+ -+ G+ 1.
From these formulas we can derive
Qi-1(€) = €25, (Gn) Qi1 = 2y

the second equation can also be found in [Cul19].

@ Important Notation 2.3. Since we only work with the right action of Sq in this
paper, we will write a(z) to denote the right action of @ € A on x € H,(tmf) for the
rest of the paper. Thus, from now on

a(z) = (z)a.

We now focus on the action of P} = Sq(0,2) = Sq” Sq* +5q*Sqg? on ¥. From (6),
one can easily see that Sq* acts trivially on ¢,, when i >0 and n # 1. It follows
immediately that

P3(¢G) = 0.
Beware! This does not mean that P3(¢;(;) =0, as the Leibniz rule does not hold.
Since A(P}) =P ®1 +Q; ® Q; +1 ® P4, we obtain the product formula

Pi(zy) = P3(2)y + Qi(z) Qu(y) + = P3(y). (7)
Using Q; (&) = ¢ o, we get
P%(CiCj) = Cf—QC;l—za P%(QQ) = Cz’s—z- (8)

Formulas become more complicated for triple products, e.g.
P3(Gi¢iCk) = ¢ila ?—QCk + ¢ aGiGhog + GG oG o,

and in general we have the following result.
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Lemma 2.4. The action of Py on ¥ is given by the formula

PYCh - G) = 3 St () @ (G)

1<iehn Gi; Gy,
4 4
= Z Cil s Cij—lgij72<ij+1 s Cik—lgik72cik+l s Ci'n.7
1<j<k<n
where indices are allowed to repeat.

Proof. Follows from an inductive argument on n, using (7) and the facts that P3(¢;) =
0 and Qi (&) = ¢t . O

The technique developed in this paper begins with the following observation. Con-
sider the subalgebra

&= FQ[C?7<35C§7<427§52’] C ‘I:FQ[ClgaC§7C327§4a<5a"'}

which we will call the even subalgebra of ¥, as every element in £ has even grading.
Since | Q1 | = 3 and every element in £ has even grading, Q; must act trivially on &.
Thus, P3 restricted to £°" follows the Leibniz rule, therefore (£€7, P1) is a differential
graded algebra, and hence, M(E®" Pl) is an algebra. Using (8) and the Kiinneth
isomorphism, we can easily deduce the following result.

Lemma 2.5. The P} Margolis homology of £ is given by
M(E,Py) = MG G5, Chs - )-
Moreover
M(E®,P3) = M(E,Py)®" 2 (A(G5, G5, G- )™
Notation 2.6. For a set A, we let F3(A) denote the Fa-vector space which has the

generating set A.

Now consider the quotient K := T /€ = Fy ®¢ T. We have an isomorphism C =
A((4,C5,- .- ), and the induced action of Q; and PL on K is trivial. The algebra K
admits a natural increasing filtration

GP(K:) = F2<Ci1 s Cik ‘k < p>a

induced by the length of the monomials. We call it the length filtration.
This length filtration on K induces an increasing filtration {G?(%)},>0 on ¥, where
GP(%) is the pullback of GP(K) (in vector spaces) along the quotient map T — K

GP(T)—— %

| |

GP(K) —— K.
Definition 2.7. Let I be a finite tuple of natural numbers, and for I = {i1,...,i,}
let ¢! denote the monomial (' ... ¢ . Then the length L of ¢! is defined by

11

L(¢") =) (i; mod 2).

J=1
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In other words, L(¢!) counts the number of odd exponents in ¢!. Then GP(%) is
the span of monomials ¢’ of length less than or equal to p

GP(T) 2 F2(¢'|L(¢T) < p).

The length function L measures “how far” a given monomial in ¥ is from the even
subalgebra £. Since there is an Fs-vector space isomorphism

TEQTNE=ERK

any monomial m € ¥ can be uniquely written as e - k where e € £ and k € K.

Ezample 2.8. If m = ($¢5(¢3, then there is an unique expression m = e -k, where
e= (322 € € and k= (5(s € K.

The following lemma shows that the action of Q; and P} preserves the length
filtration.

