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Abstract

This paper studies the related problems of prediction, covariance estimation, and principal compo-
nent analysis for the spiked covariance model with heteroscedastic noise. We consider an estimator of the
principal components based on whitening the noise, and we derive optimal singular value and eigenvalue
shrinkers for use with these estimated principal components. Underlying these methods are new asymp-
totic results for the high-dimensional spiked model with heteroscedastic noise, and consistent estimators
for the relevant population parameters. We extend previous analysis on out-of-sample prediction to the
setting of predictors with whitening. We demonstrate certain advantages of noise whitening. Specifically,
we show that in a certain asymptotic regime, optimal singular value shrinkage with whitening converges
to the best linear predictor, whereas without whitening it converges to a suboptimal linear predictor. We
prove that for generic signals, whitening improves estimation of the principal components, and increases
a natural signal-to-noise ratio of the observations. We also show that for rank one signals, our estimated
principal components achieve the asymptotic minimax rate.

1 Introduction

Singular value shrinkage and eigenvalue shrinkage are popular methods for denoising data matrices and
covariance matrices. Singular value shrinkage is performed by computing a singular value decomposition
of the observed matrix Y, adjusting the singular values, and reconstructing. The idea is that when
Y = X + N, where X is a low-rank signal matrix we wish to estimate, the additive noise term N inflates
the singular values of X; by shrinking them we can move the estimated matrix closer to X, even if the
singular vectors remain inaccurate. Similarly, eigenvalue shrinkage for covariance estimation starts with
the sample covariance of the data, and shrinks its eigenvalues. There has been significant recent activity
on deriving optimal shrinkage methods [48, 25, 44, 23, 24, 21, 22], and applying them to various scientific
problems [12, 2, 43, 17].

A standard setting for analyzing the performance of these methods is the spiked covariance model

[31, 7, 46, 6, 21]. Here, the observation matrix is composed of iid columns Y; in R?, j = 1,...,n from
some distribution consisting of signal vectors X; lying on a low-dimensional subspace, plus independent
noise vectors €; with some covariance matrix ¥.. The theory for prediction of Xi,..., X, in the spiked

model with orthogonally invariant noise, i.e., when 3. = v, is very well-developed [23, 48, 25, 36].
Singular value shrinkage is known to be minimax optimal, and asymptotically optimal shrinkers have
been derived for a wide variety of loss functions.

Many applications in signal processing, imaging, and related fields involve noise that is heteroscedastic
[45, 40, 11, 12, 34, 1, 2]. This paper studies the effect of whitening the noise; that is, working in rescaled
coordinates, in which the noise is white. We first estimate the noise covariance matrix .. We then
normalize, or whiten, the observations Y; by applying X. Y 2; the resulting vectors Y;" consist of a trans-
formed signal component X} = ZE_I/QXJ-7 plus isotropic noise G; = 25_1/28]'. Singular value shrinkage is
then performed on this new, whitened observation matrix, after which the inverse transformation Y% s
applied. Similarly, we perform eigenvalue shrinkage to the sample covariance of the whitened data, and
then apply the inverse transformation.

While this approach is restricted to cases when ¥, can be consistently estimated, when it does apply
it has a number of advantages over competing methods. First, in the classical “large n” asymptotic
limit, our method of singular value prediction with whitening, while non-linear in the observed data,
converges to the best linear predictor of the data, an oracle method that requires knowledge of the
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population principal components. By contrast, singular value shrinkage without whitening (as in [44])
converges to a suboptimal linear filter. Further, we show that under certain modelling assumptions,
whitening improves the estimation of the population singular vectors, and achieves the same rate of
subspace estimation as the minimax optimal method derived in [58]. Next, because we compute the SVD
of a matrix with isotropic noise, our method requires weaker assumptions on the principal components
of the signal vectors than those in [44].

As the key step in our procedures is performing spectral shrinkage to the whitened data or covariance
matrices, the question arises: what are the optimal singular values/eigenvalues? While whitening has
been used with shrinkage in previous works (e.g. in [38, 19, 12]) it appears that the question of optimal
shrinkage has not been fully addressed. This paper derives the precise choice of optimal singular values
and eigenvalues, and shows, using new asymptotic results, how to consistently estimate them from the
observed data.

1.1 Overview of results
1.1.1 Spectral shrinkage with noise whitening

We introduce a new method for predicting X from Y when the noise matrix IV is heteroscedastic. We first
perform a linear transformation to the observations to whiten the noise. The resulting vectors are still of
the form “low rank plus noise”, but the noise term has been transformed into an isotropic Gaussian, while
the low-rank signal component has been rescaled along the principal components of the noise covariance.

Next, we shrink the singular values of the transformed matrix. Intuitively, this step removes the effect
of the noise from the spectrum of the observed matrix. Finally, we arrive at a predictor of the signal
matrix X by applying the inverse change of variables, i.e., we unwhiten.

This three-step procedure — whiten, shrink, unwhiten — depends on the choice of singular values
used in the middle shrinkage step. As it turns out, there are precise, optimal, and consistently estimable
formulas for the optimal singular values. These are derived in Section 4.1, and the resulting method
summarized in Algorithm 1.

For covariance estimation, we introduce an analogous procedure in which eigenvalue shrinkage is
applied to the sample covariance of the whitened observations. After shrinkage, we then apply the inverse
whitening transformation. As with singular value shrinkage, this three-step procedure of whitening,
shrinking the eigenvalues, and unwhitening depends crucially on the choice of eigenvalues for the middle
step. In Section 4.2, we will explain the method in detail, including the derivation of consistent estimators
for the optimal eigenvalues for a variety of loss functions. The method is summarized in Algorithm 2.

1.1.2 Singular value shrinkage and linear prediction

In Section 5, we show that in the classical regime (when p < n), singular value shrinkage with whitening
converges to the optimal linear predictor of the data, while shrinkage without whitening will converge to a
different, typically suboptimal, linear filter. In this sense, not only is shrinkage with whitening preferable
to no whitening, but the whitening transform is an asymptotically optimal change of coordinates to apply
to the data before shrinking in the classical setting.

In Section 6, we also derive the optimal coefficients for the out-of-sample prediction problem, described
in [19]. In this problem, the PCs estimated from a set of in-sample data Y1, ...,Y, are used to denoise an
independently drawn out-of-sample observation. We show that the AMSE for singular value shrinkage
with whitening is identical to the asymptotic expected loss achieve by out-of-sample denoising, which
extends the analogous result from [19]. The out-of-sample predictor is summarized in Algorithm 3.

1.1.3 Subspace estimation and PCA

The eigenspace of the estimated covariance 3, (equivalently, the left singular subspace of X ) is not
spanned by the singular vectors of the raw data matrix Y. Rather, they are spanned by the vectors
obtained by applying the inverse whitening transformation to the top r singular vectors of the whitened
observation matrix.

In Section 7, we will show under a generic model for the signal PCs, the estimated PCs a1, ..., 4,
improve upon estimation of the population PCs ui,...,u,, as compared to the left singular vectors of
Y. We will show too that when r = 1, 4; achieves the minimax rate of principal subspace estimation
derived in [58]. That is, in a certain sense it is an optimal estimator of the signal principal subspace.



1.1.4 Spiked model asymptotics

The methods and analysis of this paper rely on precise descriptions of the asymptotic behavior of the
singular values and singular vectors of the whitened matrix Y. While some of the necessary results are
already found in the literature [46, 10], we have also needed to derive several new results as well, which
may be found in Theorems 3.1 and 3.2 in Section 3. Whereas earlier work has characterized the angles
between the singular vectors of X% and YV, we have provided formulas for the cosines of the angles
between the singular vectors after the inverse whitening transformation has been performed — that is, we
characterize the change in angles resulting from unwhitening. These parameters are a key ingredient for
deriving the optimal spectral shrinkers in Section 4.

1.2 Related work
1.2.1 Singular value shrinkage

The prediction method in this paper is a generalization of a standard method for predicting the matrix
X from the observed matrix Y, known as singular value shrinkage. Briefly, it is performed by leaving
fixed the singular vectors of Y, while adjusting its singular values, to mitigate the effects of noise on the
spectrum. It is shown in [23] that when the noise matrix N is white Gaussian noise, or in other words
3 = I, then singular value shrinkage is minimax optimal for predicting X from Y.

The paper [48] considers optimal singular value shrinkage for Frobenius loss and white noise. In
[25], optimal singular value shrinkers are derived for isotropic noise, for a much broader family of loss
functions; the special case of operator norm loss is considered in [36]. The effectiveness of these methods
rests on the asymptotic spectral theory of the data matrix Y developed in [46, 10] among others.

In the paper [44], optimal singular value shrinkage (known as ‘OptShrink’) is derived under much
more general conditions on the noise matrix N, by exploiting the general asymptotic spectral theory
developed in [10] for non-isotropic noise. While OptShrink may be effectively applied when the noise
is non-isotropic, it requires the signal principal components to be vectors with iid random entries (or
orthonormalized versions thereof).

1.2.2 Eigenvalue shrinkage

Covariance estimation is a well-studied problem in statistics and its applications. A standard method
for estimating the population covariance X, is eigenvalue shrinkage [51, 52, 21, 22]. Analogously to
singular value shrinkage for predicting X, eigenvalue shrinkage leaves fixed the eigenvectors of the sample
covariance f]y = ?:1 YJY]—r /n = Yy’ /n, or equivalently the left singular vectors of Y, and replaces
the eigenvalues by estimated values to reduce the effect of the noise.

As we will discuss in Section 2.2, it is often natural to consider different loss functions for measuring
the error in covariance estimation [22]. The paper [21] derives optimal eigenvalue shrinkers for a very
large collection of loss functions. Their method is restricted to white noise, i.e., where 3. is a multiple
of the identity matrix.

1.2.3 Heteroscedastic noise

There have been a number of recent papers on the spiked model with heteroscedastic noise. The paper [58]
devises an iterative algorithm for estimating the principal subspace of X in this setting, and proves that
their method achieves the optimal error rate. Our method uses a different estimator for the population
PCs, which achieves an error that matches the optimal rate of [58] under an additional assumption (19)
(which is vacuous when r = 1).

The papers [28, 26, 27] consider a different but related model, in which each observation Y; has white
noise but with noise strengths varying across the observations. In [27], they show that when the signal
energy and noise energy are fixed, subspace estimation is optimal when the noise is white. The proof
of our Theorem 7.2 builds on this result, by combining it with our analysis of the change in angles
between the empirical and population PCs after whitening. The work [28] shows that an alternative
choice of weighting is optimal for estimating the signal principal components. The aforementioned paper
[44] designs optimal singular value shrinkers without whitening for a broad range of noise distributions,
which include our noise model as a special case.

When working in the eigenbasis of the noise covariance, the whitening procedure we describe in this
work is an example of what is called weighted PCA, in which weights are applied to individual variables
before the principal components are computed [32, 30]. The inverse standard deviation of the noise is



a standard choice of weights [54, 57, 55]; in that sense, the present work can be seen as providing a
theoretical analysis of this already widely-used choice.

1.2.4 Shrinkage with whitening

Previous works have proposed pairing the whitening transformation with spectral shrinkage, which we
study in this work. The paper [38] proposes the use of whitening in conjunction with exponential
family noise models for covariance estimation. The paper [19] proposes whitening in the context of
transformed spiked models for data prediction. The papers [12, 2] use whitening and eigenvalue shrinkage
for covariance estimation.

However, previous works on singular value shrinkage with whitening employed suboptimal shrinkers,
developed from heuristic considerations. In this paper, we undertake a systematic study of this problem,
and rigorously derive the optimal shrinkers, under Frobenius loss (in an asymptotic sense). For covariance
estimation, [38] derives the optimal eigenvalue shrinker for the special case of operator norm loss, but
their method does not apply to more general loss functions.

1.3 Outline of the paper

The rest of the paper is organized as follows. Section 2 contains a detailed description of the model
and assumptions; statements of the prediction and estimation problems to be studied; and a review of
known results on the spiked model and spectral shrinkage. Section 3 provides the asymptotic theory
on the spiked model that will be used throughout the rest of the paper. Section 4 presents the optimal
spectral shrinkers with whitening. Section 5 analyzes the behavior of weighted singular value shrinkage
schemes in the classical (p < n) setting, and shows the optimality of whitening in this regime. Section
6 describes and solves the out-of-sample prediction problem. Section 7 derives several results on the
theoretical benefits of whitening for principal component analysis. Section 8 presents the results of
numerical experiments illuminating the theoretical analysis and demonstrating the performance of the
proposed methods. Finally, Section 9 provides a conclusion and suggestions for future research.

2 Preliminaries

In this section, we will introduce the details of the spiked model with heteroscedastic noise, describe
the problems we focus on in this paper, and review known results on the asymptotic spectral theory of
the spiked model, singular value shrinkage, and eigenvalue shrinkage. This will also serve to introduce
notation we will use throughout the text.

2.1 The observation model

We now specify the precise model we will be studying in this paper. We observe iid vectors Yi,...,Y,
in R?, of the form:

The random signal vectors X; are assumed to be mean zero and to have a rank 7 covariance matrix

e = Do lruru) , where the vectors uy are taken to be orthonormal, and are called the principal

components (PCs) of the random vectors X;. More precisely, and to distinguish them from estimated

vectors we will introduce later, we will call them the population PCs. The numbers ¢, which are the

variances of the X; along ug, are positive; we will specify their ordering later, in equation (16) below.
The random noise vectors ¢; are of the form

gj = Z;MG]', (2)

where G; € R? is a mean-zero Gaussian noise vector with covariance I, and X. is a full-rank positive
definite covariance matrix, assumed to be known (though see Remark 3). The noise vectors G; are drawn
independently from the Xj;.

