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Abstract

The published literature on topology optimization has exploded over the last two decades to include methods that use shape and
topological derivatives or evolutionary algorithms formulated on various geometric representations and parametrizations. One of the
key challenges of all these methods is the massive computational cost associated with 3D topology optimization problems.

We introduce a transfer learning method based on a convolutional neural network that (1) can handle high-resolution 3D design
domains of various shapes and topologies; (2) supports real-time design space explorations as the domain and boundary conditions
change; (3) requires a much smaller set of high-resolution examples for the improvement of learning in a new task compared to
traditional deep learning networks; (4) is multiple orders of magnitude more efficient than the established gradient-based methods,
such as SIMP. We provide numerous 2D and 3D examples to showcase the effectiveness and accuracy of our proposed approach,
including for design domains that are unseen to our source network, as well as the generalization capabilities of the transfer learning-
based approach. Our experiments achieved an average binary accuracy around 95% at real-time prediction rates. These properties, in
turn, suggest that the proposed transfer-learning method may serve as the first practical underlying framework for real-time 3D design

exploration based on topology optimization.
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1. Introduction

Topology optimization (TO) seeks the optimum material dis-
tribution given an objective function, a design domain, and a set
of boundary conditions. Each optimization is an iterative pro-
cess, often requiring hundreds of iterations. From a computa-
tional standpoint, running a 3D TO requires the investment of
most of the available computational effort to solve the analy-
sis equations for every iteration. The associated computational
cost, which is significant for any problem that approaches real
conditions, typically depends on the dimensionality and reso-
lution of the domain, on the number of design variables being
used, as well as on the numerical solution procedure itself. A
good and relatively recent review of the popular numerical so-
lution procedure approaches can be found in [1] and a detailed
discussion of the computational cost involved can be found in
[2] and [3]. Very recently, various machine learning algorithms
have been proposed to tackle the massive computational cost of
established gradient-based TO methods, including convolutional
neural network (CNN) [4], generative adversarial network [5],
and conditional generative adversarial network [6]. While these
approaches are promising, the training needed by these methods
requires large datasets that are computationally expensive to gen-
erate, as discussed below. Furthermore, these methods have not
been shown to be capable of handling multiple boundary condi-
tions, domains with different topologies and geometries, or high-
resolution 3D domains.

In this paper we introduce a transfer learning method based
on a convolutional neural network that (1) can handle high-
resolution 3D design domains of various shapes and topologies;
(2) supports real-time design space explorations as the domain
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and boundary conditions change; (3) requires a much smaller set
of high-resolution examples for the improvement of learning in
a new task compared to traditional deep learning networks; and
(4) is multiple orders of magnitude more efficient than the estab-
lished gradient-based methods.

2. Background

The published literature on topology optimization has ex-
ploded over the last two decades to include methods that use
shape and topological derivatives or evolutionary algorithms for-
mulated on various geometric representations and parametriza-
tions. Different approaches have been developed to search for the
optimal shape, including approaches based on material density
functions [7]; level sets [8}|9]; topological derivatives [10}|11];
phase fields [12]; and several other variations [1]. One popular
and established approach based on material density, known as
Solid Isotropic Material with Penalization (SIMP) [7], finds the
optimal topology by changing the material density of elements in
the unit interval [0, 1]. The methods based on topological deriva-
tives aim to predict the sensitivity of the problem to the addition
of an infinitesimal hole at prescribed locations inside the design
domain, and this information is used to generate new holes [13].

One of the key challenges of all these methods is the im-
mense computational cost associated with 3D topology optimiza-
tion problems, so it is not surprising that there is an extensive
body of work dedicated to improving the computational cost of
TO. Parallel computing has been employed in |14]] for large scale
topology optimization by dividing the domain into sub-domains
that are independently solved on separate processors. The re-
sults presented in [14] present an optimization of a domain with
24x80x128 elements in 234 minutes using 16 processors. The
work described in [15]] relies on a high-performance multigrid
GPU solver to find the optimum solution of models with millions
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of elements. Their method solved on the GPU a 200x100x100
cantilever beam with 50 iterations, and volume fraction of 0.8
in 2.4 minutes. Observe that standard SIMP implementations
[16}|17] require more than 120 iterations for convergence, even
for simple cantilever beams. Design space adjustment and refine-
ment is employed in [18] to speed up the computations for large-
scale domains. This work performs TO for an MMB beam with
10800 elements in 5.5 minutes, which is roughly a third of the
time required by a SIMP implementation to produce a solution
to the same problem. Other papers, such as [19], have employed
the reduction of the the number of design variables to decrease
the computational cost, and showed the capability to produce an
optimal solution of a cantilever beam in 10.12 minutes compared
to 20.2 minutes required by a SIMP-based solver.

