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ABSTRACT
We present a kinetic stability analysis of the solar wind electron distribution function consisting of the Maxwellian core and
the magnetic-field aligned strahl, a superthermal electron beam propagating away from the sun. We use an electron strahl
distribution function obtained as a solution of a weakly collisional drift-kinetic equation, representative of a strahl affected by
Coulomb collisions but unadulterated by possible broadening from turbulence. This distribution function is essentially non-
Maxwellian and varies with the heliospheric distance. The stability analysis is performed with the Vlasov–Maxwell linear
solver LEOPARD. We find that depending on the heliospheric distance, the core-strahl electron distribution becomes unstable with
respect to sunward-propagating kinetic-Alfvén, magnetosonic, and whistler modes, in a broad range of propagation angles. The
wavenumbers of the unstable modes are close to the ion inertial scales, and the radial distances at which the instabilities first
appear are on the order of 1 au. However, we have not detected any instabilities driven by resonant wave interactions with the
superthermal strahl electrons. Instead, the observed instabilities are triggered by a relative drift between the electron and ion
cores necessary to maintain zero electric current in the solar wind frame (ion frame). Contrary to strahl distributions modelled
by shifted Maxwellians, the electron strahl obtained as a solution of the kinetic equation is stable. Our results are consistent with
the previous studies based on a more restricted solution for the electron strahl.
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1 INTRODUCTION

Observations demonstrate that the velocity distribution functions of
electrons in the solar wind are essentially non-Maxwellian. They can
be broken into three distinct subpopulations, an isotropic thermal
core population comprising the majority of particles, a high energy
nearly isotropic ‘halo’ surrounding the core, and a tenuous field-
aligned beam of particles propagating away from the sun called the
‘strahl’ (e.g. Feldman et al. 1975; Pilipp et al. 1987; Salem et al.
2003; Maksimovic et al. 2005; Štverák et al. 2008; Pierrard et al.
2016; Wilson et al. 2018). The strahl population may carry significant
outward heat flux, as the solar wind expands radially outwards. Since
the net current of the system is negligible, the presence of the strahl
subpopulation requires a sunward drift of core electrons relative
to the proton rest frame. Such an anisotropic electron distribution
is expected to lead to a class of instabilities that may generate
magnetosonic, Alfvén, kinetic-Alfvén, and whistler waves. These
waves are of interest because they may lead to turbulence that could,
in turn, pitch-angle scatter the energetic electrons and thus regulate
the electron heat flux. In particular, attention has been attracted
to the whistler modes that can directly resonate with and scatter
the strahl electrons (e.g. Forslund 1970; Gary et al. 1975, 1994;
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Vocks et al. 2005; Gary & Saito 2007; Pagel et al. 2007; Saito &
Gary 2007; Pierrard, Lazar & Schlickeiser 2011; Lacombe et al.
2014; Seough et al. 2015; Kajdič et al. 2016; Stansby et al. 2016;
Tang, Zank & Kolobov 2018; Boldyrev & Horaites 2019; Verscharen
et al. 2019; López et al. 2020). However, many of the previous
studies on strahl-related instabilities modelled particle distributions
with Maxwellian (anisotropic, shifted Maxwellian) subpopulations.
While such studies provide pivotal insight to electron instabilities in
the solar wind, kinetic models generally allow for more accurate first
principle studies of collisionless plasma dynamics.

Possibly the most straightforward theoretical description of non-
Maxwellian strahls is provided by kinetic exospheric models. Such
models are based on the simplifying assumption that plasma close to
the sun is collisional within some critical distance r0 (∼5−10 solar
radii), but becomes collisionless at radial distances greater than r0.
(In reality, this is of course an approximation since the collisionality
decreases gradually in the scale of a few solar radii.) When collisions
are negligible, the energy and magnetic moment of the electrons are
conserved as they stream along the spatially expanding magnetic
field lines (Hollweg 1970; Jockers 1970; Lemaire & Scherer 1973;
Scudder & Olbert 1979; Lie-Svendsen, Hansteen & Leer 1997;
Maksimovic, Pierrard & Lemaire 1997; Meyer-Vernet & Issautier
1998; Pierrard, Maksimovic & Lemaire 1999; Lie-Svendsen & Leer
2000; Scudder & Karimabadi 2013; Horaites et al. 2018a,b; Horaites,
Boldyrev & Medvedev 2019). These models demonstrate that the
free-streaming fast electrons lead to the generation of the ambipolar
electric field, so that the electrons retained by the ambipolar potential
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lead to the electron core formation, while those escaping it form the
electron strahl.

