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Abstract

We consider the problem of estimating a low-rank matrix from a noisy observed matrix. Previous
work has shown that the optimal method depends crucially on the choice of loss function. In this
paper, we use a family of weighted loss functions, which arise naturally for problems such as submatrix
denoising, denoising with heteroscedastic noise, and denoising with missing data. However, weighted
loss functions are challenging to analyze because they are not orthogonally-invariant. We derive optimal
spectral denoisers for these weighted loss functions. By combining different weights, we then use these
optimal denoisers to construct a new denoiser that exploits heterogeneity in the signal matrix to boost
estimation with unweighted loss.

1 Introduction

This paper is concerned with estimating a low-rank signal matrix X from an observed matrix Y = X + G,
where G is a full-rank matrix of noise. We consider two distinct aspects of the matrix denoising problem.
First, we study methods designed for a broader family of loss functions, known as weighted loss functions,
than considered in earlier works. Second, we design a new denoiser for unweighted loss that improves upon
previous work by exploiting heterogeneity in the target matrix’s singular vectors. Like many works on matrix
denoising, our methods are designed for an asymptotic regime where the number of rows and columns of
X grow infinitely large, and where the energy in the noise swamps the energy in the signal. This setting is
often referred to as the spiked model [4, 3, 5, 47, 29, 8].

The methods introduced in this paper extend singular value shrinkage [51, 20, 19, 43, 18, 38], which
modifies Y’s singular values to mitigate the effects of noise. Our method of spectral denoising agrees with
singular value shrinkage with unweighted loss, but performs better with weighted loss. While weighted
loss functions arise in a number of applications which we describe, they are challenging as they are not
orthogonally-invariant. To derive optimal spectral denoisers for weighted loss, we extend the asymptotic
theory of the spiked model, building on work from [40].

Our new method of localized denoising is designed for unweighted loss. Unlike singular value shrinkage,
however, localized denoising exploits heterogeneity in X’s singular vectors; when certain blocks of coordinates
of X are known to contain more of the signal’s energy than others, localized denoising outperforms shrinkage.
At the same time, localized denoising’s asymptotic performance is never worse than shrinkage’s, and so
localized denoising inherits shrinkage’s well-known optimality properties.

1.1 Main ideas

In the high-noise, high-dimensional spiked model, the energy of the noise G is unbounded as p, n→∞, while
the energy of X is fixed. Consistent estimation of X from Y is therefore not possible, so the “best” denoiser
depends on the choice of loss function. The weighted loss functions we use arise in a variety of applications,
described in Section 6; the new method of spectral denoising is adapted to each of these. Table 1 lists these
algorithms and their locations in the paper.

The optimal spectral denoiser for weighted loss solves a least-squares problem parameterized by weighted
inner products between the singular vectors of X and Y. Though formulas for unweighted inner products
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# Description Reference
1 Optimal spectral denoising for weighted loss Section 4
2 Localized denoising for unweighted loss Section 5
3 Submatrix denoising Section 6.1
4 Matrix denoising with doubly-heteroscedastic noise Section 6.2
5 Matrix denoising with missing data Section 6.3

Table 1: Algorithms introduced in this paper.
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Figure 1: Denoising the MIT logo; see Section 1.2 for details. Upper left: the rank 5 signal matrix. Upper
right: the observed noisy matrix. Lower left: the matrix denoised by optimal singular value shrinkage [20, 51].
Lower right: the matrix denoised by localized denoising (Algorithm 2). The relative error of singular value
shrinkage is approximately 1.25 × 10−1, whereas the relative error of localized denoising is approximately
7.41× 10−2.

are well-known [47, 8], the results we need require a new analysis extending our earlier work in [40]. While
we leave the details to Theorem 3.2, the key idea is that a singular vector ûj of Y may be written as a
combination of its projection onto the corresponding singular vector uj of X and a residual unit vector ũj ,
ûj = cjuj + sjũj . Here, cj and sj are known from the classical theory of the spiked model [47]. Because the
noise G is orthogonally invariant, the ũj are uniformly random in the subspace orthogonal to X’s singular
vectors. Consequently, inner products of the form ũTj Aũk have predictable behavior when the dimension is
large [21, 57, 49].

1.2 Illustrative example

The method of localized denoising, introduced in Section 5, uses the optimal spectral denoiser for weighted
loss to construct a matrix denoiser for unweighted loss. The matrix is broken into submatrices, each of
which is denoised by applying the optimal spectral denoiser with weights projecting onto that submatrix’s
coordinates. In Figure 1, we illustrate the performance of localized denoising on the MIT logo, which is
a 1574-by-2800 matrix with rank 5. The logo is corrupted by iid Gaussian noise with standard deviation
σ = t5/(1.5γ

1/4), t5 being the smallest singular value of the clean image. We apply optimal singular
value shrinkage and localized denoising, the latter by breaking the rows into 15 equispaced segments and
the columns into 30 equispaced segments. The relative error ‖X̂loc − X‖F/‖X‖F of localized denoising is
approximately 7.41×10−2; the relative error of singular value shrinkage is approximately 1.25×10−1, which
is significantly larger. The improvement from localized denoising is due to the signal matrix’s heterogeneity
along the rows and columns. However, the row and column subdivisions are not chosen to extract any
specific structure in the image, and localized denoising does not appear to be very sensitive to the choice of
subdivisions; similar results may be obtained with other subdivisions as well.
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1.3 Outline of the paper

Section 2 contains the problem statement and key definitions. Section 3 presents the new asymptotic results.
Section 4 derives the optimal spectral denoiser for weighted loss. Section 5 introduces localized denoising.
Section 6 describes three applications of weighted loss functions. Section 7 reports on numerical experiments.
Section 8 concludes by discussing potential applications.

2 Preliminaries

2.1 The observation model

We observe a p-by-n data matrix Y = X + G, consisting of a low-rank signal matrix X and a full-rank
isotropic Gaussian noise matrix G. We write X as X =

∑r
k=1 tkukv

T
k , where the uk and vk are orthonormal

vectors in Rp and Rn, respectively, and t1 > · · · > tr > 0. The entries of the noise matrix G are iid

N(0, 1/n). We write Y as Y =
∑min(n,p)
k=1 λkûkv̂

T
k , where the ûk and v̂k are orthonormal vectors in Rp and

Rn, respectively, and λ1 ≥ · · · ≥ λmin(n,p) ≥ 0.
We let Ω = Ωp be one of a sequence of matrices with p columns, and Π = Πn be one of a sequence of

matrices with n columns. In Section 2.3, these matrices will be used to define the loss function for estimating
X. In order to have a well-defined asymptotic theory when p, n → ∞, we assume that certain quantities
defined in terms of Ω, Π, and the singular vectors of X have definite, finite limits. We define:

µ = lim
p→∞

1

p
tr(ΩTΩ), ν = lim

n→∞

1

n
tr(ΠTΠ). (1)

For 1 ≤ j, k ≤ r, we assume that the weighted inner products between the population singular vectors
converge almost surely in the large p, large n limits:

ejk = lim
p→∞

〈Ωuj ,Ωuk〉, ẽjk = lim
n→∞

〈Πvj ,Πvk〉. (2)

For 1 ≤ k ≤ r, we will let αk = ekk and βk = ẽkk.
We assume that these limits exist and are finite and positive. We also assume that the operator norms

of the matrices Ω = Ωp and Π = Πn remain bounded as p, n→∞; that is, ‖Ωp‖op, ‖Πn‖op ≤ C <∞ for all
p and n, where C does not depend on p or n. These conditions are the only assumptions we make on the
matrices Ω and Π.

