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Abstract

This paper studies the related problems of prediction, covariance estimation, and principal compo-
nent analysis for the spiked covariance model with heteroscedastic noise. We consider an estimator of the
principal components based on whitening the noise, and we derive optimal singular value and eigenvalue
shrinkers for use with these estimated principal components. Underlying these methods are new asymp-
totic results for the high-dimensional spiked model with heteroscedastic noise, and consistent estimators
for the relevant population parameters. We extend previous analysis on out-of-sample prediction to the
setting of predictors with whitening. We demonstrate certain advantages of noise whitening. Specifically,
we show that in a certain asymptotic regime, optimal singular value shrinkage with whitening converges
to the best linear predictor, whereas without whitening it converges to a suboptimal linear predictor. We
prove that for generic signals, whitening improves estimation of the principal components, and increases
a natural signal-to-noise ratio of the observations. We also show that for rank one signals, our estimated
principal components achieve the asymptotic minimax rate.

1 Introduction

Singular value shrinkage and eigenvalue shrinkage are popular methods for denoising data matrices and
covariance matrices. Singular value shrinkage is performed by computing a singular value decomposition
of the observed matrix Y , adjusting the singular values, and reconstructing. The idea is that when
Y = X +N , where X is a low-rank signal matrix we wish to estimate, the additive noise term N inflates
the singular values of X; by shrinking them we can move the estimated matrix closer to X, even if the
singular vectors remain inaccurate. Similarly, eigenvalue shrinkage for covariance estimation starts with
the sample covariance of the data, and shrinks its eigenvalues. There has been significant recent activity
on deriving optimal shrinkage methods [48, 25, 44, 23, 24, 21, 22], and applying them to various scientific
problems [12, 2, 43, 17].

A standard setting for analyzing the performance of these methods is the spiked covariance model
[31, 7, 46, 6, 21]. Here, the observation matrix is composed of iid columns Yj in Rp, j = 1, . . . , n from
some distribution consisting of signal vectors Xj lying on a low-dimensional subspace, plus independent
noise vectors εj with some covariance matrix Σε. The theory for prediction of X1, . . . , Xn in the spiked
model with orthogonally invariant noise, i.e., when Σε = νIp, is very well-developed [23, 48, 25, 36].
Singular value shrinkage is known to be minimax optimal, and asymptotically optimal shrinkers have
been derived for a wide variety of loss functions.

Many applications in signal processing, imaging, and related fields involve noise that is heteroscedastic
[45, 40, 11, 12, 34, 1, 2]. This paper studies the effect of whitening the noise; that is, working in rescaled
coordinates, in which the noise is white. We first estimate the noise covariance matrix Σε. We then
normalize, or whiten, the observations Yj by applying Σ

−1/2
ε ; the resulting vectors Y w

j consist of a trans-

formed signal component Xw
j = Σ

−1/2
ε Xj , plus isotropic noise Gj = Σ

−1/2
ε εj . Singular value shrinkage is

then performed on this new, whitened observation matrix, after which the inverse transformation Σ
1/2
ε is

applied. Similarly, we perform eigenvalue shrinkage to the sample covariance of the whitened data, and
then apply the inverse transformation.

While this approach is restricted to cases when Σε can be consistently estimated, when it does apply
it has a number of advantages over competing methods. First, in the classical “large n” asymptotic
limit, our method of singular value prediction with whitening, while non-linear in the observed data,
converges to the best linear predictor of the data, an oracle method that requires knowledge of the
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population principal components. By contrast, singular value shrinkage without whitening (as in [44])
converges to a suboptimal linear filter. Further, we show that under certain modelling assumptions,
whitening improves the estimation of the population singular vectors, and achieves the same rate of
subspace estimation as the minimax optimal method derived in [58]. Next, because we compute the SVD
of a matrix with isotropic noise, our method requires weaker assumptions on the principal components
of the signal vectors than those in [44].

As the key step in our procedures is performing spectral shrinkage to the whitened data or covariance
matrices, the question arises: what are the optimal singular values/eigenvalues? While whitening has
been used with shrinkage in previous works (e.g. in [38, 19, 12]) it appears that the question of optimal
shrinkage has not been fully addressed. This paper derives the precise choice of optimal singular values
and eigenvalues, and shows, using new asymptotic results, how to consistently estimate them from the
observed data.

1.1 Overview of results

1.1.1 Spectral shrinkage with noise whitening

We introduce a new method for predicting X from Y when the noise matrix N is heteroscedastic. We first
perform a linear transformation to the observations to whiten the noise. The resulting vectors are still of
the form “low rank plus noise”, but the noise term has been transformed into an isotropic Gaussian, while
the low-rank signal component has been rescaled along the principal components of the noise covariance.

Next, we shrink the singular values of the transformed matrix. Intuitively, this step removes the effect
of the noise from the spectrum of the observed matrix. Finally, we arrive at a predictor of the signal
matrix X by applying the inverse change of variables, i.e., we unwhiten.

This three-step procedure — whiten, shrink, unwhiten — depends on the choice of singular values
used in the middle shrinkage step. As it turns out, there are precise, optimal, and consistently estimable
formulas for the optimal singular values. These are derived in Section 4.1, and the resulting method
summarized in Algorithm 1.

For covariance estimation, we introduce an analogous procedure in which eigenvalue shrinkage is
applied to the sample covariance of the whitened observations. After shrinkage, we then apply the inverse
whitening transformation. As with singular value shrinkage, this three-step procedure of whitening,
shrinking the eigenvalues, and unwhitening depends crucially on the choice of eigenvalues for the middle
step. In Section 4.2, we will explain the method in detail, including the derivation of consistent estimators
for the optimal eigenvalues for a variety of loss functions. The method is summarized in Algorithm 2.

1.1.2 Singular value shrinkage and linear prediction

In Section 5, we show that in the classical regime (when p� n), singular value shrinkage with whitening
converges to the optimal linear predictor of the data, while shrinkage without whitening will converge to a
different, typically suboptimal, linear filter. In this sense, not only is shrinkage with whitening preferable
to no whitening, but the whitening transform is an asymptotically optimal change of coordinates to apply
to the data before shrinking in the classical setting.

In Section 6, we also derive the optimal coefficients for the out-of-sample prediction problem, described
in [19]. In this problem, the PCs estimated from a set of in-sample data Y1, . . . , Yn are used to denoise an
independently drawn out-of-sample observation. We show that the AMSE for singular value shrinkage
with whitening is identical to the asymptotic expected loss achieve by out-of-sample denoising, which
extends the analogous result from [19]. The out-of-sample predictor is summarized in Algorithm 3.

1.1.3 Subspace estimation and PCA

The eigenspace of the estimated covariance Σ̂x (equivalently, the left singular subspace of X̂) is not
spanned by the singular vectors of the raw data matrix Y . Rather, they are spanned by the vectors ûk
obtained by applying the inverse whitening transformation to the top r singular vectors of the whitened
observation matrix.

In Section 7, we will show under a generic model for the signal PCs, the estimated PCs û1, . . . , ûr
improve upon estimation of the population PCs u1, . . . , ur, as compared to the left singular vectors of
Y . We will show too that when r = 1, û1 achieves the minimax rate of principal subspace estimation
derived in [58]. That is, in a certain sense it is an optimal estimator of the signal principal subspace.
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1.1.4 Spiked model asymptotics

The methods and analysis of this paper rely on precise descriptions of the asymptotic behavior of the
singular values and singular vectors of the whitened matrix Y w. While some of the necessary results are
already found in the literature [46, 10], we have also needed to derive several new results as well, which
may be found in Theorems 3.1 and 3.2 in Section 3. Whereas earlier work has characterized the angles
between the singular vectors of Xw and Y w, we have provided formulas for the cosines of the angles
between the singular vectors after the inverse whitening transformation has been performed – that is, we
characterize the change in angles resulting from unwhitening. These parameters are a key ingredient for
deriving the optimal spectral shrinkers in Section 4.

1.2 Related work

1.2.1 Singular value shrinkage

The prediction method in this paper is a generalization of a standard method for predicting the matrix
X from the observed matrix Y , known as singular value shrinkage. Briefly, it is performed by leaving
fixed the singular vectors of Y , while adjusting its singular values, to mitigate the effects of noise on the
spectrum. It is shown in [23] that when the noise matrix N is white Gaussian noise, or in other words
Σε = Ip, then singular value shrinkage is minimax optimal for predicting X from Y .

The paper [48] considers optimal singular value shrinkage for Frobenius loss and white noise. In
[25], optimal singular value shrinkers are derived for isotropic noise, for a much broader family of loss
functions; the special case of operator norm loss is considered in [36]. The effectiveness of these methods
rests on the asymptotic spectral theory of the data matrix Y developed in [46, 10] among others.

In the paper [44], optimal singular value shrinkage (known as ‘OptShrink’) is derived under much
more general conditions on the noise matrix N , by exploiting the general asymptotic spectral theory
developed in [10] for non-isotropic noise. While OptShrink may be effectively applied when the noise
is non-isotropic, it requires the signal principal components to be vectors with iid random entries (or
orthonormalized versions thereof).

1.2.2 Eigenvalue shrinkage

Covariance estimation is a well-studied problem in statistics and its applications. A standard method
for estimating the population covariance Σx is eigenvalue shrinkage [51, 52, 21, 22]. Analogously to
singular value shrinkage for predicting X, eigenvalue shrinkage leaves fixed the eigenvectors of the sample
covariance Σ̂y =

∑n
j=1 YjY

>
j /n = Y Y >/n, or equivalently the left singular vectors of Y , and replaces

the eigenvalues by estimated values to reduce the effect of the noise.
As we will discuss in Section 2.2, it is often natural to consider different loss functions for measuring

the error in covariance estimation [22]. The paper [21] derives optimal eigenvalue shrinkers for a very
large collection of loss functions. Their method is restricted to white noise, i.e., where Σε is a multiple
of the identity matrix.

1.2.3 Heteroscedastic noise

There have been a number of recent papers on the spiked model with heteroscedastic noise. The paper [58]
devises an iterative algorithm for estimating the principal subspace of Xj in this setting, and proves that
their method achieves the optimal error rate. Our method uses a different estimator for the population
PCs, which achieves an error that matches the optimal rate of [58] under an additional assumption (19)
(which is vacuous when r = 1).

The papers [28, 26, 27] consider a different but related model, in which each observation Yj has white
noise but with noise strengths varying across the observations. In [27], they show that when the signal
energy and noise energy are fixed, subspace estimation is optimal when the noise is white. The proof
of our Theorem 7.2 builds on this result, by combining it with our analysis of the change in angles
between the empirical and population PCs after whitening. The work [28] shows that an alternative
choice of weighting is optimal for estimating the signal principal components. The aforementioned paper
[44] designs optimal singular value shrinkers without whitening for a broad range of noise distributions,
which include our noise model as a special case.

When working in the eigenbasis of the noise covariance, the whitening procedure we describe in this
work is an example of what is called weighted PCA, in which weights are applied to individual variables
before the principal components are computed [32, 30]. The inverse standard deviation of the noise is
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a standard choice of weights [54, 57, 55]; in that sense, the present work can be seen as providing a
theoretical analysis of this already widely-used choice.

1.2.4 Shrinkage with whitening

Previous works have proposed pairing the whitening transformation with spectral shrinkage, which we
study in this work. The paper [38] proposes the use of whitening in conjunction with exponential
family noise models for covariance estimation. The paper [19] proposes whitening in the context of
transformed spiked models for data prediction. The papers [12, 2] use whitening and eigenvalue shrinkage
for covariance estimation.

However, previous works on singular value shrinkage with whitening employed suboptimal shrinkers,
developed from heuristic considerations. In this paper, we undertake a systematic study of this problem,
and rigorously derive the optimal shrinkers, under Frobenius loss (in an asymptotic sense). For covariance
estimation, [38] derives the optimal eigenvalue shrinker for the special case of operator norm loss, but
their method does not apply to more general loss functions.

1.3 Outline of the paper

The rest of the paper is organized as follows. Section 2 contains a detailed description of the model
and assumptions; statements of the prediction and estimation problems to be studied; and a review of
known results on the spiked model and spectral shrinkage. Section 3 provides the asymptotic theory
on the spiked model that will be used throughout the rest of the paper. Section 4 presents the optimal
spectral shrinkers with whitening. Section 5 analyzes the behavior of weighted singular value shrinkage
schemes in the classical (p � n) setting, and shows the optimality of whitening in this regime. Section
6 describes and solves the out-of-sample prediction problem. Section 7 derives several results on the
theoretical benefits of whitening for principal component analysis. Section 8 presents the results of
numerical experiments illuminating the theoretical analysis and demonstrating the performance of the
proposed methods. Finally, Section 9 provides a conclusion and suggestions for future research.

2 Preliminaries

In this section, we will introduce the details of the spiked model with heteroscedastic noise, describe
the problems we focus on in this paper, and review known results on the asymptotic spectral theory of
the spiked model, singular value shrinkage, and eigenvalue shrinkage. This will also serve to introduce
notation we will use throughout the text.

2.1 The observation model

We now specify the precise model we will be studying in this paper. We observe iid vectors Y1, . . . , Yn
in Rp, of the form:

Yj = Xj + εj . (1)

The random signal vectors Xj are assumed to be mean zero and to have a rank r covariance matrix
Σx =

∑r
k=1 `kuku

>
k , where the vectors uk are taken to be orthonormal, and are called the principal

components (PCs) of the random vectors Xj . More precisely, and to distinguish them from estimated
vectors we will introduce later, we will call them the population PCs. The numbers `k, which are the
variances of the Xj along uk, are positive; we will specify their ordering later, in equation (16) below.

The random noise vectors εj are of the form

εj = Σ1/2
ε Gj , (2)

where Gj ∈ Rp is a mean-zero Gaussian noise vector with covariance Ip, and Σε is a full-rank positive
definite covariance matrix, assumed to be known (though see Remark 3). The noise vectors Gj are drawn
independently from the Xj .

We can write

Xj =

r∑
k=1

`
1/2
k zjkuk (3)
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Symbol Description Reference
Xj Signal (3)
εj Heteroscedastic noise (2)
Yj Observed (1)
Xw

j Whitened signal (5)
Gj Whitened noise (2)
Y w
j Whitened observation (5)
zk Signal factor values (3), (11)
zwk Whitened signal factor values (6), (11)
uk PC of Xj ’s (3)
uwk PC of Xw

j ’s (6)
uk W−1uwk /‖W−1uwk ‖ (9)
ûwk Left singular vector of Y w Preceding (8)
ûk W−1ûwk /‖W−1ûwk ‖ (8)
uwk Wuk/‖Wuk‖ (10)
vk Right singular vector of X Preceding (8)
vwk Right singular vector of Xw Preceding (8)
v̂wk Right singular vector of Y w Preceding (8)

Table 1: Vectors used in this paper.

where zjk are uncorrelated (though not necessarily independent) random variables, with Ezjk = 0 and
Var(zjk) = 1. We remark that the assumption that Xj has mean zero is not essential; all the results of
this paper will go through almost without modification if we first estimate the mean of X by the sample
mean and subtract it from each observation Yj . We also note that in the terminology of factor analysis,
the zjk may be called the factor values; for background on factor analysis, see, for instance, [3, 4, 47, 18].