Such models may also be formulated to include the effects of
weak Coulomb collisions and electron interactions with background
turbulence. The inclusion of collisional pitch-angle scattering allows
for the explanation of the strahl structure, strahl-width scaling with
the electron energy and density in some observations, and also of
the scaling of the electron core temperature with the heliospheric
distance (e.g. Landi & Pantellini 2001; Landi, Matteini & Pantellini
2012; Horaites et al. 2018a,b; Horaites et al. 2019; Boldyrev, Forest &
Egedal 2020; Berčič, Landi & Maksimović 2021). Inclusion of strahl
scattering by whistler turbulence allows one, in turn, to explain the
effects of anomalously strong (that is, stronger than that predicted by
Coulomb collisions) strahl broadening with the heliospheric distance
and with the electron energy (e.g. Hammond et al. 1996; Pierrard
et al. 2011; Anderson et al. 2012; Graham et al. 2017; Tang et al.
2018; Berčič et al. 2019; Boldyrev & Horaites 2019; López et al.
2019; Verscharen et al. 2019; Micera et al. 2020; Tang, Zank &
Kolobov 2020). The possibilities have also been explored that the
energetic halo component may be formed due to strong scattering and
isotropization of the strahl electrons by the mechanisms mentioned
above (Štverák et al. 2009), or may consist of the electron population
scattered from the strahl and trapped by the magnetic field at larger
heliospheric distances (Horaites et al. 2019).

A crucial question related to the kinetic models of strahl formation
deals with the stability of a plasma with such an anisotropic, beam-
like component of the electron distribution. Indeed, if the strahl dis-
tribution is inherently unstable with respect to some plasma modes,
then the solutions provided by the kinetic models are non-realizable
as the electron strahls can be effectively destroyed (scattered) by
resonant interactions with the excited waves. The unstable waves
should satisfy the resonance condition, ω − k‖v‖ = n�e, where ω is
the (positive) wave frequency, �e is the (positive) electron cyclotron
frequency, v‖ is the electron velocity along the direction of the
magnetic field, and k‖ is the wavenumber along the direction of
the magnetic field (we assume, without loss of generality, that
the magnetic field is directed away from the sun). Particles of an
antisunward moving strahl (v‖ > 0) can interact with the whistlers
through the cyclotron resonance (n= 1) and the so-called anomalous
cyclotron resonance (n = −1). Since for the whistlers ω < �e,
the cyclotron resonance is possible when k‖v‖ < 0, that is, the
whistlers should propagate towards the sun. The anomalous cyclotron
resonance is possible if k‖v‖ > 0. An illuminating discussion of these
cases can be found in Verscharen et al. (2019), where it is argued that
in the former case, the whistler-related strahl instability is impossible,
while in the latter the answer depends on the parameters of the
electron distribution.

In Horaites et al. (2018a, 2018b, 2019), the strahl distribution
function was derived based on the drift-kinetic equation for the
electrons with weak Coulomb collisions. The drift-kinetic equation
describes the distribution function averaged over fast period of
particle gyromotion in the limit when the gyroradius is much smaller
than the typical scales of magnetic field variation, a situation well
satisfied in the solar wind (e.g. Kulsrud 2005; Held et al. 2001;
Held, Callen & Hegna 2003; Smith, Marsch & Helander 2012).
It provides a physically realistic description of the electron strahl
that deviates significantly from a shifted Maxwellian. The stability
analysis performed in Horaites et al. (2018b) led to the main
conclusion that the strahl electron distribution was stable, that is,
it did not lead to the excitation of whistler waves resonating with
the strahl. Rather, two instabilities related to low-frequency oblique
magnetosonic and kinetic-Alfvén waves were detected. The model by

Horaites et al. (2018b), however, used two important approximations.
First, the strahl distribution function was derived from the drift-
kinetic equation at high energies but then smoothly matched at lower
energies with the core electron distribution function to mimic the
observations. Second, it addressed only the heliospheric distance on
the order of 1 au. A recent development of the model (Boldyrev &
Horaites 2019; Boldyrev et al. 2020) allows one to derive the strahl
component in a broader range of energies above the core thermal
energy, and for the distances all the way down to the collisional
region.