Lemma 2.9. Let m € T be any monomial.
(i) If m € €, then Qi (m) =0 and Pi(m) € £.
(i) If m ¢ &, then Q1(m) is a sum of monomials of length exactly L(m) — 1 and
Pi(m) =mp +mp_o,

where my, is a sum of monomials of length exactly L(m) and my_o is a sum of
monomials of length exactly L(m) — 2.

Proof. When m € £, Qi(m) =0 by the Leibniz rule. Using Lemma 2.4 we have
Pi(m) € & and L(P(m)) = L(m) = 0.

Now assume m ¢ £, which means m = e - k for some e € £ and some 1 # k € K.
Note that k is of the form (;, ... (;, , where indices do not repeat.

The action of Q is given by the formula

Qi (G ---Giv) ch. Cinr G —2Cinss -+ i

where we allow repetition of indices. Since Qq acts trivially on &, it follows that
Qi(e- k) =e- Qu(k).
From the formula above we see that Qi (k) # 0 and L(Qq(k)) = L(k) — 1. Hence,
L(Qi(m)) = L(e-Q1(k)) = L(Qu(k)) = L(k) —1=L(e-k) — 1= L(m) — 1.
Next, note that
P3(m) = P3(e) - k+ Qu(e) - Qu(k) + e - Py(k) = P3(e) - k + e - P5(k).

(
From Lemma 2.4, we see that L(P}(k)) = L(P1(k)) — 2 assuming P(k) # 0. Now set
Py (k)

(
my, = Pi(e) -k and my_o =e-Pi(k |

Lemma 2.10. The Hopf algebra A(Qq, P3) is commutative and cocommutative.
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Proof. Commutativity follows from the fact that P and Q; commute, see [AMT71],
Lemma 1.3(2) (in the notation of [AM71], P} = P5(2) and Q; = P»(1)). Cocommu-
tativity follows from the fact that the diagram

A(Q,PY) —2— A(Qy, PL) @ A(Qy, PY)

X\ lﬂip

A(Qla P%) Y A(Qla P%)

commutes, because of (1) and (2). O
If M is a A(Qq, Pi)-module then let C}; denote the periodic chain complex

Pl Pl Pl
=S M-S M
Its homology groups are isomorphic in each degree, i.e.
H,(Chy) = H;(CYy)

for all 4,5 € Z. We use M(M,P}) to denote this common homology group. When
M =%, the filtration G*(%) induces a filtration on C%. By Lemma 2.9, P} respects
the length filtration. This means we have a short exact sequence of chain complexes

- - [ ° GP(C%
0 EBpeZ G? 1(0‘5) — @pGZ GP(C‘E) E— @pez Gp+(§£) —0.

Upon taking the homology, this short exact sequence of chain complexes produces an
exact couple, resulting in a spectral sequence

Gr(Cs)

P,q .__ ¥/
EVY = HY <GP—1(C§)

> = H(CY).

We rewrite this spectral sequence as

EY =M (chpi% P5> = M(tmf,P}), (9)

and we call it the length spectral sequence.
The E; page of (9) is easy to calculate. Note that the length filtration G*(¥) is
multiplicative, i.e.

GP(T)-G¥(T) €GP (),
hence the associated graded
G"(%)
P ==K
-1
o GPTHE)
is an Fy-algebra. The action of A(Qq, P3) on & ® K is defined using the Cartan formula

as in the definition below.

Definition 2.11 ([Mar83], p. 186). Let I be any Hopf algebra. For two I'-modules
M and N, the underlying Fy vector space of M ® N is simply M ®p, N, and I' acts
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via the diagonal map, i.e.
m ® n Z al

where a € T" and A(a) = ), a; ® a}, where A is the coproduct of the Hopf algebra.

GP(%)

p>—1 Gl”—l(‘z) Write m =

Now we describe the action of P} on a monomial m € €
e ® k for some e € £ and k € K. By Definition 2.11

Pl(m) = Pile® k) = Pl(e) ® k.

Since P3 restricted to £ follows the Leibniz rule, the E; page of (9) is also an Fo-
algebra and isomorphic to

B = M(E®K,P3) =2 M(E,P3) @ K 2 A(G2. G5, ) ® AGa, G5y )

In order to avoid confusion regarding the multiplicative structure of E7, it is conve-
nient to rename the generators.