We will parametrize the problem size by the number of columns n, and let the number of rows p = pn
grow with n. Specifically, we will assume that the limit

γ = lim
n→∞

pn
n

(3)

is well-defined and finite. In all statements where n→∞, it will be implicitly assumed as well that p→∞
and p/n → γ. We assume that the number of population components r and the singular values t1, . . . , tr
stay fixed with p and n.

Remark 1. All quantities that depend on p and n, such as uk and vk, are actually elements of a sequence
indexed by p and/or n. However, for notational simplicity, we drop the explicit dependence on p and n
unless it is needed for clarity.

Remark 2. There are counterexamples to the existence of the limits in (1) and (2). For example, one
may take u1 to be the first standard unit vector (1, 0, . . . , 0)T when p is even, and the constant vector
(1, . . . , 1)T /

√
p when p is odd; and take Ωp = diag(0, 1, . . . , 1). The limit defining α1 will not exist in this

case, as odd terms in the sequence ‖Ωpu1‖2 converge to 1, and even terms converge to 0. By contrast, the
examples in Section 7 satisfy the asymptotic conditions.

Remark 3. The values µ, ν, ejk, and ẽjk from equations (1) and (2) are used to characterize the weighted
inner products between singular vectors of X and Y; see Theorem 3.2. These weighted inner products are
needed to evaluate optimal spectral denoisers for weighted loss, as described in Section 4.
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2.2 Heterogeneity, genericity, and weighted orthogonality

One of the aspects of the theory of matrix denoising we will explore is the role of the signal matrix X’s
singular vectors, u1, . . . ,ur and v1, . . . ,vr. To that end, we introduce two definitions we will be using
throughout the paper. We say that a unit vector x ∈ Rm is generic with respect to an m-by-m positive-
semidefinite matrix Am ∈ Rm×m if xTAx ∼ 1

m tr(A), where “∼” indicates that the difference between the
two sides vanishes almost surely as m → ∞ (to be precise, x and A are elements of a sequence of vectors
and matrices, respectively, indexed by m; but following the convention described in Remark 1 we will drop
the explicit dependence on m).

By contrast, we say that x is heterogeneous if it is not generic. This means that the energy of the vector
x is not uniformly distributed across its coordinates in the eigenbasis of A. Indeed, if A =

∑m
k=1 hkwkw

T
k

is the eigendecomposition of A, then

xTAx =
m∑
k=1

hk〈x,wk〉2. (4)

If the energy of x were equally spread out across the wk, then 〈x,wk〉 ∼ 1/
√
m, and so xTAx ∼ tr(A)/m.

Given a collection of vectors x1, . . . ,xk ∈ Rm, we will say that they satisfy the weighted orthogonality
condition (or are weighted orthogonal) with respect to a positive-semidefinite matrix A if

xTi Axj ∼ 0 (5)

whenever i 6= j. In other words, the xj are asymptotically orthogonal with respect to the weighted inner
product defined by A.

Remark 4. From the Hanson-Wright inequality [21, 57, 49], random unit vectors x from suitably regular
distributions are generic, with respect to any A with bounded operator norm. Furthermore, the weighted
orthogonality condition will also hold for independent random unit vectors x1, . . . ,xk from a suitable distri-
bution (see [7]).

2.3 Spectral denoisers and weighted loss functions

For the top r empirical singular vectors û1, . . . , ûr and v̂1, . . . , v̂r of Y, define the matrices Û = [û1, . . . , ûr]

and V̂ = [v̂1, . . . , v̂r]. Consider the class of estimators defined by

S =
{
ÛB̂V̂T : B̂ ∈ Rr×r

}
. (6)

Each matrix in S has the same singular subspaces as the observed matrix Y, though not necessarily the
same singular vectors. We call S the family of spectral denoisers.

We consider estimating the low-rank signal matrix X with respect to the weighted Frobenius loss defined
by

Ln(X̂,X) = ‖Ω(X̂−X)ΠT ‖2F, (7)

where ‖ · ‖F denotes the matrix Frobenius norm, and Ω and Π are matrices satisfying the conditions in
Section 2.1. This type of loss function is used when the user pays different prices for errors in different rows
and columns.

We now define the precise estimation problem we will consider. For any deterministic r-by-r matrix B̂,
we define the asymptotic error

L(ÛB̂V̂T ,X) = lim
n→∞

Ln(ÛB̂V̂T ,X). (8)

Our goal is then to find the matrix B̂ to minimize this loss, and show how B̂ may be consistently estimated
from the observed matrix Y. That is, we define

B̂ = argmin
B̂′∈Rr×r

L(ÛB̂′V̂T ,X) (9)

and define X̂ = ÛB̂V̂T .
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Remark 5. For any deterministic B̂, the asymptotic loss (8) exists and is finite almost surely, even though

the matrices ÛB̂V̂T and X are growing in size. It will be shown in Section 4 that since ÛB̂V̂T and X each
have rank at most r, ‖Ω(X̂−X)ΠT ‖2F depends only on t1, . . . , tr; the r2 entries of B̂; and the weighted inner
products between the top r singular vectors of Y and X. It will follow from Theorem 3.2 that these inner
products converge almost surely to finite limits, and consequently that the asymptotic loss (8) is well-defined
almost surely.

3 Asymptotic theory for the spiked model

In this section, we derive the limits of inner products between the weighted population and empirical vectors.
We define the cosines between the unweighted empirical and population vectors:

cjk = lim
p→∞

〈ûj ,uk〉, c̃jk = lim
n→∞

〈v̂j ,vk〉. (10)

Next we define weighted inner products between the population and empirical vectors:

cωjk = lim
p→∞

〈Ωûj ,Ωuk〉, c̃ωjk = lim
n→∞

〈Πv̂j ,Πvk〉. (11)

These are inner products with weight matrices ΩTΩ and ΠTΠ, respectively. We also define the weighted
inner products between the empirical singular vectors:

djk = lim
p→∞

〈Ωûj ,Ωûk〉, d̃jk = lim
n→∞

〈Πv̂j ,Πv̂k〉. (12)

We let cωk = cωkk and c̃ωk = c̃ωkk, and similarly for the other terms.

Remark 6. From Theorem 3.2 below, the limits (11) and (12) exist almost surely and are finite so long as
the assumptions on Ω and Π from Section 2.1 hold.

The first result provides formulas for cjk and c̃jk, and relates the singular values of X to those of Y. It
is well-known in the literature (see e.g. [47, 8]).