We can write

T

X; = 6 2 (3)

k=1



Symbol Description Reference
X; Signal (3)
£j Heteroscedastic noise (2)
Y; Observed (1)
Xy Whitened signal (5)
G; Whitened noise (2)
Y Whitened observation (5)
2k Signal factor values (3), (11)
zy Whitened signal factor values (6), (11)
Ug PC of X;’s (3)
uy PC of X}'’s (6)
i W tug /WLy | (9)
ay Left singular vector of YV Preceding (8)
i wLay /W Lay| (3)
ay W/ | W (10)
Vg Right singular vector of X Preceding (8)
vy Right singular vector of XV | Preceding (8)
oy Right singular vector of YV | Preceding (8)

Table 1: Vectors used in this paper.

where zji, are uncorrelated (though not necessarily independent) random variables, with Ez;x = 0 and
Var(z;jr) = 1. We remark that the assumption that X; has mean zero is not essential; all the results of
this paper will go through almost without modification if we first estimate the mean of X by the sample
mean and subtract it from each observation Y;. We also note that in the terminology of factor analysis,
the z;r may be called the factor values; for background on factor analysis, see, for instance, [3, 4, 47, 18].

In addition to the original observations Y}, we will also be working with the whitened (or homogenized
[38]) observations Y;¥, defined by Y;¥ = WY}, where

w=x"? (4)

is the whitening matriz. The vectors Y;" can be decomposed into a transformed signal X}" = WX plus
white noise G;. The whitened vectors X}" have rank r covariance

oY = WE,W, (5)

and lie in the r-dimensional subspace span{Wui,... Wu,}. We will let uY,...,u;” be the orthonormal
PCs of X}" — that is, the leading r eigenvectors (up to sign) of X7 — and write

T

X7 =302, (6)

k=1

where again EzJ;, = 0 and Var(z]},) = 1, the £} are strictly positive, and

£ > >4 > 0. (7)
In general, there is not a simple relationship between the PCs u1,...,u, of X; and the PCs uY, ..., uy
of X}", or between the eigenvalues (1, ...,¢, and the eigenvalues £7,..., £ .

We introduce some additional notation. We will denote the normalized matrices by Y = [Y1,...Y,]/v/n,
YV = [Y,... .Y /vVn, X = X1, .., X))/, XY = (XY, XYV, G =[Gy, .., Gr]/4/n and
N =e1,...,en]/v/n. Note that Y = X + N and YV = XV + G.

We will denote by v1,...,v, the right singular vectors of the matrix X, and denote by v, ..., v, the
right singular vectors of the matrix X%. We denote by 4y, ..., u, and 07',... 9, the top r left and right
singular vectors of the matrix Y. We define, for 1 < k < r, the empirical vectors:

wtay
[W=tay ||

(®)



We also define the population counterparts,

Wty
Uk = o il 9)
[W=tuy |l
Similarly, for 1 < k < r we define
W W’Lbk
Up = — . (10)
W]
Note that span{ui,...,u,} = span{u1,...,ur}, and span{ay,...,u, } = span{uy,...,u, }. However,
the vectors w1, ..., u, will not, in general, be pairwise orthogonal; and similarly for uY,...,a;’ .
Finally, we define the factor vectors zi and z;, by
2= (21ks o 2mk) 2 = (B 2mn) - (11)

We formally consider a sequence of problems, where n and p = p,, both tend to co with a limiting
aspect ratio, :

v = lim 22, (12)

n—oo N

which is assumed to be finite and positive. The number of population components r and the variances
l1,...,4, are assumed to be fixed with n. Because p and n are increasing, all quantities that depend on p
and n are elements of a sequence, which will be assumed to follow some conditions which we will outline
below and summarized in Section 2.1.1. Though we might denote, for instance, the PC wu by u,(cm, X by
X<p’")7 and so forth, to keep the notation to a minimum — and in keeping with standard practice with
the literature on the spiked model — we will typically drop the explicit dependence on p and n.

Remark 1. Because r is fixed as p and n grow, the left singular vectors of the p-by-n population
matrix X = [X4,...,X,]/v/n are asymptotically consistent estimators (up to sign) of the population

PCs w1, ...,u,. More precisely, if @1, ..., %, are the left singular vectors of X, then almost surely
lim |(uk, ax)| = 1. (13)
p—oo
Similarly, if @}, ..., a4, are the left singular vectors of X, then almost surely
lim |(u}, 3] = 1. (14)
p—oo

The limits (13) and (14) may be easily derived from, for example, Corollary 5.50 in [53] (restated as
Lemma B.2 in Appendix B), since the effective dimension of the X is r, not p. Because this paper is
concerned only with first-order phenomena, we will not distinguish between u (respectively, uy; ) and 4y
(respectively, uay)).

Remark 2. The unnormalized vectors W™ u} are the generalized singular vectors of the matrix X, with
respect to the weight matrix W2 [39]. In particular, they are orthonormal with respect to the weighted
inner product defined by W?2. Similarly, the vectors W14} are generalized singular vectors of Y with
respect to W2

We assume that the values |[W ™ u}||, 1 < k < r, have well-defined limits as p — oo, and we define
the parameters 74, 1 < k <7, by

T = lim |[|[W ™ || 72 (15)
p—r00

Note that the 7 are not known a priori; we will show, however, how they may be consistently estimated
from the observed data.

With the 73’s defined, we now specify the ordering of the principal components of X; that will be
used throughout:

bt > oo > e > 0. (16)

We will also assume that the spectrum of ¥, stays bounded between amin > 0 and amax < co. In
order to have well-defined asymptotics in the large p, large n regime, we will assume that the normalized
trace of ¥, has a well-defined limit, which we will denote by p.:

2.
je = Tim )

p—>0o0 p

€ (0, 00). (17)

For the convenience of the reader, Tables 1 and 2 summarize the notation for vectors and scalar parameters
that will be used throughout this paper.



Symbol Description Reference
4y, Signal variances (3), (16)
v Whitened signal variances (6), (7)
y Aspect ratio (12)
m limy o [ 2 (15)
fk [};V /Tk (62)
e Normalized trace of 3. (17)
oy Singular value of YV (41)
oy Cosine between u}y and 4} (39)
ey Cosine between v}’ and 0}’ (40)
CL Cosine between wuy, and 4y, under (19) (47)

Table 2: Scalar parameters used in this paper.

Remark 3. We will assume for most of the paper that the noise covariance X, is known a priori (though
see Section 4.3). However, all of the theoretical results, and resulting algorithms, go through unchanged
if the true X is replaced by any estimator . that is consistent in operator norm, i.e.,

lim |2 — Scflop = 0. (18)
p—ro0
Examples of such estimators f]e are discussed in Section 4.3.

2.1.1 The asymptotic assumptions

‘We enumerate the assumptions we have made on the asymptotic model:
1. p,n — oo and the aspect ratio p/n converges to v > 0.
2. The eigenvalues of Y. lie between amin > 0 and amax < 00.
3. The limit lim,_, o tr(X:)/p is well-defined, finite, and non-zero.
4. The limits limy,—co ||W ™ )| are well-defined, finite, and non-zero.

Assumptions 1-4 will be in effect throughout the entire paper. In addition, some of the results, namely
Theorems 3.2 and 7.3, will require an additional assumption, which we refer to as weighted orthogonality
of the PCs u1,...,u,:

5. For j # k, the vectors u; and uy, are asymptotically orthogonal with respect to the W? = £ * inner
product:
lim u; W2uy, = 0. (19)
p—>00
The assumptions 1-4 listed above are conceptually very benign. In applications, the practitioner will
be faced with a finite p and n, for which all the listed quantities exist and are finite. The asymptotic
assumptions 1-4 allow us to precisely quantify the behavior when p and n are large. By contrast,

assumption 5 is stronger than assumptions 1-4, in that it posits not only that certain limits exist, but
also their precise values (namely, 0). Note that assumption 5 is trivially satisfied when r = 1.

2.1.2 Weighted orthogonality and random PCs

At first glance, the weighted orthogonality condition (5), which will be used in Theorems 3.2 and 7.3,
may seem quite strong. However, it is a considerably weaker assumption than what is often assumed
by methods on the spiked model. For instance, the method of OptShrink in [44] assumes that the PCs
U1,...,ur be themselves random vectors with iid entries (or orthonormalized versions thereof). Under
this model, the inner products ujT W2uy, almost surely converge to 0; see Proposition 6.2 in [9].

In fact, we may introduce a more general random model for random PCs, under which assumption 5
will hold. For each 1 < k < r, we assume there is a p-by-p symmetric matrix Bj, with bounded operator
norm (|| Bk|lop < C' < oo, where C' does not depend on p), and tr(Bx)/p = 1. We then take ui,...,u,
to be the output of Gram-Schmidt performed on the vectors Birwi, where the wy are vectors with iid
subgaussian entries with variance 1/p. Then u;-rWZuk = w;r B]T W2Bkwk, which converges to zero almost
surely, again using [9] and the bounded operator norm of B;W?By,.



Remark 4. Under the random model just described the parameters 74 are well-defined and equal to
limp_, o0 tr(By W2 B4)/p, so long as this limit exists. Indeed, it follows from (19) that u} is asymptot-
ically identical to Wug/||Wuk| (see Theorem 3.2), and 5o limp_seo ||W " ul || 72 = limp_soo |[Wur||® =
limy_, o0 tr(By W2 By,)/p, where we have once again invoked [9].

2.2 The prediction and estimation problems

This paper considers three central tasks: denoising the observations Y; to recover X; — what we refer
to as prediction, since the X;’s are themselves random — estimating the population covariance X, and
estimating the principal subspace span{ui, ..., u,}.

For predicting the signal vectors X, or equivalently the normalized signal matrix X = [X1,..., Xxs]/v/n,
we will use the asymptotic mean squared error to measure the accuracy of a predictor X:

. . B R
AMSE:nlgr;OJEHX—XH% :nan;ogz;E||Xj - X2 (20)
iz

For covariance estimation, our goal is to estimate the covariance of the signal vectors, ¥, = E[X; X JT ]
(under the convention that the X; are mean zero; otherwise, we subtract off the mean). While the
Frobenius loss, or MSE, is natural for signal estimation, for covariance estimation it is useful to consider
a wider range of loss functions depending on the statistical problem at hand; see [22] and the references
within for an elucidation of this point.

We will denote our covariance estimator as 3,. Denote the loss function by L(f)z, 3z); for instance,
Frobenius loss £(3z,.) = ||£2 — .||, or operator norm loss £(2., 32) = |22 — Sa|jop. For a specified
loss function £, we seek to minimize the asymptotic values of these loss functions for our estimator,

lim EL(S., Sa). (21)

For both the data prediction and covariance estimation problems, it will be a consequence of our
analysis that the limits of the errors are, in fact, well-defined quantities.

Finally, we are also concerned with principal component analysis (PCA), or estimating the principal
subspace U = span{ui, ..., u,}, in which the signal vectors X; lie. We measure the discrepancy between
the estimated subspace U and the true subspace U by the angle ©(U ,I] ) between these subspaces, defined
by

sin @ U, U) = |UL Ul|op, (22)

where U, and U are matrices whose columns are orthonormal bases of 44~ and U , respectively.

2.3 Review of the spiked model
2.3.1 Asymptotic spectral theory of the spiked model

The spectral theory of the observed matrix Y has been thoroughly studied in the large p, large n regime,
when p = p, grows with n. We will offer a brief survey of the relevant results from the literature
46, 10, 19).
In the case of isotropic Gaussian noise (that is, when X. = I,,), the r largest singular values of the
matrix Y converge to oy, defined by:
o2 — (e + D)L +/by), if b, >/, (23)
k= . .
(1+7)% if 6 < 7
Furthermore, the top singular vectors 4j and oy of Y make asymptotically deterministic angles

with the singular vectors uj and vx of X. More precisely, the absolute cosines (@Y, ux)| converge to
¢k = ci(y, L), defined by

/2 i j=kand 6 >
2= T/t )= BV (24)
0 otherwise



and the absolute cosines (97, vx)| converge to éx = ¢x(7,{k), defined by

1~ /0% o
2= ) Hi=kandb>y5 (25)
0 otherwise

When £ > /7, the population variance £; can be estimated consistently from the observed singular
value 0. Since ¢ and & are functions of ¢, and the aspect ratio -, these quantities can then also be
consistently estimated.

Remark 5. Due to the orthogonal invariance of the noise matrix N = G when . = I, formulas (23),
(24) and (25) are valid for any rank r matrix X, so long as X'’s singular values do not change with p
and n. The paper [10] derive the asymptotics for more general noise matrices N, but with the additional
assumption that the singular vectors of X are themselves random (see the discussion in Section 2.1.2).
The formulas for the asymptotic singular values and cosines found in [10] are in terms of the Stieltjes
transform [5] of the asymptotic distribution of singular values of Y, which can be estimated consistently
using the observed singular values of Y.

2.3.2 Optimal shrinkage with Frobenius loss and white noise

We review the theory of shrinkage with respect to Frobenius loss; we briefly mention that the paper [25]
extends these ideas to a much wider range of loss functions for the spiked model.
We suppose that our predictor of X is a rank r matrix of the form

X = tyindy, (26)
k=1

where 4 and 9 are estimated vectors. We will assume that the vectors ¥y are orthogonal, and that
their cosines with the population vectors vy of X are asymptotically deterministic. More precisely, we
assume that (vj,o1)? — & when j = k, and converges to 0 when j # k. Similarly, we will assume that
(ur,tx)? — ci; however, we do not need to assume any orthogonality condition on the u;’s and ;’s for
the purposes of this derivation.