As mentioned above, machine learning methods have been re-
cently used to tackle the computational efficiency of the topol-
ogy optimization problem. For example, the work discussed
in [20] uses machine learning to tune the numerical parameters
that control the convergence of established topology optimiza-
tion algorithms to avoid the manual tuning, which is computa-
tionally costly. CNNs have been applied to estimate the opti-
mal topologies for 3D low resolution beams [4], or 2D domains
[214122]123124]. Moreover, CNNs have been very recently used
to predict the optimum 2D structure for simple low resolution 2D
domains [25]. In this paper, the authors claim a generalization
ability of their network primarily because they explicitly input
into the network the initial displacement and strain fields as well
as the volume fraction, rather then the explicit boundary condi-
tions. However, they use 80,000 training samples and 10,000
test samples, which is simply prohibitive for any problem that is
of reasonable complexity. At the same time, different versions
of GANs have been used to optimize the topology of 3D can-
tilever beams [26], 2D low resolution cantilever beams |27/ 28],
and 2D high resolution beams [5}|6]. Variational auto-encoders
(VAE) and supported vector regression (SVR) have been applied
to 2D low resolution domains with different boundary conditions
[29], and cantilever beam [30], respectively. All these methods
can reduce the TO computational time for given domain resolu-
tion, set of boundary conditions, and initial domain as long as
large amounts of data are available. However, applying these
methods to tasks that the algorithms have not been trained on re-
quires new large sets of training data. This is not only impractical
for any topology optimization problem of reasonable complexity,
but also makes these methods unsuitable for design space explo-
rations.

A key assumption of most machine learning algorithms is that
the training data and task data are in the same feature space and
have the same distribution. This is a reasonable assumption as
long as the training data is relatively painless to generate and
abundant. However, this is definitely not the case in many en-
gineering application, including topology optimization. Transfer
learning has emerged as one promising learning algorithm that
has the potential to greatly improve the learning performance by
limiting the amount of training that needs to be performed to
adapt the algorithms to new scenarios. It aims to imitate one
of the distinctive features of human intelligence, that is, to ef-
fectively transfer previously learned knowledge to new domains
[31}132]. Transfer learning has been successfully used in medical
image processing [33], and brain-computer interface calibration
[34].

2.1. Contributions and Outline

In this paper we propose a transfer learning approach that we
developed specifically for topology optimization. We show that
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Figure 1: A schematic diagram of transfer learning after [35]

the method produces highly accurate predictions of the optimal
3D topologies at real-time rates for non-trivial 2D and 3D high
resolution TO problems. Furthermore, we show that the pro-
posed method serves as the first practical underlying framework
for real-time 3D design explorations based on topology opti-
mization, and that fine tuning/retraining the proposed learning
algorithm for new tasks can be done with a much smaller high-
resolution dataset than the traditional deep learning networks. To
the best of our knowledge, this paper documents the first promis-
ing attempt to use transfer learning for topology optimization.
The rest of the paper is organized as follows. Section
presents the formulation of the proposed method, as well as a
detailed description of the implementation and data generation.
This section also includes a discussion of the source and target
networks as well as of the two metrics that we used to evaluate
our network. Section[4[illustrates the generality and flexibility of
our approach by providing a variety of 2D and 3D examples with
different resolutions, boundary conditions and design spaces, in-
cluding design domains that are unseeen to the source network.
These examples show that the proposed method supports real-
time design space explorations as the domain and boundary con-
ditions change and is multiple orders of magnitude more efficient
than the established methods for both 2D and 3D design scenar-
ios. Finally, Section summarizes the key advantages and limi-
tations of the proposed method and of its potential applications.

3. Problem Formulation

We describe the proposed method in the context of the well
known minimum compliance topology optimization problem,
which is considered to be a “global response” of a structure.
However, our method can be equally well applied to TO prob-
lems that consider more local responses in their objective func-
tions, such as stress-based TO [36].

The general topology optimization method aims to find the
spatial distribution of material p(x) that minimizes an objective
function f(€, p), subject to various constraints g; < 0, where the
state field u satisfies given state equation. It is common to assume
that the objective function is expressed as an integral over a local
function such as the strain energy density [1]], and to solve the
problem using the finite element method. In the SIMP method,
each element is associated with a density variable p, € [0, 1],
where 0 corresponds to an empty element, and 1 to an element
completely filled with material. This optimization problem can
be formulated as
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where Q is the domain; p is the design variable vector of den-
sities; U and F are the global displacement and force vectors,
respectively; K is the global stiffness matrix; u, is the element
displacement vector; k(e) is the element stiffness matrix for an
element with unit Young’s modulus; v, and p, are the element
volume and density of element e, respectively; and V,,,, is the
volume upper bound. E,(p,) is the element’s Young’s modulus
determined by the element density p,:

Ee(pe) = Enin +P§(E0 - Emin)a Pe € [09 1] (5)

In equation , E, represents the stiffness of the material, E,,;,
is a very small number, and p is a penalization factor [37/[1].

3.1. Topology Optimization with Transfer Learning

One of the distinctive features of human intelligence is the
ability to effectively transfer previously learned knowledge to
new application domains. We all use this capability every sin-
gle day even without realizing it [38]. In contrast, most ma-
chine learning algorithms are trained on and function only on
well defined tasks. Transfer learning aims to improve this limita-
tion by transferring the knowledge from a source task to improve
the performance in target task that is different from but related
to the source task. Every transfer learning algorithm uses spe-
cific learning algorithms to learn the tasks at hand, which is why
transfer learning is often described as extensions of those learn-
ing algorithms.

In a broad sense, transfer learning deals with 3 different ques-
tions: (1) what information should be transferred; (2) how to
transfer the information; and (3) when to transfer it. As an ex-
ample, for the topology optimization task discussed in this paper,
we transfer the weights and biases of all layers of the source net-
work except for the last layer. To address the second question,
we implemented a mechanism to transfer this knowledge from
the source network to the target network with minimal retrain-
ing. The third question deals with establishing the cases when
the knowledge transfer should be performed, i.e., the validity of
the transfer learning method [35]], and this is often addressed by
measuring the performance to new tasks. This is also the ap-
proach that we take in this paper.