In addition to the original observations Yj , we will also be working with the whitened (or homogenized
[38]) observations Y w

j , defined by Y w
j = WYj , where

W = Σ−1/2
ε (4)

is the whitening matrix. The vectors Y w
j can be decomposed into a transformed signal Xw

j = WXj plus
white noise Gj . The whitened vectors Xw

j have rank r covariance

Σw
x = WΣxW, (5)

and lie in the r-dimensional subspace span{Wu1, . . .Wur}. We will let uw
1 , . . . , u

w
r be the orthonormal

PCs of Xw
j – that is, the leading r eigenvectors (up to sign) of Σw

x – and write

Xw
j =

r∑
k=1

(`wk )1/2zw
jku

w
k , (6)

where again Ezw
jk = 0 and Var(zw

jk) = 1, the `wk are strictly positive, and

`w1 > · · · > `wr > 0. (7)

In general, there is not a simple relationship between the PCs u1, . . . , ur of Xj and the PCs uw
1 , . . . , u

w
r

of Xw
j , or between the eigenvalues `1, . . . , `r and the eigenvalues `w1 , . . . , `

w
r .

We introduce some additional notation. We will denote the normalized matrices by Y = [Y1, . . . Yn]/
√
n,

Y w = [Y w
1 , . . . , Y

w
n ]/
√
n, X = [X1, . . . , Xn]/

√
n, Xw = [Xw

1 , . . . , X
w
n ]/
√
n, G = [G1, . . . , Gn]/

√
n and

N = [ε1, . . . , εn]/
√
n. Note that Y = X +N and Y w = Xw +G.

We will denote by v1, . . . , vr the right singular vectors of the matrix X, and denote by vw
1 , . . . , v

w
r the

right singular vectors of the matrix Xw. We denote by ûw
1 , . . . , û

w
r and v̂w

1 , . . . v̂
w
r the top r left and right

singular vectors of the matrix Y w. We define, for 1 ≤ k ≤ r, the empirical vectors:

ûk =
W−1ûw

k

‖W−1ûw
k ‖
. (8)
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We also define the population counterparts,

uk =
W−1uw

k

‖W−1uw
k ‖
. (9)

Similarly, for 1 ≤ k ≤ r we define

uw
k =

Wuk
‖Wuk‖

. (10)

Note that span{u1, . . . , ur} = span{u1, . . . , ur}, and span{uw
1 , . . . , u

w
r } = span{uw

1 , . . . , u
w
r }. However,

the vectors u1, . . . , ur will not, in general, be pairwise orthogonal; and similarly for uw
1 , . . . , u

w
r .

Finally, we define the factor vectors zk and zw
k by

zk = (z1k, . . . , znk)>, zw
k = (zw

1k, . . . , z
w
nk)>. (11)

We formally consider a sequence of problems, where n and p = pn both tend to ∞ with a limiting
aspect ratio, γ:

γ = lim
n→∞

pn
n
, (12)

which is assumed to be finite and positive. The number of population components r and the variances
`1, . . . , `r are assumed to be fixed with n. Because p and n are increasing, all quantities that depend on p
and n are elements of a sequence, which will be assumed to follow some conditions which we will outline
below and summarized in Section 2.1.1. Though we might denote, for instance, the PC uk by u

(p)
k , X by

X(p,n), and so forth, to keep the notation to a minimum – and in keeping with standard practice with
the literature on the spiked model – we will typically drop the explicit dependence on p and n.

Remark 1. Because r is fixed as p and n grow, the left singular vectors of the p-by-n population
matrix X = [X1, . . . , Xn]/

√
n are asymptotically consistent estimators (up to sign) of the population

PCs u1, . . . , ur. More precisely, if ũ1, . . . , ũr are the left singular vectors of X, then almost surely

lim
p→∞

|〈uk, ũk〉| = 1. (13)

Similarly, if ũw
1 , . . . , ũ

w
r are the left singular vectors of Xw, then almost surely

lim
p→∞

|〈uw
k , ũ

w
k 〉| = 1. (14)

The limits (13) and (14) may be easily derived from, for example, Corollary 5.50 in [53] (restated as
Lemma B.2 in Appendix B), since the effective dimension of the Xj is r, not p. Because this paper is
concerned only with first-order phenomena, we will not distinguish between uk (respectively, uw

k ) and ũk
(respectively, ũw

k ).

Remark 2. The unnormalized vectors W−1uw
k are the generalized singular vectors of the matrix X, with

respect to the weight matrix W 2 [39]. In particular, they are orthonormal with respect to the weighted
inner product defined by W 2. Similarly, the vectors W−1ûw

k are generalized singular vectors of Y with
respect to W 2.

We assume that the values ‖W−1uw
k ‖, 1 ≤ k ≤ r, have well-defined limits as p → ∞, and we define

the parameters τk, 1 ≤ k ≤ r, by

τk = lim
p→∞

‖W−1uw
k ‖−2. (15)

Note that the τk are not known a priori; we will show, however, how they may be consistently estimated
from the observed data.

With the τk’s defined, we now specify the ordering of the principal components of Xj that will be
used throughout:

`1τ1 > · · · > `rτr > 0. (16)

We will also assume that the spectrum of Σε stays bounded between amin > 0 and amax < ∞. In
order to have well-defined asymptotics in the large p, large n regime, we will assume that the normalized
trace of Σε has a well-defined limit, which we will denote by µε:

µε = lim
p→∞

tr(Σε)

p
∈ (0,∞). (17)

For the convenience of the reader, Tables 1 and 2 summarize the notation for vectors and scalar parameters
that will be used throughout this paper.
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Symbol Description Reference
`k Signal variances (3), (16)
`wk Whitened signal variances (6), (7)
γ Aspect ratio (12)
τk limp→∞ ‖W−1uwk ‖−2 (15)

`k `wk /τk (62)
µε Normalized trace of Σε (17)
σw
k Singular value of Y w (41)
cwk Cosine between uwk and ûwk (39)
c̃wk Cosine between vwk and v̂wk (40)
ck Cosine between uk and ûk under (19) (47)

Table 2: Scalar parameters used in this paper.

Remark 3. We will assume for most of the paper that the noise covariance Σε is known a priori (though
see Section 4.3). However, all of the theoretical results, and resulting algorithms, go through unchanged
if the true Σε is replaced by any estimator Σ̂ε that is consistent in operator norm, i.e.,

lim
p→∞

‖Σε − Σ̂ε‖op = 0. (18)

Examples of such estimators Σ̂ε are discussed in Section 4.3.

2.1.1 The asymptotic assumptions

We enumerate the assumptions we have made on the asymptotic model:

1. p, n→∞ and the aspect ratio p/n converges to γ > 0.

2. The eigenvalues of Σε lie between amin > 0 and amax <∞.

3. The limit limp→∞ tr(Σε)/p is well-defined, finite, and non-zero.

4. The limits limp→∞ ‖W−1uw
k ‖ are well-defined, finite, and non-zero.

Assumptions 1–4 will be in effect throughout the entire paper. In addition, some of the results, namely
Theorems 3.2 and 7.3, will require an additional assumption, which we refer to as weighted orthogonality
of the PCs u1, . . . , ur:

5. For j 6= k, the vectors uj and uk are asymptotically orthogonal with respect to the W 2 = Σ−1
ε inner

product:

lim
p→∞

u>j W
2uk = 0. (19)

The assumptions 1–4 listed above are conceptually very benign. In applications, the practitioner will
be faced with a finite p and n, for which all the listed quantities exist and are finite. The asymptotic
assumptions 1–4 allow us to precisely quantify the behavior when p and n are large. By contrast,
assumption 5 is stronger than assumptions 1–4, in that it posits not only that certain limits exist, but
also their precise values (namely, 0). Note that assumption 5 is trivially satisfied when r = 1.

2.1.2 Weighted orthogonality and random PCs

At first glance, the weighted orthogonality condition (5), which will be used in Theorems 3.2 and 7.3,
may seem quite strong. However, it is a considerably weaker assumption than what is often assumed
by methods on the spiked model. For instance, the method of OptShrink in [44] assumes that the PCs
u1, . . . , ur be themselves random vectors with iid entries (or orthonormalized versions thereof). Under
this model, the inner products u>j W

2uk almost surely converge to 0; see Proposition 6.2 in [9].
In fact, we may introduce a more general random model for random PCs, under which assumption 5

will hold. For each 1 ≤ k ≤ r, we assume there is a p-by-p symmetric matrix Bk with bounded operator
norm (‖Bk‖op ≤ C < ∞, where C does not depend on p), and tr(Bk)/p = 1. We then take u1, . . . , ur
to be the output of Gram-Schmidt performed on the vectors Bkwk, where the wk are vectors with iid
subgaussian entries with variance 1/p. Then u>j W

2uk = w>j B
>
j W

2Bkwk, which converges to zero almost
surely, again using [9] and the bounded operator norm of BjW

2Bk.
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Remark 4. Under the random model just described the parameters τk are well-defined and equal to
limp→∞ tr(B>k W

2Bk)/p, so long as this limit exists. Indeed, it follows from (19) that uw
k is asymptot-

ically identical to Wuk/‖Wuk‖ (see Theorem 3.2), and so limp→∞ ‖W−1uw
k ‖−2 = limp→∞ ‖Wuk‖2 =

limp→∞ tr(B>k W
2Bk)/p, where we have once again invoked [9].

2.2 The prediction and estimation problems

This paper considers three central tasks: denoising the observations Yj to recover Xj – what we refer
to as prediction, since the Xj ’s are themselves random – estimating the population covariance Σx, and
estimating the principal subspace span{u1, . . . , ur}.

For predicting the signal vectors Xj , or equivalently the normalized signal matrix X = [X1, . . . , Xn]/
√
n,

we will use the asymptotic mean squared error to measure the accuracy of a predictor X̂:

AMSE = lim
n→∞

E‖X̂ −X‖2F = lim
n→∞

1

n

n∑
j=1

E‖X̂j −Xj‖2. (20)

For covariance estimation, our goal is to estimate the covariance of the signal vectors, Σx = E[XjX
>
j ]

(under the convention that the Xj are mean zero; otherwise, we subtract off the mean). While the
Frobenius loss, or MSE, is natural for signal estimation, for covariance estimation it is useful to consider
a wider range of loss functions depending on the statistical problem at hand; see [22] and the references
within for an elucidation of this point.

We will denote our covariance estimator as Σ̂x. Denote the loss function by L(Σ̂x,Σx); for instance,
Frobenius loss L(Σ̂x,Σx) = ‖Σ̂x−Σx‖2F, or operator norm loss L(Σ̂x,Σx) = ‖Σ̂x−Σx‖op. For a specified
loss function L, we seek to minimize the asymptotic values of these loss functions for our estimator,

lim
n→∞

EL(Σ̂x,Σx). (21)

For both the data prediction and covariance estimation problems, it will be a consequence of our
analysis that the limits of the errors are, in fact, well-defined quantities.

Finally, we are also concerned with principal component analysis (PCA), or estimating the principal
subspace U = span{u1, . . . , ur}, in which the signal vectors Xj lie. We measure the discrepancy between
the estimated subspace Û and the true subspace U by the angle Θ(U , Û) between these subspaces, defined
by

sin Θ(U , Û) = ‖Û>⊥U‖op, (22)

where Û⊥ and U are matrices whose columns are orthonormal bases of Û⊥ and U , respectively.

2.3 Review of the spiked model

2.3.1 Asymptotic spectral theory of the spiked model

The spectral theory of the observed matrix Y has been thoroughly studied in the large p, large n regime,
when p = pn grows with n. We will offer a brief survey of the relevant results from the literature
[46, 10, 19].

In the case of isotropic Gaussian noise (that is, when Σε = Ip), the r largest singular values of the
matrix Y converge to σk, defined by:

σ2
k =

{
(`k + 1)(1 + γ/`k), if `k >

√
γ,

(1 +
√
γ)2, if `k ≤

√
γ
. (23)

Furthermore, the top singular vectors ûyk and v̂yk of Y make asymptotically deterministic angles
with the singular vectors uk and vk of X. More precisely, the absolute cosines |〈ûyj , uk〉| converge to
ck = ck(γ, `k), defined by

c2k =

{
1−γ/`2
1+γ/`

if j = k and `k >
√
γ

0 otherwise
, (24)
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and the absolute cosines |〈v̂yj , vk〉| converge to c̃k = c̃k(γ, `k), defined by

c̃2k =

{
1−γ/`2
1+1/`

if j = k and `k >
√
γ

0 otherwise
. (25)

When `k >
√
γ, the population variance `k can be estimated consistently from the observed singular

value σk. Since ck and c̃k are functions of `k and the aspect ratio γ, these quantities can then also be
consistently estimated.

Remark 5. Due to the orthogonal invariance of the noise matrix N = G when Σε = Ip, formulas (23),
(24) and (25) are valid for any rank r matrix X, so long as X’s singular values do not change with p
and n. The paper [10] derive the asymptotics for more general noise matrices N , but with the additional
assumption that the singular vectors of X are themselves random (see the discussion in Section 2.1.2).
The formulas for the asymptotic singular values and cosines found in [10] are in terms of the Stieltjes
transform [5] of the asymptotic distribution of singular values of Y , which can be estimated consistently
using the observed singular values of Y .

2.3.2 Optimal shrinkage with Frobenius loss and white noise

We review the theory of shrinkage with respect to Frobenius loss; we briefly mention that the paper [25]
extends these ideas to a much wider range of loss functions for the spiked model.

We suppose that our predictor of X is a rank r matrix of the form

X̂ =

r∑
k=1

tkûkv̂
>
k , (26)

where ûk and v̂k are estimated vectors. We will assume that the vectors v̂k are orthogonal, and that
their cosines with the population vectors vk of X are asymptotically deterministic. More precisely, we
assume that 〈vj , v̂k〉2 → c̃2k when j = k, and converges to 0 when j 6= k. Similarly, we will assume that
〈uk, ûk〉2 → c2k; however, we do not need to assume any orthogonality condition on the uj ’s and ûj ’s for
the purposes of this derivation.

Expanding the squared Frobenius loss between X̂ and X and using the orthogonality conditions on
the vj ’s and v̂k’s, we get:

‖X̂ −X‖2F =

∥∥∥∥∥
r∑
k=1

(
tkûkv̂

>
k − `

1/2
k ukv

>
k

)∥∥∥∥∥
2

F

=

r∑
k=1

∥∥∥tkûkv̂>k − `1/2k ukv
>
k

∥∥∥2

F
+
∑
j 6=k

〈
tj ûj v̂

>
j − `

1/2
j ujv

>
j , tkûkv̂

>
k − `

1/2
k ukv

>
k

〉
F

∼
r∑
k=1

‖tkûkv̂>k − `
1/2
k ukv

>
k ‖2F, (27)

where ∼ denotes almost sure equality as p, n→∞.
Since the loss separates over the different components, we may consider each component separately.

Using the asymptotic cosines, we have:

‖tkûkv̂>k − `
1/2
k ukv

>
k ‖2F ∼ t2k + `k − 2`

1/2
k ck c̃ktk, (28)

which is minimized by taking

tk = `
1/2
k ck c̃k. (29)

These values of tk, therefore, are the optimal ones for predicting X in Frobenius loss.
Furthermore, we can also derive an estimable formula for the AMSE. Indeed, plugging in tk = `

1/2
k ck c̃k

to (28), we get:

AMSE =

r∑
k=1

`2k(1− c2k c̃2k). (30)

Note that this derivation of the optimal tk and the AMSE does not require the vectors ûk and v̂k
to be the singular vectors of Y . Rather, we just require the asymptotic cosines to be well-defined, and
the vj ’s and v̂j ’s to be orthogonal across different components. Implementing this procedure, however,
requires consistent estimates of `k, ck and c̃k.
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2.3.3 Eigenvalue shrinkage for covariance estimation

Similar to the task of predicting the data matrix X is estimating the covariance matrix Σx = E[XjX
>
j ] =∑r

k=1 `kuku
>
k . The procedure we consider in this setting is known as eigenvalue shrinkage. Given

orthonormal vectors û1, . . . , ûr estimating the PCs u1, . . . , ur, we consider estimators of the form

Σ̂x =

r∑
k=1

t2kûkû
>
k , (31)

where t2k are estimated population eigenvalues, which it is our goal to determine.
In [21], a large family of loss functions are considered for estimating Σx in white noise. All these

loss functions satisfy two conditions. First, they are orthogonally-invariant, meaning that if both the
estimated and population PCs are rotated, the loss does not change. Second, they are block-decomposable,
meaning that if both the estimated and population covariance matrices are in block-diagonal form, the
loss can be written as functions of the losses between the individual blocks.