Expanding the squared Frobenius loss between X and X and using the orthogonality conditions on
the v;’s and 0y ’s, we get:

- 2
IX - X3 = > (tkak@;{ - z;/Quka)
k=1 F
= Z Htkukvk — Kk ukvk H + Z <t3u]1}] — Kl/ UjU;,tkﬁk@k — Ki/Qukv;;vF
ik
~ Z ttnin — £ *urop |12, (27)

where ~ denotes almost sure equality as p,n — oo.
Since the loss separates over the different components, we may consider each component separately.
Using the asymptotic cosines, we have:

1/2

Htkukvk — é ukv,;r H% ~ ti + b — QZ;t/QCkéktk, (28)

which is minimized by taking
ty = 4,16/2Ck5k. (29)

These values of ti, therefore, are the optimal ones for predicting X in Frobenius loss.
Furthermore, we can also derive an estimable formula for the AMSE. Indeed, plugging in ¢, = Zi/ % i
o (28), we get:

AMSE = Zek (1— ). (30)

Note that this derivation of the optimal ¢x and the AMSE does not require the vectors @y and g
to be the singular vectors of Y. Rather, we just require the asymptotic cosines to be well-defined, and
the v;’s and ¥;’s to be orthogonal across different components. Implementing this procedure, however,
requires consistent estimates of /i, cx and Ck.



2.3.3 Eigenvalue shrinkage for covariance estimation

Similar to the task of predicting the data matrix X is estimating the covariance matrix X, = IE[XjX]T] =
D ohel fruruy . The procedure we consider in this setting is known as eigenvalue shrinkage. Given

orthonormal vectors 1, ..., 4, estimating the PCs w1, ..., u,, we consider estimators of the form
s
& LT
Ez - Ztiukuk ) (31)
k=1

where t7 are estimated population eigenvalues, which it is our goal to determine.

In [21], a large family of loss functions are considered for estimating ¥, in white noise. All these
loss functions satisfy two conditions. First, they are orthogonally-invariant, meaning that if both the
estimated and population PCs are rotated, the loss does not change. Second, they are block-decomposable,
meaning that if both the estimated and population covariance matrices are in block-diagonal form, the
loss can be written as functions of the losses between the individual blocks.

The method of [21] rests on an observation from linear algebra. If (asymptotically) the (i, ur) = c,
and 4; L ug for all 1 < j # k < r, then there is an orthonormal basis of R? with respect to which both
3. and any rank r covariance 3, are simultaneously block-diagonalizable, with r blocks of size 2-by-2.
More precisely, there is a p-by-p orthogonal matrix O so that:

05,.0" = P Ax, (32)
k=1
and
05,07 = @ 0B, (33)
k=1
where
(4 0
a= (%0 (34)
and

2 2
c cer/1—cC
By = k ko). 35

. (ck\/l—c% 1—cf > (35)

If E(ﬁ, Y) is a loss function that is orthogonally-invariant and block-decomposable, then the loss
between ¥, and Xz decomposes into the losses between each Ay and By, which depend only on the one
parameter ¢;. Consequently,

), = argmin L(Ay, (By). (36)
L

The paper [21] contains solutions for 0y, for a wide range of loss functions £. For example, with Frobenius
loss, the optimal value is £ = £xci, whereas for operator norm loss the optimal value is £, = £;. Even
when closed form solutions are unavailable, one may perform the mimimization (36) numerically.

3 Asymptotic theory

A precise understanding of the asymptotic behavior of the spiked model is crucial for deriving optimal
spectral shrinkers, as we have seen in Sections 2.3.2 and 2.3.3. In this section, we provide expressions
for the asymptotic cosines between the empirical PCs and the population PCs, as well as limiting values
for other parameters. The formulas from Theorem 3.1 below will be employed in Section 4.1 for optimal
singular value shrinkage with whitening; and the formulas from Theorem 3.2 below will be employed in
Section 4.2 for optimal eigenvalue shrinkage with whitening.

The first result, Theorem 3.1, applies to the standard spiked model with white noise. It gives a
characterization of the asymptotic angles of the population PCs and empirical PCs with respect to an
inner product z' Ay given by a symmetric positive-definite matrix A. Parts 1 and 4 are standard results
on the spiked covariance model [46, 10]; we include them here for easy reference. A special case of part
2 appears in [38], in a somewhat different form; and part 3 appear to be new.

10



Theorem 3.1. Suppose Y{",..., Y, are iid vectors in RP from the spiked model with white noise, with
Y = X} + G; where X}’ is of the form (6) and G; ~ N(0,I). Let A= Ay be an element of a sequence
of symmetric, positive-definite p-by-p matrices with bounded operator norm (|| Ap|lop < C < 0o for all p),
whose asymptotic normalized trace is well-defined and finite:

te = lim 1tr(Ap) < oo. (37)

p—r00 p
Suppose too that for 1 < k < r, the following quantity 7 is also well-defined and finite:

7 = lim AL 2uy || 2 < oo, (38)

Define c; > 0 by:

1y /)2 e w
(c}ﬁ')zz 11”/7/;}:, if j =k and £} >\ﬁ’ (39)
0, otherwise
and let sy = /1 —(c¥)?. Also define ¢ > 0 by:
1—~/(€7)2 o w
(6}3)2 _ 1117/5’2’3,, if j =k and 0} > /v (40)
0, otherwise

and 8§y = /1 —(¢¥)2.
Then for any 1 < j, k < r, we have, as n — oo and p/n — ~:

1. The k™ largest singular value of Y converges almost surely to

W s : W
- \/“k“)(”%)’ V&>V (41)
1+, otherwise

2. The A-norm of 4}, converges almost surely:

[§)

(e)”

lim |4, %ay|)* = + () Ha- (42)
p—ro0

3. The A-inner product between u), and G} converges almost surely:

w a\2 . W
l
lim <Apuvkv7ﬁ\;€v>2 _ (cx /)", if & > ﬂ (43)
p—roo 0, otherwise
4. The inner product between vj and vy converges almost surely:
~wW 2 p o W
=k and /¢
lim <’U;{V,’lj;§>2 — (ck) ) Zf] ' an k > ﬁ ) (44)
n—o0 0, otherwise

Remark 6. In fact, as will be evident from its proof Theorem 3.1 is applicable to any rank r matrix
XV, viewing u), and vy as the singular vectors of X*. In particular, the columns of X" need not be
drawn iid from a mean zero distribution. All that is needed for Theorem 3.1 is that the singular values
of X% remain constant as p and n grow, and that the parameters 7, are well-defined.

Theorem 3.1 is concerned only with the standard spiked model with white noise, Y;* = X + G;. By
contrast, the next result, Theorem 3.2, deals with the spiked model with colored noise, Y; = X; + ¢,
where £; ~ N(0,3.). In Section 2.1, we defined the whitening matrix W = $-'/? that transforms Y;
into the standard white-noise model Y}¥; that is, Y;" = WY; = WX; + We; = X7 + G;. In stating and
applying Theorem 3.2, we refer to the parameters for both models described in Section 2.1.

Theorem 3.2. Assume that the PCs u1,...,u, satisfy the weighted orthogonality condition (19), i.e.,
forl<j#k<r,

lim u;—W2uk =0. (45)

p—r0o0
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Order the principal components of X; by decreasing value of LTk, as in (16); that is, we assume X5 =
D> ohet ruruf , with

élTI > > ZTTT‘ > 0, (46)

where T, = limp_ o0 ||W ™ ul |72 as in (15).
Define ¢, >0, 1 <k <r, by:
i > A
e = { EPHED T ne k , (47)
0, otherwise

where ¢y is given by (39), £} is defined from (6) with X}" = WX}, and pe = limp_, o @ as in (17).
Then for any 1 < j, k <7,

1. The vectors uy, and ur are almost surely asymptotically identical:

lim (ug, @x)> = 1. (48)

p—>00
2. The vectors vy, and vy are almost surely asymptotically identical:

lim (vy, o)) = 1. (49)

n—o0

3. The inner product between u; and Uy converges almost surely:

2 ro W
=k and /¢
lim <u],ﬁk>2 — Ck» ij ' an k > ﬁ, (50)
p—r00 0, otherwise
where c; is defined in (47).
4. The vectors t; and Uy are asymptotically orthogonal if j # k:
. oA N2 o
plin;o<u],uk> = 0jk. (51)
5. The parameter Ty is almost surely asymptotically equal to ||Wugl|?:
lim (75, — [|[Wur ) = 0. (52)
p—r00
6. The variance £y of X]' along uy is almost surely asymptotically equal to LTy :
lim (E‘;;V — Eka) = 0. (53)

p—ro0

The proofs for both Theorem 3.1 and Theorem 3.2 may be found in Appendix A.

4 Optimal spectral shrinkage with whitening

In this section, we will derive the optimal spectral shrinkers for signal prediction and covariance estimation
to be used in conjunction with whitening.

4.1 Singular value shrinkage

Given the noisy matrix Y = X + N, we consider a class of predictors of X defined as follows. First, we
whiten the noise, replacing Y with YV = WY. We then apply singular value shrinkage to the transformed
matrix Y. That is, if 47,..., 4, and 07,...,0,) are the top left and right singular vectors of YV, we
define the new matrix

XV =S "nay o)’ (54)
k=1

for some positive scalars t; which we have yet to determine.

12



Finally, we recolor the noise, to bring the data back to its original scaling. That is, we define our
final predictor X by

X=w'X"v. (55)
In this section, we will show how to optimally choose the singular values ¢1,...,¢, in (54) to minimize
the AMSE:
AMSE = lim E||X — X||2. (56)
n—0o0

Remark 7. Loss functions other than Frobenius loss (i.e., mean-squared error) may be considered as
well. This will be done for the problem of covariance estimation in Section 4.2, where it is more natural
[22]. For recovering the data matrix X itself, however, the MSE is the natural loss, and the optimal ¢
can be derived for minimizing the AMSE without any additional assumptions on the model.

Once we have whitened the noise, our resulting matrix YV = X% 4 G is from the standard spiked
model and consequently satisfies the conditions of Theorem 3.1, since G is a Gaussian matrix with iid
N(0,1) entries. We will apply the asymptotic results of Theorem 3.1, taking the matrix A = W™
Recalling the definitions of 4y and @y from (8) and (9), respectively, we obtain an immediate corollary
to Theorem 3.1:

Corollary 4.1. For 1 < k <r, the cosine between the vectors Uy and uy converges almost surely:

(Cﬁl)z £ W
lim (@, )? = & = { O TRV (57)
p—oo 0, otherwise
We derive the optimal t;,. We write:
XY S0Py (o) T (58)
k=1
and so
X=W'X" S @) PW T ay of) T =D /) P (o) T (59)
k=1 k=1
Furthermore,
XV =3y o) (60)
k=1
and so
X=WX"=>"t,Wray(oy) " => te|Wra an ()" (61)
k=1 k=1

It is convenient to reparametrize the problem in terms of

Zk = K‘;:/Tk-, (62)
and
g —1 ~w (C‘I;V)Q w2 1z
th =t ||[W ™y || ~ tr . + (5% )" pe ) (63)

where we have used Theorem 3.1.

In this notation, we have X =", _, Z;lgmﬂk (vF) 7, and X = 21, £tk (0)) . From Theorem 3.1, the
vectors v; and ¥y are orthogonal if j # k, and the cosine between vy and vy is ¢, = ¢ . The derivation
from Section 2.3.2 shows that the optimal values ¢; are then given by

'Ek = Zi/zckék (64)

For this to define a valid estimator, we must show how to estimate the values ¢, ¢ and &, from the
observed data itself.
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Shrunken singular value

Shrunken singular value
© v e A o oo

o

To that end, from Theorem 3.1 ¢} can be estimated by

14

(08)? =1 -7+ /((o¥)? —1-7)* — 4y
2

(65)

where o} is the k' singular value of Y. The cosines ¢}’ and & can then be estimated by formulas (39)

and (40).

Now, rearranging part 2 from Theorem 3.1, we can solve for 75 in terms of the estimable quantities

e, sy, pe and |22y %

Indeed, this quantity can be estimated consistently: ¢} and s; are estimable from (39),
directly observed, and u. ~ tr(X.)/p.

(ck)?

Tk ™~ 172 - .
IS 2ay ]2 — (s)2pe

(66)

S22 ay)? is

Having estimated 74, we apply formula £, = £} /71, and formula (50) for cx. This completes the
derivation of the optimal singular value shrinker. The entire procedure is described in Algorithm 1.

v =0.5, ue =0.05

— — ~Population
—— Optimal 7z

2 25 3 35 4 4.5 5 55
Observed singular value

Shrunken singular value

o

7=05, pe =2

— — —Population

2 25 3 3.5 4 45 5 55
Observed singular value

Shrunken singular value

v =0.5, pe =20

— — ~Population

—— Optimal 2

2 25 3 35 4 4.5 5 55
Observed singular value

Figure 1: Optimal shrinker, naive shrinker, and population shrinker, for 7 =1 and v = 0.5.

Figures 1 and 2 plot the optimal shrinker, i.e., the function that sends each top observed singular
value o} of YV to the optimal t;. For contrast, we also plot the “population” shrinker, which maps o}’

to the corresponding +/¢}'; and the “naive” shrinker, which maps o} to

£y cy ¢j; . This latter shrinker is

considered in the paper [19], and is naive in that it optimizes the Frobenius loss before the unwhitening
step without accounting for the change in angles between singular vectors resulting from unwhitening.
In Figure 1 we set v = 0.5, while in Figure 2 we set v = 2. We fix 7 = 1 but consider different values of
te (the behavior depends only on the ratio of u. and 7).