Because optimizing a high resolution domain using state of
the art gradient based TO methods, including the popular SIMP

method, is always computationally very expensive, generating
sufficient training data for practical design scenarios becomes a
crucial bottleneck. This is why we developed a deep transfer
learning method that uses a fully convolutional neural network,
which allows us to transfer the knowledge obtained from training
the algorithm on low resolution models to be usable on high res-
olution cases with different design domains and boundary condi-
tions that the source network has not been trained on.

Figureillustrates how transfer learning works. First, a source
model is built and trained with a large amount of low resolution
data, which is relatively inexpensive from a computational point
of view. This is followed by transferring what the source model
learned to a target model operating on different but related tasks.
This process allows the use of a much smaller amount of data
to retrain/fine tune the target model to improve learning in the
target task. In our implementation, the source and target models
are CNN based decoder-encoders with the source model trained
on large amount of low resolution (and thus relatively inexpen-
sive) data, and the target model retrained for the new task with
relatively small high-resolution datasets.

The overall architecture is illustrated in Fig The input is the
design space and the boundary conditions. For the examples pre-
sented in this paper we only considered externally applied forces,
but adding externally applied torques is straightforward. During
the final step, we build the target network described in section

by augmenting the source network with additional layers, and
train it with the high resolution data.

3.2. Network Architecture and Network Training

Convolutional Neural Networks (CNNs) have been success-
fully used in object classification and segmentation tasks. More
recently, a number of papers have shown CNNs to be trainable
and effective on large datasets for solving inverse problems in
imaging, such as denoising, deconvolution, super-resolution, and
medical image reconstruction. These inverse problems practi-
cally involve the determination of an image from noisy measure-
ments. Since the datasets output by SIMP can loosely be consid-
ered as a special case of these inverse problems, the architectures
of our source and target networks are inspired by some of the
work described in reviewed in [39] and elsewhere.

Our source network is a two-dimensional encoder-decoder
based convolutional neural network (CNN) illustrated in Fig|3|
The encoder part includes eight convolutional layers with the
rectified linear unit (ReLU) activation function, and three max-
pooling layers. The decoder part of our source network in-
cludes three transposed convolutional layers and seven convolu-
tional layers using the ReLU activation function. We trained the
network using the ADAM optimizer [40], which is a standard
gradient-based optimization algorithm. The ADAM optimizer
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Figure 3: The architecture of the source and target networks. Numbers below the boxes denote the number of filters used.

finds the optimal weights and biases of the network that mini-
mize the loss between the predicted structures and the simulated
structures according to the mean squared error (MSE).

We built our target network on top of the source network as il-
lustrated in Figure To the end of the source network we added
one transposed convolutional layer to increase the output dimen-
sion of the pre-trained network to the higher resolution, as well as
three trainable convolutional layers. To the front of the network,
we added a rescaling function to downsample the higher resolu-
tion input to the target network to the lower resolution required
by the source network.

Prior to training the target network, we remove the last layer of
the pre-trained network. This modification is based on measuring
the accuracy of the predictions as described in the next section.
This modified target network is trained as described in section
with ADAM as the optimizer and MSE as the loss function.

Importantly, we trained the source network only once for a
given dimension of the space (2D or 3D). This trained source
network is integrated within the target network, which is re-
trained/fine tuned with smaller datasets for new design domains
and/or boundary conditions.

3.3. Data Generation

We used freely available SIMP-based topology optimization
finite element codes to generate our training and test
cases, and we modified the codes to automate the training/test
case generation for different domains and boundary conditions.
The input to the codes are the following design variables and
physical quantities: voxelized domain geometry, volume frac-
tion, filter radius (see [47] for details), loading boundary con-
ditions (number, magnitudes, directions, spatial locations), and
displacement boundary conditions. We prescribed to the SIMP
codes a volume fraction equal to 0.5 and a 1.5 filter radius.

We sampled the magnitudes of the force components using
uniform random sampling within the range [-100, 100]N. The
spatial location on the domain boundary where the external load
was applied was chosen based on a uniform random sampling
within prescribed ranges along the coordinate axes. For exam-
ple, the force components P, and P, for a 2D beam domain are

applied within the range [%, b.] and [0, b,], respectively, where
by and b, are the beam dimensions in the x and y directions. We
also used a discrete random sampling to select one of the defined
displacement boundary constraints illustrated in Fig

With this random sampling of the boundary conditions we
generated two datasets: a low-resolution dataset for our source
network, and a smaller, high resolution dataset for the target
model. Those two datasets with distinct elements, were then
split into training and testing datasets, where the latter was at
least 20% of the former. Details about the sizes of these datasets
are provided in Sectlons-and- 4.2] The individual sizes of the
testing datasets for our examples are shown in Tablesandl

We use matrices to store the data fed into the five channels to
our network architecture. For example, we used five channels for
the 2D cases, as follows:

1. First channel: Initial density value for each voxel.

2. Second channel: Constraints in the x direction initialized
to zero, then the elements corresponding to the constrained
elements are set to 1.

3. Third channel: Constraints in the y direction initialized to
zero, then the elements corresponding to the constrained el-
ements are set to 1.