The method of [21] rests on an observation from linear algebra. If (asymptotically) the 〈ûk, uk〉 = ck,
and ûj ⊥ uk for all 1 ≤ j 6= k ≤ r, then there is an orthonormal basis of Rp with respect to which both
Σx and any rank r covariance Σ̂x are simultaneously block-diagonalizable, with r blocks of size 2-by-2.
More precisely, there is a p-by-p orthogonal matrix O so that:

OΣxO
> =

r⊕
k=1

Ak, (32)

and

OΣ̂xO
> =

r⊕
k=1

ˆ̀
kBk, (33)

where

Ak =

(
`k 0
0 0

)
, (34)

and

Bk =

(
c2k ck

√
1− c2k

ck
√

1− c2k 1− c2k

)
. (35)

If L(Σ̂,Σ) is a loss function that is orthogonally-invariant and block-decomposable, then the loss
between Σx and Σ̂x decomposes into the losses between each Ak and Bk, which depend only on the one
parameter ˆ̀

k. Consequently,

ˆ̀
k = arg min

`
L(Ak, `Bk). (36)

The paper [21] contains solutions for ˆ̀
k for a wide range of loss functions L. For example, with Frobenius

loss, the optimal value is ˆ̀
k = `kc

2
k, whereas for operator norm loss the optimal value is ˆ̀

k = `k. Even
when closed form solutions are unavailable, one may perform the mimimization (36) numerically.

3 Asymptotic theory

A precise understanding of the asymptotic behavior of the spiked model is crucial for deriving optimal
spectral shrinkers, as we have seen in Sections 2.3.2 and 2.3.3. In this section, we provide expressions
for the asymptotic cosines between the empirical PCs and the population PCs, as well as limiting values
for other parameters. The formulas from Theorem 3.1 below will be employed in Section 4.1 for optimal
singular value shrinkage with whitening; and the formulas from Theorem 3.2 below will be employed in
Section 4.2 for optimal eigenvalue shrinkage with whitening.

The first result, Theorem 3.1, applies to the standard spiked model with white noise. It gives a
characterization of the asymptotic angles of the population PCs and empirical PCs with respect to an
inner product x>Ay given by a symmetric positive-definite matrix A. Parts 1 and 4 are standard results
on the spiked covariance model [46, 10]; we include them here for easy reference. A special case of part
2 appears in [38], in a somewhat different form; and part 3 appear to be new.
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Theorem 3.1. Suppose Y w
1 , . . . , Y

w
n are iid vectors in Rp from the spiked model with white noise, with

Y w
j = Xw

j +Gj where Xw
j is of the form (6) and Gj ∼ N(0, I). Let A = Ap be an element of a sequence

of symmetric, positive-definite p-by-p matrices with bounded operator norm (‖Ap‖op ≤ C <∞ for all p),
whose asymptotic normalized trace is well-defined and finite:

µa = lim
p→∞

1

p
tr(Ap) <∞. (37)

Suppose too that for 1 ≤ k ≤ r, the following quantity τak is also well-defined and finite:

τak = lim
p→∞

‖A1/2
p uw

k ‖−2 <∞. (38)

Define cwk > 0 by:

(cwk )2 =

{
1−γ/(`wk )2

1+γ/`w
k
, if j = k and `wk >

√
γ

0, otherwise
, (39)

and let sw
k =

√
1− (cwk )2. Also define c̃wk > 0 by:

(c̃wk )2 =

{
1−γ/(`wk )2

1+1/`w
k
, if j = k and `wk >

√
γ

0, otherwise
, (40)

and s̃w
k =

√
1− (c̃wk )2.

Then for any 1 ≤ j, k ≤ r, we have, as n→∞ and p/n→ γ:

1. The kth largest singular value of Y w converges almost surely to

σw
k =


√

(`wk + 1)
(

1 + γ
`w
k

)
, if `wk >

√
γ

1 +
√
γ, otherwise

. (41)

2. The A-norm of ûw
k converges almost surely:

lim
p→∞

‖A1/2
p ûw

k ‖2 =
(cwk )2

τak
+ (sw

k )2µa. (42)

3. The A-inner product between uw
k and ûw

k converges almost surely:

lim
p→∞

〈Apuw
k , û

w
k 〉2 =

{
(cwk /τ

a
k )2, if `wk >

√
γ

0, otherwise
. (43)

4. The inner product between vw
j and v̂w

k converges almost surely:

lim
n→∞

〈vw
j , v̂

w
k 〉2 =

{
(c̃wk )2, if j = k and `wk >

√
γ

0, otherwise
. (44)

Remark 6. In fact, as will be evident from its proof Theorem 3.1 is applicable to any rank r matrix
Xw, viewing uw

k and vw
k as the singular vectors of Xw. In particular, the columns of Xw need not be

drawn iid from a mean zero distribution. All that is needed for Theorem 3.1 is that the singular values
of Xw remain constant as p and n grow, and that the parameters τk are well-defined.

Theorem 3.1 is concerned only with the standard spiked model with white noise, Y w
j = Xw

j +Gj . By
contrast, the next result, Theorem 3.2, deals with the spiked model with colored noise, Yj = Xj + εj ,

where εj ∼ N(0,Σε). In Section 2.1, we defined the whitening matrix W = Σ
−1/2
ε that transforms Yj

into the standard white-noise model Y w
j ; that is, Y w

j = WYj = WXj +Wεj = Xw
j +Gj . In stating and

applying Theorem 3.2, we refer to the parameters for both models described in Section 2.1.

Theorem 3.2. Assume that the PCs u1, . . . , ur satisfy the weighted orthogonality condition (19), i.e.,
for 1 ≤ j 6= k ≤ r,

lim
p→∞

u>j W
2uk = 0. (45)

11



Order the principal components of Xj by decreasing value of `kτk, as in (16); that is, we assume Σx =∑r
k=1 `kuku

>
k , with

`1τ1 > · · · > `rτr > 0, (46)

where τk = limp→∞ ‖W−1uw
k ‖−2 as in (15).

Define ck > 0, 1 ≤ k ≤ r, by:

c2k ≡

{
(cwk )2

(cw
k

)2+(sw
k

)2·µε·τk
, if `wk >

√
γ

0, otherwise
, (47)

where cwk is given by (39), `wk is defined from (6) with Xw
j = WXj , and µε = limp→∞

tr(Σε)
p

as in (17).
Then for any 1 ≤ j, k ≤ r,

1. The vectors uk and uk are almost surely asymptotically identical:

lim
p→∞

〈uk, uk〉2 = 1. (48)

2. The vectors vw
k and vk are almost surely asymptotically identical:

lim
n→∞

〈vk, vw
k 〉2 = 1. (49)

3. The inner product between uj and ûk converges almost surely:

lim
p→∞

〈uj , ûk〉2 =

{
c2k, if j = k and `wk >

√
γ

0, otherwise
, (50)

where c2k is defined in (47).

4. The vectors ûj and ûk are asymptotically orthogonal if j 6= k:

lim
p→∞

〈ûj , ûk〉2 = δjk. (51)

5. The parameter τk is almost surely asymptotically equal to ‖Wuk‖2:

lim
p→∞

(τk − ‖Wuk‖2) = 0. (52)

6. The variance `wk of Xw
j along uw

k is almost surely asymptotically equal to `kτk:

lim
p→∞

(`wk − `kτk) = 0. (53)

The proofs for both Theorem 3.1 and Theorem 3.2 may be found in Appendix A.

4 Optimal spectral shrinkage with whitening

In this section, we will derive the optimal spectral shrinkers for signal prediction and covariance estimation
to be used in conjunction with whitening.

4.1 Singular value shrinkage

Given the noisy matrix Y = X +N , we consider a class of predictors of X defined as follows. First, we
whiten the noise, replacing Y with Y w = WY . We then apply singular value shrinkage to the transformed
matrix Y w. That is, if ûw

1 , . . . , û
w
r and v̂w

1 , . . . , v̂
w
r are the top left and right singular vectors of Y w, we

define the new matrix

X̂w =

r∑
k=1

tkû
w
k (v̂w

k )>, (54)

for some positive scalars tk which we have yet to determine.
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Finally, we recolor the noise, to bring the data back to its original scaling. That is, we define our
final predictor X̂ by

X̂ = W−1X̂w. (55)

In this section, we will show how to optimally choose the singular values t1, . . . , tr in (54) to minimize
the AMSE:

AMSE = lim
n→∞

E‖X̂ −X‖2F. (56)

Remark 7. Loss functions other than Frobenius loss (i.e., mean-squared error) may be considered as
well. This will be done for the problem of covariance estimation in Section 4.2, where it is more natural
[22]. For recovering the data matrix X itself, however, the MSE is the natural loss, and the optimal tk
can be derived for minimizing the AMSE without any additional assumptions on the model.

Once we have whitened the noise, our resulting matrix Y w = Xw + G is from the standard spiked
model and consequently satisfies the conditions of Theorem 3.1, since G is a Gaussian matrix with iid
N(0, 1) entries. We will apply the asymptotic results of Theorem 3.1, taking the matrix A = W−1.
Recalling the definitions of ûk and uk from (8) and (9), respectively, we obtain an immediate corollary
to Theorem 3.1:

Corollary 4.1. For 1 ≤ k ≤ r, the cosine between the vectors uk and ûk converges almost surely:

lim
p→∞

〈uk, ûk〉2 = c2k ≡

{
(cwk )2

(cw
k

)2+(sw
k

)2·µε·τk
, if `wk >

√
γ

0, otherwise
. (57)

We derive the optimal tk. We write:

Xw ∼
r∑
k=1

(`wk )1/2uw
k (vw

k )>, (58)

and so

X = W−1Xw ∼
r∑
k=1

(`wk )1/2W−1uw
k (vw

k )> =

r∑
k=1

(`wk /τk)1/2uk(vw
k )>. (59)

Furthermore,

X̂w =

r∑
k=1

tkû
w
k (v̂w

k )> (60)

and so

X̂ = W−1X̂w =

r∑
k=1

tkW
−1ûw

k (v̂w
k )> =

r∑
k=1

tk‖W−1ûw
k ‖ûk(v̂w

k )>. (61)

It is convenient to reparametrize the problem in terms of

`k ≡ `wk /τk, (62)

and

t̃k ≡ tk‖W−1ûw
k ‖ ∼ tk

(
(cwk )2

τk
+ (sw

k )2µε

)1/2

, (63)

where we have used Theorem 3.1.
In this notation, we have X =

∑r
k=1 `

1/2
k uk(vw

k )>, and X̂ =
∑r
k=1 t̃kûk(v̂w

k )>. From Theorem 3.1, the
vectors vw

j and v̂w
k are orthogonal if j 6= k, and the cosine between vw

k and v̂w
k is c̃k ≡ c̃wk . The derivation

from Section 2.3.2 shows that the optimal values t̃k are then given by

t̃k = `
1/2
k ck c̃k (64)

For this to define a valid estimator, we must show how to estimate the values `k, ck and c̃k from the
observed data itself.
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To that end, from Theorem 3.1 `wk can be estimated by

`wk =
(σw
k )2 − 1− γ +

√
((σw

k )2 − 1− γ)2 − 4γ

2
(65)

where σw
k is the kth singular value of Y w. The cosines cwk and c̃wk can then be estimated by formulas (39)

and (40).
Now, rearranging part 2 from Theorem 3.1, we can solve for τk in terms of the estimable quantities

cwk , sw
k , µε and ‖Σ1/2

ε ûw
k ‖2:

τk ∼
(cwk )2

‖Σ1/2
ε ûw

k ‖2 − (sw
k )2µε

. (66)

Indeed, this quantity can be estimated consistently: cwk and sw
k are estimable from (39), ‖Σ1/2

ε ûw
k ‖2 is

directly observed, and µε ∼ tr(Σε)/p.
Having estimated τk, we apply formula `k = `wk /τk, and formula (50) for ck. This completes the

derivation of the optimal singular value shrinker. The entire procedure is described in Algorithm 1.
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Figure 1: Optimal shrinker, naive shrinker, and population shrinker, for τ = 1 and γ = 0.5.

Figures 1 and 2 plot the optimal shrinker, i.e., the function that sends each top observed singular
value σw

k of Y w to the optimal tk. For contrast, we also plot the “population” shrinker, which maps σw
k

to the corresponding
√
`wk ; and the “naive” shrinker, which maps σw

k to
√
`wk c

w
k c̃

w
k . This latter shrinker is

considered in the paper [19], and is naive in that it optimizes the Frobenius loss before the unwhitening
step without accounting for the change in angles between singular vectors resulting from unwhitening.
In Figure 1 we set γ = 0.5, while in Figure 2 we set γ = 2. We fix τ = 1 but consider different values of
µε (the behavior depends only on the ratio of µε and τ).
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Figure 2: Optimal shrinker, naive shrinker, and population shrinker, for τ = 1 and γ = 2.
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Algorithm 1 Optimal singular value shrinkage with whitening

1: Input: observations Y1, . . . , Yn; noise covariance Σε; rank r

2: Define Y = [Y1, . . . , Yn]/
√
n; W = Σ

−1/2
ε ;Y w = WY

3: Compute rank r SVD of Y w: ûw1 , . . . , û
w
r ; v̂w1 , . . . , v̂

w
r ; σw

1 , . . . , σ
w
r

4: for all k = 1, . . . , r do
5: if σw

k > 1 +
√
γ then

`wk =
[
(σw

k )2 − 1− γ +
√

((σw
k )2 − 1− γ)2 − 4γ

] /
2

cwk =
√

(1− γ/(`wk )2)
/

(1 + γ/`wk )

swk =
√

1− (cwk )2

c̃k =
√

(1− γ/(`wk )2)
/

(1 + 1/`wk )

µε = tr(Σε)/p

τk = (cwk )2
/ [
‖Σ1/2

ε ûwk ‖2 − (swk )2µε

]
tk = (`wk )1/2cwk c̃k

/ [
(cwk )2 + (swk )2µετk

]
6: else if σw

k ≤ 1 +
√
γ then

tk = 0

7: Output: X̂ = W−1
∑r

k=1 tkû
w
k (v̂wk )>

Remark 8. In practice, the rank r may not be known a priori. In Section 4.4, we describe several
methods for estimating r from the data.

Remark 9. Algorithm 1 may be applied to denoising any rank r matrix X from the observed matrix
Y = X + N . As pointed out in Remark 6, the assumption that the columns of X are drawn iid from a
mean zero distribution with covariance Σx is not needed for the parameter estimates used by Algorithm
1 to be applicable, so long as the singular values of the whitened matrix Xw stay fixed (or converge
almost surely) as p and n grow, and the parameters τk are well-defined.

4.2 Eigenvalue shrinkage

We turn now to the task of estimating the covariance Σx of Xj . Throughout this section, we will assume
the conditions of Theorem 3.2, namely conditon (19).