25 3 35 4 45 5 55 6
Observed singular value

Shrunken singular value

~

o

o

~

w

S

o

25 3 3.5 4 45 5 55 6
Observed singular value

Shrunken singular value

vY=2, pe =20

Population
Naive
—— Optimal

25 3 3.5 4 45 5 55 6
Observed singular value

Figure 2: Optimal shrinker, naive shrinker, and population shrinker, for 7 =1 and v = 2.
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Algorithm 1 Optimal singular value shrinkage with whitening

1:
2:
3:
4:
5:

6:

T

Input: observations Yi,...,Y,; noise covariance ¥.; rank r
Define Y = [V1,...,Y,]/vm: W = S22y = Wy
Compute rank » SVD of YV: 4y, ..., a); 07, ..., 07 of,..., 0%

for all k = 1,...,7‘ do
if o) > 1+ /7 then
=0 =17+ /(0= T-7)% 4] /2
o = wl — /(62 ) (L+/6)
sy 1—(cy)?
&, = \/(1 /() ] (L +1/ey)
Me = tI‘(ZE
) (IS - e
te = ()Y 2y e/ [(cf)? + (s3)2ers]
else if 0} <1+ /7 then
tp, =0
Output: X = W13 tray (oF)7T

Tk

Remark 8. In practice, the rank » may not be known a priori. In Section 4.4, we describe several
methods for estimating r from the data.

Remark 9. Algorithm 1 may be applied to denoising any rank r matrix X from the observed matrix
Y = X + N. As pointed out in Remark 6, the assumption that the columns of X are drawn iid from a
mean zero distribution with covariance ¥, is not needed for the parameter estimates used by Algorithm
1 to be applicable, so long as the singular values of the whitened matrix X"V stay fixed (or converge
almost surely) as p and n grow, and the parameters 75 are well-defined.

4.2 Eigenvalue shrinkage

We turn now to the task of estimating the covariance ¥, of X;. Throughout this section, we will assume
the conditions of Theorem 3.2, namely conditon (19).

Analogous to the procedure for singular value shrinkage with whitening, we consider the procedure
of eigenvalue shrinkage with whitening. We first whiten the observations Y, producing new observations
Y;" = WY;. We then form the sample covariance ﬁ];" of the Y. We apply eigenvalue shrinkage to i];",
forming a matrix of the form

=ty (ay)’, (67)
k=1

where 31,...,4, are the top r elgenvectors of E , or equivalently the top r left singular vectors of the
whitened data matrix YV and the t2 are the parameters we will determine. Finally, we form our final
estimator of ¥, by unwhitening:

S, =WISyw o (68)

It remains to define the eigenvalues t3,...,t2 of the matrix f]‘;’ We let £ denote any of the loss
functions considered in [21]. As a reminder, all these loss functions satisfy two conditions. First, they are
orthogonally-invariant, meaning that if both the estimated and population PCs are rotated, the loss does
not change. Second, they are block-decomposable, meaning that if both the estimated and population
covariance matrices are in block-diagonal form, the loss can be written as functions of the losses between
the individual blocks.

The estimated covariance matrix 21 = W712¥W71 can be written as:

Se=WISEW =) aw  ay (W tay) " ZtkHW Paray, = Ztku (69)

k=1
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where we have defined £z by:

w2
2= Wyt~ ((Cjk) +(8Y§)2us)- (70)

We also write out the eigendecomposition of X,:

EI = Zékukuz (71)
k=1
From Theorem 3.2, the empirical PCs 41, ..., 4, are asymptotically pairwise orthonormal, and %; and

ug, are asymptotically orthogonal if j # k, and have absolute inner product ¢y when j = k, given by (47).
Consequently, from Section 2.3.3 the optimal #; are defined by:

iz = argmin £( Ay, £By), (72)
‘

where:

A= o). (73)

2 _ 2
By = ( i V1 G > . (74)
Ck

2 2
1—c 1—cp

and

As noted in Section 2.3.3, [21] provides closed form solutions to this minimization problem for many loss
functions £. For example, when operator norm loss is used the optimal 7 is £, and when Frobenius
norm loss is used, the optimal #2 is £xcz. When no such closed formula is known, the optimal values may
be obtained by numerical minimization of (72).

Finally, the eigenvalues t; are obtained by inverting formula (70):

—1

th =13 (ﬂ + (sij)%) : (75)

Tk
We summarize the covariance estimation procedure in Algorithm 2.

Remark 10. As stated in Remark 8, in practice the rank r will likely not be known a priori. We refer
to Section 4.4 for a description of data-driven methods that may be used to estimate .

4.3 Estimating the noise covariance 3.

Algorithms 1 and 2 require access to the whitening transformation W = ¥ v 2, or equivalently the noise
covariance matrix .. However, the same method and analysis goes through unscathed if 3. is replaced
with an estimate Y. that is consistent in operator norm, i.e., where

lim |2 — Seflop =0 (76)
p—o0

almost surely as p/n — ~. Indeed, the distribution of the top r singular values and singular vectors of
Y™ will be asymptotically identical whether the true W = ¥ 1/2

is used to perform whitening or the
estimated W = 2;1/2 is used instead.

Remark 11. Because we assume that the maximum eigenvalue of . is bounded and the minimum
eigenvalue is bounded away from 0, (76) is equivalent to consistent estimation of the whitening matrix

W=x"2by W=35:"2

An estimator 3. satisfying (76) may be obtained when we have access to an iid sequence of pure noise
vectors €1, ..., &, in addition to the n signal-plus-noise vectors Yi,...,Y,. This is the setting considered
in [45], where a number of applications are also discussed. Here, we assume that n’ = n/(n) grows faster
than p = p(n), that is,

p) _ (77)




Algorithm 2 Optimal eigenvalue shrinkage with whitening

1: Input: observations Y7,...,Y},; noise covariance X.; rank r
2 Define Y = [V4,....Y,]/vm; W =22, vy =Wy
3: Compute top r left singular vectors/values of YV: 4y,...,4%; o), ..., oV
4: for all k=1,...,r do
5: if off > 1+ ,/7 then
G =10 —1—v+/((0})2 —1-7)>— 4] /2
e =/ =2/()2) | L+ 2/8)
pe = tr(Z:)/p
1 2Aw W
7= (e)?/ (I a2 = (1 = ()
gk = QV/Tk
cx =i [/ ()2 + (1= (cf))?)ueTh
(b 0
=50
B, — a cry/1—c
P /1 - c 1—¢c
tk = argmin, L(Ag, (By)
th =G /[(e)? + (1= (c})?)pe]
6: else if o)) <1+ /7 then
2 _ 0
k
7. Output: ¥, = S _ (W tay)(Wtay)T
In this case, we replace ¥, by the sample covariance:
3. = 1 is-sT (78)
£ n ~ Jcg

which converges to 3. in operator norm; that is, (76) holds. In Section 8.5, we will illustrate the use of
this method in simulations.

Remark 12. If p/n’ does not converge to 0, then 3. given by (78) is not a consistent estimator of X, in
operator norm. Indeed, when ¥. = I,, the distribution of flg’s eigenvalues converges to the Marchenko-
Pastur law [42], and more generally converges to a distribution whose Stieltjes transform is implicitly
defined by a fixed point equation [5, 50, 49].

4.3.1 Alternative estimators of X,

Without access to an independent sequence of n’ > p pure noise samples, estimating the noise covariance
3. consistently (with respect to operator norm) is usually hard as p — oo. However, it may still be
practical when X. is structured. Examples include: when X. is sparse [13]; when 2! is sparse [56];
when Y. is a circulant or Toeplitz matrix, corresponding to stationary noise [16]; and more generally,
when the eigenbasis of X, is known a priori.

To elaborate on the last condition, let us suppose that the eigenbasis of 3. is known, and without
loss of generality that 3. is diagonal; and suppose that and the ux’s are delocalized in that [|uk|/cc — O

as p — oo. Write X. = diag(v1,...,vp), for unknown v;. In this setting, the sample variance of
each coordinate will converge almost surely to the variance of the noise in that coordinate; that is, for
i=1,...,p, we have:
I
= Z;Yz‘j == Z; (Z fkukzzyk) + - Z&] +2- 2813 kaukzzgk — Vi, (79)
i= J k=1 J

where the limit is almost sure as p,n — co. We have made use of the strong law of large numbers and
the limit ||ux||cc — O.
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Let f]g have ‘" diagonal entry ©;. Then f]a — 3¢ is a mean-zero diagonal matrix, with diagonal entries
U; — v;; and the operator norm [|X. — X ||op = maxi<i<p | — vi|, which is easily shown to go to 0 almost
surely as p — oo using the subgaussianity of the observations.

4.4 Estimating the rank r

A challenging question in principal component analysis is selecting the number of components corre-
sponding to signal, and separating these from the noise. In our model, this corresponds to estimating
the rank r of the matrix X, which is an input to Algorithms 1 and 2. A simple and natural estimate 7
of the rank is the following:

F=min{k: 0} > 14+ /7 + e} (80)

That is, we estimate the rank as the number of singular values of YV = XV 4 G exceeding the largest
singular value of the noise matrix G, plus a small finite-sample correction factor €, > 0. Any singular
value exceeding 1 + /7 + €, is attributable to signal, whereas any value below is consistent with pure
noise.

When ¢,, = € for all n, it may be shown that in the large p, large n limit, # converges almost surely
to the number of singular values of X" exceeding 1 + /7 + €. For small enough ¢, this will recover all
singular values of X" exceeding /7, and is likely sufficient for many applications. Furthermore, the
correction €, may be calibrated using the Tracy-Widom distribution of the operator norm of GG by
taking €, ~ n=2/3. Though a detailed discussion is beyond the scope of this paper, we refer to [35] for
an approach along these lines.

An alternative procedure is similar to 7, but uses the original matrix Y rather than the whitened
matrix YV:

7 =min{k : ok > by +€n}, (81)

where b is the asymptotic operator norm of the noise matrix N, and ¢, is a finite-sample correction
factor. The value b4 may be evaluated using, for example, the method from [37]. An estimator like
this is proposed in [44]. In Section 8.8, we present numerical evidence that # may outperform 7. More
precisely, it appears that whitening can increase the gap between the smallest signal singular value and
the bulk edge of the noise, making detection of the signal components more reliable.

Remark 13. We also remark that a widely-used method for rank estimation in non-isotropic noise is
known as parallel analysis [29, 15, 14], which has been the subject of recent investigation [18, 20]. Other
methods have also been explored [33].

5 Singular value shrinkage and linear prediction

In this section, we examine the relationship between singular value shrinkage and linear prediction. A
linear predictor of X; from Yj is of the form AY}, where A is a fixed matrix. It is known (see, e.g. [41])
that to minimize the expected mean-squared error, the best linear predictor, also called the Wiener filter,
takes A =X, (25 + EE)_I, and hence is of the form:

X =%, (S + %)Y (82)

We will prove the following result, which shows that in the classical regime v — 0, optimal shrinkage
with whitening converges to the Wiener filter.

Theorem 5.1. Suppose Y1,...,Y, are drawn from the spiked model with heteroscedastic noise, Y; =
X +¢€j. Let Xu1,...,X, be the predictors of Xi1,...,Xn obtained from singular value shrinkage with
whitening, as described in Section 4.1 and Algorithm 1. Then almost surely in the limit p/n — 0,

s . 1 )
S 177 = KU =l S IR Xl =0 )
=

In other words, the predictor Xj is asymptotically equivalent to the best linear predictor X;pt.

Theorem 5.1 is a consequence of the following result.
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Theorem 5.2. Suppose that the numbers sk, 1 < k <r satisfy

o

%%%:egﬂ- (84)
Then the predictor defined by
X' = - seW ray (o) " (85)
k=1
satisfies
lim [ X7 — X' =0, (86)

where the limit holds almost surely as p/n — 0.

We will also show that in the context of shrinkage methods, whitening is an optimal weighting of
the data. To make this precise, we consider the following class of weighted shrinkage methods, which
subsumes both ordinary singular value shrinkage and singular value shrinkage with noise whitening. For
a fixed weight matrix @, we multiply Y by @, forming the matrix Y? = [QY1,...,QY,]/v/n. We then
apply singular value shrinkage to Y7, with singular values s{,...,s%, after which we apply the inverse
weighting @~ *. Clearly, ordinary shrinkage is the special case when Q = I,, whereas singular value
shrinkage with whitening is the case when Q =W = 251/2.

When the singular values s{,...,s# are chosen optimally to minimize the AMSE, we will call the
resulting predictor X, and denote by X¢ ; the denoised vectors so that Xq = [Xo.1,..., Xq.4]/v/n. In
this notation, X = X is optimal shrinkage with whitening, whereas X7 is ordinary shrinkage without
whitening. The natural question is, what is the optimal matrix Q7

To answer this question, we introduce the linear predictors Xg?j, defined by

T
i .
X5 = nHQY;, uf)Q uf, (87)
k=1
where the u{,...,u} are the eigenvectors of @X.Q, and the ] are chosen optimally to minimize the

average AMSE across all n observations. We prove the following result, which is again concerned with
the classical v — 0 regime.