Notation 2.12. We set z; := (;43 and t; := 14+1~ Further, for finite subsets I =
{i1,...,int CNand J={j1,...,Jm} CN, we let t; and z; denote the monomi-
als ¢;, ...%;, and x;, ...x;, respectively. We use t;x; to denote the tensor product
tr®xy.

Lemma 2.9 and Lemma 2.10 imply that we have a commutative diagram of chain
complexes

0——— @, CP(Cy) —— @, G*+(C3) B, Gt 0
Ql()J/ Ql()l J/Ql()
0———@,G" 1 (Cs) ——— P, GP(CY) D, Gfi&fgé ) 0.

Consequently there is an action of Q; on each page of (9), which shifts the length
filtration by —1. In particular, we note Q;(x;) = t; and in general

t[x] Zt trey_ {i}- (10)
jeJ

Let m € ¥ be any monomial, my, and my_s be as in Lemma 2.9, and let [m] denote
the equivalence class in the E; page of (9) represented by m. Lemma 2.9 implies that
the dy differential of (9) is trivial,

da([m]) = [mp o]

for the class of the monomial m € ¥ in the E; page, and the spectral sequence (9)
collapses at the F5 page. If we write m € Tasm = e - k, where e € £ and k € K, then

da([m]) = [e - P3(k)] = [e] - [P3(k)]-

This means that the dy differential of (9) is M(E,P})-linear. It follows from the
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formula of Lemma 2.4 that

tIQJJ Z txtrcj_K, (11)
KeJ[2]

where J[2] is the set of subsets of J which contain two elements.

The formula for the do differentials is intimately related to the action of Q; on
the E5 page of (9). The A(Qq)-module structure on ES (see (10)) can be extended
to the A(Qq, P3)-module structure using the algebra structure of E3 and the product
formula (7), together with

P3(x;) = P3(t;) = 0.

The action of P3 that results from this procedure is

strzy) = Z trtiry_K (12)
KeJ[2

on the monomial basis, which can be extended to all of ES using Fs-linearity. Notice
that the action we obtain through this process coincides with the formula for the do
differentials (11).

3. The reduced length
For convenience, we denote the Es-page of (9) by
R=A{ti:iz21)@A(x;:i>1),

which is an Fy-algebra, as well as a A(Qy, P3)-module, where the actions of Q; and
Pl are given by (10) and (12) respectively. In this section we analyze the A(Q, P3)-
module structure of R, which leads us to a description of

ES = ...~ Fy~ H(ES, dy) = M(R,P3).

The main idea here is to notice (this will be shown in Lemma 3.3) that the action of
Pl is linear with respect to the subalgebra

S = A(t1$2|l € N+) C R,
which implies that M(R,P3}) admits an S-module structure.

Lemma 3.1. The subalgebra S C R is a trivial A(Qy, P3)-submodule which splits off
as a A(Qq, P})-module.

Proof. For any element tyjzy € S, it is clear from (10) and (11) that
Ql(t[{E[) =0= P%(t]l‘[).

Thus S is a trivial submodule.
Now observe from (10) and (11) that none of the monomials t;z; € S is a summand
of Qi (tp:@ ) or PY(t x ;) for any choice of I’ and J'. Hence, S is a split summand. [

Corollary 3.2. Every element of S is a nonzero cycle in the M(R,P3).

Lemma 3.3. The action of Py on R is S-linear.
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Proof. Tt is enough to show that
P%(tifci ctrxy) = (tix;) - P%(t]ﬂjj). (13)

If i € I, then t;t; = 0. Hence both the LHS and the RHS of (13) are zero.
If i € J, then x;x; = 0, hence LHS of (13) is zero. On the other hand,

RHS:ti$i~ Z th[IJ_K
KelJ[2]

= Z titrtiTiT K+t Z titrzizg_x | =0,
ieKeJ2) igKeJ[2]
as titx =0 when i € K and ;27— =0 when i ¢ K.
Now consider the case when ¢ ¢ TU J. Let I’ =T U {i} and J' = J U {i}. Then,

Pi(tiz; - tizy) = Py(tpay) = Z trtpry K
KeJ'[2]

= Z txtrxy g + Z txtrxy K
iEKeJ[2] igKeJ'[2)