Proposition 3.1. For 1 ≤ k ≤ r, the kth singular value of Y converges almost surely as p, n → ∞ to λk,
defined by:

λ2
k =

{
(t2k + 1)

(
1 + γ

t2k

)
, if tk > γ1/4,

(1 +
√
γ)2, if tk ≤ γ1/4,

(13)

For 1 ≤ j, k ≤ r, the limits (10) defining cjk and c̃jk almost surely exist and are given by the following
expressions:

c2jk =

{
1−γ/t4k
1+γ/t2k

, if j = k and tk > γ1/4,

0, if j 6= k or tk ≤ γ1/4,
(14)

and

c̃2jk =

{
1−γ/t4k
1+1/t2k

, if j = k and tk > γ1/4,

0, if j 6= k or tk ≤ γ1/4.
(15)

Remark 7. While the signs of ck and c̃k are arbitrary, their product satisfies ck c̃k ≥ 0. We may therefore
assume that ck ≥ 0 and c̃k ≥ 0 (see, e.g., [43]).

Theorem 3.2. Suppose 1 ≤ j, k ≤ r. Then the limits (11) and (12) almost surely exist and are equal to the
following expressions:

cωjk =

{
ejkcj , if tj > γ1/4,

0, if tj ≤ γ1/4,
(16)
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c̃ωjk =

{
ẽjk c̃j , if tj > γ1/4,

0, if tj ≤ γ1/4,
(17)

djk =


c2kαk + s2

kµ, if j = k and tk > γ1/4,

ejkcjck, if j 6= k and min{tj , tk} > γ1/4,

0, if j 6= k and min{tj , tk} ≤ γ1/4,

(18)

d̃jk =


c̃2kβk + s̃2

kν, if j = k and tk > γ1/4,

ẽjk c̃j c̃k, if j 6= k and min{tj , tk} > γ1/4,

0, if j 6= k and min{tj , tk} ≤ γ1/4.

(19)

The proof of Theorem 3.2 may be found in Section A.

Remark 8. While the signs of inner products between singular vectors are arbitrary, Theorem 3.2 states
that once the signs of ejk and ẽjk are fixed, the signs of cωjk, c̃ωjk, djk and d̃jk are determined.

4 Optimal spectral denoising

In this section, we derive the asymptotically optimal spectral denoiser with respect to the weighted loss (8),
and show how to consistently estimate it from Y. We define the r-by-r weighted inner product matrices
D = (dkl), D̃ = (d̃jk), E = (ejk), Ẽ = (ẽjk), C = (cωjk), and C̃ = (c̃ωjk), and the vector t = (t1, . . . , tr)

T of
population singular values.

Theorem 4.1. The optimal choice of B̂ is given by B̂ = D+Cdiag(t)C̃T D̃+, with weighted AMSE almost
surely equal to

lim
n→∞

‖Ω(X̂−X)ΠT ‖2F = 〈Ediag(t)Ẽ−CTD+Cdiag(t)C̃T D̃+C̃, diag(t)〉F. (20)

The proof of Theorem 4.1 may be found in Section B.
The matrices D, D̃, E, Ẽ, C, and C̃ and the singular values t1, . . . , tr may be estimated using Proposition

3.1 and Theorem 3.2. First, from Proposition 3.1, we can estimate tk, ck and c̃k, so long as tk > γ1/4, i.e. if
λk > 1 +

√
γ:

tk =

√
λ2
k − 1− γ +

√
(λ2
k − 1− γ)2 − 4γ

2
, ck =

√
1− γ/t4k
1 + γ/t2k

, c̃k =

√
1− γ/t4k
1 + 1/t2k

. (21)

Remark 9. From Remark 7, we can take both ck and c̃k to be positive.

The values djk = ûTj ΩTΩûj and d̃jk = v̂Tj ΠTΠv̂k are directly estimable, as they are the weighted inner

products between the empirical singular vectors. We then estimate αk and βk, assuming tk > γ1/4:

αk =
dk − s2

kµ

c2k
, βk =

d̃k − s̃2
kν

c̃2k
. (22)

When j 6= k, we take ejk = djk/(cjck) and ẽjk = d̃jk/(c̃j c̃k) (so long as tj and tk both exceed γ1/4, i.e.
λj and λk both exceed 1 +

√
γ). Finally, for all j, k, we take cωjk = ejkcj and c̃jk = ẽjk c̃j . The method is

summarized in Algorithm 1.
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Algorithm 1 Optimal spectral denoising for weighted loss

1: Input: Y; weights Ω and Π
2: rank r SVD of Y:

λ1 ≥ · · · ≥ λr > 1 +
√
γ

Û = [û1, . . . , ûr], V̂ = [v̂1, . . . , v̂r]

3: µ = tr(ΩTΩ)/p, ν = tr(ΠTΠ)/n
4: for 1 ≤ k ≤ r:

tk =

√
λ2
k−1−γ+

√
(λ2

k−1−γ)2−4γ

2

ck =

√
1−γ/t4k
1+γ/t2k

, c̃k =

√
1−γ/t4k
1+1/t2k

sk =
√

1− c2k, s̃k =
√

1− c̃2k
dk = ‖Ωûk‖2, d̃k = ‖Πv̂k‖2
αk = (dk − s2

kµ)/c2k, βk = (d̃k − s̃2
kν)/c̃2k

cωk = αkck, c̃ωk = βk c̃k
5: for 1 ≤ j 6= k ≤ r:
djk = ûTj ΩTΩûk, d̃jk = v̂Tj ΠTΠv̂k
ejk = djk/(cjck), ẽjk = d̃jk/(c̃j c̃k), j 6= k
cωjk = ejkcj , c̃

ω
jk = ẽjk c̃j

6: D = (djk), D̃ = (d̃jk)

E = (ejk), Ẽ = (ẽjk)

C = (cωjk), C̃ = (c̃ωjk)

7: t = (t1, . . . , tr)
T

8: B̂ = D+Cdiag(t)C̃T D̃+

9: X̂ = ÛB̂V̂T

10: AMSE = 〈Ediag(t)Ẽ−CTD+Cdiag(t)C̃T D̃+C̃, diag(t)〉F

4.1 Diagonal denoisers

In this section, we consider a subset of spectral denoisers, in which the matrix B̂ is required to be diagonal.
More precisely, we search for a vector t̂ = (t̂1, . . . , t̂r)

T of real numbers, so that the estimator

X̂dd = Ûdiag(t̂)V̂T =
r∑

k=1

t̂kûkv̂
T
k (23)

minimizes the AMSE L(X̂dd,X) = limn→∞ ‖Ω(X̂dd −X)ΠT ‖2F.

Remark 10. Optimal diagonal denoising cannot have better asymptotic performance than optimal spectral
denoising, as the diagonal denoiser is a spectral denoiser. However, Theorem 4.2 below shows that under
weighted orthogonality, the methods coincide; and the simplicity of X̂dd makes it easier to analyze, which
will be exploited in the proofs of Theorem 5.2 and Proposition 6.1 and the analysis of Section 4.2.

Theorem 4.2. Suppose that either u1, . . . ,ur are weighted orthogonal with respect to ΩTΩ, or v1, . . . ,vr
are weighted orthogonal with respect to ΠTΠ. Suppose too that tk > γ1/4, 1 ≤ k ≤ r. Then the singular
values t̂k, 1 ≤ k ≤ r, of X̂dd are:

t̂k = tkck c̃k ·
αk

c2kαk + s2
kµ
· βk
c̃2kβk + s̃2

kν
, (24)

where tk, ck and c̃k are given by (21), and αk and βk are given by (22). The weighted AMSE is almost
surely equal to

lim
n→∞

‖Ω(X̂−X)ΠT ‖2F =
r∑

k=1

t2kαkβk

(
1− c2k c̃2k ·

αk
c2kαk + s2

kµ
· βk
c̃2kβk + s̃2

kν

)
. (25)
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If u1, . . . ,ur and v1, . . . ,vr are both weighted orthogonal with respect to ΩTΩ and ΠTΠ, respectively, then
X̂ = X̂dd.