Analogous to the procedure for singular value shrinkage with whitening, we consider the procedure
of eigenvalue shrinkage with whitening. We first whiten the observations Yj , producing new observations
Y w
j = WYj . We then form the sample covariance Σ̂w

y of the Y w
j . We apply eigenvalue shrinkage to Σ̂w

y ,
forming a matrix of the form

Σ̂w
x =

r∑
k=1

t2kû
w
k (ûw

k )>, (67)

where û1, . . . , û
w
r are the top r eigenvectors of Σ̂w

y , or equivalently the top r left singular vectors of the
whitened data matrix Y w; and the t2k are the parameters we will determine. Finally, we form our final
estimator of Σx by unwhitening:

Σ̂x = W−1Σ̂w
xW

−1. (68)

It remains to define the eigenvalues t21, . . . , t
2
r of the matrix Σ̂w

x . We let L denote any of the loss
functions considered in [21]. As a reminder, all these loss functions satisfy two conditions. First, they are
orthogonally-invariant, meaning that if both the estimated and population PCs are rotated, the loss does
not change. Second, they are block-decomposable, meaning that if both the estimated and population
covariance matrices are in block-diagonal form, the loss can be written as functions of the losses between
the individual blocks.

The estimated covariance matrix Σ̂x = W−1Σ̂w
xW

−1 can be written as:

Σ̂x = W−1Σ̂w
xW

−1 =

r∑
k=1

t2kW
−1ûw

k (W−1ûw
k )> =

r∑
k=1

t2k‖W−1ûw
k ‖2ûkû>k =

r∑
k=1

t̃2kûkû
>
k , (69)
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where we have defined t̃2k by:

t̃2k ≡ t2k‖W−1ûw
k ‖2 ∼ t2k

(
(cwk )2

τk
+ (sw

k )2µε

)
. (70)

We also write out the eigendecomposition of Σx:

Σx =

r∑
k=1

`kuku
>
k . (71)

From Theorem 3.2, the empirical PCs û1, . . . , ûr are asymptotically pairwise orthonormal, and ûj and
uk are asymptotically orthogonal if j 6= k, and have absolute inner product ck when j = k, given by (47).

Consequently, from Section 2.3.3 the optimal t̃2k are defined by:

t̃2k = arg min
`
L(Ak, `Bk), (72)

where:

Ak =

(
`k 0
0 0

)
, (73)

and

Bk =

(
c2k ck

√
1− c2k

ck
√

1− c2k 1− c2k

)
. (74)

As noted in Section 2.3.3, [21] provides closed form solutions to this minimization problem for many loss
functions L. For example, when operator norm loss is used the optimal t̃2k is `k, and when Frobenius
norm loss is used, the optimal t̃2k is `kc

2
k. When no such closed formula is known, the optimal values may

be obtained by numerical minimization of (72).
Finally, the eigenvalues t2k are obtained by inverting formula (70):

t2k = t̃2k

(
(cwk )2

τk
+ (sw

k )2µε

)−1

. (75)

We summarize the covariance estimation procedure in Algorithm 2.

Remark 10. As stated in Remark 8, in practice the rank r will likely not be known a priori. We refer
to Section 4.4 for a description of data-driven methods that may be used to estimate r.

4.3 Estimating the noise covariance Σε

Algorithms 1 and 2 require access to the whitening transformation W = Σ
−1/2
ε , or equivalently the noise

covariance matrix Σε. However, the same method and analysis goes through unscathed if Σε is replaced
with an estimate Σ̂ε that is consistent in operator norm, i.e., where

lim
p→∞

‖Σε − Σ̂ε‖op = 0 (76)

almost surely as p/n → γ. Indeed, the distribution of the top r singular values and singular vectors of

Y w will be asymptotically identical whether the true W = Σ
−1/2
ε is used to perform whitening or the

estimated Ŵ = Σ̂
−1/2
ε is used instead.

Remark 11. Because we assume that the maximum eigenvalue of Σε is bounded and the minimum
eigenvalue is bounded away from 0, (76) is equivalent to consistent estimation of the whitening matrix

W = Σ
−1/2
ε by Ŵ = Σ̂

−1/2
ε .

An estimator Σ̂ε satisfying (76) may be obtained when we have access to an iid sequence of pure noise
vectors ε1, . . . , εn′ in addition to the n signal-plus-noise vectors Y1, . . . , Yn. This is the setting considered
in [45], where a number of applications are also discussed. Here, we assume that n′ = n′(n) grows faster
than p = p(n), that is,

lim
n→∞

p(n)

n′(n)
= 0. (77)
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Algorithm 2 Optimal eigenvalue shrinkage with whitening

1: Input: observations Y1, . . . , Yn; noise covariance Σε; rank r

2: Define Y = [Y1, . . . , Yn]/
√
n; W = Σ

−1/2
ε ; Y w = WY

3: Compute top r left singular vectors/values of Y w: ûw1 , . . . , û
w
r ; σw

1 , . . . , σ
w
r

4: for all k = 1, . . . , r do
5: if σw

k > 1 +
√
γ then

`wk =
[
(σw

k )2 − 1− γ +
√

((σw
k )2 − 1− γ)2 − 4γ

] /
2

cwk =
√

(1− γ/(`wk )2)
/

(1 + γ/`wk )

µε = tr(Σε)/p

τk = (cwk )2
/ [
‖Σ1/2

ε ûwk ‖2 − (1− (cwk )2)µε

]
`k = `wk /τk
ck = cwk /

√
(cwk )2 + (1− (cwk )2)µετk

Ak =

(
`k 0
0 0

)
Bk =

(
c2k ck

√
1− c2k

ck
√

1− c2k 1− c2k

)
t̃2k = arg min` L(Ak, `Bk)
t2k = t̃2kτk/[(c

w
k )2 + (1− (cwk )2)µετk]

6: else if σw
k ≤ 1 +

√
γ then

t2k = 0

7: Output: Σ̂x =
∑r

k=1 t
2
k(W−1ûwk )(W−1ûwk )>

In this case, we replace Σε by the sample covariance:

Σ̂ε =
1

n′

n′∑
j=1

εjε
>
j , (78)

which converges to Σε in operator norm; that is, (76) holds. In Section 8.5, we will illustrate the use of
this method in simulations.

Remark 12. If p/n′ does not converge to 0, then Σ̂ε given by (78) is not a consistent estimator of Σε in
operator norm. Indeed, when Σε = Ip the distribution of Σ̂ε’s eigenvalues converges to the Marchenko-
Pastur law [42], and more generally converges to a distribution whose Stieltjes transform is implicitly
defined by a fixed point equation [5, 50, 49].

4.3.1 Alternative estimators of Σε

Without access to an independent sequence of n′ � p pure noise samples, estimating the noise covariance
Σε consistently (with respect to operator norm) is usually hard as p → ∞. However, it may still be
practical when Σε is structured. Examples include: when Σε is sparse [13]; when Σ−1

ε is sparse [56];
when Σε is a circulant or Toeplitz matrix, corresponding to stationary noise [16]; and more generally,
when the eigenbasis of Σε is known a priori.

To elaborate on the last condition, let us suppose that the eigenbasis of Σε is known, and without
loss of generality that Σε is diagonal; and suppose that and the uk’s are delocalized in that ‖uk‖∞ → 0
as p → ∞. Write Σε = diag(ν1, . . . , νp), for unknown νi. In this setting, the sample variance of
each coordinate will converge almost surely to the variance of the noise in that coordinate; that is, for
i = 1, . . . , p, we have:

ν̂i =
1

n

n∑
j=1

Y 2
ij =

1

n

n∑
j=1

(
r∑
k=1

`kukizjk

)2

+
1

n

n∑
j=1

ε2
ij + 2

1

n

n∑
j=1

εij

r∑
k=1

`kukizjk → νi, (79)

where the limit is almost sure as p, n → ∞. We have made use of the strong law of large numbers and
the limit ‖uk‖∞ → 0.
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Let Σ̂ε have ith diagonal entry ν̂i. Then Σ̂ε−Σε is a mean-zero diagonal matrix, with diagonal entries
ν̂i− νi; and the operator norm ‖Σ̂ε−Σε‖op = max1≤i≤p |ν̂i− νi|, which is easily shown to go to 0 almost
surely as p→∞ using the subgaussianity of the observations.

4.4 Estimating the rank r

A challenging question in principal component analysis is selecting the number of components corre-
sponding to signal, and separating these from the noise. In our model, this corresponds to estimating
the rank r of the matrix X, which is an input to Algorithms 1 and 2. A simple and natural estimate r̂
of the rank is the following:

r̂ = min{k : σw
k > 1 +

√
γ + εn}. (80)

That is, we estimate the rank as the number of singular values of Y w = Xw + G exceeding the largest
singular value of the noise matrix G, plus a small finite-sample correction factor εn > 0. Any singular
value exceeding 1 +

√
γ + εn is attributable to signal, whereas any value below is consistent with pure

noise.
When εn ≡ ε for all n, it may be shown that in the large p, large n limit, r̂ converges almost surely

to the number of singular values of Xw exceeding 1 +
√
γ + ε. For small enough ε, this will recover all

singular values of Xw exceeding
√
γ, and is likely sufficient for many applications. Furthermore, the

correction εn may be calibrated using the Tracy-Widom distribution of the operator norm of GG> by
taking εn ∼ n−2/3. Though a detailed discussion is beyond the scope of this paper, we refer to [35] for
an approach along these lines.

An alternative procedure is similar to r̂, but uses the original matrix Y rather than the whitened
matrix Y w:

r̂′ = min{k : σk > b+ + εn}, (81)

where b+ is the asymptotic operator norm of the noise matrix N , and εn is a finite-sample correction
factor. The value b+ may be evaluated using, for example, the method from [37]. An estimator like
this is proposed in [44]. In Section 8.8, we present numerical evidence that r̂ may outperform r̂′. More
precisely, it appears that whitening can increase the gap between the smallest signal singular value and
the bulk edge of the noise, making detection of the signal components more reliable.

Remark 13. We also remark that a widely-used method for rank estimation in non-isotropic noise is
known as parallel analysis [29, 15, 14], which has been the subject of recent investigation [18, 20]. Other
methods have also been explored [33].

5 Singular value shrinkage and linear prediction

In this section, we examine the relationship between singular value shrinkage and linear prediction. A
linear predictor of Xj from Yj is of the form AYj , where A is a fixed matrix. It is known (see, e.g. [41])
that to minimize the expected mean-squared error, the best linear predictor, also called the Wiener filter,
takes A = Σx (Σx + Σε)

−1, and hence is of the form:

X̂opt
j = Σx (Σx + Σε)

−1 Yj . (82)

We will prove the following result, which shows that in the classical regime γ → 0, optimal shrinkage
with whitening converges to the Wiener filter.

Theorem 5.1. Suppose Y1, . . . , Yn are drawn from the spiked model with heteroscedastic noise, Yj =
Xj + εj . Let X̂1, . . . , X̂n be the predictors of X1, . . . , Xn obtained from singular value shrinkage with
whitening, as described in Section 4.1 and Algorithm 1. Then almost surely in the limit p/n→ 0,

lim
n→∞

‖X̂opt − X̂‖2F = lim
n→∞

1

n

n∑
j=1

‖X̂opt
j − X̂j‖2 = 0. (83)

In other words, the predictor X̂j is asymptotically equivalent to the best linear predictor X̂opt
j .

Theorem 5.1 is a consequence of the following result.
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Theorem 5.2. Suppose that the numbers sk, 1 ≤ k ≤ r satisfy

lim
γ→0

sk
σw
k

=
`wk

`wk + 1
. (84)

Then the predictor defined by

X̂ ′ =

r∑
k=1

skW
−1ûw

k (v̂w
k )> (85)

satisfies

lim
n→∞

‖X̂opt − X̂ ′‖2F = 0, (86)

where the limit holds almost surely as p/n→ 0.

We will also show that in the context of shrinkage methods, whitening is an optimal weighting of
the data. To make this precise, we consider the following class of weighted shrinkage methods, which
subsumes both ordinary singular value shrinkage and singular value shrinkage with noise whitening. For
a fixed weight matrix Q, we multiply Y by Q, forming the matrix Y q = [QY1, . . . , QYn]/

√
n. We then

apply singular value shrinkage to Y q, with singular values sq1, . . . , s
q
r, after which we apply the inverse

weighting Q−1. Clearly, ordinary shrinkage is the special case when Q = Ip, whereas singular value

shrinkage with whitening is the case when Q = W = Σ
−1/2
ε .

When the singular values sq1, . . . , s
q
r are chosen optimally to minimize the AMSE, we will call the

resulting predictor X̂Q, and denote by X̂Q,j the denoised vectors so that X̂Q = [X̂Q,1, . . . , X̂Q,n]/
√
n. In

this notation, X̂ = X̂W is optimal shrinkage with whitening, whereas X̂I is ordinary shrinkage without
whitening. The natural question is, what is the optimal matrix Q?

To answer this question, we introduce the linear predictors X̂ lin
Q,j , defined by

X̂ lin
Q,j =

r∑
k=1

ηqk〈QYj , u
q
k〉Q

−1uqk, (87)

where the uq1, . . . , u
q
r are the eigenvectors of QΣxQ, and the ηqk are chosen optimally to minimize the

average AMSE across all n observations. We prove the following result, which is again concerned with
the classical γ → 0 regime.

Theorem 5.3. Let Q = Qp be an element of a sequence of symmetric, positive-definite p-by-p matrices
with bounded operator norm (‖Qp‖op ≤ C < ∞ for all p). Then in the limit p/n → 0, we have almost
surely:

lim
n→∞

‖X̂ lin
Q − X̂Q‖2F = lim

n→∞

1

n

n∑
j=1

‖X̂ lin
Q,j − X̂Q,j‖2 = 0. (88)

In other words, the weighted shrinkage predictor X̂Q,j is asymptotically equal to the linear predictor X̂ lin
Q,j .

Furthermore, Q = W minimizes the AMSE:

W = arg min
Q

lim
n→∞

E‖X̂Q −X‖2F. (89)

The first part of Theorem 5.3, namely (88), states that any weighted shrinkage method converges
to a linear predictor when γ → 0. The second part of Theorem 5.3, specifically (89), states that of all
weighted shrinkage schemes, whitening is optimal in the γ → 0 regime.

Remark 14. A special case of Theorem 5.2 is the suboptimal “naive” shrinker with whitening, which
uses singular values

√
`wk c

w
k c̃

w
k ; see Figures 1 and 2 and the accompanying text. It is easily shown that

Theorem 5.2 applies to this shrinker, and consequently that in the γ → 0 limit this shrinker converges
to the BLP. This fact will be illustrated numerically in Section 8.2.

We give detailed proofs of Theorems 5.1, 5.2 and 5.3 in Appendix B. In Section 5.1, we make a simple
observation which underlies the proofs, which is of independent interest.
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5.1 Columns of weighted singular value shrinkage

In this section, we show how to write the predictor X̂Q in terms of the individual columns of Y q =
[QY1, . . . , QYn]/

√
n. This observation will be used in the proofs of Theorems 5.1, 5.2 and 5.3, and also

motivates the form of the out-of-sample predictor we will study in Section 6.
Let m = min(p, n). Consistent with our previous notation (when Q = W ), we will denote by

ûq1, . . . , û
q
m the left singular vectors of the matrix Y q, and we will denote by v̂q1 , . . . , v̂

q
m the right singular

vectors and σq1 , . . . , σ
q
m the corresponding singular values.

Lemma 5.4. Each column X̂Q,j of
√
n · X̂Q is given by the formula

X̂Q,j = Q−1
r∑
k=1

ηqk〈QYj , û
q
k〉û

q
k, (90)

where ηqk = sqk/σ
q
k is the ratio of the new and old singular values.