In this paper, we numerically study the stability of the electron
distribution function consisting of the core and strahl components,
as a function of heliospheric distance. We address principal questions
of whether the result of Horaites et al. (2018b) about the absence of
strahl-resonating instabilities holds for the complete kinetic solution
obtained in Boldyrev & Horaites (2019), whether new instabilities
become possible, and whether the instability thresholds depend on
the heliospheric distance. Similarly to Horaites et al. (2018b), we
use the LEOPARD Maxwell–Vlasov solver (Astfalk & Jenko 2017) to
perform a linear stability analysis for varying radial distances.1 We
obtain the following results.

First, we find that at no heliospheric distance does the strahl distri-
bution become unstable to cyclotron resonances. This confirms and
reinforces the previous result by Horaites et al. (2018b). Secondly, we
find that depending on the heliospheric distance, the electron velocity
distribution is prone to a new quasi-parallel whistler instability, in
addition to oblique fast magnetosonic modes and kinetic Alvén
instabilities previously also observed by Horaites et al. (2018b).
However, this new instability as well as the old ones found by
Horaites et al. (2018b) are not due to strahl resonances, rather,
they satisfy a Landau–Cherenkov resonance condition ω ≈ k‖vd ,
where vd is the drift velocity between the electron and ion velocity
distribution function cores. Such a shift in the core velocities is a
general consequence of the presence of the energetic electron strahl,
which ensures that the electric current is zero in the ion frame.
All the unstable waves propagate in the direction of the electron-
core drift, that is, in the sunward direction. An analogous whistler
instability has been previously reported by Vasko et al. (2020) based
on an electron distribution model different from ours; see also a
comprehensive analysis of instabilities caused by shifted Maxwellian
electron distribution functions by López et al. (2020).

Third, the obtained instabilities have thresholds that depend on
heliospheric distance. For our (somewhat arbitrary but representative
of the solar wind) plasma parameters, we found that all such critical
distances are comparable to 1 au. The wavelengths of the unstable
modes are found to be comparable to the ion inertial scale di,
potentially making the obtained instabilities effective sources of
kinetic-scale turbulence at the corresponding heliospheric distances
(in agreement with previous findings by Horaites et al. 2018b).
The origin and structure of kinetic-scale plasma turbulence and
in particular its role in solar-wind plasma heating and particle
acceleration are not fully understood questions. Such questions
have been addressed in many phenomenological, numerical, and
observational studies (see e.g. Howes et al. 2008, 2011; Schekochihin
et al. 2009; Alexandrova et al. 2009; Kiyani et al. 2009; Chen et al.
2010, 2012, 2014, 2020; Sahraoui et al. 2013; Boldyrev et al. 2015;

1We note that our focus in this study is on low-frequency modes, which are
well captured by LEOPARD. We do not focus on high-frequency electrostatic
modes, that as discussed in Verscharen et al. (2019), may not contribute to
self-induced strahl scattering.
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Stability of solar wind strahl electrons 1331

Table 1. Radial scaling for electron and
ion temperatures, density, and magnetic field
strength adopted in our modelling. Ion and
electron temperatures at 1 au are taken from
Wilson et al. (2018). The plasma density is
assumed to be 4 cm−3 at 1 au. Here, ne(r) =
nc(r) + ns(r) ≈ nc(r), since the fraction of the
strahl electrons is small. The magnetic field
scaling comes from the Parker spiral model,
assuming that the magnetic field lines are at
45◦ to the radial direction at r = 1 au.

Te(r) = 12.21 eV
( r

1 au

)−0.5

Ti (r) = 12.7 eV
( r

1 au

)−0.7

ni (r) = ne(r) = 4 cm−3
(

r
1 au

)−2

B(r) = B0
(

r0
r

)2
√

1 + (
r

1 au

)2

Chen 2016; Bale et al. 2016, 2019; Franci et al. 2018; Grošelj
et al. 2018; Phan et al. 2018; Passot, Sulem & Tassi 2018; Kasper
et al. 2019; Roytershteyn et al. 2019; Sharma Pyakurel et al. 2019;
Stawarz et al. 2019; Boldyrev & Loureiro 2019; Vega et al. 2020;
Milanese et al. 2020; Vasko et al. 2020). Our analysis suggests
that the instabilities exist in a broad range of angles with respect
to the background magnetic field, so the generated kinetic-scale
turbulence may not be restricted to parallel or oblique angles of
propagation.