= Z tktrry K

igKeT 2]
= tiw; - Z txtrzj—K
KeJ[2]

= ti.’Ei . P%(f[iﬂ{]). (|
Remark 3.4. While the Ey page of (9) admits an Fy-algebra structure, the E3 page
does not admit any multiplicative structure. This is because the ds differentials do
not follow the Leibniz rule and the product of dy cycles may not be a cycle. For
example, x; for all ¢ € Ny, is a da-cycle, whereas z;x; for ¢ # j supports a differential
da(w;xj) = t;t; by (11). Even if a, 8 and « - 3 are P} cycles it is unclear that the
pairing [a] - [8] = [ - 5] is well-defined in the E5 page.

Corollary 3.5. M(R,P3) is a module over the ring S.
Proof. By Lemma 3.3, there exists a pairing p: S ® R — R such that the diagram

SRR

1®P§i lPé

commutes. It follows that M(R,P3) is an S module. O
As a result, we only need to understand the action of P4 on the generators of R

when viewed as an S-module. In order to approach this problem we introduce the
notion of reduced length.
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Definition 3.6. For any monomial t;x; € R the reduced length ¢ is
Utzy) =|J Il =|JNI|=[J|=[]NI],
where I¢ denotes the complement of I.

Note that the length of t;z; € R is given by the formula L(¢t;z ;) = |J|; in other
words, it is counting the number of factors of x ;. Whereas, ¢(t;2 ;) counts only those
factors x; in x; for which ¢; is not a factor of ¢;. For example,

E(Z‘l) = g(t11715€2) = f(tltgmll‘gxg) = g(t1t2t3f£4) = 1,
K(xlxg) = K(tlmlxgxg) = €(t1t2t3t4x5x6) = 2

Remark 3.7. The reduced length function ¢ measures “how far” a given monomial in
R is from the subalgebra S.

For each i € N, let M; := A(Q;){x;} C R denote the A(Q,,P3)-submodule iso-
morphic to A(Q;) and generated by ;. For an indexing set K C N_, let

finite
My = ® Mj CR
JEK
with the convention that My := Fy. If the indexing set is [n] = {1,...,n} C Ny, then
we write M, to denote My . ny-
In Figure 1, Figure 2 and Figure 3 we present M;, M oy and My, o 3y respectively

as a A(Qq, PY)-module. In these figures the dotted curved lines depict the action of
Q; and dashed straight lines depict the action of P3.

T
t;

Figure 1: M; as a module over A(Qq, P3)

Figure 2: My as a module over A(Qq,P3), where [2] = {1,2}

Note that the set W := {t;x; € R|[I NJ = @} forms a generating set for R as an
S-module as any monomial t;x; € R can be uniquely written as a product of an
element of W and a monomial in S:

tixy =tingTing - ti—InnTs—anJg)-
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--- X1T223

t3r1To + tox1x3 + t1x2x3  t3T1%2 + 1023 tox1T3 + E3X1X2

|
|
l | . .
tltgxg + t1t3l’2 + tgtgl‘g : t1t2$3 + t2t3171 t1t3l’2 + tltgl‘g
|
|

Tttty - - - -

Figure 3: M3 as a module over A(Qy,P3), where [3] = {1,2,3}

For any finite subset K C N,
Wk = {t1$]|IUJ:K,IﬂJ:®} cWw
forms an Fa-basis for M, i.e. Fo(Wg) = Mk. Since

w= || Wk

K C Ny

finite
and Fo(Wg) = Mk is closed under the action of Q; and P} (these actions preserve
the total indexing set K, by (10) and (11)), we learn that

R//SgFZ(@SRgR@SIFQ%@MK
K

is an isomorphism of A(Qq, P})-modules. Consequently, we have the following lemma.

Lemma 3.8. Let Sk C S denote the subalgebra A(trxy|I C Ny — K). There is a
A(Qq, PY)-module isomorphism

P SxkoMg=R.