The proof of Theorem 4.2 is found in Section C.
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Figure 2: The optimal singular value t̂, plotted as a function of the observed singular value λ (left) and the
population singular value t (right), for varying values of α and β and µ = ν = 1.

4.2 Behavior of the optimal singular values

In this section, we assume either that r = 1; or that u1, . . . ,ur are weighted orthogonal with respect to ΩTΩ
and v1, . . . ,vr are weighted orthogonal with respect to ΠTΠ. In either case, the optimal spectral denoiser
coincides with the optimal diagonal denoiser, and both are given by Theorem 4.2. Though this setting is
quite restrictive, it permits us to exploit formula (24) for the optimal singular values to gain insight into
the behavior of the optimal spectral denoiser. Propositions 4.3 and 4.4 describe the behavior of the optimal
singular value t̂k in this setting. Because each t̂k depends only on the information specific to component k,
we will drop the subscript k from the notation.

Proposition 4.3. If either α ≤ µ or β ≤ ν, then t̂ ≤ λ. Conversely, for any fixed value of t, there are
sufficiently large values of α and β for which t̂ > λ.

Proposition 4.4. If α ≤ µ or β ≤ ν, then t̂ is an increasing function of λ.

The proofs of Propositions 4.3 and 4.4 may be found in Section D and Section E, respectively.

Remark 11. From [51, 20, 43], the optimal singular value for unweighted Frobenius loss is t̂shr = tcc̃, which
is smaller than the observed singular value λ. Proposition 4.3 shows that with weighted loss, such shrinkage
only occurs for small α or β.

The conclusion of Proposition 4.4 need not hold if α > µ and β > µ. In Figure 2 we plot the optimal t̂,
both as a function of the observed singular value λ and the population singular value t, for various values of
α and β (and µ = ν = 1). The non-monotonicity is apparent when α = β = 10.

5 Localized denoising

In this section, we introduce a new procedure called localized denoising for estimating X with unweighted
Frobenius loss. As we will show, localized denoising is asymptotically never worse than optimal singular value
shrinkage [20, 51], defined by X̂shr =

∑r
k=1 t̂

shr
k ûkv̂

T
k , where t̂shr

k = tkck c̃k. Since singular value shrinkage is
optimal for unweighted loss both in the minimax sense and when averaging over a uniform prior on uk and
vk [18, 51], localized denoising inherits these same optimality properties. Furthermore, localized denoising
can outperform singular value shrinkage when the singular vectors of X are heterogeneous.
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5.1 Definition of localized denoising

To define localized denoising, we expand the identity matrices Ip =
∑I
i=1 Ωi and In =

∑J
j=1 Πj into sums

of pairwise orthogonal projections Ωi ∈ Rp×p and Πj ∈ Rn×n, where I and J are fixed. We require that
Ωi = ΩTi = Ω2

i and Ωi′Ωi = Op×p for i 6= i′; and similarly for the Πj .

We let X̂loc
(i,j) denote the optimal spectral denoiser with respect to the weight matrices Ωi and Πj . We

then define the locally-denoised matrix :

X̂loc =
I∑
i=1

J∑
j=1

ΩiX̂
loc
(i,j)Πj . (26)

We summarize the localized denoising procedure in Algorithm 2.

Algorithm 2 Localized denoising for unweighted loss

1: Input: Y; pairwise orthogonal projections Ω1, . . . ,ΩI , Π1, . . . ,ΠJ∑I
i=1 Ωi = Ip;

∑J
j=1 Πj = In

2: for 1 ≤ i ≤ I, 1 ≤ j ≤ J :

X̂loc
(i,j) is output of Algorithm 1 with weights Ωi and Πj

AMSEloc
(i,j) is estimated mean squared error

3: X̂loc =
∑I
i=1

∑J
j=1 ΩiX̂

loc
(i,j)Πj

4: AMSEloc =
∑I
i=1

∑J
j=1 AMSEloc

(i,j)

5.2 Performance of localized denoising

The following results compare the behavior of the localized denoiser X̂loc to the optimal singular value
shrinker X̂shr.

Theorem 5.1. ‖X̂loc −X‖2F ≤ ‖X̂shr −X‖2F almost surely as p, n→∞.

Theorem 5.2. Suppose that either u1, . . . ,ur are weighted orthogonal with respect to all Ωi, or v1, . . . ,vr are
weighted orthogonal with respect to all Πj. Then almost surely as p, n→∞, ‖X̂loc−X‖2F ≤ ‖X̂shr−X‖2F−ξ,
where ξ ≥ 0, and ξ > 0 if some uk is heterogeneous with respect to some Ωi or some vk is heterogeneous
with respect to some Πj.

In other words, unless all the uk are generic with respect to all of the Ωi and all the vk are generic with
respect to all of the Πi, localized denoising will outperform singular value shrinkage asymptotically. The
proofs of Theorems 5.1 and 5.2 are found in Section F and Section G, respectively.

Remark 12. The weighted orthogonality condition of Theorem 5.2 will hold if the columns of X are drawn
iid from a sufficiently well-behaved distribution in Rp.
Remark 13. To apply Theorem 5.2, the user must select projection matrices Ωi and Πj with respect to
which the singular vectors of X are heterogeneous. Datasets are often drawn from different experimental
regimes in genetic microarray experiments [27, 41, 50], single-cell RNA processing [52, 55], and medical
imaging [35]. In these settings, it is known a priori that signal components will likely be heterogeneous
across the different subpopulations, and localized shrinkage is a natural tool.

Remark 14. Theorem 5.1 guarantees that even if the projection matrices Ωi and Πj are not chosen ju-
diciously (see Remark 13), the asymptotic performance of localized denoising is never worse than singular
value shrinkage. In practice, localized denoising requires estimating more parameters than does shrinkage,
and if I and J are sizeable relative to p and n its performance might be worse due to finite sample fluctations
in these parameter estimates, especially when the singular vectors of X do not exhibit strong heterogeneity
with respect to the projections. For such an example, see Section 7.1, and specifically Remark 21. Though
a detailed analysis of this topic is beyond the scope of the present work, in practice the user can compare
these trade-offs via simulation to determine if localized denoising is appropriate for their problem size and
the expected level of heterogeneity with respect to the projections.
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6 Applications of weighted denoising

In this section, we describe three applications of weighted loss functions: submatrix denoising, denoising with
heteroscedastic noise, and denoising with missing data. In these problems, we estimate a low-rank matrix
with respect to unweighted Frobenius loss. However, an intermediate step of the estimation procedure
requires the use of a weighted loss function.