Theorem 5.3. Let Q = Qp be an element of a sequence of symmetric, positive-definite p-by-p matrices
with bounded operator norm (||Qpllop < C < 0o for all p). Then in the limit p/n — 0, we have almost
surely:

. o-lin % . 1 < o-lin %
lim || Xg" — XollF = lim 5_2‘;”&54 — Xal* =o0. (88)
=

lin

In other words, the weighted shrinkage predictor X'QJ- is asymptotically equal to the linear predictor XQ’J-.
Furthermore, Q = W minimizes the AMSE:

W = argmin lim E[|Xo — X||p. (89)
Q n—oo

The first part of Theorem 5.3, namely (88), states that any weighted shrinkage method converges
to a linear predictor when v — 0. The second part of Theorem 5.3, specifically (89), states that of all
weighted shrinkage schemes, whitening is optimal in the v — 0 regime.

Remark 14. A special case of Theorem 5.2 is the suboptimal “naive” shrinker with whitening, which
uses singular values \/¢}'cy ¢y ; see Figures 1 and 2 and the accompanying text. It is easily shown that
Theorem 5.2 applies to this shrinker, and consequently that in the v — 0 limit this shrinker converges
to the BLP. This fact will be illustrated numerically in Section 8.2.

We give detailed proofs of Theorems 5.1, 5.2 and 5.3 in Appendix B. In Section 5.1, we make a simple
observation which underlies the proofs, which is of independent interest.
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5.1 Columns of weighted singular value shrinkage

In this section, we show how to write the predictor XQ in terms of the individual columns of Y7 =
[QY1,...,QY,]/+/n. This observation will be used in the proofs of Theorems 5.1, 5.2 and 5.3, and also
motivates the form of the out-of-sample predictor we will study in Section 6.

Let m = min(p,n). Consistent with our previous notation (when @ = W), we will denote by
af, ..., 4%, the left singular vectors of the matrix Y?, and we will denote by 97, ..., 9% the right singular
vectors and o7, ..., of, the corresponding singular values.

Lemma 5.4. Each column XQJ of v/n - X’Q s given by the formula

Xo,; =Q ') niQY;,af)af, (90)

k=1

where n} = s} /o]l is the ratio of the new and old singular values.

To see this, observe that we can write the j** column of the matrix \/n - Y7 as:
m
QY; = ofaivd, (91)
k=1

and so by the orthogonality of 4, o, = (QYj,4j)/o}. Consequently, when Xg is obtained from Y7 by
singular value shrinkage with singular values si, ... s? followed by multiplication with Q%, we obtain
formula (90).

6 Out-of-sample prediction

We now consider the problem of out-of-sample prediction. In Section 5.1, specifically Lemma 5.4, we saw
that when applying the method of shrinkage with whitening, as described in Algorithm 1, each denoised
vector X; can be written in the form:

X; = me (WY, a )W ay, (92)
k=1

where 47, ..., 4, are the top r left singular vectors of YV = WY, and n are deterministic coefficients.
We observe that the expression (92) may be evaluated for any vector Yj, even when it is not one of the
original Y7, ...,Y,, so long as we have access to the singular vectors 4y, .

To formalize the problem, we suppose we have computed the sample vectors 4y, ..., u, based on n
observed vectors Yi,...,Y,, which we will call the in-sample observations. That is, the 4, are the top
left singular vectors of the whitened matrix YV = [¥7",...,Y,)']/v/n. We now receive a new observation
Yo = Xo + &0 from the same distribution, which we will refer to as an out-of-sample observation, and our
goal is to predict the signal X.

We will consider predictors of the out-of-sample X of the same form as (92):

Xo =Y np(W¥o,ap )W ay. (93)
k=1

We wish to choose the coefficients 7)), to minimize the AMSE, lim, oo IE||X0 - X0|\2.

Remark 15. We emphasize the difference between the in-sample prediction (92) and the out-of-sample
prediction (93), beyond the different coefficients 7 and 7. In (92), the vectors uY, ..., u; are dependent
on the in-sample observation Y;, 1 < j < n, because they are the top r left singular vectors of Y.
However, in (93) they are independent of the out-of-sample observation Yy, which is drawn independently
from Yi,...,Y,. As we will see, it is this difference that necessitates the different choice of coefficients
1k and 7y, for the two problems.

In this section, we prove the following result comparing optimal out-of-sample prediction and in-
sample prediction. Specifically, we derive the explicit formulas for the optimal out-of-sample coefficients
7, and the in-sample coefficients 7x; show that the coeflicients are not equal; and show that the AMSE
for both problems are nevertheless identical. Throughout this section, we assume the conditions and
notation of Theorem 3.1.
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Theorem 6.1. Suppose Y1,...,Y, are drawn iid from the spiked model, Y; = X; + €5, and 4y, ..., Gy
are the top r left singular vectors of YV . Suppose Yo = Xo + €0 is another sample from the same spiked
model, drawn independently of Y1,...,Y,. Then the following results hold:

1. The optimal in-sample coefficients ni. are given by :

(c¥)? &
= . . 94
1 ()24 (s7)2peie &7 +1 (04)
2. The optimal out-of-sample coefficients 1y, are given by:
o (cr)? 124
> — . . 95
@+ e B ()71 %)

3. The AMSEs for in-sample and out-of-sample prediction are identical, and equal to:

AMSE:i(Q*M L )’ (96)

=\ Tk G2+ 1 o

where ap = ((C;;V)2 + (5‘,2’)2/157';9)71.

Remark 16. To be clear, denoising each in-sample observation Yi,...,Y, by applying (92) with ny
defined by (94) is identical to denoising Y1,..., Y, by singular value shrinkage with whitening described
in Algorithm 1. We derive this alternate form only to show that the coefficients 7, are different from the
the optimal out-of-sample coefficients 7}, to be used when Yj is independent from the 4} .

Remark 17. Theorem 6.1 extends the analogous result from [19], which was restricted to the standard
spiked model with white noise.

The proof of Theorem 6.1 may be found in Appendix C. In Algorithm 3, we summarize the optimal
out-of-sample prediction method, with the optimal coefficients derived in Theorem 6.1.

Algorithm 3 Optimal out-of-sample prediction

1: Input: Yy; ay,...,4Y; of,...,0)
2: forallk=1,...,r do
3: if off > 1+ ,/7 then

B=[0r) =17+ V(o) = 1=~ 4] /2

e ==/ (E)2) [ (1+/87)

7= ()2 (IS0 2 - (s ue]
ar =1/ ((c)? + (s§)*nee)
iy = arly (G)?/ (6 (cy)* +1)
4: else if o)) <1+ ,/7 then
M =0

5: Output: Xo = Y ;_, n(W Yo, a) )W ay

7 Subspace estimation and PCA

In this section, we focus on the task of principal component analysis (PCA), or the estimation of the
principal components u1, ..., u, of the signal X;, and their span. Specifically, we assess the quality of the
empirical PCs 41, ..., 4, defined in (8). The reader may recall that these are constructed by whitening
the observed vectors Y; to produce Y;"; computing the top r left singular vectors of Y;"; and unwhitening
and normalizing.
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We first observe that in the classical regime v — 0, the angle between the subspaces span{a, ..., i, }
and span{ui,...,u,} converges to 0 almost surely; we recall that the sine of the angle between subspaces
A and B of R? is defined by

sin O(A, B) = || AL B|lop, (97)

where A, and B are matrices whose columns are orthonormal bases of A1 and B, respectively.

Proposition 7.1. Suppose Yi,...,Yn are drawn from the spiked model, Y; = X; +¢;. Let U =
span{ui,...,ur} be the span of the population PCs, andU = span{t1,...,4r} be the span of the empirical
PCs. Then

lim sin G(U,Z;l) =0, (98)
n—0

where the limit holds almost surely as n — oo and p/n — 0.

The proof of Proposition 7.1 may be found in Appendix D.

Proposition 7.1 shows consistency of principal subspace estimation in the classical regime. We ask
what happens in the high-dimensional setting v > 0, where we typically do not expect to be able to have
consistent estimation of the principal subspace. Our task here is to show that whitening will still improve
estimation. To that end, in Section 7.1, we will show that under a uniform prior on the population PCs
ug, whitening improves estimation of the PCs. In Section 7.2, we will derive a bound on the error of
estimating the principal subspace span{ui,...,u,}, under condition (19); we will show that the error
rate matches the optimal rate of the estimator in [58]. Finally, in Section 7.3 we will complement these
results by showing that under the uniform prior, whitening improves a natural signal-to-noise ratio.

7.1 Whitening improves subspace estimation for generic PCs

In this section, we consider the effect of whitening on estimating the PCs w1, ..., u,. More precisely, we
contrast two estimators of the u,. On the one hand, we shall denote by 4], ... @, the left singular vectors
of the raw data matrix Y, without applying any weighting matrix. On the other hand, we consider
the vectors 1, ..., U, obtained by whitening, taking the top singular vectors of YV, unwhitening, and
normalizing, as expressed by formula (8).

We claim that “generically”, the vectors 1, ..., 4, are superior estimators of ui,...,u,. By “generi-
cally”, we mean when we impose a uniform prior over the population PCs w1, ..., u,; that is, we assume

the uj are themselves random, drawn uniformly from the sphere in R? and orthogonalized. This is
precisely the “orthonormalized model” considered in [10].

We set T = limy,_, oo tr(E71) /p, assuming this limit exists; and let ¢ = 7 - u.. By Jensen’s inequality,
@ > 1, with strict inequality so long as 3. is not a multiple of the identity.
Theorem 7.2. Suppose X. has a finite number of distinct eigenvalues, each occurring with a fized
proportion as p — 0o. Suppose too that ui,. .., u, are uniformly random orthonormal vectors in RP. Let
al,..., 0, be the left singular vectors of Y, and 4, ..., %, be the empirical PCs defined by (8). Then
with probability approaching 1 as n — oo and p/n — v > 0,

(@, ui) [ < R(o)| (i, un)*, 1<k <, (99)

where R is decreasing, R(1) =1, and R(p) < 1 for ¢ > 1.
Furthermore, if ©1,...,0. are the right singular vectors of Y, and 01,...,0, are the left singular
vectors of YV, then

{8k, 20) [ < R(9) (O, 20) [, 1<k <, (100)

with probability approaching 1 as n — oo and p/n — v > 0, where zx = (21, - - -, Znk) | /\/1, and where
R is decreasing, R(1) =1, and R(p) <1 for ¢ > 1.

The proof of Theorem 7.2 may be found in Appendix D. It rests on a result from the recent paper
[27], combined with the formula (47) for the asymptotic cosines between 4y, and wuy.

Remark 18. The definition of 7 = tr(X7 ') /p is consistent with our definition of 7, = lim,_yeo ||W ™ u)y || 72
from (15). Indeed, since Theorem 7.2 assumes that w1, ..., u, are uniformly random unit vectors, the PCs
uy of X% are asymptotically identical to Wuyg/||Wuk||, since these vectors are almost surely orthogonal
as p — oo. Consequently, for each 1 < k < r we have

—_

. 1 _ s 1, .
= lim = lim [[Wu|® ~ ~tr(W?) = ~tr(S, ) ~ 7 101
e = Nm e = A W]~ ZeWE) = () ~ (101)

22



7.2 Minimax optimality of the empirical PCs

In this section, we consider the question of whether the empirical PCs @1, ...,4, can be significantly
improved upon. In the recent paper [58], an estimator U of the principal subspace U = span{u1,...,ur}
is proposed that achieves the following error rate:
A 1/2 /2|57 |11/2 1/2)52 111/2
Efsin O, U)] < min { 7 [ He—F(r/P) 1/l| llop” | g Zellon” ) ) L (102)
mink Zk ming f}c
where C is a constant dependent on the incoherence of u1, ..., ur, defined by I(U) = maxi<;<j, |le; U||?
where U = [u1,...,u,] € RP*". Furthermore, the error rate (102) is shown to be minimaxz optimal over
the class of models with PCs of bounded incoherence.
In this section, we show that when (19) holds, then the empirical PCs 44, ..., 4, achieve the same

error rate (102) almost surely in the limit n — oo, p/n — «. More precisely, we show the following:

Theorem 7.3. Assume that the weighted orthogonality condition (19) holds. Suppose that 3¢ is diagonal,
and that there is a constant C so that

lujk] < (103)

<

VP

forallk = 1,...;r and j = 1,...,p. Suppose Y1,...,¥n are drawn iid from the spiked model. Let

A1, ..., Ur be the estimated PCs from equation (8), and letU = span{ti1,...,4r} andU = span{ui,... , ur}.
Then almost surely in the limit p/n — v

. . . 1 || 5”0
5 < . Eellop 1 104
sin® ©(U,U) mln{K’y,u s + : kfi ) s (104)

where K is a constant depending only on C from (103).

Remark 19. Theorem 7.3 shows that in the case r = 1, the estimate @ obtained by whitening Y,
computing the top left singular vector of YV, and then unwhitening and normalizing, is asymptotically
minimax optimal. When r > 1, we require the extra condition (19) which does not appear in the minimax
lower bound from [58].

The proof of Theorem 7.3 follows from the formula (47) for the cosines between uj and 4y from
Theorem 3.2. The details are found in Appendix D.

7.3 Whitening increases the operator norm SNR

In this section, we define a natural signal-to-noise ratio (SNR) for the spiked model, namely the ratio of
operator norms between the signal and noise sample covariances. We show that under the generic model
from Section 7.1 for the signal principal components uy, the SNR increases after whitening.

We define the SNR by:

n = 1Bl

= 12 (105)
12 op

where 3, = L3 XX and Ye=1 >.0_,eje; are the sample covariances of the signal and noise
components, respectively (neither of which are observed).