K CN
finite +

Proof. Consider the Fy-vector space isomorphism

t: R — @ Sk ® Mg
K C Ny

finite
which sends
trey = tingTing @ tr—nnTi—ans € Sk ® Mk,
where K = TUJ —INJ. The map ="' sends

lprp @ Tk—ATA = tBU(K—A) " TBUA;

where A C K. This map is also a A(Qq, P})-module isomorphism as Sx C S is a
trivial A(Qq, P3)-module by Lemma 3.1. O

Hence we can reduce the problem of computing M(R, P1) to computing M(Mp, P3)
for various finite subsets K of N . Thus, we first need to understand the structure of
My as a A(Qq, P3)-module.
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Remark 3.9. Let [n] denote the indexing set {1,...,n} C N;. If | K| = n, then there
exists the unique order preserving bijection

t:[n] — K

and it induces an isomorphism ¢: My =Ny Vs x- Thus it is enough to understand
A(Qq, P3)-module structure of M, for all n € N,.

As depicted in Figure 3, Mg splits as a A(Qq, P1)-module

M[iﬂ = A(le P%){x1x2x3} D A(Ql){t3x1$2 + t1~7321'3} S¥ A(Ql){tgxlxg, + t3$1$2}
(14)
as a sum of a free A(Qy, P3)-module and two copies of A(Qy).
Remark 3.10. The splitting of (14) is a consequence of Lemma 2.10. Since A(Qy, P3)
is cocommutative, for any A(Qq,P3)-module M and o € F3[%,,], the induced map
o: M®" — MO
is a map of A(Q;,P3)-modules. Note that in the group ring Fo[¥3], the identity
element can be written as a sum of idempotent elements
L=e+ fi+fo
For example, one can choosee =1+ (123)+(123), f1=1+(12)+(13)+(132)
and fo =14 (12)+ (13)+ (12 3). Then we have
M®? = e(M®?) @ fL(M®) ® fo(M*=?).
When M = A(Q;), we get the decomposition of (14).

The splitting of (14), along with the following fact about finite dimensional Hopf
algebras, is the key to understanding the structure of M.

Theorem 3.11 ([NZ89]). If H is a finite dimensional connected Hopf algebra over
a field F, then for any H-module M, H ® M is a free H-module.

Let us denote by A the A(Qy, P4)-module isomorphic to A(Q;) and let B := A ® A.
Then using (14) and Theorem 3.11, we notice that

My = B® A= {Free} ® A%?, My = {Free} ® B®?, M5 = {Free} & A%,

where {Free} denotes a free A(Qy, P3) module. This iterative process can be continued
as described in Lemma 3.12 below. We use A{y}, resp. B{y}, to specify that y
generates A, resp. B, as a A(Qq, P}) module. For example, M; = A{z;}.

Lemma 3.12. There exist elements hoyi1,; € Migyi1) with £(hory1:) =7+ 1 such
that, as a A(Qq, PY)-module,

27’
Mg, 11) = {Free} & (@ A{h2r+1,i}> :

i=1
There exist elements hay; € M, with {(haq1,:) =+ 1 such that, as a A(Qy,P3)-

module
27“71

Mo, = { Free} @ @ B{ha i}

i=1
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Proof. Our proof is by induction on r. From Figure 1, Figure 2 and Figure 3, the
claim is true for k£ = 1,2, 3. Note that

hii =z, ha1 = 122, hs1 = (tsz1 + x3t1)z2, hso = (toxs + t3xa)T1.
Now assume that the result is true for 2r — 1, i.e.
Mip,_1) = {Free} & @ A{hor_1,},
1<ig2r—1
where £(ha,—1,;) = r and {Free} is a free A(Q;,P})-module. It follows that
Mg & Mg, _1) @ My, = ({Free} ® A{wa ))& € Blhar-1i- 22}
1<ig2r—1
By Theorem 3.11, the first summand is, again, a free module. Set
hzm' = h2r—1,i + T2y
and notice £(hop—1 22r) = l(hor_1,) + L(x2r) =7+ 1.