4. Fourth channel: Force value in x direction at each voxel,
5. Fifth channel: Force value in y direction at each voxel.

3.4. Evaluating the Network

We employed the following two criteria for the evaluation of
our method against state of the art methods:

1. Mean Squared Error (MSE), which is defined as:

2
j 1 l(yprgd ytrue)

MSE =
N-M

where N and M are the number of rows and columns, ypn o

and ytme are the predicted and reference values of element
located in the i row and j™ column, respectively.
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Figure 4: The randomly selected displacement boundary constraint cases: (a) Cantilever Beam, (b) Simply Supported Beam, (c) Constrained Cantilever, and (d) The

boundary conditions for the cases shown in Figuresand

2. Binary Accuracy (BA), a widely used measure that com-
pares the binarized value of predicted elements with the ac-
tual value [42]:

_TP+TN
- N

BA

where TP (True Positive) is the number of elements cor-
rectly predicted as 1, TN (True Negative) is the number of
elements correctly predicted as 0, and N is again the total
number of elements. Prior to calculating the binary accu-
racy, we rounded the element values to the nearest integer,
that is, either to O or 1.

As the average of the squared deviations, the Mean Squared
Error is a second sample moment about the origin of the error,
and is the minimum variance unbiased estimator |43]]. For a
given predictor, the closer MSE is to zero, the better the pre-
dictor performance. Furthermore, accuracy reflects the overall
ratio of correct predictions. A common version of this measure,
namely the binary accuracy, uses binarized density values in the
ground-truth and predicted domains, and shows how accurately
the network predicts the existence of material in each voxel. The
values of the binary accuracy lie within the unit interval, and the
closer the binary accuracy is to 1, the better the prediction. In
this work, we use the binary accuracy to measure how accurate
our network is in predicting the existence of material, and we
use MSE to estimatt{l how close are the density predictions to
the ground-truth values. Our experiments achieved an average
binary accuracy and MSE around 95% and 3%, respectively. All
predictions were performed on a Dell Intel Xeon Processor E5-
2650 v3 CPU with 64 GB RAM and Nvidia Quadro K2200 4GB
GPU. All training and test cases were generated on the UConn
HPC facility running Red Hat RHEL7 operating system.

For the optimal topologies predicted by our algorithms, we
are also providing the corresponding compliance error relative to
the compliance of the ground truth optimal structures. Since our
predicted structures are directly output by our algorithms with-
out any post-processing/beautification steps, the resulting com-
pliance errors shown for the examples are particularly promising.

These two evaluation metrics do not always agree. For example, assume
that the predicted and actual values are 0.49 and 0.51 respectively. MSE tells us
that the error is 0.04% which means the prediction is very accurate, But binary
accuracy treats the predicted value as 0 and the actual value as 1, and implies a
0 binary accuracy. A more detailed discussion can be found in standard texts on
probability.

4. Results

4.1. 2D Structures

Comparison with Ground Truth (SIMP)

We used a freely available Matlab Code [[16] to generate the
ground truth results. For the 2D examples, we trained the source
network with 8,000 low resolution cases (40 x 80), and fine-tuned
the target model (various resolutions, as shown in Table with
1500 high resolution cases.

Importantly, the source network is trained only once and the
learned information is being reused. The high resolution cases
used for fine tuning the target network have the same resolution
as the test cases used in our examples and shown in Table To
generate the training data for all 2D examples, boundary condi-
tions have been randomly selected from one of the 3 cases shown
in Figure a-c), and the location, orientation and magnitude of
the external force have also been randomized.

We first compared our approach with the performance of the
SIMP solver [16] for 2D structures in terms of the output accu-
racy as described in section and the average time required to
obtain the optimal topology. For this evaluation, we used 2,000
low resolution test cases for the source network and a smaller
set of high resolution cases with randomly generated boundary
conditions, as summarized in Table

Fig|§| shows a side-by-side comparison between the optimal
topology output by our method relative to the corresponding
ground-truth result (i.e., SIMP-based optimal structures) for dif-
ferent domains and boundary conditions. Specifically, Figure|3_5|
shows the optimal 2D structure output by our source network
alone on a low resolution design domain as well as the corre-
sponding MSE, binary accuracy and compliance error. More-
over, Figures b—D show the optimal 2D structures output by
our target network for different domains and boundary condi-
tions, and for design domains with higher resolutions. The pre-
dicted and ground truth solutions are not only visually similar,
but the corresponding average MSE and average binary accuracy
are around 3.6% and 95%, respectively, and the resulting com-
pliance error is around 8.7%.

Figures |§| and show a similar comparison for domains that
have different geometry, topology and boundary conditions that
the source network has not been trained on. The examples shown
in Figures @andalso use different volume fractions (i.e.,0.3 and
0.4, respectively). Importantly, these Figures illustrate not only
the performance of our predictions, but also the fact that the same
source network can be used to build different target models for
substantially different design spaces and boundary conditions.