2 ELECTRON VELOCITY DISTRIBUTION

For our analysis, we assume a Maxwellian for the ion velocity
distribution, while we represent the electron distribution function
as the sum of the Maxwellian core and the strahl, f (v⊥, v‖; r) =
fc(v⊥, v‖; r) + fs(v⊥, v‖; r). Here, v⊥ and v‖ are the velocity com-
ponents perpendicular and parallel to the background magnetic field
and r is the heliospheric distance. Observationally, the temperature of
the electron core declines with the heliospheric distance according
to a power law, Te(r) ∝ r−0.3. . . r−0.7, which varies depending on
whether fast or slow solar wind is considered (e.g. Štverák, Trávnı́ček
& Hellinger 2015). This is broadly consistent with available analytic
(Boldyrev et al. 2020) and numerical (Berčič et al. 2021) solutions of
kinetic exospheric models. For our analysis, we chose Te(r) ∝ r−0.5,
although the precise value of the scaling exponent is not crucial for
our conclusions. Our results do not qualitatively change for other
choices of the temperature scaling.

We emphasize here that we do not use a Maxwellian representation
for the electron strahl distribution fs, rather its form is derived from
a first principles kinetic equation with weak Coulomb collisions.
In this respect, we may call such an electron distribution a more
realistic model for a collisionless plasma as compared to a shifted
Maxwellian. We note that predictions of kinetic exospheric models
qualitatively agree with some solar wind observations in the inner
heliosphere; for instance, the relative number of particles in the
strahl, the scaling of strahl angular width with the electron energy
and density, and the electron temperature scaling with heliospheric
distance (e.g. Boldyrev & Horaites 2019; Horaites et al. 2019;
Boldyrev et al. 2020; Berčič et al. 2021). We also note that our model
does not include background turbulence and associated anomalous
pitch-angle scattering of strahl electrons as sometimes seen in
observations. This is logical, since our goal is to study whether the

Table 2. The plasma parameters for the strahl model: λ0 is the mean free
path, T0 is the electron temperature, n0 is the density, and B0 is the magnetic
field strength at r= r0. � is the Coulomb logarithm, and φ∞ is the ambipolar
potential developed in a plasma (Boldyrev et al. 2020). Values for T0 and n0

follow from evaluating functions in Table 1 at distance r0. The corresponding
plasma beta parameters vary with heliospheric distance in the ranges βe ∼
0.05. . . 0.3 and β i ∼ 0.1. . . 0.3.

r0 T0 n0 B0 λ0 � eφ∞/T0

5R
 80 eV 7e3 cm−3 0.1042 G 1.075R
 20 4

electron strahl predicted by a kinetic model is inherently unstable to
such turbulent fluctuations in the first place.

We approximate the background magnetic field structure by a
Parker spiral, and make an assumption that the electron and ion
distributions are Maxwellian in the collisional region, r ≈ r0, but
collisions become weak at r > r0. The variations of the model
parameters with the radial distance are summarized in Table 1.
They are fit to typical solar wind radial scaling for ion and electron
temperatures (Štverák et al. 2015; Wilson et al. 2018). For densities
and magnetic field strength, we use scaling laws from the Parker
spiral model fit to typical 1 au values. We emphasize that although
these choices do not represent the entire range of variability in
the solar wind, they represent reasonable solar wind conditions
(e.g. Cranmer et al. 2009; Bale et al. 2016; Roytershteyn et al.
2019). Small adjustments to these choices give qualitatively similar
results.

The strahl distribution function has been obtained in (Boldyrev &
Horaites 2019) as a solution of the drift-kinetic equation (e.g. Kulsrud
2005) with weak Coulomb pitch-angle scattering. This function has
the form:

fs(v, θ ; r) = A0F0
λ0

R(r)

[

E + eφ∞

eφ∞

]

E

T0
exp

(
−
E

T0

)

× exp

(
−E
Esin2θ

T 2
0

λ0

R(r)

B0

B(r)

)
, (1)

where

R(r) ≈ r

[
1 − 2

(
Te(r)


E

)
+ 2

(
Te(r)


E

)2

log

(
Te(r)


E
+ 1

)]
, (2)

and

A0 = n0

(
me

2πT0

)3/2

, F0 = eφ∞
T0

exp

(
−eφ∞

T0

)
≈

√
me

mi

. (3)