To complete the inductive argument, observe

M[2r+1] = M[Qr—l] ® B{x2rx2r+1}

= ({Free} & & A{hgru}> ® B{z2,T2r41}

1<ig2r—1

= {Free} & @ (A{h2rt12i-1} © A{hor12i}),

1<ig2r -1

where one can define the generators ha,_1 ; from Figure 3 by replacing x1, z2, 23 with
hor_1,i, 2y and zor 41 respectively. More specifically, one can define

h2r+1,2i—1 = Ql(h27'—1,i '$2r+1) * L2r, h2r+1,2i = h2r—1,i : Q1(332r3«"2r+1)~
It is easy to check that £(hoyy1;) =7+ 1. O

Following the proof of Lemma 3.12, we can provide an explicit basis of M (M, P3).
By Remark 3.9 it suffices to provide a basis for M (M), P3) for all n > 1. We do so
inductively (see Definition 3.14), however we must treat the odd and the even case
separately, essentially because of Lemma 3.12. Since A is a trivial A(P})-module,
M(A,PL) = A, and we get

27 2"
M(M[2r+1]> Pé) = M <@ A{h2r+1,i}7 P%) = @ A{h2r+1,i}'
1=1 i=1

Thus the collection
{hor41,: 1 1 <1< 2" U{Qq(horg1,:) 1 1 <i <27}
is an [Fo-basis of M (Mg, 11, P1). When n is even, say n = 2r, then

or— 1

M(M[Qr]7 P%) = @ M(B{hzr,i}7 P%)
=1

Now note that, if B{z ® y} = A{z} ® A{y} (where z and y are generators), then
{Qi(@) @y, 2@ Quy)}
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is an Fy-basis of M(B{z ® y}, P}). Using the fact that

hori = hor_1, - T2p,
we get Corollary 3.13 and Definition 3.14 thereafter.
Corollary 3.13. Let M(M,Pl), = {x € M(Mg,PY)|t(z) =1}.
If |[K| =2r 41, then

2", afl=rr+1,

dim M (Mg, P3); = { 0 otherwise.

If |K| = 2r, then

. 2", ifl=r,
dim M(Mp, P3), :{ 0, otjlczerwise,

Proof. Lemma 3.12 implies

M[2T+1] = {Free} @ @ A{h2T+1’i},

1<i<2r

where {(ho,41,) =7+ 1. By Lemma 2.9 we have £(Qq(hor11,)) = 7. Thus {hor41,}
is the basis for M(Mg,41), P3)r+1 and {Qq(har41,4)} is the basis for M(Ma, 41, P3)r-
Applying Remark 3.9 we deduce the statement about dimension for any My with
|K|=2r+1.

For the even case we have from Lemma 3.12

M[Zr] = {Free} &) @ B{hgr)i},

1<ig2r-1
where £(hy, ;) =r+ 1. Then for each i, M(B{hay;},P}) = M(B{ha,;},P}), is an
Fy vector space of dimension 2 generated by {hoy—1,; - tor, Q1(hor—1,;) - T2, }. O

Definition 3.14. We define the basis By, ; of M (M, P1); for 0 < I < n inductively
starting with By o = {t1} and Bjy),; = {x1}. Suppose we have defined

{har—11,-- s hap_12r1} ifi=r,
Bigr_1y = {Qu(h2r—11),--,Qi(hgp_yor-1)} ifl=7r—1,
) otherwise.

Then define:

B[Qr],r = {h2r71,1 't2r7 [ER) ]7127'—1,27”*2 't2r} ) {Ql(h2r71,1) TL2ry ey Ql(hZT—l,ZT*Q) 'x2T}

and set By, = 0 if I # 7.

Now define hori1,2i-1 = Q1 (hor—1,i) - (T2ri1 - T2r) and hopg1,2i =hor—1,i - Q1 (T2rT2r41)
and set

{h2T+1,1,...,h2r+1’2r—2} if [ :T+17
Bigrg1y = 1Qu(h2rs1,1)s- -, Qulhgrgror—2)}  ifl =1,
] otherwise.

We let By, denote the union | J; By, Let Bk denote the image of the By, under the
isomorphism ¢: M, — M of Remark 3.9.
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Ezample 3.15 (Examples of B ). We explicitly identify B, using Definition 3.14 for
n < 4, and for n = 1,2,3 we can compare to Figures 1, 2 and 3, to see that By, is
indeed the basis for M (M, P3).

o By = {t1, 21},

[ ] B[Q] = {tle,thl},

o Bz = {titaws + titzwa, titaws + totzw1 } U {t3z102 + tax 123, (37122 + t17273},

o By = {titaw3xy +t1t37924, titax3xy +tatz124, tatam172 +tatam123, tatsm170

+t1t4$2$3}.