The quality metrics for the individual examples have been
compiled in Table Furthermore, we show in Tablethe time
required by our transfer learning-based method to make predic-
tions for several 2D optimal topologies: the average prediction
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Figure 5: Comparison between the ground truth (SIMP optimized) 2D structures and our predictions of the optimal structures. Fig. (a) shows the prediction of our
source network alone. Figs (b-f) show the prediction of the optimal structures output by the fine tuned target model. The individual quality metrics for our predictions

are presented in Tab]eE} and the prediction time is shown in Tab]e
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Figure 6: Predicted optimal structures versus ground truth (SIMP optimized) for high resolution domains: (a) an L-shaped domain of genus 0, and (b) L-shaped domain
with a hole (genus 1). The individual quality metrics for our predictions are presented in Table|1] and the prediction time is shown in Table Observe that the source
network for the 2D examples has only been trained on the domains shown in Figure so the domains shown in this Figure are unseen to the source network.
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Figure 7: Predicted optimal structures versus ground truth (SIMP optimized) for high resolution domains that have different geometry and topology. The individual
quality metrics for our predictions are presented in TableE] and the prediction time is shown in Table Observe that the source network for the 2D examples has only
been trained on the domains shown in Figure so the domains shown in this Figure are unseen to the source network.

time is 0.017 seconds per design case versus 138.0 seconds for
the SIMP solver.

These resulting quality metrics are very promising, and are
particularly so for the resolutions considered in the our exper-
iments. Moreover, as the resolution increases the level of de-
tail that is picked up by our transfer learning-based predictor
increases as well. Notably, the normalized prediction time in-
creases at a much slower rate compared to that of the SIMP al-
gorithm.

Comparison With Traditional Deep Learning Methods

In order to compare our transfer learning-based method with
other published deep learning methods for topology optimiza-
tion, we examined two criteria. Specifically, we compare our
method in terms of:

1. time required to generate equivalent training data producing
similar prediction performance; and

2. prediction accuracy with the training data generated in the
same amount of time.

One key advantage of our method compared to the traditional
deep learning methods is that the method proposed in this paper
requires a much smaller number of high-resolution cases to train
the target network than to train an equivalent deep learning net-
work. For example, we used 8,000 low resolution 2D cases and
1500 high resolution cases to obtain the high quality predictions
shown in Figures On top of that, the source network has to
be trained only once with the 8,000 low resolution 2D cases.

On the other hand, training a deep learning network to pro-
duce a prediction of similar quality requires at least 8,000 high
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4.2 3D structures

Table 1: 2D structures: MSE, binary accuracies, and compliance error relative to SIMP.

Number of Binary Compliance Compliance
Design Domain Resolution  test cases MSE Accuracy Error Error Std.
from Fig. [Sa|(predicted by the source network) 40 x 80 2000 2.14% 96.61% 2.1% 0.054
from Fig. E’} 80 x 160 750 3.70% 94.50% 3.65% 0.055
from Figure[5¢| 120 x 160 500 3.45% 94.61% 4.81% 0.056
from Figure 120 x 240 625 4.83% 94.59% 4.93% 0.062
from Figure|[Se| 160 x 320 375 4.29% 94.46% 6.54% 0.080
from Figure ﬁ 200 x 400 375 4.35% 94.55% 9.57% 0.106
Curved beam (Fig. |7a) 80 x 160 500 4.01% 94.44% 9.2% 0.088
Curved beam (Fig. ‘ 120 x 240 750 4.13% 93.94% 11.3 % 0.091
Frame (Fig. 80 x 160 500 2.61% 95.53% 5.39% 0.070
Frame (vol. fr. = 0.4) (Fig 120 x 240 500 3.00% 94.80% 15.50% 0.182
L shape (vol. fr. = 0.3) (F1 120 x 240 500 2.50% 95.75% 13.20% 0.130
L shape w/hole (vol. fr. = 1g . 120 x 240 500 2.60% 95.72% 20.00% 0.210
Average 3.46% 94.95% 8.85% 0.098

Table 2: 2D Structures: Comparison of computational time of our predictions vs.
the SIMP algorithm.

SIMP Our method
Resolution (sec. per case) (sec. per case)
80 x 160 (Fig. [5b) 24 0.0093
120 x 160 (Fig.[5¢) 36 0.010
120 x 240 (Fig. E“ 80 0.015
160 x 320 (Fig.|Se] 200 0.022
200 x 400 (Fig. i 350 0.030
Average 138 0.017

resolution cases for every design space and every type of bound-
ary conditions. This is a significant time difference that becomes
more severe as the resolution of the design space increases and as
we move to 3D. For example, the SIMP algorithm [16] requires
5 seconds to produce the optimal topology for every low reso-
Iution (40 x 80) case and 350 seconds for every high resolution
case (200 x 400). Thus, training our source and target networks
requires 5.3 times fewer high resolution cases than the equivalent
CNN, and about 5 times less computation time. To put this in
perspective, by using this particular SIMP algorithm, generating
equivalent training datasets for our method is 620 hours faster
than for an equivalent CNN. This difference rapidly increases
with the increase in the fidelity of the desired results.

To be able to compare the prediction accuracies of transfer
learning based vs deep learning based methods for the same
amount of time, we replicated our target network in terms of
layers, loss function, optimizer and so on, and trained it as a
normal deep learning network. We determined the average to-
tal time needed to generate the training sets for our method for
the example shown in Figure @ and then generated as many
high-resolution cases for the deep CNN as possible in the same
amount of time. Finally, we trained the deep CNN network with
this dataset and compared the quality of the predictions between
our method and of the corresponding deep CNN, as illustrated in
Figure This experiment clearly, although unsurprisingly, illus-
trates the significant superiority of our predictions compared to
other deep learning methods based on data generated in the same
amount of time.