Here, the velocity dependence is contained in 
E = mev
2/2 − Te(r)

and E = mev
2/2, the pitch angle θ is the angle between the local

magnetic field and velocity vector, and the parameters of the plasma
at r0 are given in Table 2. These represent a fiducial set of parameters
that illustrate the properties of our model. By definition, equation (1)
is valid only for v‖ > 0. To avoid discontinuities in the electron
distribution we use a sharp hyperbolic tangent cut-off at v‖ = 0,
although the particular form of the cut-off is not essential, since the
distribution function is dominated by the Maxwellian core at small
v‖. Indeed, the fraction of electrons in the strahl is relatively small; as
was demonstrated in Boldyrev & Horaites (2019) and Boldyrev et al.
(2020), equation (1) leads to an estimate ns/ne ∝ √

me/mi . At 1 au,
the resulting strahl fraction is about 5 per cent of the total electron
population, which is consistent with observations (e.g. Maksimovic
et al. 2005; Štverák et al. 2009; Graham et al. 2017).

To match steady-state solar wind conditions, we ensure that the
numerical system has zero net parallel current. Working in the rest
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Figure 1. Full electron distribution at 1 au normalized to unity. The
distribution is comprised of an isotropic Maxwellian core and the analytical
strahl model equation (1). Note that the v⊥ width of the strahl decreases as
v‖ increases.

frame of the protons, modelled as a non-drifting Maxwellian, we
are left with the electron core and the strahl. Separating the electron
parallel current between the two subpopulations gives

J‖ = J‖,c + J‖,s . (4)

If the electron core with density nc is allowed to drift in the parallel
direction with drift velocity vd, the parallel current is

J‖,c = ncvd . (5)

We numerically integrate equation (1) to obtain J‖,s and assign the
electron Maxwellian core component an antiparallel (sunward) drift
to exactly compensate for the strahl current and give J‖ = 0:

vd = −J‖,s/nc. (6)

In Fig. 1, we show the total electron velocity distribution at a
distance of 1 au. Several key features of this core-strahl model deviate
from bi-Maxwellian representations. At a given distance, the strahl
width decreases as a function of electron energy [see equation (18)
in Boldyrev & Horaites 2019], resulting in the high-energy tail
narrowing with increasing parallel velocities. As distance is varied
the strahl narrows from the sun out to about 1 au due to magnetic
focusing effects. At larger radial distances, the strahl width saturates
as diffusive effects of Coulomb collisions balance the focusing effect
of decreasing magnetic field strength.

In Fig. 2, we show the radial evolution of the parallel electron
velocity distribution function. The electron distribution obtained in
the kinetic model, f (v⊥, v‖; r), is, in general, not a monotonically
declining function of v‖. Rather, starting from a certain heliospheric
distance, f (0, v‖; r) progressively develops a slight ‘bump on tail’
that becomes more pronounced as the heliosperical distance increases
and the core-electron temperature declines. Closer inspection of
the distribution, however, reveals that the v⊥-width of the strahl
is a decreasing function of v‖. As a result, when integrated over
v⊥, the distribution of the quasi one-dimensional electron beam,∫

f (v⊥, v‖; r)dv⊥, turns out to be a declining function of v‖ at
all distances r, thus not leading to electrostatic electron-beam
instabilities.

3 STABILITY ANALYSIS

We perform our stability analysis using the Linear Electromagnetic
Oscillations in Plasma with Arbitrary Rotationally-symmetric Dis-
tributions code (LEOPARD), which directly integrates the fully kinetic
dielectric tensor components to solve for the complex frequencies of
electromagnetic plasma waves (Astfalk & Jenko 2017). The ability

(a)

(b)

Figure 2. Radial evolution of the electron distribution function for velocities
parallel to the Parker spiral shaped magnetic field. The distributions shown
here are normalized to unity. As distance increases, the electron core tem-
perature decreases with a −1/2 power. Simultaneously the strahl distribution
increases in parallel intensity and requires a higher velocity shift between
electron and ion core distributions in order to maintain net zero current. (a)
In a cut along v⊥ = 0, these effects compound to reveal a positive velocity
gradient ∂f /∂v‖ around 5 × 106 m s−1. (b) When integrated along v⊥,
however, the distribution shows no positive gradients.

to input any gyrotropic distribution function makes this code an
ideal tool to study stability properties of the distribution presented in
Section 2.