Note that Pk :=Fy(Bk) C Mk is a split summand. This is because the inclu-
sion map Px — My induces M(—, P})-isomorphism, or equivalently, the quotient
My /Py is a free A(P})-module.

Theorem 3.16. Let K be a finite subset of Ny. Let
SBy :={trxr - b|INK =0 and b € Bk} CR.
Then
B:= || SBxk

K CN
finite +

forms a basis of the Fy-vector space M(tmf,PL) and
M(tmf PY) = P F2(SBk)= P Sk ® M(Mg,P3)

K CN K CN
fmite T fnite T

is an isomorphism of Fo-vector spaces.

Proof. By Lemma 3.8, we have a A(Q;,P3) module isomorphism

R =~ @ Sk ® Mxk.

K C Ny

finite

Therefore, the linearity of the action of P (see Corollary 3.5) with respect to elements
in S gives us

M(tmf,P3) = M(R,P3) = M (@K c n, SK ®MK7P%>

finite

@k ¢ n, Sk @M(Mg,Py) =Dy v, Sk ® Pr

finite finite

=@ ¢ n, F2(SBk). O

finite
Remark 3.17. Let e denote the exchange map e: R — R which sends
e:tjxy—tyxg.

It seems to be the case that [m] € M(¢mf,PL) if and only if [e(m)] € M(tmf,PL).
The source of such symmetry is unclear to the authors, although it might be related
to Spanier—Whitehead duality.
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Finally, we would like to say a word about the module structure of M(tmf,P})
over S. Note that the collection of elements

Bs := {f[l’[‘[ C N+}
finite

forms an Fa-basis of S. The S-module structure on M (tmf,P3) is extended from a
pairing at the level of bases

Bs ® SBx & SBg
-8’ - fINK =
s® (s b) s <S,S> b, f INK =0,
0, if INK #0.

Remark 3.18. Recall that H,(tmf) was described in terms of ¢;. We can convert an
element of the Margolis homology expressed in terms of ¢; and x; back to an expression
involving (; using the identifications of Notation 2.12. For example,

t4t9’l,’2(£6 + t2t91’4l’6

can be identified with the class represented by element (2(7,Co + (5(10¢r¢0 € T.

4. P! Margolis homology of tmf"" and ((BZ/2)**),

4.1. P} Margolis homology of tmf""
Note that

H, (tmf"") = H,(tmf)®" = TO".

We first extend the notion of length to T®". For a monomial ¢]... ¢! for (T € T®7,
which is a tensor product of monomials in ¥, we define

L) = LK) + -+ L(¢).

We define the even subalgebra E, of T®” as the span of those monomials in T®"
whose lengths are zero. Observe that,

E, = %7,

The notion of length leads to an increasing filtration on T®", called the length filtra-
tion, by setting

GP(T) = {(¢"]. . [ [ LM ™) < p}-

Let K, = K®", where K is as defined in Section 2. Just like in the case r = 1, we get
a length spectral sequence and its F; page is

E} = M(E,,P3) @ K, = M(tmf"",P5). (15)
Since the action of P} follows the Leibniz rule when restricted to &£, we get

M(E,,P3) = M(E,P3)""
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Notation 4.1. For shorthand, we denote
zij = (1. [1[Ges|1] ... 1), tig= (1. LIkl ] ]D).
N~—— ~—— ~—— N ed
i1 r—j i1 r—j
With this notation we have
Qi (i5) = ti;.
Using Notation 4.1, we see that the E; page of the length spectral sequence (15),
as an algebra, is isomorphic to
Ry =At;;:ieN-{0},1<j<7)QA(z;;:1e N={0},1<j<r).
It is easy to see that the map induced by the reindexing map
L: (Zvj) = T(Z - 1) +j7

produces a (non-canonical) isomorphism of algebras between R,. (the FE5 page of (15))
and R (the Ey page of (9)), after forgetting the internal grading. This is also an
isomorphism of A(Qy, P3)-modules. Thus we have an isomorphism