To see this, observe that we can write the jth column of the matrix
√
n · Y q as:

QYj =

m∑
k=1

σqkû
q
kv̂
q
jk, (91)

and so by the orthogonality of ûqk, v̂qjk = 〈QYj , ûqk〉/σ
q
k. Consequently, when X̂Q is obtained from Y q by

singular value shrinkage with singular values sq1, . . . , s
q
r, followed by multiplication with Q−1, we obtain

formula (90).

6 Out-of-sample prediction

We now consider the problem of out-of-sample prediction. In Section 5.1, specifically Lemma 5.4, we saw
that when applying the method of shrinkage with whitening, as described in Algorithm 1, each denoised
vector X̂j can be written in the form:

X̂j =

r∑
k=1

ηk〈WYj , û
w
k 〉W−1ûw

k , (92)

where ûw
1 , . . . , û

w
r are the top r left singular vectors of Y w = WY , and ηk are deterministic coefficients.

We observe that the expression (92) may be evaluated for any vector Yj , even when it is not one of the
original Y1, . . . , Yn, so long as we have access to the singular vectors ûw

k .
To formalize the problem, we suppose we have computed the sample vectors ûw

1 , . . . , û
w
r based on n

observed vectors Y1, . . . , Yn, which we will call the in-sample observations. That is, the ûw
k are the top

left singular vectors of the whitened matrix Y w = [Y w
1 , . . . , Y

w
n ]/
√
n. We now receive a new observation

Y0 = X0 + ε0 from the same distribution, which we will refer to as an out-of-sample observation, and our
goal is to predict the signal X0.

We will consider predictors of the out-of-sample X0 of the same form as (92):

X̂0 =

r∑
k=1

ηo
k〈WY0, û

w
k 〉W−1ûw

k . (93)

We wish to choose the coefficients ηo
k to minimize the AMSE, limn→∞ E‖X̂0 −X0‖2.

Remark 15. We emphasize the difference between the in-sample prediction (92) and the out-of-sample
prediction (93), beyond the different coefficients ηk and ηo

k. In (92), the vectors uw
1 , . . . , u

w
r are dependent

on the in-sample observation Yj , 1 ≤ j ≤ n, because they are the top r left singular vectors of Y w.
However, in (93) they are independent of the out-of-sample observation Y0, which is drawn independently
from Y1, . . . , Yn. As we will see, it is this difference that necessitates the different choice of coefficients
ηk and ηo

k for the two problems.

In this section, we prove the following result comparing optimal out-of-sample prediction and in-
sample prediction. Specifically, we derive the explicit formulas for the optimal out-of-sample coefficients
ηo
k and the in-sample coefficients ηk; show that the coefficients are not equal; and show that the AMSE

for both problems are nevertheless identical. Throughout this section, we assume the conditions and
notation of Theorem 3.1.
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Theorem 6.1. Suppose Y1, . . . , Yn are drawn iid from the spiked model, Yj = Xj + εj , and ûw
1 , . . . , û

w
r

are the top r left singular vectors of Y w. Suppose Y0 = X0 + ε0 is another sample from the same spiked
model, drawn independently of Y1, . . . , Yn. Then the following results hold:

1. The optimal in-sample coefficients ηk are given by :

ηk =
(cwk )2

(cwk )2 + (sw
k )2µετk

· `wk
`wk + 1

. (94)

2. The optimal out-of-sample coefficients ηo
k are given by:

ηo
k =

(cwk )2

(cwk )2 + (sw
k )2µετk

· `wk
`wk (cwk )2 + 1

. (95)

3. The AMSEs for in-sample and out-of-sample prediction are identical, and equal to:

AMSE =

r∑
k=1

(
`wk
τk
− (`wk )2(cwk )4

`wk (cwk )2 + 1

1

αkτk

)
, (96)

where αk =
(
(cwk )2 + (sw

k )2µετk
)−1

.

Remark 16. To be clear, denoising each in-sample observation Y1, . . . , Yn by applying (92) with ηk
defined by (94) is identical to denoising Y1, . . . , Yn by singular value shrinkage with whitening described
in Algorithm 1. We derive this alternate form only to show that the coefficients ηk are different from the
the optimal out-of-sample coefficients ηo

k to be used when Y0 is independent from the ûw
k .

Remark 17. Theorem 6.1 extends the analogous result from [19], which was restricted to the standard
spiked model with white noise.

The proof of Theorem 6.1 may be found in Appendix C. In Algorithm 3, we summarize the optimal
out-of-sample prediction method, with the optimal coefficients derived in Theorem 6.1.

Algorithm 3 Optimal out-of-sample prediction

1: Input: Y0; ûw1 , . . . , û
w
r ; σw

1 , . . . , σ
w
r

2: for all k = 1, . . . , r do
3: if σw

k > 1 +
√
γ then

`wk =
[
(σw

k )2 − 1− γ +
√

((σw
k )2 − 1− γ)2 − 4γ

] /
2

cwk =
√

(1− γ/(`wk )2)
/

(1 + γ/`wk )

swk =
√

1− (cwk )2

µε = tr(Σε)/p

τk = (cwk )2
/ [
‖Σ1/2

ε ûwk ‖2 − (swk )2µε

]
αk = 1/

(
(cwk )2 + (swk )2µετk

)
ηok = αk`

w
k (cwk )2/(`wk (cwk )2 + 1)

4: else if σw
k ≤ 1 +

√
γ then

ηok = 0

5: Output: X̂0 =
∑r

k=1 η
o
k〈WY0, û

w
k 〉W−1ûwk

7 Subspace estimation and PCA

In this section, we focus on the task of principal component analysis (PCA), or the estimation of the
principal components u1, . . . , ur of the signal Xj , and their span. Specifically, we assess the quality of the
empirical PCs û1, . . . , ûr defined in (8). The reader may recall that these are constructed by whitening
the observed vectors Yj to produce Y w

j ; computing the top r left singular vectors of Y w
j ; and unwhitening

and normalizing.
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We first observe that in the classical regime γ → 0, the angle between the subspaces span{û1, . . . , ûr}
and span{u1, . . . , ur} converges to 0 almost surely; we recall that the sine of the angle between subspaces
A and B of Rp is defined by

sin Θ(A,B) = ‖A>⊥B‖op, (97)

where A⊥ and B are matrices whose columns are orthonormal bases of A⊥ and B, respectively.

Proposition 7.1. Suppose Y1, . . . , Yn are drawn from the spiked model, Yj = Xj + εj . Let U =
span{u1, . . . , ur} be the span of the population PCs, and Û = span{û1, . . . , ûr} be the span of the empirical
PCs. Then

lim
n→0

sin Θ(U , Û) = 0, (98)

where the limit holds almost surely as n→∞ and p/n→ 0.

The proof of Proposition 7.1 may be found in Appendix D.
Proposition 7.1 shows consistency of principal subspace estimation in the classical regime. We ask

what happens in the high-dimensional setting γ > 0, where we typically do not expect to be able to have
consistent estimation of the principal subspace. Our task here is to show that whitening will still improve
estimation. To that end, in Section 7.1, we will show that under a uniform prior on the population PCs
uk, whitening improves estimation of the PCs. In Section 7.2, we will derive a bound on the error of
estimating the principal subspace span{u1, . . . , ur}, under condition (19); we will show that the error
rate matches the optimal rate of the estimator in [58]. Finally, in Section 7.3 we will complement these
results by showing that under the uniform prior, whitening improves a natural signal-to-noise ratio.

7.1 Whitening improves subspace estimation for generic PCs

In this section, we consider the effect of whitening on estimating the PCs u1, . . . , ur. More precisely, we
contrast two estimators of the uk. On the one hand, we shall denote by û′1, . . . û

′
r the left singular vectors

of the raw data matrix Y , without applying any weighting matrix. On the other hand, we consider
the vectors û1, . . . , ûr obtained by whitening, taking the top singular vectors of Y w, unwhitening, and
normalizing, as expressed by formula (8).

We claim that “generically”, the vectors û1, . . . , ûr are superior estimators of u1, . . . , ur. By “generi-
cally”, we mean when we impose a uniform prior over the population PCs u1, . . . , ur; that is, we assume
the uk are themselves random, drawn uniformly from the sphere in Rp and orthogonalized. This is
precisely the “orthonormalized model” considered in [10].

We set τ = limp→∞ tr(Σ−1
ε )/p, assuming this limit exists; and let ϕ = τ · µε. By Jensen’s inequality,

ϕ ≥ 1, with strict inequality so long as Σε is not a multiple of the identity.

Theorem 7.2. Suppose Σε has a finite number of distinct eigenvalues, each occurring with a fixed
proportion as p→∞. Suppose too that u1, . . . , ur are uniformly random orthonormal vectors in Rp. Let
û′1, . . . , û

′
r be the left singular vectors of Y , and û1, . . . , ûr be the empirical PCs defined by (8). Then

with probability approaching 1 as n→∞ and p/n→ γ > 0,

|〈û′k, uk〉|2 ≤ R(ϕ)|〈ûk, uk〉|2, 1 ≤ k ≤ r, (99)

where R is decreasing, R(1) = 1, and R(ϕ) < 1 for ϕ > 1.
Furthermore, if v̂′1, . . . , v̂

′
r are the right singular vectors of Y , and v̂1, . . . , v̂r are the left singular

vectors of Y w, then

|〈v̂′k, zk〉|2 ≤ R̃(ϕ)|〈v̂k, zk〉|2, 1 ≤ k ≤ r, (100)

with probability approaching 1 as n → ∞ and p/n → γ > 0, where zk = (z1k, . . . , znk)>/
√
n, and where

R̃ is decreasing, R̃(1) = 1, and R̃(ϕ) < 1 for ϕ > 1.

The proof of Theorem 7.2 may be found in Appendix D. It rests on a result from the recent paper
[27], combined with the formula (47) for the asymptotic cosines between ûk and uk.

Remark 18. The definition of τ = tr(Σ−1
ε )/p is consistent with our definition of τk = limp→∞ ‖W−1uw

k ‖−2

from (15). Indeed, since Theorem 7.2 assumes that u1, . . . , ur are uniformly random unit vectors, the PCs
uw
k of Xw are asymptotically identical to Wuk/‖Wuk‖, since these vectors are almost surely orthogonal

as p→∞. Consequently, for each 1 ≤ k ≤ r we have

τk = lim
p→∞

1

‖W−1uw
k ‖2

= lim
p→∞

‖Wuk‖2 ∼
1

p
tr(W 2) =

1

p
tr(Σ−1

p ) ∼ τ. (101)
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7.2 Minimax optimality of the empirical PCs

In this section, we consider the question of whether the empirical PCs û1, . . . , ûr can be significantly
improved upon. In the recent paper [58], an estimator Û of the principal subspace U = span{u1, . . . , ur}
is proposed that achieves the following error rate:

E[sin Θ(Û ,U)] ≤ min

{
C
√
γ

(
µ

1/2
ε + (r/p)1/2‖Σε‖1/2op

mink `
1/2
k

+
µ

1/2
ε ‖Σε‖1/2op

mink `k

)
, 1

}
, (102)

where C is a constant dependent on the incoherence of u1, . . . , ur, defined by I(U) = max1≤j≤p ‖e>j U‖2
where U = [u1, . . . , ur] ∈ Rp×r. Furthermore, the error rate (102) is shown to be minimax optimal over
the class of models with PCs of bounded incoherence.

In this section, we show that when (19) holds, then the empirical PCs û1, . . . , ûr achieve the same
error rate (102) almost surely in the limit n→∞, p/n→ γ. More precisely, we show the following:

Theorem 7.3. Assume that the weighted orthogonality condition (19) holds. Suppose that Σε is diagonal,
and that there is a constant C so that

|ujk| ≤
C
√
p

(103)

for all k = 1, . . . , r and j = 1, . . . , p. Suppose Y1, . . . , Yn are drawn iid from the spiked model. Let
û1, . . . , ûr be the estimated PCs from equation (8), and let Û = span{û1, . . . , ûr} and U = span{u1, . . . , ur}.

Then almost surely in the limit p/n→ γ

sin2 Θ(Û ,U) ≤ min

{
Kγµε

(
1

mink `k
+
‖Σε‖op

mink `2k

)
, 1

}
, (104)

where K is a constant depending only on C from (103).

Remark 19. Theorem 7.3 shows that in the case r = 1, the estimate û obtained by whitening Y ,
computing the top left singular vector of Y w, and then unwhitening and normalizing, is asymptotically
minimax optimal. When r > 1, we require the extra condition (19) which does not appear in the minimax
lower bound from [58].

The proof of Theorem 7.3 follows from the formula (47) for the cosines between uk and ûk from
Theorem 3.2. The details are found in Appendix D.

7.3 Whitening increases the operator norm SNR

In this section, we define a natural signal-to-noise ratio (SNR) for the spiked model, namely the ratio of
operator norms between the signal and noise sample covariances. We show that under the generic model
from Section 7.1 for the signal principal components uk, the SNR increases after whitening.

We define the SNR by:

SNR =
‖Σ̂x‖op

‖Σ̂ε‖op

(105)

where Σ̂x = 1
n

∑n
j=1 XjX

>
j and Σ̂ε = 1

n

∑n
j=1 εjε

>
j are the sample covariances of the signal and noise

components, respectively (neither of which are observed).
After whitening, the observations change into:

Y w
j = Xw

j +Gj , (106)

and we define the new SNR to be:

SNRw =
‖Σ̂w

x ‖op

‖Σ̂g‖op

(107)

where Σ̂w
x = 1

n

∑n
j=1 X

w
j (Xw

j )> and Σ̂g = 1
n

∑n
j=1 GjG

>
j .

As in Section 7.1, let τ = limp→∞ tr(Σ−1
ε )/p (assuming the limit exists), and define ϕ = τ · µε. Note

that by Jensen’s inequality, ϕ ≥ 1, with strict inequality unless Σε = νIp. We will prove the following:
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Proposition 7.4. Suppose the population principal components u1, . . . , ur are uniformly random or-
thonormal vectors in Rp. Then in the limit p/n→ γ > 0,

SNRw ≥ ϕSNR. (108)

In other words, Proposition 7.4 states that for generic signals whitening increases the operator norm
SNR by a factor of at least ϕ ≥ 1. The proof may be found in Appendix D.

Remark 20. As explained in Remark 18, under the generic model assumed by Proposition 7.4, the
notation τ is consistent with the definition of τk in (15).

Remark 21. Proposition 7.4 is similar in spirit to a result in [38], which essentially shows that the SNR
defined by the nuclear norms, rather than operator norms, increases after whitening. However, in the
p → ∞ limit, defining the SNR using the ratio of nuclear norms is not as meaningful as using operator
norms, because the ratio of nuclear norms always converges to 0 in the high-dimensional limit. Indeed,
we have:

‖Σ̂x‖∗ →
r∑
k=1

`k, (109)

almost surely as p, n→∞. On the other hand,

1

p
‖Σ̂ε‖∗ → µε. (110)

In particular, ‖Σ̂ε‖∗ grows like p, whereas ‖Σ̂x‖∗ is bounded with p. When p is large, therefore, the norm
of the noise swamps the norm of the signal. On the other hand, the operator norms of Σ̂x and Σ̂ε are
both bounded, and may therefore be comparable in size.

8 Numerical results

In this section we report several numerical results that illustrate the performance of our predictor in the
spiked model, as well as several beneficial properties of whitening. Code implementing the shrinkage
with whitening algorithms will be made available online.