Furthermore, the much smaller size of the training dataset re-

High resolution data (200 x 400)

Design domain

2

BA = 92.2% BA = 94.3% BA = 94.07%
MSE = 4.6% MSE = 3.4% MSE = 3.67%
Comp. Error = 0.22% Comp. Error = 2.87% Comp. Error = 1.09%|

Our Prediction

BA = 90.6% BA = 90.7% BA = 87.76%
MSE = 9.4% MSE = 9.6% MSE = 12.75%
Comp. Error = 51.5% Comp. Error = 55.14% Comp. Error = 183.1%|

Predicted by CNN

Figure 8: Comparison between our predictions and those of a traditional CNN-
based algorithm trained on 1500 and 1650 high resolution data, respectively. Our
source network has been trained with low resolution cases as well, and we took
into account the time required to generate these low resolution cases when select-
ing the number of high resolution cases for the traditional CNN-based algorithm.

quired by our transfer learning network implies that the corre-
sponding training time is also much smaller than that required by
traditional deep learning networks, as illustrated in Table

4.2. 3D structures

We also applied our transfer-learning based method to 3D do-
mains and we used a freely available Matlab Code [17] to gen-
erate the ground truth results. For the 3D examples, we used
12,000 low resolution data (20 x 40 x 10) to train the source
model, and 1500 high(er) resolution data for fine-tuning the tar-
get model. Solving the TO problem in 3D is notoriously time
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4.3  Generalizability of Network Predictions

Table 3: 2D Structures: Comparison of the corresponding training time. The last two rows show the training time required by an equivalent Deep CNN.

Number of Training time Number of Training time

Resolution training cases  (seconds, per epoch) epochs (minutes)
40 x 80 (Fig. 8,000 62.87 29 30.3

80 x 160 (Fig. 1,500 26 4 1.73
120 x 160 (Fig. 1,500 27.19 5 2.26
120 x 240 (Fig. 1,500 34.88 10 5.81
160 x 320 (Fig.|5¢) 1,500 41.25 8 55

200 x 400 (Fig. El 1,500 58.68 9 8.80
200 x 400 (CNN) (Fig. |§I) 1,650 67.43 28 31.46
200 x 400 (CNN) 8,000 307.54 29 148.64

consuming. Thus, to generate the ground truth cases for the ex-
amples used in this section, we limited the number of iterations
of the SIMP solver to 150. To generate the training datasets for
all 3D examples with parallelepipedic domains (Figures [9), the
boundary conditions were randomly chosen from one of the 3
cases shown in Figures [4[a-c), and the location, orientation and
magnitude have also been randomized. The cases shown in Fig-
ures|10[and|11|used randomized boundary conditions according
to Figur@ .

We first show in Figures @a) & (b) the comparison between
our predicted and the ground truth (SIMP) 3D optimal structures
for two beams obtained for two different resolutions of the design
space, namely 40 x 80 x 10 and 80 x 160 x 10. Moreover, Fig-
ures EIC) & (d) show the same comparison for beams that have
different topologies for a 40 x 80 x 10 resolution. In order to help
illustrate the difference between the two solutions more clearly,
we also provide the symmetric difference between the ground
truth and predicted result, i.e., the voxels that are in either one
but not the other structure.

Importantly, our method can provide impressive performance
even for cases for which the source network has not been specif-
ically trained for. As an example, consider the design space il-
lustrated in Figure which was not part of the training set for
our source model, but it was included in the much smaller dataset
used to fine-tune the target model. The predicted optimal struc-
tures for this new design problem, which are summarized in Fig-
ures[10]&[1T]are still highly accurate. Table[4]shows the average
MSE, binary accuracy and compliance error for the 3D cases de-
scribed above. Note that average MSE and binary accuracy are
also around 3% and 95% for these 3D cases. Furthermore, we
summarize in Tablethe time required by our method to predict
the 3D optimal structures, and compare these times with those re-
quired by the SIMP method to reach 150 iterations for the same
3D problems. Our method is consistently multiple orders of mag-
nitude faster than the SIMP method, and achieves real-time rates
even for our preliminary and non-optimized implementation.

Similarly with the 2D case described above, the time required
to generate a comparable training dataset requires much less
time for our method relative to the time required for an equiv-
alent deep CNN. By extrapolating from our 3D experiments, our
method requires a time that is at least 5 times less than the time
required to generate the comparable dataset for the equivalent
deep CNN, and the difference increases with the resolution. For
example, for the case shown in Figure by using the algo-
rithm described in [17] run in parallel on 100 processors, for a
40 % 40 x 40 resolution, and with the optimization stopped early
at the 150" iteration for each case, the dataset generation for our
method requires approximately 152 hours (6.3 days) less than

the time required to generate an equivalent dataset for the deep
CNN, even with such an aggressive parallelization. At higher
resolutions, and assuming that one can use a highly parallelized
algorithm, such as the one implemented on the GPU described in
[ 15] that computes an optimal topology for a cantilever beam for
a200x100x 100 resolution in 144 seconds, our transfer learning-
based method would need at least 388 hours (16.2 days!) less
time than the time required to generate the equivalent training set
for the deep CNN.

4.3. Generalizability of Network Predictions

The solution manifolds between our low-resolution and high-
resolution domains for some of the examples shown in this pa-
per can be considered to already be dissimilar. Specifically, our
source network is trained on rectangular/parallelepipedic low-
resolution domains of genus 0, but the target network is fine-
tuned on domains whose geometry, topology and boundary con-
ditions are unseen to the source network. Nevertheless, to fur-
ther confirm the generalization performance of our method, we
also considered the types of problems from [44], which use local
density constraints for the topology optimization. It is important
to note that we used here the same source network trained on the
dataset as explained above, but only fine-tuned the target network
on the data set used in [44].