After whitening, the observations change into:

Yy =X+ G, (106)
and we define the new SNR to be:
wo_ szz HOP (107)
12g]lop

where 33 = 237" X¥(X})" and &y = 2370, GG
As in Section 7.1, let 7 = limp_ o0 tr(32 1) /p (assuming the limit exists), and define ¢ = 7 - pe. Note
that by Jensen’s inequality, ¢ > 1, with strict inequality unless ¥. = vI,. We will prove the following:
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Proposition 7.4. Suppose the population principal components ui,...,u, are uniformly random or-
thonormal vectors in RP. Then in the limit p/n — v > 0,

SNR" > ©SNR. (108)

In other words, Proposition 7.4 states that for generic signals whitening increases the operator norm
SNR by a factor of at least ¢ > 1. The proof may be found in Appendix D.

Remark 20. As explained in Remark 18, under the generic model assumed by Proposition 7.4, the
notation 7 is consistent with the definition of 74 in (15).

Remark 21. Proposition 7.4 is similar in spirit to a result in [38], which essentially shows that the SNR
defined by the nuclear norms, rather than operator norms, increases after whitening. However, in the
p — oo limit, defining the SNR using the ratio of nuclear norms is not as meaningful as using operator
norms, because the ratio of nuclear norms always converges to 0 in the high-dimensional limit. Indeed,
we have:

Salle = >, (109)

almost surely as p,n — oo. On the other hand,

1 -
SISl e (110)

In particular, HZ |l grows like p, whereas HZ ||« is bounded with p. When p is large, therefore, the norm
of the noise swamps the norm of the signal. On the other hand, the operator norms of 3, and 3. are
both bounded, and may therefore be comparable in size.

8 Numerical results

In this section we report several numerical results that illustrate the performance of our predictor in the
spiked model, as well as several beneficial properties of whitening. Code implementing the shrinkage
with whitening algorithms will be made available online.

8.1 Comparison to the best linear predictor

In this experiment, we compared our predictor to the best linear predictor (BLP), defined in equation
(82). The BLP is an oracle method, as it requires knowledge of the population covariance ¥, which
is not accessible to us. However, Theorem 5.1 predicts that as p/n — 0, the optimal shrinkage with
whitening predictor will behave identically to the BLP.

In the same experiments, we also compare our method to OptShrink [44], the optimal singular value
shrinker without any transformation. Theorem 5.3 predicts that as p/n — 0, OptShrink will behave
identically to a suboptimal linear filter.

In these these tests, we fixed a dimension equal to p = 100, and let n grow. Each signal was rank 3,
with PCs chosen so that the first PC was a completely random unit vector, the second PC was set to zero
on the first p/2 coordinates and random on the remaining coordinates, and the third PC was completely
random on the first p/2 coordinates and zero on the remaining coordinates. The signal random variables
zjr were chosen to be Gaussian.

The noise covariance matrix Y. was generated by taking equally spaced values between 1 and a
specified condition number x > 1, and then normalizing the resulting vector of eigenvalues to be a unit
vector. This normalization was done so that in each test, the total energy of the noise remained constant.

Figure 3 plots the average prediction errors as a function of n for the three methods, for different
condition numbers k of the noise covariance ¥.. The errors are averaged over 500 runs of the experiment,
with different draws of signal and noise. As expected, the errors for optimal shrinkage with whitening
converge to those of the oracle BLP, while the errors for OptShrink appear to converge to a larger value,
namely the error of the limiting suboptimal linear filter.

Remark 22. Unlike shrinkage with whitening, OptShrink does not make use of the noise covariance.
Though access to the noise covariance would permit faster evaluation of the OptShrink algorithm using,
for instance, the methods described in [37], we have found that this does not change the estimation
accuracy of the method. Similarly, the BLP uses the true PCs of Xj;, which are not used by either
shrinkage method. The comparison between the methods must be understood in that context.
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Figure 3: Prediction errors for the optimal whitened shrinker, the optimal unwhitened shrinker (OptShrink),
and the best linear predictor (an oracle method).

8.2 Performance of singular value shrinkage

We examine the performance of optimal shrinkage with whitening for different values of v and different
condition numbers of the noise covariance. We compare to OptShrink [44] and the naive shrinker with
whitening employed in [19], which uses singular values /¢}'c}/ ¢} ; see Figures 1 and 2 and the associated
text. This latter shrinker does not account for the change in angle between the singular vectors resulting
from unwhitening.

In each run of the experiment, we fix the dimension p = 1000. We use a diagonal noise covariance with
a specified condition number k, whose entries are linearly spaced between 1/k and 1, and increase with
the index. We generate the orthonormal basis of PCs w1, uz, us from the model described in Section
2.1.2, as follows: wu; is a unifomly random unit vector; us has Gaussian entries with linearly-spaced
variances ai, ..., ap, where ap < ap_1 < --- < a1, »>_4_, a; = 1, and a1/a, = 10; and us has Gaussian
entries with linearly-spaced variances b1, ..., by, where by <ba < --- <bp, >.7_ b; =1, and b, /b1 = 10.
Gram-Schmidt is then performed on w1, u2, and us to ensure they are orthonormal. For aspect ratio =,
the three signal singular values are v/* + i/2,1=1,2,3.

For different values of n, and hence of v, we generate 50 draws of the data and record the average
relative errors for each of the three methods. The results are plotted in Figure 4. As is apparent from the
figures, both whitening methods typically outperform OptShrink. Furthermore, when n is large, both
optimal shrinkage and naive shrinkage perform very similarly; this makes sense because both methods
converge to the BLP as n — oco. By contrast, when < is large, the benefits of using the optimal shrinker
over the naive shrinker are more apparent.

Remark 23. As noted in Remark 22, we emphasize that unlike both whitening methods, OptShrink
does not make use of the noise covariance, and the comparison between the methods must be understood
in that context.
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Figure 4: Comparison of whitening with optimal shrinkage; whitening with naive shrinkage; and OptShrink
(no whitening), as a function of the noise covariance matrix’s condition number .
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8.3 Performance of eigenvalue shrinkage

We examine the performance of optimal eigenvalue shrinkage with whitening for different values of v and
different condition numbers of the noise covariance. We use nuclear norm loss, for which the optimal 7
in Algorithm 2 is given by the formula

r = max{/y(2¢; —1),0}. (111)

This formula is derived in [21].

We compare to two other methods. We consider optimal eigenvalue shrinkage without whitening,
where the population eigenvalues and cosines between observed and population eigenvectors are estimated
using the methods from [44]. We also consider the whitening and eigenvalue shrinkage procedure from
[38], which shrinks the eigenvalues to the population values £j; this is an optimal procedure for operator
norm loss [21], but suboptimal for nuclear norm loss.

As in Section 8.2, in each run of the experiment, we fix the dimension p = 1000. We use a diagonal
noise covariance with a specified condition number «, whose entries are linearly spaced between 1/x and
1, and increase with the index. We generate the orthonormal basis of PCs w1, ug, us from the model
described in Section 2.1.2, as follows: wu; is a unifomly random unit vector; us has Gaussian entries with
linearly-spaced variances ai,...,ap, where a, < ap_1 < --- < a1, ».&_,a; =1, and a1/ap, = 10; and us
has Gaussian entries with linearly-spaced variances by, ..., by, where by < by < --+ < by, >0 _ by =1,
and b, /b1 = 10. Gram-Schmidt is then performed on u1, u2, and us to ensure they are orthonormal. For
aspect ratio v, the three signal singular values are v*/* +4, i = 1,2, 3.

For different values of n, and hence of v, we generate 50 draws of the data and record the average
relative errors ||, — X4« /|| Sz« for each of the three methods. The results are plotted in Figure 5. As
is apparent from the figures, optimal shrinkage with whitening outperforms the other two methods. For
the smaller values of «, optimal shrinkage without whitening outperforms the population shrinker with
whitening when the condition number £ is small, since the benefits of whitening are not large; however,
as Kk grows, whitening with the suboptimal population shrinker begins to outperform. For larger -, the
cost of using the wrong shrinker outweigh the benefits of whitening, and the population shrinker with
whitening is inferior to both other methods. This illustrates the importance of using a shrinker designed
for the intended loss function.

8.4 Numerical comparison of the angles

In this section, we numerically illustrate Theorem 7.2 by examining the angles between the spanning
vectors 4y, (the empirical PCs) and 9y of 'e and, respectively, the population vectors uy (the population
PCs) and vx. We show that these angles are smaller (or equivalently, their cosines are larger) than the
corresponding angles between the population u; and v, and the singular vectors of the unwhitened data
matrix Y.

Figure 6 plots the cosines as a function of the condition number s of the noise matrix ¥.. In this
experiment, we consider a rank 1 signal model for simplicity, with a uniformly random PC. We used
dimension p = 500, and drew n = 1000 observations. For each condition number x of ¥., we generate
Y. as described in Section 8.1. For each test, we average the cosines over 50 runs of the experiment
(drawing new signals and new noise each time). Both signal and noise are Gaussian. As we see, the
cosines improve dramatically after whitening. As k grows, i.e., the noise becomes more heteroscedastic,
the improvement becomes more pronounced.

8.5 Estimating the noise covariance

In many applications, the true noise covariance may not be accessible. In this experiment, we consider
the effect of estimating the noise covariance by the sample covariance from n’ iid samples of pure noise,
€1,...,Ens, as N grows.

We fix the dimension p = 500 and number of signal-plus-noise observations n = 625, and r = 2
signal singular values 3 and 5. We take the noise covariance to have condition number x = 500, with
eigenvalues equispaced between 1/100 and 1/5. The eigenvectors of the noise covariance are drawn
uniformly at random.

For increasing values of n’ > p, we draw n’ iid realizations of the noise £1,...,&,/, and form the
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Figure 5: Comparison of whitening with optimal shrinkage; whitening with naive shrinkage;
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1 &
Se=— > i (112)
=1

For each n’, we perform Algorithm 1 using the sample covariance $.. The experiment is repeated 2000
times for each value of n’, and the errors averaged over these 2000 runs. Figure 7 plots the average
error as a function of n’. We also apply Algorithm 1 using the true noise covariance ¥., and plot the
average error (which does not depend on n') in Figure 7 as well. The error when using the estimated
covariance converges to the error when using the true covariance, indicating that Algorithm 1 is robust
to estimation of the covariance.

8.6 Accuracy of error formulas and estimates

In this experiment, we test the accuracy of the error formula (96). There are three distinct quantities that
we define. The first is the oracle AMSE, which we define from the known population parameters. The
second is the estimated AMSE, which we will denote by A/M§E; this is estimated using the observations
Yi,...,Y, themselves. The third is the mean-squared error itself, HX — X||%/n. Of the three quantities,
only AMSE would be directly observed in practice. We define the discrepancy between AMSE and
H)g — X||%/n as |AMSE — || X — X||3/n|, and the discrepancy between AMSE and | X — X% as \AM/§Ef
1% — X2/nl.

Figure 8 plots the log discrepancies against log,(p). We also include a table of the values themselves.
In all experiments, we use the following parameters: the aspect ratio is v = 0.8, the rank r = 2, the
signal singular values are 3 and 2, u; is \/% on entries 1,...,p/2 and 0 elsewhere, us is \/% on entries
p/2+1,...,p and 0 elsewhere, and the noise covariance is diagonal with variances linearly spaced from
1/200 to 3/2, increasing with the coordinates.

We make two observations. First, the slope of each plot is approximately 0.5, indicating that the
error formulas derived are accurate with error O(n~'/?). This is precisely the rate we expect from [8].
Second, the discrepancies of AMSE and AMSE are very close, and in fact the discrepancy of AMSE is
slightly smaller than that of AMSE. This indicates that the observed AMSE provides a viable estimate
for the actual error || X — X||2/n.

8.7 Comparing in-sample and out-of-sample prediction

In this next experiment, we compare the performance of in-sample and out-of-sample prediction, as
described in Section 6. Optimal in-sample prediction is identical to performing optimal singular value
shrinkage with noise whitening to the in-sample data Yi,...,Y,. For out-of-sample prediction, we use
the expression of the form (93) with the optimal coefficients 7y, from Proposition 6.1.
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Figure 8: Logarithm of the discrepancies [AMSE — || X — X||2/n| and |A/M§E — | X = X||2/n], versus log,(p).
AMSE is the oracle value of the error, and AMSE is estimated from the data itself.

log,(p) | Discrepancy, AMSE | Discrepancy, AMSE
7 1.49e-01 1.40e-01
8 1.04e-01 9.82e-02
9 7.31e-02 6.90e-02
10 5.17e-02 4.89e-02
11 3.62e-02 3.41e-02
12 2.56e-02 2.42e-02
13 1.84e-02 1.74e-02

Table 3: Discrepancies |AMSE — || X — X||2/n| and |A/M§E — | X = X||2/n|. AMSE is the oracle value of
the error, and AMSE is estimated from the data itself.

We ran the following experiments. For a fixed dimension p, we generated a random value of n > p.
We then chose three random PCs from the same model described in Section 8.1, and we generated pools
of n in-sample and out-of-sample observations. We performed optimal shrinkage with whitening on the
in-sample observations, and applied the out-of-sample prediction to the out-of-sample data using the
vectors 4} computed from the in-sample data. We then computed the MSEs for the in-sample and
out-of-sample data matrices. This whole procedure was repeated 2000 times.

Figure 9 shows scatterplots of the in-sample and out-of-sample predictions for p = 50 and p = 500.
In both plots, we see that there is not a substantial difference between the in-sample and out-of-sample
prediction errors, validating the asymptotic prediction made by Proposition 6.1. Even for the low-
dimension of p = 50, there is very close agreement between the performances, and for p = 500 they
perform nearly identically.

8.8 Signal detection and rank estimation

In this experiment, we show that whitening improves signal detection. We generated data from a rank 1
model, with a weak signal. We computed all the singular values of the original data matrix Y, and the
whitened matrix YV. Figure 10 plots the the top 20 singular values for each matrix.