8.1 Comparison to the best linear predictor

In this experiment, we compared our predictor to the best linear predictor (BLP), defined in equation
(82). The BLP is an oracle method, as it requires knowledge of the population covariance Σx, which
is not accessible to us. However, Theorem 5.1 predicts that as p/n → 0, the optimal shrinkage with
whitening predictor will behave identically to the BLP.

In the same experiments, we also compare our method to OptShrink [44], the optimal singular value
shrinker without any transformation. Theorem 5.3 predicts that as p/n → 0, OptShrink will behave
identically to a suboptimal linear filter.

In these these tests, we fixed a dimension equal to p = 100, and let n grow. Each signal was rank 3,
with PCs chosen so that the first PC was a completely random unit vector, the second PC was set to zero
on the first p/2 coordinates and random on the remaining coordinates, and the third PC was completely
random on the first p/2 coordinates and zero on the remaining coordinates. The signal random variables
zjk were chosen to be Gaussian.

The noise covariance matrix Σε was generated by taking equally spaced values between 1 and a
specified condition number κ > 1, and then normalizing the resulting vector of eigenvalues to be a unit
vector. This normalization was done so that in each test, the total energy of the noise remained constant.

Figure 3 plots the average prediction errors as a function of n for the three methods, for different
condition numbers κ of the noise covariance Σε. The errors are averaged over 500 runs of the experiment,
with different draws of signal and noise. As expected, the errors for optimal shrinkage with whitening
converge to those of the oracle BLP, while the errors for OptShrink appear to converge to a larger value,
namely the error of the limiting suboptimal linear filter.

Remark 22. Unlike shrinkage with whitening, OptShrink does not make use of the noise covariance.
Though access to the noise covariance would permit faster evaluation of the OptShrink algorithm using,
for instance, the methods described in [37], we have found that this does not change the estimation
accuracy of the method. Similarly, the BLP uses the true PCs of Xj , which are not used by either
shrinkage method. The comparison between the methods must be understood in that context.
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Figure 3: Prediction errors for the optimal whitened shrinker, the optimal unwhitened shrinker (OptShrink),
and the best linear predictor (an oracle method).

8.2 Performance of singular value shrinkage

We examine the performance of optimal shrinkage with whitening for different values of γ and different
condition numbers of the noise covariance. We compare to OptShrink [44] and the naive shrinker with
whitening employed in [19], which uses singular values

√
`wk c

w
k c̃

w
k ; see Figures 1 and 2 and the associated

text. This latter shrinker does not account for the change in angle between the singular vectors resulting
from unwhitening.

In each run of the experiment, we fix the dimension p = 1000. We use a diagonal noise covariance with
a specified condition number κ, whose entries are linearly spaced between 1/κ and 1, and increase with
the index. We generate the orthonormal basis of PCs u1, u2, u3 from the model described in Section
2.1.2, as follows: u1 is a unifomly random unit vector; u2 has Gaussian entries with linearly-spaced
variances a1, . . . , ap, where ap < ap−1 < · · · < a1,

∑p
i=1 ai = 1, and a1/ap = 10; and u3 has Gaussian

entries with linearly-spaced variances b1, . . . , bp, where b1 < b2 < · · · < bp,
∑p
i=1 bi = 1, and bp/b1 = 10.

Gram-Schmidt is then performed on u1, u2, and u3 to ensure they are orthonormal. For aspect ratio γ,
the three signal singular values are γ1/4 + i/2, i = 1, 2, 3.

For different values of n, and hence of γ, we generate 50 draws of the data and record the average
relative errors for each of the three methods. The results are plotted in Figure 4. As is apparent from the
figures, both whitening methods typically outperform OptShrink. Furthermore, when n is large, both
optimal shrinkage and naive shrinkage perform very similarly; this makes sense because both methods
converge to the BLP as n→∞. By contrast, when γ is large, the benefits of using the optimal shrinker
over the naive shrinker are more apparent.

Remark 23. As noted in Remark 22, we emphasize that unlike both whitening methods, OptShrink
does not make use of the noise covariance, and the comparison between the methods must be understood
in that context.
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Figure 4: Comparison of whitening with optimal shrinkage; whitening with naive shrinkage; and OptShrink
(no whitening), as a function of the noise covariance matrix’s condition number κ.
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8.3 Performance of eigenvalue shrinkage

We examine the performance of optimal eigenvalue shrinkage with whitening for different values of γ and
different condition numbers of the noise covariance. We use nuclear norm loss, for which the optimal t̃2k
in Algorithm 2 is given by the formula

t̃2k = max{`k(2c2k − 1), 0}. (111)

This formula is derived in [21].
We compare to two other methods. We consider optimal eigenvalue shrinkage without whitening,

where the population eigenvalues and cosines between observed and population eigenvectors are estimated
using the methods from [44]. We also consider the whitening and eigenvalue shrinkage procedure from
[38], which shrinks the eigenvalues to the population values `k; this is an optimal procedure for operator
norm loss [21], but suboptimal for nuclear norm loss.

As in Section 8.2, in each run of the experiment, we fix the dimension p = 1000. We use a diagonal
noise covariance with a specified condition number κ, whose entries are linearly spaced between 1/κ and
1, and increase with the index. We generate the orthonormal basis of PCs u1, u2, u3 from the model
described in Section 2.1.2, as follows: u1 is a unifomly random unit vector; u2 has Gaussian entries with
linearly-spaced variances a1, . . . , ap, where ap < ap−1 < · · · < a1,

∑p
i=1 ai = 1, and a1/ap = 10; and u3

has Gaussian entries with linearly-spaced variances b1, . . . , bp, where b1 < b2 < · · · < bp,
∑p
i=1 bi = 1,

and bp/b1 = 10. Gram-Schmidt is then performed on u1, u2, and u3 to ensure they are orthonormal. For
aspect ratio γ, the three signal singular values are γ1/4 + i, i = 1, 2, 3.

For different values of n, and hence of γ, we generate 50 draws of the data and record the average
relative errors ‖Σ̂x −Σx‖∗/‖Σx‖∗ for each of the three methods. The results are plotted in Figure 5. As
is apparent from the figures, optimal shrinkage with whitening outperforms the other two methods. For
the smaller values of γ, optimal shrinkage without whitening outperforms the population shrinker with
whitening when the condition number κ is small, since the benefits of whitening are not large; however,
as κ grows, whitening with the suboptimal population shrinker begins to outperform. For larger γ, the
cost of using the wrong shrinker outweigh the benefits of whitening, and the population shrinker with
whitening is inferior to both other methods. This illustrates the importance of using a shrinker designed
for the intended loss function.

8.4 Numerical comparison of the angles

In this section, we numerically illustrate Theorem 7.2 by examining the angles between the spanning
vectors ûk (the empirical PCs) and v̂k of X̂ and, respectively, the population vectors uk (the population
PCs) and vk. We show that these angles are smaller (or equivalently, their cosines are larger) than the
corresponding angles between the population uk and vk and the singular vectors of the unwhitened data
matrix Y .

Figure 6 plots the cosines as a function of the condition number κ of the noise matrix Σε. In this
experiment, we consider a rank 1 signal model for simplicity, with a uniformly random PC. We used
dimension p = 500, and drew n = 1000 observations. For each condition number κ of Σε, we generate
Σε as described in Section 8.1. For each test, we average the cosines over 50 runs of the experiment
(drawing new signals and new noise each time). Both signal and noise are Gaussian. As we see, the
cosines improve dramatically after whitening. As κ grows, i.e., the noise becomes more heteroscedastic,
the improvement becomes more pronounced.

8.5 Estimating the noise covariance

In many applications, the true noise covariance may not be accessible. In this experiment, we consider
the effect of estimating the noise covariance by the sample covariance from n′ iid samples of pure noise,
ε1, . . . , εn′ , as n′ grows.

We fix the dimension p = 500 and number of signal-plus-noise observations n = 625, and r = 2
signal singular values 3 and 5. We take the noise covariance to have condition number κ = 500, with
eigenvalues equispaced between 1/100 and 1/5. The eigenvectors of the noise covariance are drawn
uniformly at random.

For increasing values of n′ ≥ p, we draw n′ iid realizations of the noise ε1, . . . , εn′ , and form the
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Figure 5: Comparison of whitening with optimal shrinkage; whitening with naive shrinkage; and OptShrink
(no whitening), as a function of the noise covariance matrix’s condition number κ.
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Figure 6: Comparison of the cosines between the empirical and population singular vectors, for the raw data
and the whitened data, as a function of the noise covariance matrix’s condition number κ.
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Figure 7: Comparison of the errors when using the true noise covariance Σε and the sample noise covariance
Σ̂ε estimated from n′ samples.

sample covariance:

Σ̂ε =
1

n′

n′∑
i=1

εiε
>
i . (112)

For each n′, we perform Algorithm 1 using the sample covariance Σ̂ε. The experiment is repeated 2000
times for each value of n′, and the errors averaged over these 2000 runs. Figure 7 plots the average
error as a function of n′. We also apply Algorithm 1 using the true noise covariance Σε, and plot the
average error (which does not depend on n′) in Figure 7 as well. The error when using the estimated
covariance converges to the error when using the true covariance, indicating that Algorithm 1 is robust
to estimation of the covariance.

8.6 Accuracy of error formulas and estimates

In this experiment, we test the accuracy of the error formula (96). There are three distinct quantities that
we define. The first is the oracle AMSE, which we define from the known population parameters. The

second is the estimated AMSE, which we will denote by ÂMSE; this is estimated using the observations
Y1, . . . , Yn themselves. The third is the mean-squared error itself, ‖X̂ −X‖2F/n. Of the three quantities,

only ÂMSE would be directly observed in practice. We define the discrepancy between AMSE and

‖X̂−X‖2F/n as |AMSE−‖X̂−X‖2F/n|, and the discrepancy between ÂMSE and ‖X̂−X‖2F as |ÂMSE−
‖X̂ −X‖2F/n|.

Figure 8 plots the log discrepancies against log2(p). We also include a table of the values themselves.
In all experiments, we use the following parameters: the aspect ratio is γ = 0.8, the rank r = 2, the
signal singular values are 3 and 2, u1 is

√
2/p on entries 1, . . . , p/2 and 0 elsewhere, u2 is

√
2/p on entries

p/2 + 1, . . . , p and 0 elsewhere, and the noise covariance is diagonal with variances linearly spaced from
1/200 to 3/2, increasing with the coordinates.

We make two observations. First, the slope of each plot is approximately 0.5, indicating that the
error formulas derived are accurate with error O(n−1/2). This is precisely the rate we expect from [8].

Second, the discrepancies of AMSE and ÂMSE are very close, and in fact the discrepancy of ÂMSE is

slightly smaller than that of AMSE. This indicates that the observed ÂMSE provides a viable estimate
for the actual error ‖X̂ −X‖2F/n.

8.7 Comparing in-sample and out-of-sample prediction

In this next experiment, we compare the performance of in-sample and out-of-sample prediction, as
described in Section 6. Optimal in-sample prediction is identical to performing optimal singular value
shrinkage with noise whitening to the in-sample data Y1, . . . , Yn. For out-of-sample prediction, we use
the expression of the form (93) with the optimal coefficients ηo

k from Proposition 6.1.
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Figure 8: Logarithm of the discrepancies |AMSE−‖X̂−X‖2F/n| and |ÂMSE−‖X̂−X‖2F/n|, versus log2(p).

AMSE is the oracle value of the error, and ÂMSE is estimated from the data itself.

log2(p) Discrepancy, AMSE Discrepancy, ÂMSE
7 1.49e-01 1.40e-01
8 1.04e-01 9.82e-02
9 7.31e-02 6.90e-02
10 5.17e-02 4.89e-02
11 3.62e-02 3.41e-02
12 2.56e-02 2.42e-02
13 1.84e-02 1.74e-02

Table 3: Discrepancies |AMSE − ‖X̂ − X‖2F/n| and |ÂMSE − ‖X̂ − X‖2F/n|. AMSE is the oracle value of

the error, and ÂMSE is estimated from the data itself.

We ran the following experiments. For a fixed dimension p, we generated a random value of n > p.
We then chose three random PCs from the same model described in Section 8.1, and we generated pools
of n in-sample and out-of-sample observations. We performed optimal shrinkage with whitening on the
in-sample observations, and applied the out-of-sample prediction to the out-of-sample data using the
vectors ûw

k computed from the in-sample data. We then computed the MSEs for the in-sample and
out-of-sample data matrices. This whole procedure was repeated 2000 times.

Figure 9 shows scatterplots of the in-sample and out-of-sample predictions for p = 50 and p = 500.
In both plots, we see that there is not a substantial difference between the in-sample and out-of-sample
prediction errors, validating the asymptotic prediction made by Proposition 6.1. Even for the low-
dimension of p = 50, there is very close agreement between the performances, and for p = 500 they
perform nearly identically.

8.8 Signal detection and rank estimation

In this experiment, we show that whitening improves signal detection. We generated data from a rank 1
model, with a weak signal. We computed all the singular values of the original data matrix Y , and the
whitened matrix Y w. Figure 10 plots the the top 20 singular values for each matrix.

It is apparent from the comparison of these figures that the top singular value of the whitened matrix
pops out from the bulk of noise singular values, making detection of the signal component very easy in
this case. By contrast, the top singular value of the raw, unwhitened matrix Y w does not stick out from
the bulk. Proposition 7.4 would lead us to expect this type of behavior, since the signal matrix increases
in strength relative to the noise matrix.
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Figure 9: Comparison of in-sample and out-of-sample denoising for p = 50 and p = 500.
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Figure 10: The top 20 empirical singular values of the raw data matrix Y and the whitened data matrix Y w,
for a rank 1 signal.

8.9 Non-gaussian noise

The theory we have derived relies on the orthogonal invariance of the noise matrix G. In this experiment,
we study the agreement between the theoretically predicted values for ck and c̃k and the observed values
for finite n and p and non-Gaussian noise.

For different values of n we generated rank 1 signal matrices of size n/2-by-n, with top PC u having
all entries equal to 1/

√
1000, zj Gaussian, and signal energy ` = 1. We generated a noise matrix, where

each entry has mean 0 and variance 1, drawn iid from a specified distribution. We then colored the noise
matrix by multiplying it by Σ

1/2
ε = diag(

√
ν1, . . . ,

√
νp), where ν1, . . . , νp are linearly spaced, ν1 = 1/500,

and νp = 1.
We considered four different distributions for the entries of G: the Gaussian distribution; the Rademacher

distribution; and the Student t distributions with 10 and 3 degrees of freedom (normalized to have vari-
ance 1). For each distribution, we drew signal/noise pairs, and computed the absolute value of the cosines
between the topmost left and right singular vectors of the observed matrix and the left and right sin-
gular vectors of the signal matrix. We then computed the average absolute difference (the discrepancy)
between the observed cosines and the theoretically predicted values c and c̃ from Section 3. The errors
are averaged over 20000 runs.

Table 4 contains the average discrepancies for c, and Table 5 contains the average errors for c̃, both
for n = 1000, 2000, 4000, 8000. For the t distribution with 10 degrees of freedom and the Rademacher
distribution, the discrepancies match those of the Gaussian to within the precision of the experiment. In
particular, for these three noise distributions, the observed cosines appear to converge to the predicted
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n Gaussian Rademacher t, df=10 t, df=3
1000 8.173e-03 8.009e-03 8.147e-03 2.584e-01
2000 5.742e-03 5.794e-03 5.750e-03 3.610e-01
4000 4.069e-03 4.073e-03 4.071e-03 4.730e-01
8000 2.896e-03 2.933e-03 2.897e-03 5.866e-01

Table 4: Average discrepancies between c and |〈u, û〉|.

n Gaussian Rademacher t, df=10 t, df=3
1000 3.627e-03 3.625e-03 3.650e-03 2.598e-01
2000 2.704e-03 2.707e-03 2.712e-03 3.708e-01
4000 1.951e-03 1.939e-03 1.952e-03 4.895e-01
8000 1.409e-03 1.388e-03 1.410e-03 6.112e-01

Table 5: Average discrepancies between c̃ and |〈v, v̂〉|.

asymptotic values at a rate of roughly O(n−1/2). By contrast, for the t distribution with only 3 de-
grees of freedom, there is substantial discrepancy between the theoretical and observed cosines, and the
discrepancies do not decrease with n (in fact, they grow).