LEOPARD employs an iterative scheme to find the complex solution
ω(k). The code iterates through |k| at fixed angle θ , given a sign
convention for real frequencies that Re[ω] > 0 for waves propagating
parallel to magnetic field lines and Re[ω] < 0 for waves propagating
antiparallel to the magnetic field. The imaginary part of the solution
describes the stability of a given wave mode. A wave is stable when
Im[ω] < 0 and unstable when Im[ω] > 0. To find appropriate initial
guesses for the fast magnetosonic and shear Alfvén wave branch
we refer to results in a previous stability study of electron strahl by
Horaites et al. (2018b).

Before we proceed with a detailed stability analysis, we would like
to illustrate the advantage of the numerical solution over its analytic
counterpart at small kinetic scales, which becomes essential already
in the case of isotropic Maxwellian ion and electron distributions.
Fig. 3 shows LEOPARD results for the kinetic-scale whistler modes,
kdi � 1. The numerical results are compared to an analytical whistler
dispersion relation that takes into account the electron inertial terms
(e.g. Biskamp et al. 1999; Chen & Boldyrev 2017), and finite
gyroradius corrections (Passot, Sulem & Tassi 2017; Passot et al.
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Stability of solar wind strahl electrons 1333

Figure 3. Comparison of analytic and numerical solutions for the whistler
dispersion relations in isotropic Maxwellian plasma. Here, solid lines are the
numerical LEOPARD result, while the dashed lines are an analytical dispersion
relation given by equation (7). For reference, the electron gyroscale is ρe =√

βeme/midi , which for θ = 75◦ gives k⊥ρe = 1 at kdi ∼ 445 for βe = 0.01,
and kdi ∼ 140 for βe = 0.1. Because dissipation becomes very strong beyond
this scale, curves in the lower panel are only plotted out to the k⊥ρe = 1.
Note that the electron beta should be rather small for the analytic theory to
provide a good approximation for the true dispersion relations.

2018):

ω =
k‖k

(
1 + βeme

4mi
k2

⊥
)

(
1 + me

mi
k2 + βem

2
e

2m2
i

k4
⊥
)1/2

(
1 + me

mi
k2

)1/2 . (7)

Here, ω is normalized to the ion gyrofrequency �i = eB/mi and
wavenumbers are normalized to the inverse ion inertial scale d−1

i =
�i/vA. Terms (me/mi)k2 then correspond to electron inertial effects,
while terms proportional to βe are finite Larmor radius corrections (it
is assumed that the Larmor radius corrections are small). This model
is valid for low electron beta systems, for spatial scales between the
ion and electron gyroradii. For the low beta case with βe = 10−2,
we find good agreement between numerical results and analytical
theory as spatial scales approach the electron gyroscale. However,
when we increase plasma beta to values more relevant to solar wind
conditions in the inner heliosphere, βe ∼ 0.1, numerical results
deviate significantly from analytical theory at small scales, especially
for highly oblique angles of propagation. These whistler results
for simple isotropic Maxwellian plasmas illustrate the importance
of using more precise numerical solutions when good accuracy is
required.

We now turn to the analysis of the electron core-strahl model
described above. We use LEOPARD to solve for complex frequencies.
We start our numerical solution at small wavenumbers, where the
dissipation is weak, and continue it iteratively for larger k. We analyse
the cases of sunward (anti-parallel to the strahl) and antisunward
(parallel to the strahl) propagating waves separately.

Figure 4. Radial evolution of the whistler branch at a quasiparallel angle
of 28◦. This angle corresponds to the closest heliospheric distance at which
the whistler instability appears for the chosen solar wind parameters. The
radial distance for the instability onset is marked with a cyan diamond in the
colourbar.

Sunward propagating waves. We search for instabilities related to
the fast magnetosonic (FM)–whistler and the shear Alfvén–kinetic
Alfvén (KAW) branches. For all these modes and for a broad range
of angles (0◦−89◦), we observed rapidly increasing dissipation at
spatial scales kdi � 8 and thus we chose to cut-off iterations at
this scale. For both branches, we, however, observed instabilities
at k values ranging from kdi = 0.05 − 8. Since the electron
distribution varies with the heliospheric distance, the instability
thresholds depend on the distance as well. All such critical distances
turn out to be on the order of one astronomical unit.