It is apparent from the comparison of these figures that the top singular value of the whitened matrix
pops out from the bulk of noise singular values, making detection of the signal component very easy in
this case. By contrast, the top singular value of the raw, unwhitened matrix Y does not stick out from
the bulk. Proposition 7.4 would lead us to expect this type of behavior, since the signal matrix increases
in strength relative to the noise matrix.
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Figure 10:
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Figure 9: Comparison of in-sample and out-of-sample denoising for p = 50 and p = 500.
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8.9 Non-gaussian noise

The theory we have derived relies on the orthogonal invariance of the noise matrix G. In this experiment,
we study the agreement between the theoretically predicted values for c; and ¢, and the observed values
for finite n and p and non-Gaussian noise.

For different values of n we generated rank 1 signal matrices of size n/2-by-n, with top PC v having
all entries equal to 1/4/1000, z; Gaussian, and signal energy £ = 1. We generated a noise matrix, where
each entry has mean 0 and variance 1, drawn iid from a specified distribution. We then colored the noise
matrix by multiplying it by $i2 = diag(\/v1,...,/Vp), Wwhere v1, ..., v, are linearly spaced, v1 = 1/500,
and v, = 1.

We considered four different distributions for the entries of G: the Gaussian distribution; the Rademacher
distribution; and the Student t distributions with 10 and 3 degrees of freedom (normalized to have vari-
ance 1). For each distribution, we drew signal/noise pairs, and computed the absolute value of the cosines
between the topmost left and right singular vectors of the observed matrix and the left and right sin-
gular vectors of the signal matrix. We then computed the average absolute difference (the discrepancy)
between the observed cosines and the theoretically predicted values ¢ and ¢ from Section 3. The errors
are averaged over 20000 runs.

Table 4 contains the average discrepancies for ¢, and Table 5 contains the average errors for é, both
for n = 1000, 2000, 4000, 8000. For the t distribution with 10 degrees of freedom and the Rademacher
distribution, the discrepancies match those of the Gaussian to within the precision of the experiment. In
particular, for these three noise distributions, the observed cosines appear to converge to the predicted
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n Gaussian | Rademacher | t, df=10 t, df=3

1000 | 8.173e-03 8.009¢-03 8.147e-03 | 2.584e-01
2000 | 5.742e-03 5.794e-03 5.750e-03 | 3.610e-01
4000 | 4.069e-03 4.073e-03 4.071e-03 | 4.730e-01
8000 | 2.896e-03 2.933e-03 2.897e-03 | 5.866e-01

Table 4: Average discrepancies between ¢ and |(u, @)|.

n Gaussian | Rademacher | t, df=10 t, df=3

1000 | 3.627e-03 3.625e-03 3.650e-03 | 2.598e-01
2000 | 2.704e-03 2.707e-03 2.712¢-03 | 3.708e-01
4000 | 1.951e-03 1.939¢-03 1.952e-03 | 4.895e-01
8000 | 1.409e-03 1.388e-03 1.410e-03 | 6.112e-01

Table 5: Average discrepancies between ¢ and [(v, )|.

asymptotic values at a rate of roughly O(n~'/2). By contrast, for the t distribution with only 3 de-
grees of freedom, there is substantial discrepancy between the theoretical and observed cosines, and the
discrepancies do not decrease with n (in fact, they grow).

These numerical results suggest that for noise distributions with sufficiently many finite moments, the
distributions are approximately equal as those Gaussian noise, which in turn suggests that the limiting
cosine values we have derived for Gaussian noise may hold for more general distributions.

9 Conclusions and future work

We have derived the optimal spectral shrinkers method for signal prediction and covariance estimation in
the spiked model with heteroscedastic noise, where the data is whitened before shrinkage and unwhitened
after shrinkage. We also showed the in that v — 0 regime, optimal singular value shrinkage with
whitening converges to the best linear predictor, whereas optimal shrinkage without whitening converges
to a suboptimal linear filter. We showed that under certain additional modeling assumptions, whitening
improves the estimation of the signal’s principal components, and achieves the optimal rate for subspace
estimation when » = 1. We showed that the operator norm SNR of the observations increases after
whitening. We also extended the analysis on out-of-sample prediction found in [19] to the whitening
procedure.

There are a number of interesting directions for future research. First, we plan to revisit previous
works that have employed similar shrinkage-plus-whitening procedures, but with the optimal shrinkers
we have derived. It is of interest to determine how much of an improvement is achieved with the more
principled choice we have presented.

As our current analysis is restricted to the setting of Gaussian noise, in future work we will try to
extend the analysis to more general noise matrices. This likely requires a deeper understanding of the
distribution of the projection of the empirical singular vectors onto the orthogonal complement of the
population signal vectors in the setting of non-Gaussian noise.

While we have shown that whitening can improve subspace estimation generically, and matches the
error rate (up to a constant) of [58], it is not clear if whitening is the optimal transformation for subspace
estimation. In a different but closely related model to the one we have studied, where the noise variances
differ across observations rather than across coordinates, it was found that certain weighting schemes can
outperform whitening [28]. We note too that if the matrix X. is ill-conditioned, numerical instabilities
may result from the whitening and unwhitening operations.

Finally, it is also of interest to better understand the procedure when the noise covariance 3. is not
known exactly, but must be estimated. This is a subject currently under investigation.
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A Proof from Section 3
A.1 Proof of Theorem 3.1

We begin by recalling the result that describes the asymptotics of the spiked model with white noise.
This result can be found in [46, 10]. We immediately obtain parts 1 and 4 of Theorem 3.1.

Theorem A.1. Ifp/n —~ >0 as n — oo, the k'™ largest singular value of Y converges almost surely
to

o
1+ otherwise
Furthermore, for 1 < j k <r:
w2 po w
=k and ¢} >
<u§v,ﬁ‘;€v>2 N (Ck:) ) Zf] ' an k ﬁ (114)
0, otherwise
and
~w)2 R W
=k and 0} >
<,U;v,ﬁzv>2 N (ck) ) Zf] ' an k ﬁ (115)
0, otherwise

where the limits hold almost surely as p,n — oo and p/n — 7.

We now turn to proving parts 2 and 3. Let W = span{uY,...,u, } be the r-dimensional subspace
spanned by the whitened population PCs (the left singular vectors of X™). For fixed n and p, write

iy = CcLwy + Sy, (116)
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where (¢})? + (3§)? = 1, and w}) € W, and @}y L W are unit vectors. Because the whitened noise matrix
is Gaussian, and hence orthogonally invariant, the vector @}, is uniformly distributed over the unit sphere
in W™, Since the dimension of W is fixed, it follows immediately from Proposition 6.2 in [9] that for any
unit vector x € R? independent of 4y, , the following limits hold almost surely:

lim (ay) 'z =0, (117)
p—o0
and
. ~W\ T A ~wW . 1
lim {(uk) Aty f,ua} = lim {( T Aay — ftr(A)} =0. (118)
p—o0 p—ro0 P

From Theorem A.1, we know |(w}) "uf| — 1 and (w})) u} — 0 almost surely when j # k; and

¢y — c; almost surely. Consequently, we can write
g = cpug + sp iy + (119)

where ||¢|| — 0 almost surely as p — co. The inner product of ¢ with any vectors of bounded norm will
therefore also converge to 0. As a short-hand, we will write:

Y~ cuy + say, (120)

to indicate that the norm of the difference of the two sides converges to 0 almost surely as p — oco.
From (120) we have:

AV ~ N AV s AV Y. (121)
Taking the squared norm of each side of (121) and using (117) and (118), we obtain:
w2
A2 ~ ()22 4 (s 0A 2~ R s, (122)
k

This completes the proof of part 2.
Part 3 is proved in the same fashion. Taking inner products with each side of (121), and using (117),
we get

(Aufl @) = (AV2uy, AV ~ 2 4 ()T Aay) ~ 2 (123)
k k

which is the desired result.

A.2 Proof of Theorem 3.2

We can decompose X as:
X = Zel/Qukz[/\/ﬁ. (124)

Since zj, and zj,r are uncorrelated when k #* k’, and both have variance 1, the vectors zk/\/ﬁ are
almost surely asymptotically orthonormal, i.e., limp o0 [{(2k, 2k )| /7 = Ogrs. It follows that the zp//n
are asymptotically equivalent to the right singular vectors vy of X, that is,

lim (vg, 2z.)°/n =1 (125)

n—

1/2

almost surely; and the singular values of X are asymptotically equal to the £,’~. That is, we can write:

X ~ Zﬁi/Qukvk , (126)

where C' ~ D indicates ||C' — Dl|op — 0 as p,n — oco. Similarly, we can also write

r

X~ S ) (127)

k=1
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We can also decompose X% by applying W to X:
XV =WX ~ 30 P Wurol =S (G Wur ) *a v (128)
k=1 k=1
The condition (19) immediately implies that %} and @ are asymptotically orthogonal whenever j # k.
Comparing (127) and (128) then shows that almost surely,

W~ ][ W%, (129)
lim (u), @y )® =1, (130)
p—>0o0
and
nli_)rrolo(vmv;fy =1 (131)

From (130), (ug,@x)? ~ 1 follows immediately.
To prove the asymptotically equivalent formula for 7, we use (130):

T~ (W il |72~ (W (I Wk |7 Wk |* = (W, (132)

To prove the formulas for the asymptotic cosine between u; and uj we take A = W~ in Theorem
3.1. When j # k, we have the formula

WWU'IC W~w

Uy ~ cpuy + Spap ~ cp T + sp iy, (133)
and consequently
Wlay ~ e sy wtay. (134)

Ve

We take inner products of each side with u;. From the orthogonality of us and wuj, and using (117), we
have:

(uy, W™ hay) ~0, (135)

and consequently (uj,Gr) ~ 0. When j = k, the formula for (u;, @) follows from Theorem 3.1.

Finally, we show that @; and 4y are asymptotically orthogonal when j # k. We use the following
lemma.
Lemma A.2. Suppose X = Y ,_, E,lc/kav,;r is a p-by-n rank r matriz, and G is a matriz with id
Gaussian entries gi; ~ N(0,1/n). Let w1,..., W be the left singular vectors of Y = X + G, where
m = min(p,n), and write

Wi ~ crWk + SEpWk (136)
where Wy, is orthogonal to w1, ..., w,. Then for any sequence of matrices A = A, with bounded operator
norms and any 1 < j#k<r,

lim @, Aty =0 (137)
p—o0

almost surely.

Proof. First, we prove the cases where A = I,,; that is, we show w; and W, are asymptotically orthogonal
whenever 1 < j # k < r. Indeed, we have

858k (Wj, W) ~ (W, Wk) + cier{wy, wk) — ¢j{wy, W) — cx{wk, W;)
= —cj{wj, Wr) — cp{wk, Wj). (138)

Since w; and Wy are uniformly distributed on the subspace orthogonal to wi, ..., w,, the inner products
(wj, Wr) and (wg,w;) both converge to 0 almost surely as p — oo, proving the claim.

For general A, we note that the joint distribution of @; and Wy, is invariant to orthogonal transfor-
mations which leave fixed the r-dimensional subspace span{wsi,...,w,}. The result then follows from
Proposition 6.2 in [9], which implies that

&) AG] ~ %tr(A)u?;rwk ~0, (139)

where we have used the asymptotic orthogonality of w; and wy. (I

37



Since ur ~ ur and u; and uy are orthogonal, taking inner products of each side of (133) with Wﬁlﬁy
we get:

Wray , Wtay) ~ sV sy (W ey, Wty ) = s sk (a)) T Seay . (140)

The result now follows from Lemma A.2.

B Proofs from Section 5

First, we establish the consistency of covariance estimation in the v = 0 regime:

Proposition B.1. If p,/n — 0 as n — oo, and the subgaussian norm of QY; can be bounded by C
independently of the dimension p, then the sample covariance matriz of QY1,...,QYn converges to the
population covariance QX,Q in operator norm.

Proof. We first quote the following result, stated as Corollary 5.50 in [53]:

Lemma B.2. Let Yi,...,Y, be iid mean zero subgaussian random vectors in RP with covariance matriz
%y, and let € € (0,1) and t > 1. Then with probability at least 1 — 2 exp(—t>p),

Ifn > C(t/e)’p, then ||Sy — 5y| < e, (141)

where i)y = Z?:l YJY]T/n is the sample covariance, and C is a constant.
We also state the well-known consequence of the Borel-Cantelli Lemma:

Lemma B.3. Let A1, Az, ... be a sequence of random numbers, and let € > 0. Define:
Arn(€) = {|An| > €}. (142)

If for every choice of € > 0 we have

3 P(An(€)) < oo, (143)

n=1
then A, — 0 almost surely.

Now take t = ¢4/n/Cp; then n > C(t/¢)?*p, and t > 1 for n sufficiently large. Consequently,
B(IS, — Syl > ©) < 2exp(—£p) = 2exp(—ne?/C), (144)

and so the series > ., P(||S, — 2, || > €) converges, meaning ||, — X, || — 0 almost surely as n — co.

We now need to check that the subgaussian norm of Y; = X; + ¢; from the spiked model is bounded
independently of the dimension p. But this is easy if the distribution of variances of ¢; is bounded, using,
for example, Lemma 5.24 of [53]. O

An immediate corollary of Proposition B.1 is that the sample eigenvectors of 2; = Qi)yQ are consis-
tent estimators of the eigenvectors of £ = Q3,Q.