The results are shown in Figure a). Note that the pre-
dictions of our network are visually very similar to the ground
truth. Moreover, the work presented in [44] used 7000 training
cases, while our target network only required 1500 cases for fine-
tuning. The fact that we used the same source network for this
new, more complex TO problem strongly affirms that knowledge
is being transferred between our source and target networks.

Moreover, we have also explored the heat sink design prob-
lem, which results in a tree-like optimal structure with very thin
branches. The ground truth solution in this case has genus 0,
so this can be considered more of a size rather than a topology
optimization problem.

We adapted our network to the heat sink design problem to
further illustrate the capabilities of our method and of the knowl-
edge transfer abilities between our source and target network.
Figure b) shows the network performance for some of these
test cases, including the predicted optimal solutions before and
after the application of the density threshold, i.e., integer round-
ing for the density values. While capturing the very thin members
of the optimal structure remains a limitation, which is discussed
in the next section, our results indicate that knowledge is trans-
ferred between the source and the target network, as intended,
even for the case of heat sink design.
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4.4 Current Limitations in Capturing Thin Members
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Figure 9: The predicted and ground truth optimal structures for 3D design spaces, including their symmetric difference. Figures (a) and (b) show a simple parallelepi-
pedic domain with two resolutions and figures (c) and (d) show a beam with one or two holes, respectively. The individual quality metrics for our predictions are

presented in Tableﬁ and the prediction time is shown in Table@

It is also important to note that in all the examples presented
in the paper we used the same source network trained only once,
as described above.

4.4. Current Limitations in Capturing Thin Members

Our transfer learning network has not been designed to achieve
high prediction performance of very thin members. We hypoth-
esize that there are several reasons for this behavior. First, our
current network does not have a complexity that is sufficiently
high, mainly due to GPU limitations imposed by our hardware
on the size of the layer output during training. A more com-
plex network would definitely improve detection performance
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for the thin members. On the other hand, a more complex net-
work would need more training data, which is expensive to gen-
erate with the SIMP algorithms that we used. Second, the thin
members that we predict with a somewhat lower accuracy have a
width of 1-2 pixels/voxels, which is at or below 1% of the largest
dimension of the domain. Increasing the resolution relative to
the width of the members would also improve prediction perfor-
mance for the thin members. This, in turn, would require higher
resolution training data, whose computational cost increases ex-
ponentially with the resolution, as well as a more complex net-
work architecture. Finally, we applied in all our examples a sim-
ple integer rounding as a threshold for the densities of the in-



5 CONCLUSIONS

4.5 Transfer Learning in Conjunction with SIMP

)

Initial Domain(40 x 40 x 40)

remt

Groun

ruth

Our Pre!iction

(a)

Initial Dom

ain(40 x 40 x 40)

et

GrounI Truth

~
%
2
g

Our Prediction

et
ot

T

T

(b)

Figure 10: Predicted versus ground truth structures for two different domains as well as the boundary conditions shown in Figured). Both domains and boundary
conditions are unseen to the source network. The individual quality metrics for our predictions are presented in Table and the prediction time is shown in Table

dividual elements. This, in turn, eliminated from the solutions
that we report all pixels/voxels whose density was below 0.5, in-
cluding those that belonged to the thin members. However, our
network predicts a much more nuanced density field, as shown
in the last row of Figure[12]

4.5. Transfer Learning in Conjunction with SIMP

One way to take full advantage of the information output by
our network without increasing the complexity of the network
architecture and the data resolution is to couple our transfer
learning-based predictions to SIMP to obtain a more accurate
definition of the thin members. Table shows the time required

for the SIMP algorithm to generate the optimal structure by us-
ing as input the prediction output by our network. Specifically,
for a 200 x 400 resolution domain, the SIMP algorithm that we
used calculates such an optimum structure in 8 seconds (with an
average of 4.5 seconds) compared to 350 seconds needed by a
normal SIMP optimization starting with the full design domain.

5. Conclusions
We proposed in this paper a highly efficient and accurate non-

iterative topology optimization method that uses transfer learn-
ing on a convolutional neural network architecture. Our method
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Figure 11: A domain and boundary conditions that were not in the training set for our source model, but it was included in the much smaller dataset used for fine-tuning
the target model. The individual quality metrics for our predictions are presented in Table and the training time is shown in Table@

Table 4: 3D structures: MSE, Binary Accuracy and Compliance Error relative to SIMP.

Number of Binary ~ Compliance

Design Domain Resolution test cases MSE Accuracy Error
Domain 20x40x 10 1000 2.04% 95.62% 1.56%
Domain (Fig. E 40x 80x 10 300 3.14% 94.31% 2.43%
Domain (Fig. H' 80x 160x 10 100 3.1% 939 % 10.1 %
With hole (Fig. g 40x 80x 10 150 3.45% 94.00% 2.05%
With 2 hole (Fig. |9d) 40x 80x 10 150 3.52% 94.31% 2.85%
Cube (Fig. | 40x 40 x 40 175 3.28% 93.29% 9.9%
Cube with holes (Fig. m 40 x 40 x 40 180 3.51% 93.11% 7.5%
Dome with holes (Fig 40 x 40 x 40 200 2.41% 95.71% 0.38%
Average 3.05% 94.28% 4.60%

Table 5: 3D structures: comparison of prediction time vs. SIMP algorithm.