Fig. 4 shows frequencies, growth rates, and propagation angle
for the whistler mode (kdi > 1) that becomes unstable at the
shortest heliospheric distance. This instability was not detected in
the previous analysis by Horaites et al. (2018b), possibly because
that work was limited to a heliospheric distance around 1 au. At
the furthest distance considered in our analysis, whistler waves
are unstable in a broad range of angles from nearly parallel up to
well beyond 54◦ (shown in Fig. 5). We have also verified (but do
not present here) that these low frequency anti-parallel whistlers
remain unstable under slight variations in parameters (both larger
and smaller values of density, temperature, mean free path at solar
corona, and radial core temperature scaling), which only slightly
affect quantitative results on radial instability onset. We conclude
that this whistler mode is a robust instability feature for this electron
distribution function.

In order to illustrate the physical mechanism of the instability,
consider the whistler waves propagating at an angle θ = 28◦. In this
case, the instability begins at r≈ 1.45 au, with a peak in growth rates
at kdi ≈ −2 and ω ≈ 3.9�i. The electron core drift (with respect to the
ion core, with negative sign indicating sunward drift) at this radius
is vd ≈ −3.3vA. Using these values we estimate k‖vd ≈ 5.8�i and
ω ≈ 3.9�i. We therefore see that the instability parameters for the
observed whistler instability most closely satisfy a general Landau–
Cherenkov resonance condition caused by drifting beams of charged

MNRAS 507, 1329–1336 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/1/1329/6335496 by U
niversity of W

isconsin-M
adison Libraries user on 08 O

ctober 2021



1334 J. M. Schroeder, S. Boldyrev and P. Astfalk

Figure 5. Radial evolution of the fast magnetosonic/whistler branch at an
oblique angle of 54◦. The radial onset of fast magnetosonic instability is
marked with a yellow x, and whistler instability is marked with a cyan
diamond in the colourbar. This angle shows the closest distance of fast
magnetosonic instability for the chosen parameters. Whistler instability
begins further from the sun than at lower angles, but quickly exceeds lower
angles in relative growth rate.

particles (electron and ion cores) given by

ω = k · v ≈ k‖vd . (8)

(The use of vd in evaluating the resonance condition approximates
a resonant velocity on the peak of the electron core. The exact
resonance location occurs in a region of positive velocity gradient
between the ion and electron core peaks, which explains why k‖vd is
a slight overestimate of the resonant value.) While we show values
only for the case of θ = 28◦ propagation (which corresponds to the
shortest distance at which instability occurs), the same analysis holds
for other angles. The whistler modes are, therefore, excited due to
a Landau–Cherenkov resonance with the drifting electron core, and
not due to a cyclotron resonance with the highly energetic strahl.

In the sunward propagation domain, we have also investigated
other wave instabilities previously found by Horaites et al. (2018b).
Fast magnetosonic modes occur at oblique angles, peaking at an
angle of 54◦ shown in Fig. 5. Kinetic Alfvén waves are seen in
a range of nearly perpendicular angles with the fastest growing
mode around 86◦, shown in Fig. 6. The radial onsets of the FM
and KAW instabilities occur at a similar distance closer than the
onset of whistler waves. Similarly to the whistler case, the resonance
conditions indicate the presence of a core drift resonance, rather than
a resonance with the strahl particles. Indeed, for KAWs propagating
at an angle θ = 86◦, instability begins at r ≈ 1.25 au where the core
drift is vd ≈ −2.75vA, and a peak in growth rates occurs at scale kdi
≈ −2.5 where ω ≈ 0.25�i. Using these values, we estimate k‖vd

≈ 0.47�i, which gives close agreement to the resonance condition
given by equation (8). For the magnetosonic waves propagating at
an angle θ = 54◦, the instability begins at r ≈ 1.1 au where vd ≈
−2.5vA, with the largest growth rate at scale kdi ≈ −0.5 where ω ≈
0.55�i. We therefore estimate k‖vd ≈ 0.735�i, which is once again

Figure 6. Radial evolution of the shear Alvén / KAW branch for a highly
oblique angle of 86◦. The radial onset of Alfvén instability is marked with a
yellow x. This angle shows the closest distance of KAW instability for the
chosen parameters.

quite close to the Landau resonance condition (8). The obtained
frequencies and wave numbers of growing modes are inconsistent
with a cyclotron resonance with the strahl particles.