6.1 Submatrix denoising

We suppose we observe a data matrix Y = X+G, but our goal is to estimate only a p0-by-n0 submatrix of
X, where p0/p ∼ µ and n0/n ∼ ν. Denoting by Ω ∈ Rp0×p the coordinate selection operator for the p0 rows
of the submatrix, and Π ∈ Rn0×n the coordinate selection operator for the n0 columns of the submatrix, we
may write the target submatrix as X0 = ΩXΠT .

One approach is to estimate the entire matrix X with respect to the weighted loss L(X̂,X) = ‖Ω(X̂ −
X)ΠT ‖2F. This loss only penalizes errors in the p0 rows and n0 columns of X0. If X̂ denotes the optimal

spectral denoiser minimizing L(X̂,X), we define our estimator X̂0 = ΩX̂ΠT . The method is summarized in
Algorithm 3.

Algorithm 3 Submatrix denoising

1: Input: Y; projections Ω, Π
2: X̂ is output of Algorithm 1 with weights Ω and Π

AMSE is estimated mean squared error

3: X̂0 = ΩX̂ΠT

Another natural approach is to simply ignore the p − p0 rows and n − n0 columns outside of X0, and
denoise X0 directly by optimal singular value shrinkage to the matrix Y0 = X0+G0 (defining G0 = ΩGΠT ).

We let X̂shr
0 denote this estimator.

In the following result, we make the same assumptions on Ω and Π from Section 2.1. Note that p0 =
tr(ΩTΩ), and n0 = tr(ΠTΠ).

Proposition 6.1. Suppose u1, . . . ,ur are weighted orthogonal with respect to ΩTΩ, and v1, . . . ,vr are
weighted orthogonal with respect to ΠTΠ. Suppose αk <

√
µ and βk <

√
ν, for 1 ≤ k ≤ r. Then ‖X̂0−X0‖2F <

‖X̂shr
0 −X0‖2F, where the strict inequality holds almost surely in the limit p, n→∞.

The proof of Proposition 6.1 is found in Section H.

Remark 15. If uk and vk are generic with respect to ΩTΩ and ΠTΠ, respectively, then αk = µ and βk = ν.
Proposition 6.1 requires the much weaker condition that αk ≤

√
µ and βk ≤

√
ν (note that µ ≤ √µ and

ν ≤
√
ν). Informally, even if the fraction of the signal’s energy contained in X0 is disproportionately large,

it still pays to denoise X0 using the entire observed matrix Y, rather than the submatrix Y0 alone.

It will follow from the proof of Proposition 6.1 that if αk <
√
µ and βk <

√
ν, then the singular vectors of

X0 are better approximated by computing the singular vectors of Y and projecting onto the images of Ω and
Π, respectively, rather than computing the singular vectors of the submatrix Y0 itself. More precisely, we
will show that u0

k = Ωuk

‖Ωuk‖ and v0
k = Πvk

‖Πvk‖ are the singular vectors of X0, and that the vectors ûωk = Ωûk

‖Ωûk‖
and v̂ωk = Πv̂k

‖Πv̂k‖ , are better correlated with u0
k and v0

k, respectively, then are the singular vectors of Y0.

6.2 Doubly-heteroscedastic noise

We consider estimating a low-rank matrix X from an observed matrix Y = X+N, where N is a noise matrix
of the form N = S1/2GT1/2, G has iid entries with distribution N(0, 1/n), and S ∈ Rp×p and T ∈ Rn×n
are positive-definite matrices. We assume the eigenvalues of S = Sp and T = Tn remain in an interval [a, b]
for all p and n, where a > 0 and b < ∞ are fixed independently of p and n. We refer to the matrix N as
doubly-heteroscedastic noise.
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Remark 16. This noise model generalizes two previous models of heteroscedastic noise in the context of
principal component analysis [22, 23, 24, 58, 40]. In both, the matrix X consists of random, iid signal vectors

X1, . . . , Xn of the form Xj =
∑r
k=1 `

1/2
k zjkuk, where `1 > · · · > `r > 0, u1, . . . ,ur are orthonormal vectors,

and the zjk are iid random variables with variance 1 and mean 0. The model from [58] and [40] takes T = In,
in which case the observations are of the form Yj = Xj + S1/2Gj , where Gj ∼ N(0, Ip). By contrast, the

papers [22, 23, 24] take S = Ip, in which case the observations are of the form Yj = Xj + b
1/2
j Gj . The

doubly-heteroscedastic noise model takes Yj = Xj + b
1/2
j S1/2Gj , which generalizes both these models.

We consider the following three-step procedure. First, we whiten the noise, replacing Y by Ỹ defined by
Ỹ = S−1/2YT−1/2. We may write Ỹ = X̃ + G, where X̃ = S−1/2XT−1/2 and G has iid N(0, 1/n) entries.

Next, we apply a denoiser to Ỹ to estimate X̃; we denote this by ψ(Ỹ), for ψ tailored to removing white

noise. Finally, we unwhiten ψ(Ỹ) to obtain our final estimate X̂ = S1/2ψ(Ỹ)T1/2 of X.

The Frobenius loss between X̂ and X may be written as follows:

‖X̂−X‖2F = ‖S1/2ψ(Ỹ)T1/2 − S1/2X̃T1/2‖2F = ‖S1/2(ψ(Ỹ)− X̃)T1/2‖2F, (27)

which is a weighted loss between ψ(Ỹ) and X̃, with weights S1/2 and T1/2. The denoiser ψ(Ỹ) should be
chosen to minimize this weighted Frobenius loss. The procedure is summarized in Algorithm 4, where ψ is
taken to be optimal spectral denoising,

Algorithm 4 Matrix denoising with doubly-heteroscedastic noise

1: Input: Y; positive-definite S, T
2: Ỹ = S−1/2YT−1/2

3: ψ(Ỹ) is output of Algorithm 1 with weights S1/2 and T1/2

AMSE is estimated mean squared error

4: X̂ = S1/2ψ(Ỹ)T1/2

Remark 17. The procedure of whitening, denoising, and unwhitening has been employed in recent papers
on the spiked model; see, for instance, [42, 40, 16]. In particular, [40] shows several advantages of working
with the whitened matrix when the noise is one-sided, such as improved estimation of the singular vectors
of X. By contrast, the paper [24] shows that whitening is suboptimal in certain settings.

6.2.1 Estimating S and T

The signal/noise decomposition Y = X + N is obviously not well-defined unless the user possesses some
additional knowledge about the noise matrix N = S1/2GT1/2. While a detailed treatment of this problem
is outside the scope of this paper, we observe that in the large p, large n asymptotic limit, the matrices
S = Sp and T = Tn may be replaced by estimators Ŝ = Ŝp and T̂ = T̂n consistent in operator norm; that
is, almost surely

lim
p→∞

‖Sp − Ŝp‖op = lim
n→∞

‖Tn − T̂n‖op = 0. (28)

Remark 18. The matrices S and T may be replaced by, respectively, θS and T/θ for any θ > 0. Without
loss of generality, we may therefore assume that tr(T)/n = 1.

The next result describes a simple method for estimating S and T consistently in operator norm when
both are diagonal and the singular vectors of X are delocalized.