Corollary B.4. Let X} = QX,Q be the population covariance of the random wvector Y}q = QYj, and
let 25 = QﬁyQ be the sample covariance of Y/, ... ,YTA?A Let ui,...,ul denote the top r eigenvectors of
Y1 =0%,Q, and al,...,0% the top v eigenvectors of .
Then for 1 <k <,
lim [(a, up)| =1, (145)

n—o0

where the limit holds almost surely as n — co and p/n — 0.
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We now turn to the proof of Theorem 5.2. First, we derive an expression for the BLP X;’pt. We have:

X =% (To+2)7'Y;
=W 'WE,W (WS, W + 1) ' WY,

_ —1 ‘I]cv W\, W
=W Z€g+1<w}/}auk>uk
= Zn"” (WY, ud )W~ uy, (146)

where WE, W =37 6Fuy (uy) ", and nyP* = 67 /(47 +1).
Now, for any si,..., S, satisfylng
Sk Z‘g

lim 2% — : 14
Fho oy oy + 1 (147)

we define the predictor X':
X’ Zskw—l Yo" (148)

Following the same reasoning as in the proof of Lemma 5.4, we can write each column X/ of v/nX’
as follows:

X5 = (sn/at )" @)W ey (149)

Theorem 5.2 now follows from condition (147), formula (146), and Corollary B.4. Theorem 5.1 follows
immediately, after observing that X has the same form as X’ with s, = tr, and

wyl/2 w~ w 1/2~ w

lim 2 = i ) Ckc’“ L gy (B - b (150)

P50 oy A0 ()2 + (53 )2pemh JBT A1 A0 STy +1 by + 1

Finally, we prove Theorem 5.3. By definition,
Yo, =Y (st/o) (Y], al)Q " af (151)
k=1
and

lm an s ug) Q uy. (152)

The values s and 1} are each assumed to minimize the mean-squared error for their respective expres-
sions. Consequently, since Corollary B.4 states that @] ~ uj, we establish (88); (89) follows immediately
from (146).

C Proof of Theorem 6.1

C.1 The optimal coefficients for in-sample prediction

Before deriving the optimal out-of-sample coefficients 7, we will first derive the optimal in-sample

coefficients 7. That is, we will rewrite the optimal shrinkage with noise whitening in the form (92).
From Lemma 5.4, the in-sample coefficients 7, are the ratios of the optimal singular values ¢;, derived

in Section 4.1 and the observed singular values of YV, denoted o7, ..., 0, . From Theorem A.1, we know

that
oy = \/(ZYCV +1) (1 —+ 575') (153)
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and from Section 4.1 we know that
()P eyen

_ PVY/20v e 154
()2 + (s¥)2pern o (ly) ' ek Cr, (154)

tr =

where ax = ((c})® + (sg)QuEn@)*l. Taking the ratio, and using formulas (39) and (40) for ¢} and &,
we obtain:

t A 1/20w5 0¥ (™ 2 05)2 4 v (Y 2
w= g = e S o e O = BT 09)
’“ \/(eg+1)(1+elw) k TR -
k
That is, we have found the optimal in-sample coefficients to be:
1 0V (v 2
e = 4 (cx) (156)

@2+ (EPhere G +1

C.2 The optimal coefficients for out-of-sample prediction

In this section, we will derive the optimal out-of-sample coefficients 1. We have a predictor of the form

Xo =Y mi(WYo,a)W ™ ay, (157)
k=1
where ), are the top left singular vectors of the in-sample observation matrix YV = W|[Y1,...,Ys] [ V.

We wish to choose the coefficients 17 that minimize the asymptotic mean squared error E||Xo — Xo||*.

First, we can expand the MSE across the different principal components as follows:
T
1Xo — XolI* = 116/ zorur — R (WYo, )W~ aiy ||
k=1
+ 30 zonun — np (W Yo, @YW a6 2oy — np (W Yo, 4 )W ay). (158)
k£l
After taking expectations, the cross-terms vanish and we are left with:
s
E|Xo — Xo|* = > B0, zoxuk — i (W¥o, ai)W ™ "a | (159)
k=1
Since the sum separates across the 7y, we can minimize each summand individually. We write:
EJ| 6 20w — i (W Yo, &)W~
=l + (R)°E [(WYo, a2 |W ay (7] — 26,/ *nRE [2o (W Yo, @) (ur, W )] - (160)
We first deal with the quadratic coefficient in 7:
(W¥o, ail)*[[W ™ ay||* = (W Xo + Weo, ayl)*||W ||
= ((WXo,a})* + (Weo, ax)* + (WXo, 4l ) (Weo, @) [Wray ||, (161)

and taking expectations, we get:

AW _ ~ AW _ AW W W Cw 2 w
B (Yo, 1WA ] ~ (& [0V Xo,00)%)+ 1) 181 ~ (e + 1) (CE- o).
(162)
Now we turn to the linear coefficient in 7:
O2E L2k (W Yo, @) (uk, W Lay)] = £1/°E [z% ((e;")l/QzOkcg 1 (Weo, fayg)) (u, W—lay:)]
_YNE [(up, WG]
Wl
W w 1
~ O (e = (163)
Tk

40



Minimizing the quadratic for ng, we get:

= () /(e + o (B2 4 o)

_ 1 o a()?
()2 () e B (R 1

(164)

C.3 Equality of the AMSEs

Evaluating the out-of-sample error at the optimal out-of-sample coefficients 71y, we find the optimal
out-of-sample AMSE (where o = ((c})” + (8};")2}1,57%)71):

5 (g - 2@ 1Y S (B )2
AMSE - Z (Zk é}’cv(c‘,g')z =+ 1 DTk - ; Tk V4

W
C
k=1 k

(165)

>g
-
©
+
—
Q
>
S|

FE
~
N

—

o

x5

—
S

—
S~—

The AMSE of the in-sample predictor is:

ki:lzk(l — (exin)?) = XT: b (1 - W) -y (Q - Lw&gy) (166)

«@ Tk QT
et k =\ Tk KTk
To show equality, we therefore need to show:

. éw)2(cw)4
Y (Y EY 2 — (k k . 167
k (ck k) 7@:(0}:)2 +1 (167)

But this follows from the equality of in-sample and out-of-sample AMSEs for the standard spiked model

with isotropic noise, established in [19].

D Proofs from Section 7

D.1 Proof of Proposition 7.1

From Corollary B.4, 4 ~ wuy, 1 < k <r, in the sense that the angle between the vectors converges to 0.
Consequently

lim ©OU™,U") = 0, (168)
n—0
where U™ = span{uy,...,uy'} and U = span{ay,...,aY}. Since W' has bounded operator norm and

U=WU" and U = WU, the result follows immediately.

D.2 Proof of Theorem 7.2

Since the inner products between random unit vectors in R? vanish as p — 0o, we may assume that the
ug are drawn randomly with iid entries of variance 1/p; the result will then follow for the orthonormalized

vectors from the generic model. If ¥, = diag(va,...,vp), then
1 &
—1/2. 12 -1
T = ||2 Y 2ug)|? ~ » Zl/j =T (169)
j=1

We now define the n-by-p matrix ¥ = YT/\ﬁ, given by
Y =30zl + G2/, (170)
k=1

where 0, = £, /. Note that the noise matrix GTEy 2 has colored rows, not columns, and has been
normalized by dividing by the square root of the number of its columns. Since the vectors u; spanning
the right singular subspace of Y are assumed to be drawn uniformly from the unit sphere in RP, we may
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apply Corollary 2 to Theorem 2 of [27] to the matrix Y. Defining 7 = 1/~ as the aspect ratio of Y, we
have:

e o L= (/) 1=/ 0)®
Uy U < = = - =gy /), 171
(s )| 1+1/(0k/pe)  14+7/(E/9) (b /e) (171)
where we have defined the function
1— /02
f) = —"—. 172
o0 =177 (172)
On the other hand, the squared cosine c; = | {4, ux)|? is equal to
5 (cx)? 9(4y)
cp = = . 173
CT @R+ (D% g T el — o) ()
Our goal is to show that for all £}/ > /7, and all ¢ > 1, that
w 9(L%)
< ; 174
9tk /e) < 9y + (1 — g(£y)) (174)
equivalently, we want to show that for all £ > 0 and ¢ > 1,
9(&p)
9(&) < ; 175
© 9(&p) + (1 — g(£¥)) (1)
setting
Glo) = 9(&p) (176)

— 9(&p) + (1 - g(€p))’
this is equivalent to showing that G(¢) > G(1) for all ¢ > 1. The derivative of G is equal to

d ooy 20+
1) = e teerer " ()

which completes the first statement of the theorem.
The second statement concerning 9, is proved similarly. Again applying Corollary 2 to Theorem 2 of
[27] to Y, we know that

(0 2P < L—/(b/ne)® _ 1=/ /9)°
w T 14/l L1/ p)

where we have defined the function

h(€y /), (178)

h(e) = % (179)

Since h is an increasing function of ¢, and |(Ox, zx)|> = & = h(£}), the result follows.

D.3 Proof of Theorem 7.3

We begin the proof with some lemmas.

Lemma D.1. Let 0 < B < 1, and suppose q is the number of entries of ui where |uj,| > B/\/p. Then

1— B?
qZp'icz_Bz, (180)

where C' 1is the incoherence parameter from (103).

Proof. Let Si be the set of indices j on which |u;x| > B/,/p, and let Sa be the set of indices j on which
|ujx| < B/y/p. Because uy is a unit vector, we then have

P
U= gl =D ufp = D uln+ Y uf < (¢/p)C* + (1 - q/p)B>. (181)
j=1 JESL JjE€S2
Rearranging, we find
q 1— B2
s - = 182
> g (182
as claimed. (I



Lemma D.2. For each 1 <k <,

K 1
Tkzmax{—,i}, (183)
He ||Z£||op

where K is a constant depending only on C from (103).

Proof. We will let v1,...,v, denote the diagonal elements of 3.. Take any number 0 < B < 1, and let
q be the number of indices where |u;x| > B/\/p. From Lemma D.1, q/p > K1, a constant. Using the
Cauchy-Schwarz inequality, we have:

He " Tk = <zp: (*{g)j . (i (3’%)2) > (\}ﬁémmy > (\;ﬁ(lﬁp)fﬁ)Q = KiB? (184)

j=1 j=1

This proves that 7, > I~(/,u5.
Next, we observe that because > "_, uj, = 1, we have

P 2 -
Ujk . —1 1
T Z (\/Z) - 1I§njlgpyj (1?3‘2(?%) 2o 1)

j=1

completing the proof. O

We now turn to the proof of Theorem 7.3. We have

[ULT op = [ULULTlop = 1 T]lop (186)
where
U = [w1,...,0)] (187)
is the matrix whose columns are the projections Wy, of @, onto the orthogonal complement of span{ui, ..., u,}.

Then from Lemma A.2, we know that asymptotically w; L @y if j # k; consequently,

: 3 2 _ ~ 2 a 2y _ 2
I sin @0, V)13, = mavx o] = max (1= (i, w)?) = max (1), (188)

From Theorem 3.2, for each 1 < k < r, the squared sine between 4, and uy is

w2 w2
1—2=1— (ck) _ (k)" - pe - Tk ] 189
B ) g TR () L T (s
Since
w2 1- ’7/(@:)2
= AR/ 190
ey = L (190)
and
= Y% )T 191
(s = LT (101)
we can simplify the expression by multiplying numerator and denominator by (€§/)(1 + ~/£}):
- = Y + Dpei
(60)? =7 + (6 + DpeTr
— 7(@? + 1)/1'57—’6 . (@:)2 . (192)
(ex)? (60 =7+ (O + Dpes

Now, using Lemma D.2, there is a constant 0 < K < 1 so that Thile > K. Consequently, since v < (62")2,
we have:

()’ < @)?® (€)* _1

(62 =7+ (G + Duerie = (G7)2 = (1= K)y ~ ()2 -~ (1-K)(4)* K

(193)
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Combining equation (192) and inequality (193), the fact that ¢} = ¢ - 7%, and Lemma D.2, we obtain
the bound:

2
lfck

IA

Lyl + DpeTi
K ( ()2 >

1 (M + ’YﬂeTk>
K\ (&) ()3

_ 1 (fpe /i
K\l G

1 (ype | yitel|Zellop
< = JHellZellop ) 194
<= ( T (194)

Taking the maximum over 1 < k < r proves the desired result.

D.4 Proof of Proposition 7.4

As in the proof of Theorem 7.2, since the inner products between random unit vectors in R? vanish as
p — 00, we may assume that the uj are drawn randomly with iid entries of variance 1/p; the result
will then follow for the orthonormalized vectors from the generic model. We will use the fact that
[22]lop = [ X125 and ||Zc]lop = | N||25- To show the increase in SNR after whitening, we will first derive
a lower bound on the operator norm of the noise matrix /N alone. Recall that N = E;/QG’, where g;; are
iid N(0,1/n).

Take unit vectors ¢ and d so that Gd = ||G||opc. Then we have

INIZ, = 1=22Gd|* = |G, 1= el (195)

Since the distribution of G is orthogonally invariant, the distribution of ¢ is uniform over the unit sphere
in R™. Consequently, HE;/QCHQ ~ tr(X:)/p ~ pe. Therefore,

1NN 2 pellGlics, (196)

where “>” indicates that the inequality holds almost surely in the large p, large n limit.
Next, from the assumption that the uy are uniformly random, the parameters 7, are all asymptotically
given by:
tr(227)

T~ |15 g2 ~ — (197)

With this, we can show the improvement in SNR after whitening. We have:

61 < Kl 1 £1T 1 f‘{] SNRW

SNR ~ < ~ = ~ ~
HNng MEHGng P HG”gp 12 HGng ¥

(198)

This completes the proof.
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