Antisunward propagating waves. We have searched for insta-
bilities of antisunward propagating Alfvén, kinetic Alfvén, mag-
netosonic, and whistler modes in the same range of angles (θ
= 0◦−89◦) as for the sunward waves and did not detected any
instabilities at either small (kdi < 1) or large (kdi > 1) wavevectors.
We specifically studied the whistler waves at an angular resolution
of 5◦ between 5◦ and 85◦ for scales approaching the gyroradius
(up to kdi ∼ 60 for oblique angles) and found that their dissipation
rapidly increases at such scales. In particular, we have not detected
the presence of a strahl-driven fan instability (e.g. Kadomtsev &
Pogutse 1968; Parail & Pogutse 1978; Vasko et al. 2019), which
would exist at scales 1/de 
 k⊥ 
 1/ρe and wave propagation
angles

√
me/mi 
 (π/2) − θ 
 1, where the oblique whistler mode

transforms, according to equation (7), into the mode ω = �ek‖/k⊥
(here we are using dimensional variables). In our case, such modes
are dissipated very strongly, since our electron beta parameters are
not very small, βe ∼ 0.05. . . 0.3, and as a consequence, the separation
between the electron inertial scale de and the gyroscale ρe where the
dissipation becomes strong, is not sufficiently large.

4 CONCLUSIONS

To summarize our results, we have conducted linear stability analysis
of a physically realistic distribution function for solar wind electrons.
This function follows from a first principles kinetic approach and
consists of a Maxwellian core and an antisunward directed strahl
obtained as a solution of a weakly collisional drift-kinetic equation.
We have focused on fast magnetosonic, whistler, Alfvén, and kinetic
Alfén wave modes. We obtained the thresholds of wave instabilities
as functions of heliospheric distances and propagation angles. As
an important qualitative result (that extends previous more limited
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analysis by Horaites et al. 2018b), we have found no instabilities
driven by wave resonances with the strahl particles at any distance.
This suggests that a realistic electron strahl distribution obtained as
a solution of a kinetic exospheric model [Boldyrev & Horaites 2019;
see also models developed in, e.g., Landi et al. (2012) and Berčič
et al. (2021)] is inherently stable and, therefore, physically realizable.

The model we consider is of course idealized in that it assumes
laminar background plasma flow and ignores pre-existing perturba-
tions in magnetic flux tubes and plasma turbulence, which certainly
are important effects in solar wind evolution (see e.g. Halekas et al.
2020; Maksimovic et al. 2020). In this respect, the considered model
may not describe the shape of the strahl seen in observations when
strong pitch angle scattering by background turbulence is present
(such anomalous scattering effects may in principle be included in
such models, see Tang et al. 2018; Tang et al. 2020; Boldyrev &
Horaites 2019). However, we believe that exospheric models are
good starting points for understanding the physics of electron strahl
formation. Moreover, they may shed light on the origin of kinetic
instabilities and resulting kinetic-scale turbulence in the solar wind.

The instabilities that we have detected in the considered exospheric
model are not strahl-resonating, rather, they are related to the relative
drifts between the electron and ion cores. We found that depending
on the heliospheric distance, the low-frequency kinetic-scale (kdi ∼
1) kinetic Alfvén, magnetosonic, or whistler modes become linearly
unstable. While such modes do not directly interact with the strahl
particles, after an initial growth phase, their nonlinear interactions
may lead to turbulent cascades, so that high-frequency whistler
modes are eventually generated that are able to scatter energetic
electrons, and, possibly, broaden or significantly diffuse the strahl.
The topic of driven turbulent cascades of whistler modes requires
non-linear analysis that is beyond the scope of our consideration
(e.g. Livshitz & Tsytovich 1972; Boldyrev 1995; Biskamp et al.
1999; Galtier & Bhattacharjee 2003). It is interesting, however, that
all the obtained instability thresholds correspond to distances on
the order of 1 au, suggesting that kinetic-scale whistler turbulence
should be effectively generated by such mechanisms only at relatively
large heliospheric distances. It is also worth pointing out that the
generated fluctuations may cover a broad range of propagation
angles, thus suggesting that kinetic-scale turbulence is not necessarily
strongly oblique or limited to directions aligned with magnetic-field
lines.
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López R. A., Shaaban S. M., Lazar M., Poedts S., Yoon P. H., Micera A.,

Lapenta G., 2019, ApJ, 882, L8
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