Proposition 6.2. Suppose max1≤k≤r ‖uk‖∞‖vk‖∞ = o(n−1/2), S = diag(a1, . . . , ap) and T = diag(b1, . . . , bn).
For 1 ≤ i ≤ p and 1 ≤ j ≤ n, define the estimators

âi =
n∑
j=1

Y 2
ij , b̂j =

∑p
i=1 Y

2
ij

1
n

∑p
i=1 âi

, (29)

and and let Ŝ = Ŝp = diag(â1, . . . , âp) and T̂ = T̂n = diag(b̂1, . . . , b̂p). Then Ŝ and T̂ are consistent
estimators of S and T, respectively; that is, (28) holds almost surely.
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The proof of Proposition 6.2 may be found in Section I.

Remark 19. The values âi in (29) are the sample standard deviations of the rows of
√
nY. Normalizing Y

by Ŝ1/2 is then an instance of standardization of the rows, a commonly used method in principal component
analysis [30].

Remark 20. The estimates âi and b̂j capture the variation of both the noise and the signal. Proposition 6.2
states that if the signal is delocalized, then in the large p, large n limit its contribution becomes negligible.
However, for finite p and n, Ŝ and T̂ will still see the effects of the signal, and may not be good estimates
of S and T. The experiment in Section 7.3 compares the use of the true S and T to their estimates.

6.2.2 Whitening increases the SNR for generic signal matrices

We show that the whitening transformation increases a natural signal-to-noise ratio of the observed matrix.
We will assume throughout this section that the uk (respectively, vk) are generic with respect to S (respec-
tively, T), and that they satisfy the pairwise orthogonality condition with respect to S (respectively T).
Writing the SVD of X as X =

∑r
k=1 tkukv

T
k , we define the signal-to-noise ratio (SNR) for component k of

X:

SNRk =
t2k
‖N‖2op

, (30)

which is the ratio of the squared operator norm of the component tkukv
T
k of X and the squared operator

norm of the noise.
Whitening turns Y into Ỹ = X̃ + G, with X̃ =

∑r
k=1 tk(S−1/2uk)(T−1/2vk)T =

∑r
k=1 t̃kũkṽ

T
k , where

t̃k = tk‖S−1/2uk‖‖T−1/2vk‖, ũk = S−1/2uk/‖S−1/2uk‖, and ṽk = T−1/2vk/‖T−1/2vk‖. The SNR after
whitening is then:

S̃NRk =
t̃2k
‖G‖2op

, (31)

Define

τ =

(
1

p
tr(S)

)(
1

p
tr(S−1)

)(
1

n
tr(T)

)(
1

n
tr(T−1)

)
. (32)

Note that from Jensen’s inequality, τ ≥ 1, and τ > 1 if either S or T is not a multiple of the identity. The
following result extends an analogous finding from [40]:

Proposition 6.3. Suppose u1, . . . ,ur are generic and weighted orthogonal with respect to S, and v1, . . . ,vr
are generic and weighted orthogonal with respect to T. Then S̃NRk ≥ τSNRk, 1 ≤ k ≤ r, almost surely as
p, n→∞. In particular, S̃NRk is larger than SNRk if either S or T is not a multiple of the identity.

In other words, the SNR increases after whitening the noise by at least a factor of τ ; energy is transferred
from the noise component to the signal component. The proof of Proposition 6.3, which extends an analogous
result in [40], is in Section J.

6.3 Matrices with missing/unobserved values

We consider the setting where X is a low-rank target matrix we wish to recover and G is a matrix of iid
Gaussian N(0, 1) entries, but rather than observe X + G, we observe only some subset of the entries. The
problem of estimating a matrix from a subset of its entries is known as matrix completion [48, 32, 25, 13,
14, 12, 13, 33, 31, 11, 16, 34, 44, 53].

In this section, we will adopt a heterogeneous, rank 1 sampling model, as in [14]. We suppose that the
rows and columns are sampled independently, with row i sampled with probability qri , and column j sampled
with probability qcj ; that is, entry (i, j) of X + G is sampled with probability qri q

c
j . We observe the vector

y = F(X + G) of M sampled entries, where F : Rp×n → RM is the subsampling operator.
Following the approach from [16], we consider the backprojected matrix Y = F∗(y) ∈ Rp×n, in which the

unobserved entries are replaced by 0’s. We write Y = F∗(F(X))+F∗(F(G)). We show that asymptotically,
F∗(F(X)) behaves like the matrix PXQ. More precisely, we have the following result:

12



Proposition 6.4. Suppose max1≤k≤r ‖uk‖∞‖vk‖∞ = o(n−1/2). Then in the limit p/n→ γ, ‖F∗(F(X))−
PXQ‖op → 0 almost surely.

The proof of Proposition 6.4 may be found in Section K. It is a straightforward generalization of the
analogous one-sided result in [16].

Let N = F∗(F(G)). Writing N = (Nij), we have Nij = δijGij , where δij is 1 if entry (i, j) is sampled,
and 0 otherwise. Then Nij has variance qri q

c
j . Consequently, we can whiten the noise by applying P−1/2

and Q−1/2; Proposition 6.3 suggests this will improve estimation of the matrix. To that end, we define
Ỹ = P−1/2YQ−1/2 = X̃ + G̃, where X̃ = P−1/2F∗(F(X))Q−1/2, and G̃ = P−1/2NQ−1/2. Then G̃ is a
random matrix where each entry has mean zero and variance 1.

From Proposition 6.4, asymptotically the matrix X̃ behaves like P1/2XQ1/2, and so denoising Ỹ estimates
ψ(Ỹ) of P1/2XQ1/2. To estimate X we should perform denoising to Ỹ with respect to the weighted loss

function L(X̂,X) = ‖P−1/2(X̂ − X)Q−1/2‖2F, with weight matrices P−1/2 and Q−1/2. We then apply
P−1/2 and Q−1/2 to the resulting matrix, to obtain an estimator of X itself. The method is summarized in
Algorithm 5, where ψ is the optimal spectral denoiser.

Algorithm 5 Matrix denoising with missing data

1: Input: Samples y; sampling operator F ; sampling matrices P, Q
2: Normalize, backproject observations Ỹ = P−1/2F∗(y)Q−1/2

3: ψ(Ỹ) is output of Algorithm 1 with matrix Ỹ, weights P−1/2 and Q−1/2

AMSE is estimated mean squared error

4: X̂ = P−1/2ψ(Ỹ)Q−1/2
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Figure 3: Localized denoising versus singular value shrinkage for the checkerboard matrix, shown in Figure
4; see Section 7.1 for simulation details. The x-axis is parametrized by the fraction of signal energy contained
in the light squares. Localized denoising outperforms shrinkage when the fraction is large enough that the
rank 2 block structure is detectable.

7 Numerical results

In this section, we report on numerical simulations demonstrating the performance of the algorithms from
this paper.
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Figure 4: Localized denoising versus singular value shrinkage; see Section 7.1 for simulation details. Upper
left: the rank 2 signal matrix; the fraction of signal energy in the light squares is f = 0.7. Upper right:
the observed noisy matrix. Lower left: the matrix denoised by optimal singular value shrinkage [20, 51].
Lower right: the matrix denoised by localized denoising (Algorithm 2). The relative error of singular value
shrinkage is approximately 1.92 × 10−1, whereas the relative error of localized denoising is approximately
1.40× 10−1.