These numerical results suggest that for noise distributions with sufficiently many finite moments, the
distributions are approximately equal as those Gaussian noise, which in turn suggests that the limiting
cosine values we have derived for Gaussian noise may hold for more general distributions.

9 Conclusions and future work

We have derived the optimal spectral shrinkers method for signal prediction and covariance estimation in
the spiked model with heteroscedastic noise, where the data is whitened before shrinkage and unwhitened
after shrinkage. We also showed the in that γ → 0 regime, optimal singular value shrinkage with
whitening converges to the best linear predictor, whereas optimal shrinkage without whitening converges
to a suboptimal linear filter. We showed that under certain additional modeling assumptions, whitening
improves the estimation of the signal’s principal components, and achieves the optimal rate for subspace
estimation when r = 1. We showed that the operator norm SNR of the observations increases after
whitening. We also extended the analysis on out-of-sample prediction found in [19] to the whitening
procedure.

There are a number of interesting directions for future research. First, we plan to revisit previous
works that have employed similar shrinkage-plus-whitening procedures, but with the optimal shrinkers
we have derived. It is of interest to determine how much of an improvement is achieved with the more
principled choice we have presented.

As our current analysis is restricted to the setting of Gaussian noise, in future work we will try to
extend the analysis to more general noise matrices. This likely requires a deeper understanding of the
distribution of the projection of the empirical singular vectors onto the orthogonal complement of the
population signal vectors in the setting of non-Gaussian noise.

While we have shown that whitening can improve subspace estimation generically, and matches the
error rate (up to a constant) of [58], it is not clear if whitening is the optimal transformation for subspace
estimation. In a different but closely related model to the one we have studied, where the noise variances
differ across observations rather than across coordinates, it was found that certain weighting schemes can
outperform whitening [28]. We note too that if the matrix Σε is ill-conditioned, numerical instabilities
may result from the whitening and unwhitening operations.

Finally, it is also of interest to better understand the procedure when the noise covariance Σε is not
known exactly, but must be estimated. This is a subject currently under investigation.
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A Proof from Section 3

A.1 Proof of Theorem 3.1

We begin by recalling the result that describes the asymptotics of the spiked model with white noise.
This result can be found in [46, 10]. We immediately obtain parts 1 and 4 of Theorem 3.1.

Theorem A.1. If p/n→ γ > 0 as n→∞, the kth largest singular value of Y w converges almost surely
to

σw
k =


√

(`wk + 1)
(

1 + γ
`w
k

)
if `wk >

√
γ

1 +
√
γ otherwise

. (113)

Furthermore, for 1 ≤ j, k ≤ r:

〈uw
j , û

w
k 〉2 →

{
(cwk )2, if j = k and `wk >

√
γ

0, otherwise
(114)

and

〈vw
j , v̂

w
k 〉2 →

{
(c̃wk )2, if j = k and `wk >

√
γ

0, otherwise
(115)

where the limits hold almost surely as p, n→∞ and p/n→ γ.

We now turn to proving parts 2 and 3. Let W = span{uw
1 , . . . , u

w
r } be the r-dimensional subspace

spanned by the whitened population PCs (the left singular vectors of Xw). For fixed n and p, write

ûw
k = cwkw

w
k + sw

k ũ
w
k , (116)
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where (ckk)2 + (skk)2 = 1, and ww
k ∈ W, and ũw

k ⊥ W are unit vectors. Because the whitened noise matrix
is Gaussian, and hence orthogonally invariant, the vector ũw

k is uniformly distributed over the unit sphere
inW⊥. Since the dimension of W is fixed, it follows immediately from Proposition 6.2 in [9] that for any
unit vector x ∈ Rp independent of ũw

k , the following limits hold almost surely:

lim
p→∞

(ũw
k )>x = 0, (117)

and

lim
p→∞

{
(ũw
k )>Aũw

k − µa
}

= lim
p→∞

{
(ũw
k )>Aũw

k −
1

p
tr(A)

}
= 0. (118)

From Theorem A.1, we know |(ww
k )>uw

k | → 1 and (ww
k )>uw

j → 0 almost surely when j 6= k; and
cwk → cwk almost surely. Consequently, we can write

ûw
k = cwk u

w
k + sw

k ũ
w
k + ψ (119)

where ‖ψ‖ → 0 almost surely as p→∞. The inner product of ψ with any vectors of bounded norm will
therefore also converge to 0. As a short-hand, we will write:

ûw
k ∼ cwk uw

k + sw
k ũ

w
k , (120)

to indicate that the norm of the difference of the two sides converges to 0 almost surely as p→∞.
From (120) we have:

A1/2ûw
k ∼ cwkA1/2uw

k + sw
kA

1/2ũw
k . (121)

Taking the squared norm of each side of (121) and using (117) and (118), we obtain:

‖A1/2ûw
k ‖2 ∼ (cwk )2‖A1/2uw

k ‖2 + (sw
k )2‖A1/2ũw

k ‖2 ∼
(cwk )2

τak
+ (sw

k )2µa, (122)

This completes the proof of part 2.
Part 3 is proved in the same fashion. Taking inner products with each side of (121), and using (117),

we get

〈Auw
k , û

w
k 〉 = 〈A1/2uw

k , A
1/2ûw

k 〉 ∼
cwk
τak

+ sw
k ((uw

k )>Aũw
k ) ∼ cwk

τak
, (123)

which is the desired result.

A.2 Proof of Theorem 3.2

We can decompose X as:

X =

r∑
k=1

`
1/2
k ukz

>
k /
√
n. (124)

Since zjk and zjk′ are uncorrelated when k 6= k′, and both have variance 1, the vectors zk/
√
n are

almost surely asymptotically orthonormal, i.e., limn→∞ |〈zk, zk′〉|/n = δkk′ . It follows that the zk/
√
n

are asymptotically equivalent to the right singular vectors vk of X, that is,

lim
n→∞

〈vk, zk〉2/n = 1 (125)

almost surely; and the singular values of X are asymptotically equal to the `
1/2
k . That is, we can write:

X ∼
r∑
k=1

`
1/2
k ukv

>
k , (126)

where C ∼ D indicates ‖C −D‖op → 0 as p, n→∞. Similarly, we can also write

Xw ∼
r∑
k=1

(`wk )1/2uw
k (vw

k )>. (127)
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We can also decompose Xw by applying W to X:

Xw = WX ∼
r∑
k=1

`
1/2
k Wukv

>
k =

r∑
k=1

(`k‖Wuk‖2)1/2uw
k v
>
k . (128)

The condition (19) immediately implies that uw
j and uw

k are asymptotically orthogonal whenever j 6= k.
Comparing (127) and (128) then shows that almost surely,

`wk ∼ `k‖Wuk‖2, (129)

lim
p→∞

〈uw
k , u

w
k 〉2 = 1, (130)

and

lim
n→∞

〈vk, vw
k 〉2 = 1. (131)

From (130), 〈uk, uk〉2 ∼ 1 follows immediately.
To prove the asymptotically equivalent formula for τk, we use (130):

τk ∼ ‖W−1uw
k ‖−2 ∼ ‖W−1uw

k ‖−2 ∼ ‖W−1Wuk‖−2‖Wuk‖2 = ‖Wuk‖2. (132)

To prove the formulas for the asymptotic cosine between uj and ûk we take A = W−1 in Theorem
3.1. When j 6= k, we have the formula

ûw
k ∼ cwk uw

k + sw
k ũ

w
k ∼ cwk

Wuk√
τk

+ sw
k ũ

w
k (133)

and consequently

W−1ûw
k ∼ cwk

uk√
τk

+ sw
kW

−1ũw
k . (134)

We take inner products of each side with uj . From the orthogonality of uk and uj , and using (117), we
have:

〈uj ,W−1ûw
k 〉 ∼ 0, (135)

and consequently 〈uj , ûk〉 ∼ 0. When j = k, the formula for 〈uj , ûk〉 follows from Theorem 3.1.
Finally, we show that ûj and ûk are asymptotically orthogonal when j 6= k. We use the following

lemma.

Lemma A.2. Suppose X =
∑r
k=1 `

1/2
k wkv

>
k is a p-by-n rank r matrix, and G is a matrix with iid

Gaussian entries gij ∼ N(0, 1/n). Let ŵ1, . . . , ŵm be the left singular vectors of Y = X + G, where
m = min(p, n), and write

ŵk ∼ ckwk + skw̃k (136)

where w̃k is orthogonal to w1, . . . , wr. Then for any sequence of matrices A = Ap with bounded operator
norms and any 1 ≤ j 6= k ≤ r,

lim
p→∞

w̃>j Aw̃k = 0 (137)

almost surely.

Proof. First, we prove the cases where A = Ip; that is, we show w̃j and w̃k are asymptotically orthogonal
whenever 1 ≤ j 6= k ≤ r. Indeed, we have

sjsk〈w̃j , w̃k〉 ∼ 〈ŵj , ŵk〉+ cjck〈wj , wk〉 − cj〈wj , ŵk〉 − ck〈wk, ŵj〉
= −cj〈wj , ŵk〉 − ck〈wk, ŵj〉. (138)

Since w̃j and w̃k are uniformly distributed on the subspace orthogonal to w1, . . . , wr, the inner products
〈wj , ŵk〉 and 〈wk, ŵj〉 both converge to 0 almost surely as p→∞, proving the claim.

For general A, we note that the joint distribution of w̃j and w̃k is invariant to orthogonal transfor-
mations which leave fixed the r-dimensional subspace span{w1, . . . , wr}. The result then follows from
Proposition 6.2 in [9], which implies that

w̃>j Aw̃
>
k ∼

1

p
tr(A)w̃>j w̃k ∼ 0, (139)

where we have used the asymptotic orthogonality of w̃j and w̃k.
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Since uk ∼ uk and uj and uk are orthogonal, taking inner products of each side of (133) with W−1ûw
j

we get:

〈W−1ûw
j ,W

−1ûw
k 〉 ∼ sw

j s
w
k 〈W−1ũw

j ,W
−1ũw

k 〉 = sw
j s

w
k (ũw

j )>Σεũ
w
k . (140)

The result now follows from Lemma A.2.

B Proofs from Section 5

First, we establish the consistency of covariance estimation in the γ = 0 regime:

Proposition B.1. If pn/n → 0 as n → ∞, and the subgaussian norm of QYj can be bounded by C
independently of the dimension p, then the sample covariance matrix of QY1, . . . , QYn converges to the
population covariance QΣyQ in operator norm.

Proof. We first quote the following result, stated as Corollary 5.50 in [53]:

Lemma B.2. Let Y1, . . . , Yn be iid mean zero subgaussian random vectors in Rp with covariance matrix
Σy, and let ε ∈ (0, 1) and t ≥ 1. Then with probability at least 1− 2 exp(−t2p),

If n ≥ C(t/ε)2p, then ‖Σ̂y − Σy‖ ≤ ε, (141)

where Σ̂y =
∑n
j=1 YjY

>
j /n is the sample covariance, and C is a constant.

We also state the well-known consequence of the Borel-Cantelli Lemma:

Lemma B.3. Let A1, A2, . . . be a sequence of random numbers, and let ε > 0. Define:

An(ε) = {|An| > ε}. (142)

If for every choice of ε > 0 we have

∞∑
n=1

P(An(ε)) <∞, (143)

then An → 0 almost surely.

Now take t = ε
√
n/Cp; then n ≥ C(t/ε)2p, and t ≥ 1 for n sufficiently large. Consequently,

P(‖Σ̂y − Σy‖ > ε) ≤ 2 exp(−t2p) = 2 exp(−nε2/C), (144)

and so the series
∑
n≥1 P(‖Σ̂y − Σy‖ > ε) converges, meaning ‖Σ̂y − Σy‖ → 0 almost surely as n→∞.

We now need to check that the subgaussian norm of Yj = Xj + εj from the spiked model is bounded
independently of the dimension p. But this is easy if the distribution of variances of εj is bounded, using,
for example, Lemma 5.24 of [53].

An immediate corollary of Proposition B.1 is that the sample eigenvectors of Σ̂qy = QΣ̂yQ are consis-
tent estimators of the eigenvectors of Σq

y = QΣyQ.

Corollary B.4. Let Σqy = QΣyQ be the population covariance of the random vector Y qj = QYj , and

let Σ̂qy = QΣ̂yQ be the sample covariance of Y q1 , . . . , Y
q
n . Let uq1, . . . , u

q
r denote the top r eigenvectors of

Σqy = QΣyQ, and û1
1, . . . , û

q
r the top r eigenvectors of Σ̂qy.

Then for 1 ≤ k ≤ r,

lim
n→∞

|〈ûqk, u
q
k〉| = 1, (145)

where the limit holds almost surely as n→∞ and p/n→ 0.
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We now turn to the proof of Theorem 5.2. First, we derive an expression for the BLP X̂opt
j . We have:

X̂opt
j = Σx (Σx + Σε)

−1 Yj

= W−1WΣxW (WΣxW + I)−1 WYj

= W−1
r∑
k=1

`wk
`wk + 1

〈WYj , u
w
k 〉uw

k

=

r∑
k=1

ηopt
k 〈WYj , u

w
k 〉W−1uw

k , (146)

where WΣxW =
∑r
k=1 `

w
k u

w
k (uw

k )>, and ηopt
k = `wk /(`

w
k + 1).

Now, for any s1, . . . , sr satisfying

lim
γ→0

sk
σw
k

=
`wk

`wk + 1
. (147)

we define the predictor X̂ ′:

X̂ ′ =

r∑
k=1

skW
−1ûw

k (v̂w
k )>. (148)

Following the same reasoning as in the proof of Lemma 5.4, we can write each column X̂ ′j of
√
nX̂ ′

as follows:

X̂ ′j =

r∑
k=1

(sk/σ
w
k )〈Y w

j , û
w
k 〉W−1ûw

k . (149)

Theorem 5.2 now follows from condition (147), formula (146), and Corollary B.4. Theorem 5.1 follows
immediately, after observing that X̂ has the same form as X̂ ′ with sk = tk, and

lim
γ→0

tk
σw
k

= lim
γ→0

(`wk )1/2cwk c̃k
(cwk )2 + (sw

k )2µετk

1√
`wk + 1

= lim
γ→0

(`wk )1/2c̃k√
`wk + 1

=
`wk

`wk + 1
. (150)

Finally, we prove Theorem 5.3. By definition,

ŶQ,j =

r∑
k=1

(sqk/σ
q
k)〈Y qj , û

q
k〉Q

−1ûqk (151)

and

Ŷ lin
Q,j =

r∑
k=1

ηqk〈Y
q
j , u

q
k〉Q

−1uqk. (152)

The values sqk and ηqk are each assumed to minimize the mean-squared error for their respective expres-
sions. Consequently, since Corollary B.4 states that ûqk ∼ u

q
k, we establish (88); (89) follows immediately

from (146).