SIMP Our method
Resolution (sec. per case) (sec. per case)
20x40x 10 300 0.015
40 x 80 x 10 (Fig. |9p) 4,500 0.031
80 x 160 x 10 (Fig. [9p) 7,500 0.04
40 x 40 x 40 (Fig. ml 5,550 0.033
Average 4,462.5 0.029

uses low resolution datasets to train a source network and a much
smaller high resolution dataset to fine-tune a target network. The
learned knowledge captured by the source network once is trans-
ferred to the target network, so that the latter requires a much
smaller number of training cases than an equivalent deep CNN to

12

make predictions with the same level of accuracy. We provided
numerous examples to show that the proposed method produces
predictions of the optimal 3D topologies at real-time rates for
non-trivial 3D high resolution TO problems. Furthermore, we
showed that the proposed method can produce accurate predic-
tions efficiently for various design spaces, boundary conditions,
and volume fractions, including for cases that have not been part
of the source network’s training set. Our experiments achieved
an average binary accuracy and MSE around 95% and 3%, re-
spectively, at real-time rates in both 2D and 3D.

Like any other data-driven method, our approach inherits any
existing data biases in the datasets. In our experiments, we re-
duced the biases by randomizing the input used to generate the
ground truth structures. Moreover, the capability of this method
to explore regions of the design space for which the algorithm has
not been trained for has the same limitations as most other trans-
fer learning algorithms. In addition, when the source task and the
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Table 6: 3D structures: Training time

Number of Training time Number of Training time
Resolution training cases  (seconds, per epoch) epochs (minutes)
20x40x 10 12,000 1,101.87 20 367.25
40 x 80 x 10 (Fig. g: 1,500 174.56 5 14.54
80 x 160 x 10 (Fig. E- 1,500 290 15 72.5
40 x 40 x 40 (Cube) (Fig. 1,900 252 20 84
40 x 40 x 40 (Cube with holes) (Fig. > 1,700 230 30 115
40 x 40 x 40 (Dome with 2 holes) (Fig*l—} 1,500 202 35 117.8

High resolution data(40 x 120)
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=2 =D =\

Ground Truth

=2 D 20\

Our Prediction(after applying the threshold)

= = 3D\
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Figure 12: Predicted optimal structures versus ground truth (SIMP optimized) for problems with local density constraints [44] and heat sink design. The fact that we
used the same source network for these new, more complex TO problems strongly affirms that knowledge is being transferred between our source and target networks.

Table 7: Average time required by SIMP to generate the optimal solution starting
from our predicted structure.

Time

Resolution (sec. per case)

120 x 160 (Flg. 3.5
120 x 240 (Fig. 4
160 x 320 (Fig. 6
200 x 400 (Fig. 8
Average 4.5

target task are not similar enough, negative transfer may occur
and the algorithm performance may fail to improve [32] without
additional information. This, however, is not unlike what hap-
pens in real life. Consider one of the traditional examples used
to explain transfer learning, namely that of learning how to ride a
bicycle. Clearly these skills can be transferred by bicycle riders
and used to learn how to ride other two wheeled devices, such as
motorcycles or scooters. However, the same bicycle riding skills
cannot be easily employed to ride, for example, unicycles - as
anyone that has tried to ride a unicycle can attest to.
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Perhaps the key bottleneck of any data driven TO method is the
computational cost to generate suitable training data, which is
computationally demanding for gradient-based optimization al-
gorithms, and is particularly so in 3D. On one hand, our experi-
ments show that the proposed transfer learning-based method re-
quires much less time than equivalent deep CNN to generate the
training dataset to reach the same accuracy. On the other hand,
employing more efficient gradient-based approaches to generate
ground truth optimal structures are needed to be able to perform
careful studies of how to best train the proposed transfer learning-
based method and to better understand its generalization capa-
bilities, scalability and limitations. Fortunately, recent advances
in software and hardware architectures, such as the recently an-
nounced optimized physics libraries from AMD and NVIDIA,
which promise to include FEA capabilities, come at the right
time and with the potential to dramatically speed up the data gen-
eration for our purposes.

Generalizability is a critical aspect of any machine learning-
based method. On one hand, we discussed In sectionthe capa-
bility of the proposed transfer learning method to transfer knowl-
edge between the source and the target network, and we illus-
trated the generalizability of its predictions. However, a more
complete treatment of this difficult question, which has not been
addressed yet in the literature, would likely involve constructions
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of local subspaces that approximate the solution manifolds cor-
responding to the low and high resolution problems, and def-
initions of new metrics that would measure the “distance” be-
tween the corresponding approximations of the solution mani-
folds. Very likely, an effective distance would probably require
the projection of these approximations of the solution manifolds
onto some common subspace, but there are a number of impor-
tant open problems that need to be solved first. Perhaps the cur-
rent efforts in the mathematical optimization community focused
on Reduced Bases Methods could provide some insight into these
issues.

It is also possible that modifying the type of input to replace or
augment the explicit boundary conditions by one or more phys-
ical fields, such as displacement and stress/strain, would further
improve the generalization capabilities of the proposed method.
However, such a study is outside the scope of this paper.

Nevertheless, the proposed approach shows that transfer learn-
ing can serve as a practical underlying framework for performing
real-time 3D design space explorations with topology optimiza-
tion. To the best of our knowledge, this paper documents the first
attempt to use transfer learning for topology optimization and
provides exciting and important directions for future research.
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