7.1 Localized denoising

We evaluate the performance of localized denoising (Algorithm 2). We generate a “checkerboard” signal
matrix X of size p-by-n, p = n = 800, shown in the top left panel of Figure 4. Each light square has the
same value, as does each dark square. For a specified number f ∈ [1/2, 1], the total energy of the light
squares is f × 100% of the total energy of X. The Frobenius norm of X is normalized to be 1. Whenever
f > 1/2, X is rank 2; when f = 1/2, X has constant value and is rank 1. We add a matrix G of Gaussian
noise, whose entries have standard deviation 1/(10

√
n).

We estimate X from Y using two methods: singular value shrinkage [20, 51] and localized denoising.
Localized denoising is applied with row projection matrices Ωi, i = 1, 2, 3, 4, that project onto equispaced
blocks of rows, and column projection matrices Πi, i = 1, 2, 3, 4, that project onto equispaced blocks of
columns. For each f , the experiment is repeated 50 times; the log2 mean errors are plotted in Figure 3.

As f increases, localized denoising outperforms singular value shrinkage more dramatically. This is
because localized denoising uses a priori knowledge of X’s block structure, which becomes more pronounced
as f grows. Figure 4 shows an example of images of the true matrix X, the noisy matrix Y, and the two
denoised matrices, when f = 0.7. In this example, the relative error ‖X̂loc−X‖F/‖X‖F of localized denoising
is approximately 1.40× 10−1, whereas the shrinkage error is 1.92× 10−1.

Remark 21. The error curves in Figure 3 both appear nearly identical when f . 0.6, after which localized
denoising begins to outperform singular value shrinkage. This is because for small values of f the smallest
singular value of X is not detectable, and so both methods treat the matrix as a constant, rank 1 matrix.
Though not apparent from the plot, when f ≤ 0.55 the performance of singular value shrinkage is slightly
better than localized denoising, due to finite sample fluctuations (see Remark 14). For example, when
f = 0.51, the mean relative error of localized denoising is approximately 1.4118 × 10−1, while that of
shrinkage is approximately 1.4112× 10−1.
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Figure 5: Submatrix denoising; see Section 7.2 for simulation details. The left and right singular vectors
of X each contain

√
f × 100% of their energy in the submatrix coordinates, and the x-axis is parametrized

by the fraction of energy f = ‖X0‖2F/‖|X‖2F in the submatrix X0. The log2 relative error of singular value
shrinkage on the submatrix plateaus to 0 when f is small, since the signal in the submatrix alone is too
weak to be detected. Singular value shrinkage on the submatrix outperforms spectral denoising (Algorithm
3) when f is very large, but is otherwise inferior; this is the behavior expected from Proposition 6.1.

7.2 Submatrix denoising

We evaluate the performance of spectral denoising for estimating a submatrix X0 contained within a larger
matrix X (Algorithm 3). We generate a rank 1 signal matrix X of size p-by-n, p = 500, n = 1000, with
singular values γ1/4 + 1/2, where γ = 1/4. For a specified f ∈ (0, 1), the left singular vector u = u1 of X is
piecewise constant on the two sets of coordinates {1, . . . , p/2} and {p/2 + 1, . . . , p}; the values are such that
the energy of u on coordinates {1, . . . , p/2} is equal to

√
f . Similarly, the right singular vector v = v1 of X

is piecewise constant on the two sets of coordinates {1, . . . , n/2} and {n/2 + 1, . . . , n}, with values such that
the energy of v on {1, . . . , n/2} is also equal to

√
f . Denoting by X0 the p/2-by-n/2 upper-left submatrix

of X, f = ‖X0‖2F/‖X‖2F.
The noise matrix has Gaussian entries with variance 1/n. We denoise the submatrix X0 using Algorithm

3; optimal singular value shrinkage [20, 51] on X0 alone (“submatrix shrinkage”); and optimal singular value
shrinkage on X followed by projection onto the rows and columns of X0 (“global shrinkage”). For each f ,
the experiment is repeated for 50 draws. Figure 5 plots the log2 mean relative errors.

Optimal spectral denoising outperforms global shrinkage for all f , since singular value shrinkage is an
instance of spectral denoising and hence will not do better than the optimal spectral denoiser. Optimal
spectral denoising and global shrinkage perform nearly identically when f ≈ 1/4, since in this regime the
singular vectors of X are constant, and hence generic with respect to the weight matrices.

For small f , the relative error of global shrinkage exceeds 1, since the submatrix’s energy is very small
compared to the rest of the matrix. By contrast, optimal spectral denoising with weights Ω and Π highlights
the rows and columns in X0.

Optimal spectral denoising outperforms submatrix shrinkage except when f is close to 1. This is consistent
with Proposition 6.1, which states that unless the energy of X’s singular vectors are highly concentrated
in the rows and columns of X0, optimal spectral denoising will outperform singular value shrinkage on the
submatrix.

Finally, optimal singular value shrinkage on the submatrix has relative error 1 when f is small. This is
because singular value shrinkage on the submatrix only computes the SVD of Y0, not Y; when the energy
in the submatrix X0 is too weak (i.e. f is too small), no signal will be detected in the submatrix Y0 alone.
By contrast, the singular values of the full matrix Y always reveal the presence of signal.
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Figure 6: Denoising a matrix with doubly-heteroscedastic noise; see Section 7.3 for simulation details. The
x-axis is parameterized by log2 of the condition number κ of S and T. Proposition 6.3 suggests that noise
whitening will enhance performance, and increasingly so as the condition number κ grows, as is the case
comparing spectral denoising with oracle whitening (Algorithm 4) and OptShrink [43]. Interestingly, this
appears to still hold even when S and T are estimated using the procedure from Proposition 6.2.

7.3 Doubly-heteroscedastic noise

We examine the performance of Algorithm 4. We generate a p-by-n signal matrix X, p = 1000, n = 2000,
of rank r = 5, with singular values t∗ + 1/2 + k, k = 0, 1, 2, 3, 4, where t∗ is the smallest singular detectable
value of X, evaluated using the method in [39]. Both the left and right singular vectors of X are random
orthonormal vectors in Rp and Rn, respectively.

For specified κ ≥ 1, we generate row and column diagonal covariance matrices S and T, each with
eigenvalues linearly spaced between 1/κ and 1. The noise matrix is S1/2GT1/2, where G has iid Gaussian
entries with variance 1/n. We apply three denoising schemes: Algorithm 4 with the true S and T; Algorithm
4 with S and T estimated using the method described in Proposition 6.2; and OptShrink [43]. The experiment
is repeated 50 times for each value of κ.

Figure 6 shows the log2 mean relative errors of each method as a function of log2(κ). For this model of S
and T, the condition number κ is an increasing function of the parameter τ from Section 6.2.2. Consequently,
Proposition 6.3 suggests that whitening will improve the matrix SNR, and that the improvement should
increase as κ grows. This is precisely what Figure 6 demonstrates; optimal spectral denoising with whitening
by S and T does indeed outperform OptShrink, and the performance gap grows with κ. Using the estimated
covariances, the performance is degraded but still outperforms OptShrink when κ is large.