Le: M(tmf,P}) = M(tmf"", P3)
induced by the ¢. Therefore, Theorem 3.16 essentially gives a complete calculation of
M(tmf"" PL).
Example 4.2. For example, let us assume r =3. Then the element totyxgxg +
toteramg € M(tmf,P}) (see Example 3.15) corresponds to the element
t1,0t2,102,373,3 + t1,2t2 32021233 € M(tmfABa P3)

under the bijection obtained from the above reindexing. When expressed in terms of
¢is (see Notation 4.1), the same element can be expressed as

G51621¢5Ca11 + 5163 1C3 Gol L.
Remark 4.3 (P4 Margolis homology of Brown—Gitler spectra). It is well-known that

H,(tmf) = €D H.(2*bo,),

i>0

where bo; are certain Brown—Gitler spectra associated with bo. In [Mah81] Mahowald
defined a multiplicative weight function, which is given by w(¢;) = 201, H,(X%bo;)
is the summand of H,(¢mf) which consists of elements of Mahowald weight exactly
equal to 8. We assign Mahowald weight of ¢; ; and x; ; as
w(tiy) = w(zi;) =27

It follows that the Margolis homology M(bog, A -+ Abo,. ,P3) is a summand of
M(tmf"",P3). Tt consists of all polynomials of M(tmf"",P}) expressed in terms
of x; j and t; ; such that w(z; ;) = w(t; ;) = 4q;.

Remark 4.4. While it is true that R, = R®", as an Fo-algebra as well as a A(Qq, P3)-
module, it is not useful for the purposes of calculating M(R,, P3). This is because
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Pl does not obey the Leibniz rule and
M(Ry, P3) # M(R,P3)®".

However we overcome this difficulty by producing a A(Qq, P})-module isomorphism
L« at the expense of forgetting the internal grading.

4.2. P} Margolis homology of ((BZ/2)*%)

The space BZ/2 is also known as RP™, the real infinite-dimensional projective
space. It is well-known that

H*((BZ/2),F2) = Fsfa]
and therefore
H*(((BZ)2)*%)4,Fy) = Fala1, ... zx).

It can be seen that Pi(z;) = 0 and Q(z;) = x}. We again define the length function
on the monomials in the usual way

L(z} ...x*) = (i mod 2) + - + (i), mod 2).
The even complex &£, which is the span of elements of length zero, is isomorphic to
E =Tz}, ... 23]

It can be seen that Pi(z?) = x%. Now observe that Q; acts trivially on &, hence P}
acts as a derivation and, therefore,

M(E,PY) = Azt ..., x}).
Now the length function gives us an increasing length filtration
GP(Fylzy, ..., xx]) = ]F2<(Eil .. x;’“ : L(gci1 .. x?j) < p).

This results in a length spectral sequence which only has dy and dy differentials. If
we denote x} by t; for convenience, we can see that the action of Q; on the E;-page
of the length spectral sequence

EY =A(ty,... . t) @ Az1, ..., x1) = M((BZ/2)*%),,Pl)

is determined by the formula Q;(x;) = t; and the Leibniz rule. Since the ds-differen-
tials are determined by the Qp-action on the Ej-page, we conclude that the length
spectral sequence above is a sub spectral sequence of (9), in fact, isomorphic to
it when k = oco. Thus, when k is finite, we can recover a complete description of
M(((BZ/2)**),P}) from Theorem 3.16. More precisely, we obtain

M((BZ/2)*")+,P3) = @ Sk © M(Mx,Py),

KC[k]

where Si = A(t;z; |i € [k] — K) and M(((BZ/2)**);,P}) is a module over S.

Ezample 4.5. M(RPY, Pl) = Fy(x1,t1,t121), where the internal degrees of 21 and t;
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are 1 and 4 respectively and Spjj = A(t121). Similarly,
M((RPOO X R]P)OO)_H P%) = F2<£C1, T, tl, tQ, tixq, t2$2,

t1xo, tox1, t1T1 T2, taToT1, trtaa, t1tar),

where the internal degrees of x; and t; are 1 and 4 respectively. Here Spo) = A(t121,
toxy). If we denote

H*(RP x RP>).) = Fyy, 2],

where |y| = |z| = 1, then one may choose z1 = [z], x2 = [y], t1 = [z%] and t5 = [y*].
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