C Proof of Theorem 6.1

C.1 The optimal coefficients for in-sample prediction

Before deriving the optimal out-of-sample coefficients ηo
k, we will first derive the optimal in-sample

coefficients ηk. That is, we will rewrite the optimal shrinkage with noise whitening in the form (92).
From Lemma 5.4, the in-sample coefficients ηk are the ratios of the optimal singular values tk derived

in Section 4.1 and the observed singular values of Y w, denoted σw
1 , . . . , σ

w
r . From Theorem A.1, we know

that

σw
k =

√
(`wk + 1)

(
1 +

γ

`wk

)
, (153)
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and from Section 4.1 we know that

tk =
(`wk )1/2cwk c̃k

(cwk )2 + (sw
k )2µετk

= αk(`wk )1/2cwk c̃k, (154)

where αk =
(
(cwk )2 + (sw

k )2µετk
)−1

. Taking the ratio, and using formulas (39) and (40) for cwk and c̃k,
we obtain:

ηk =
tk
σw
k

= αk
(`wk )1/2cwk c̃k√

(`wk + 1)
(

1 + γ
`w
k

) = αk
`wk (cwk )2√

(`wk + 1) (`wk + γ)

√
(`wk )2 + γ`wk
(`wk )2 + `wk

= αk
`wk (cwk )2

`wk + 1
. (155)

That is, we have found the optimal in-sample coefficients to be:

ηk =
1

(cwk )2 + (sw
k )2µετk

· `
w
k (cwk )2

`wk + 1
. (156)

C.2 The optimal coefficients for out-of-sample prediction

In this section, we will derive the optimal out-of-sample coefficients ηo
k. We have a predictor of the form

X̂0 =

r∑
k=1

ηo
k〈WY0, û

w
k 〉W−1ûw

k , (157)

where ûw
k are the top left singular vectors of the in-sample observation matrix Y w = W [Y1, . . . , Yn]/

√
n.

We wish to choose the coefficients ηo
k that minimize the asymptotic mean squared error E‖X0 − X̂0‖2.

First, we can expand the MSE across the different principal components as follows:

‖X0 − X̂0‖2 =

r∑
k=1

‖`1/2k z0kuk − ηo
k〈WY0, û

w
k 〉W−1ûw

k ‖2

+
∑
k 6=l

〈`1/2k z0kuk − ηo
k〈WY0, û

w
k 〉W−1ûw

k , `
1/2
l z0lul − ηo

l 〈WY0, û
w
l 〉W−1ûw

l 〉. (158)

After taking expectations, the cross-terms vanish and we are left with:

E‖X0 − X̂0‖2 =

r∑
k=1

E‖`1/2k z0kuk − ηo
k〈WY0, û

w
k 〉W−1ûw

k ‖2. (159)

Since the sum separates across the ηo
k, we can minimize each summand individually. We write:

E‖`1/2k z0kuk − ηo
k〈WY0, û

w
k 〉W−1ûw

k ‖2

= `k + (ηo
k)2E

[
〈WY0, û

w
k 〉2‖W−1ûw

k ‖2
]
− 2`

1/2
k ηo

kE
[
z0k〈WY0, û

w
k 〉〈uk,W−1ûw

k 〉
]
. (160)

We first deal with the quadratic coefficient in η:

〈WY0, û
w
k 〉2‖W−1ûw

k ‖2 = 〈WX0 +Wε0, û
w
k 〉2‖W−1ûw

k ‖2

=
(
〈WX0, û

w
k 〉2 + 〈Wε0, û

w
k 〉2 + 〈WX0, û

w
k 〉〈Wε0, û

w
k 〉
)
‖W−1ûw

k ‖2, (161)

and taking expectations, we get:

E
[
〈WY0, û

w
k 〉2‖W−1ûw

k ‖2
]
∼
(
E
[
〈WX0, û

w
k 〉2
]

+ 1
)
‖W−1ûw

k ‖2 ∼
(
`wk (cwk )2 + 1

)( (cwk )2

τk
+ (sw

k )2µε

)
.

(162)

Now we turn to the linear coefficient in η:

`
1/2
k E

[
z0k〈WY0, û

w
k 〉〈uk,W−1ûw

k 〉
]

= `
1/2
k E

[
z0k

(
(`wk )1/2z0kc

w
k + 〈Wε0, û

w
k 〉
)
〈uk,W−1ûw

k 〉
]

=
`wk c

w
k E
[
〈uk,W−1ûw

k 〉
]

‖Wuk‖

∼ `wk (cwk )2 1

τk
. (163)
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Minimizing the quadratic for ηo
k, we get:

ηo
k =

(
`wk (cwk )2 1

τk

)/((
`wk (cwk )2 + 1

)( (cwk )2

τk
+ (sw

k )2µε

))
=

1

(cwk )2 + (sw
k )2µετk

· `wk (cwk )2

`wk (cwk )2 + 1
. (164)

C.3 Equality of the AMSEs

Evaluating the out-of-sample error at the optimal out-of-sample coefficients ηo
k, we find the optimal

out-of-sample AMSE (where αk =
(
(cwk )2 + (sw

k )2µετk
)−1

):

AMSE =

r∑
k=1

(
`k −

(`wk )2(cwk )4

`wk (cwk )2 + 1

1

αkτk

)
=

r∑
k=1

(
`wk
τk
− (`wk )2(cwk )4

`wk (cwk )2 + 1

1

αkτk

)
. (165)

The AMSE of the in-sample predictor is:

r∑
k=1

`k(1− (ck c̃k)2) =

r∑
k=1

`wk
τk

(
1− (cwk c̃

w
k )2

αk

)
=

r∑
k=1

(
`wk
τk
− `wk (cwk c̃

w
k )2

αkτk

)
(166)

To show equality, we therefore need to show:

`wk (cwk c̃
w
k )2 =

(`wk )2(cwk )4

`wk (cwk )2 + 1
. (167)

But this follows from the equality of in-sample and out-of-sample AMSEs for the standard spiked model
with isotropic noise, established in [19].

D Proofs from Section 7

D.1 Proof of Proposition 7.1

From Corollary B.4, ûw
k ∼ uw

k , 1 ≤ k ≤ r, in the sense that the angle between the vectors converges to 0.
Consequently

lim
n→0

Θ(Uw, Ûw) = 0, (168)

where Uw = span{uw
1 , . . . , u

w
r } and Ûw = span{ûw

1 , . . . , û
w
r }. Since W−1 has bounded operator norm and

U = W−1Uw and Û = W−1Ûw, the result follows immediately.

D.2 Proof of Theorem 7.2

Since the inner products between random unit vectors in Rp vanish as p→∞, we may assume that the
uk are drawn randomly with iid entries of variance 1/p; the result will then follow for the orthonormalized
vectors from the generic model. If Σε = diag(ν1, . . . , νp), then

τk = ‖Σ−1/2
ε uk‖2 ∼

1

p

p∑
j=1

ν−1
j = τ. (169)

We now define the n-by-p matrix Ỹ = Y >/
√
γ, given by

Ỹ =

r∑
k=1

˜̀1/2
k zku

>
k +G>Σ1/2

ε /
√
p, (170)

where ˜̀
k = `k/γ. Note that the noise matrix G>Σ

1/2
ε has colored rows, not columns, and has been

normalized by dividing by the square root of the number of its columns. Since the vectors uk spanning
the right singular subspace of Ỹ are assumed to be drawn uniformly from the unit sphere in Rp, we may
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apply Corollary 2 to Theorem 2 of [27] to the matrix Ỹ . Defining γ̃ = 1/γ as the aspect ratio of Ỹ , we
have:

|〈û′k, uk〉|2 ≤
1− γ̃/(˜̀

k/µε)
2

1 + 1/(˜̀
k/µε)

=
1− γ/(`wk /ϕ)2

1 + γ/(`wk /ϕ)
≡ g(`wk /ϕ), (171)

where we have defined the function

g(`) =
1− γ/`2

1 + γ/`
. (172)

On the other hand, the squared cosine c2k = |〈ûk, uk〉|2 is equal to

c2k =
(cwk )2

(cwk )2 + (sw
k )2ϕ

=
g(`wk )

g(`wk ) + ϕ(1− g(`wk ))
. (173)

Our goal is to show that for all `wk >
√
γ, and all ϕ ≥ 1, that

g(`wk /ϕ) ≤ g(`wk )

g(`wk ) + ϕ(1− g(`wk ))
; (174)

equivalently, we want to show that for all ξ > 0 and ϕ > 1,

g(ξ) ≤ g(ξϕ)

g(ξϕ) + ϕ(1− g(ξϕ))
; (175)

setting

G(ϕ) =
g(ξϕ)

g(ξϕ) + ϕ(1− g(ξϕ))
, (176)

this is equivalent to showing that G(ϕ) ≥ G(1) for all ϕ ≥ 1. The derivative of G is equal to

d

dϕ
G(ϕ) =

γξ2ϕ2 + 2γ2ξϕ+ γ2

(ξ2ϕ2 − γ + (γξϕ+ γ)ϕ)2
> 0, (177)

which completes the first statement of the theorem.
The second statement concerning v̂k is proved similarly. Again applying Corollary 2 to Theorem 2 of

[27] to Ỹ , we know that

|〈v̂′k, zk〉|2 ≤
1− γ/(˜̀

k/µε)
2

1 + γ̃/(˜̀
k/µε)

=
1− γ/(`wk /ϕ)2

1 + 1/(`wk /ϕ)
≡ h(`wk /ϕ), (178)

where we have defined the function

h(`) =
1− γ/`2

1 + 1/`
. (179)

Since h is an increasing function of `, and |〈v̂k, zk〉|2 = c̃2k = h(`wk ), the result follows.

D.3 Proof of Theorem 7.3

We begin the proof with some lemmas.

Lemma D.1. Let 0 < B < 1, and suppose q is the number of entries of uk where |ujk| > B/
√
p. Then

q ≥ p · 1−B2

C2 −B2
, (180)

where C is the incoherence parameter from (103).

Proof. Let S1 be the set of indices j on which |ujk| > B/
√
p, and let S2 be the set of indices j on which

|ujk| ≤ B/
√
p. Because uk is a unit vector, we then have

1 = ‖uk‖2 =

p∑
j=1

u2
jk =

∑
j∈S1

u2
jk +

∑
j∈S2

u2
jk ≤ (q/p)C2 + (1− q/p)B2. (181)

Rearranging, we find

q

p
≥ 1−B2

C2 −B2
, (182)

as claimed.
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Lemma D.2. For each 1 ≤ k ≤ r,

τk ≥ max

{
K̃

µε
,

1

‖Σε‖op

}
, (183)

where K̃ is a constant depending only on C from (103).

Proof. We will let ν1, . . . , νp denote the diagonal elements of Σε. Take any number 0 < B < 1, and let
q be the number of indices where |ujk| > B/

√
p. From Lemma D.1, q/p ≥ K1, a constant. Using the

Cauchy-Schwarz inequality, we have:

µε · τk =

(
p∑
j=1

(√
νj
√
p

)2
)
·

(
p∑
j=1

(
ujk√
νj

)2
)
≥

(
1
√
p

p∑
j=1

|ujk|

)2

≥
(

1
√
p

(K1p)
B
√
p

)2

= K2
1B

2. (184)

This proves that τk ≥ K̃/µε.
Next, we observe that because

∑p
j=1 u

2
jk = 1, we have

τk =

p∑
j=1

(
ujk√
νj

)2

≥ min
1≤j≤p

ν−1
j =

(
max

1≤j≤p
νj

)−1

=
1

‖Σε‖op
, (185)

completing the proof.

We now turn to the proof of Theorem 7.3. We have

‖U>⊥ Û‖op = ‖U⊥U>⊥ Û‖op = ‖Ũ‖op (186)

where

Ũ = [w̃1, . . . , w̃r] (187)

is the matrix whose columns are the projections w̃k of ûk onto the orthogonal complement of span{u1, . . . , ur}.
Then from Lemma A.2, we know that asymptotically w̃j ⊥ w̃k if j 6= k; consequently,

‖ sin Θ(Û , U)‖2op = max
1≤k≤r

‖w̃k‖2 = max
1≤k≤r

(1− 〈ûk, uk〉2) = max
1≤k≤r

(1− c2k). (188)

From Theorem 3.2, for each 1 ≤ k ≤ r, the squared sine between ûk and uk is

1− c2k = 1− (cwk )2

(cwk )2 + (sw
k )2 · µε · τk

=
(sw
k )2 · µε · τk

(cwk )2 + (sw
k )2 · µε · τk

. (189)

Since

(cwk )2 =
1− γ/(`wk )2

1 + γ/`wk
(190)

and

(sw
k )2 =

γ/`wk + γ/(`wk )2

1 + γ/`wk
, (191)

we can simplify the expression by multiplying numerator and denominator by (`wk )2(1 + γ/`wk ):

1− c2k =
γ(`wk + 1)µετk

(`wk )2 − γ + γ(`wk + 1)µετk

=
γ(`wk + 1)µετk

(`wk )2
· (`wk )2

(`wk )2 − γ + γ(`wk + 1)µετk
. (192)

Now, using Lemma D.2, there is a constant 0 < K̃ < 1 so that τkµε ≥ K̃. Consequently, since γ < (`wk )2,
we have:

(`wk )2

(`wk )2 − γ + γ(`wk + 1)µετk
≤ (`wk )2

(`wk )2 − (1− K̃)γ
≤ (`wk )2

(`wk )2 − (1− K̃)(`wk )2
=

1

K̃
. (193)
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Combining equation (192) and inequality (193), the fact that `wk = `k · τk, and Lemma D.2, we obtain
the bound:

1− c2k ≤
1

K̃

(
γ(`wk + 1)µετk

(`wk )2

)
=

1

K̃

(
γ`wk µετk

(`wk )2
+
γµετk
(`wk )2

)
=

1

K̃

(
γµε
`k

+
γµε
`2kτk

)
≤ 1

K̃

(
γµε
`k

+
γµε‖Σε‖op

`2k

)
. (194)

Taking the maximum over 1 ≤ k ≤ r proves the desired result.

D.4 Proof of Proposition 7.4

As in the proof of Theorem 7.2, since the inner products between random unit vectors in Rp vanish as
p → ∞, we may assume that the uk are drawn randomly with iid entries of variance 1/p; the result
will then follow for the orthonormalized vectors from the generic model. We will use the fact that
‖Σ̂x‖op = ‖X‖2op and ‖Σ̂ε‖op = ‖N‖2op. To show the increase in SNR after whitening, we will first derive

a lower bound on the operator norm of the noise matrix N alone. Recall that N = Σ
1/2
ε G, where gij are

iid N(0, 1/n).
Take unit vectors c and d so that Gd = ‖G‖opc. Then we have

‖N‖2op ≥ ‖Σ1/2
ε Gd‖2 = ‖G‖2op‖Σ1/2

ε c‖2 (195)

Since the distribution of G is orthogonally invariant, the distribution of c is uniform over the unit sphere
in Rn. Consequently, ‖Σ1/2

ε c‖2 ∼ tr(Σε)/p ∼ µε. Therefore,

‖N‖2op & µε‖G‖2op, (196)

where “&” indicates that the inequality holds almost surely in the large p, large n limit.
Next, from the assumption that the uk are uniformly random, the parameters τk are all asymptotically

given by:

τk ∼ ‖Σ−1/2
ε uk‖2 ∼

tr(Σ−1
ε )

p
∼ τ. (197)

With this, we can show the improvement in SNR after whitening. We have:

SNR ∼ `1
‖N‖2op

.
`1

µε‖G‖2op

∼ 1

ϕ

`1τ

‖G‖2op

∼ 1

ϕ

`w1
‖G‖2op

∼ SNRw

ϕ
. (198)

This completes the proof.
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