7.4 Missing data

We test spectral denoising for missing data (Algorithm 5) by comparing it to nuclear-norm regularized
least-squares [11], which estimates X by:

X̂nuc = argmin
X̂∈Rp×n

{
1

2
‖F(X̂)− y‖2 + θ‖P1/2X̂Q1/2‖∗

}
. (33)

Here, ‖ · ‖∗ denotes the nuclear norm; F : Rp×n → RM is the projection operator onto the M observed
samples; and P and Q are the diagonal matrices of sampling probabilities for rows and columns, respectively.
We weight the nuclear norm by the square root of the sampling probabilities, as suggested in [14]. Following

[11], we choose the parameter θ so that when y is pure noise, X̂nuc is set to zero. It follows from the KKT
conditions [10] that this is equivalent to θ = ‖P−1/2F∗(y)Q−1/2‖∗, which is approximated by 1 +

√
γ. We

solve (33) using the algorithm in [26].
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Figure 7: Denoising with missing data; see Section 7.4 for simulation details. The x-axis is parameterized
by the log2 noise level. The log2 relative errors of both methods plateau to 0 at large σ, because the signal is
undetectable in this regime. Spectral denoising for missing data (Algorithm 5) does better when σ is large,
but underperforms when σ is small.

We generate a rank r = 5 signal matrix X of size p-by-n, p = 200, n = 400, with singular values√√
γ + 200k, k = 1, . . . , 5, γ = 1/2. Both the left and right singular vectors of X are uniformly random. We

add to X a Gaussian noise matrix G, where each entry has variance σ2/n for a specified value of σ. X+G is
then subsampled with row and column sampling probabilities each equispaced between 0.3 and 0.7. For each
value of σ, the experiment is repeated 50 times. Figure 7 displays the log2 mean relative errors. When σ is
large, spectral denoising is superior, whereas in the small σ regime nuclear-norm regularized least-squares is
better.

7.5 Non-Gaussian noise

The optimal spectral denoiser requires estimation of the weighted inner product matrices D, D̃, Cω and C̃ω.
The formulas for the entries of these matrices provided by Theorem 3.2 assumes that the noise matrix G is
Gaussian. However, it is of interest whether the same formulas may be applied to non-Gaussian noise. To
partially address this question, we compare the finite sample accuracy of the formulas in Theorem 3.2 for
different noise distributions.

For each n, we generate Y = X + G of size p-by-n, where p = 2n. The signal has rank r = 2, with
singular values γ1/4 + 2 and γ1/4 + 3; u1 is uniformly equal to 1/

√
p, and u2 is 1/

√
p on entries 1, . . . , p/2,

and −1/
√
p on entries p/2 + 1, . . . , p. v1 and v2 are generated similarly, with n in place of p. The noise

matrix has iid entries of variance 1/n, drawn from a specified distribution: Gaussian, Rademacher, t10 or
t3, where the t distributions are normalized to have variance 1/n.

The p-by-p weight matrix Ω is diagonal with diagonal entries 1, . . . , 3p/4 equal to 1, and the remaining
entries 0. We evaluate the true matrix E and use formulas (16) and (18) to predict D and Cω. For each

draw, we compute the actual inner product matrices D̂ and Ĉω using the left singular vectors û1 and û2

of Y. Due to the ambiguity in signs, we make all entries of the matrices positive. We then compute the
relative errors ‖D̂−D‖F/‖D‖F and ‖Ĉω −Cω‖F/‖Cω‖F.

For each noise type and each value of n = 500k, k = 1, 2, 4, 8, 16, the experiment is repeated 1000 times.
The average and maximum relative errors are recorded in Table 2 for Cω, and in Table 3 for D. Both
the average and maximum errors for Gaussian noise very nearly match those for the Rademacher and t10

distributions. However, the errors for the heavier tailed t3 distribution are much larger, indicating that the
theory breaks down for this noise model. The errors for the Gaussian, Rademacher, and t10 distributions
appear to decay approximately like O(n−1/2); this is the rate we expect from [6] and Theorem 2.19 in [8].
The errors for the t3 distribution do not exhibit such decay with increasing n, indicating that the model
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Mean relative error, Cω

n Gaussian Rademacher t, df=10 t, df=3
500 2.956e-02 3.057e-02 2.928e-02 3.284e-01
1000 2.050e-02 2.127e-02 2.042e-02 4.208e-01
2000 1.459e-02 1.514e-02 1.466e-02 5.280e-01
4000 1.033e-02 1.019e-02 1.030e-02 6.535e-01
8000 7.459e-03 7.693e-03 7.495e-03 7.640e-01

Max relative error, Cω

n Gaussian Rademacher t, df=10 t, df=3
500 1.117e-01 1.126e-01 1.241e-01 9.702e-01
1000 7.895e-02 8.411e-02 7.878e-02 9.837e-01
2000 6.520e-02 5.106e-02 6.907e-02 9.953e-01
4000 4.490e-02 4.056e-02 4.638e-02 9.950e-01
8000 3.035e-02 3.172e-02 3.174e-02 9.951e-01

Table 2: Average and maximum relative errors ‖Ĉω −Cω‖F/‖Cω‖F; see Section 7.5 for simulation details.
For Gaussian, Rademacher, and t10 distributions, the average errors decay approximately like O(n−1/2).
The errors for the t3 distribution do not decay, indicating poor model fit.

Mean relative error, D
n Gaussian Rademacher t, df=10 t, df=3
500 1.991e-02 2.039e-02 1.975e-02 1.757e-01
1000 1.414e-02 1.437e-02 1.412e-02 2.219e-01
2000 9.917e-03 1.015e-02 1.001e-02 2.788e-01
4000 7.027e-03 6.875e-03 7.005e-03 3.455e-01
8000 5.040e-03 5.224e-03 5.087e-03 4.141e-01

Max relative error, D
n Gaussian Rademacher t, df=10 t, df=3
500 6.954e-02 7.491e-02 7.354e-02 9.663e-01
1000 5.044e-02 4.533e-02 5.505e-02 9.238e-01
2000 3.772e-02 3.578e-02 4.101e-02 9.529e-01
4000 2.468e-02 2.564e-02 2.712e-02 9.741e-01
8000 1.584e-02 1.836e-02 1.668e-02 9.779e-01

Table 3: Average and maximum relative errors ‖D̂−D‖F/‖D‖F; see Section 7.5 for simulation details. For
Gaussian, Rademacher, and t10 distributions, the average errors decay approximately like O(n−1/2). The
errors for the t3 distribution do not decay, indicating poor model fit.
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Mean relative error
Noise type Oracle K-N Naive
Gaussian 4.010e-01 4.010e-01 4.012e-01
Rademacher 4.012e-01 4.012e-01 4.013e-01
t, df=10 4.022e-01 4.022e-01 4.024e-01
t, df=5 4.047e-01 4.086e-01 4.099e-01
t, df=4 4.337e-01 4.484e-01 4.539e-01
t, df=3 6.606e-01 7.459e-01 7.611e-01
t, df=2.5 1.026e+00 1.287e+00 1.300e+00

Max relative error
Noise type Oracle K-N Naive
Gaussian 4.420e-01 4.420e-01 4.421e-01
Rademacher 4.459e-01 4.459e-01 4.459e-01
t, df=10 4.349e-01 4.349e-01 4.349e-01
t, df=5 1.280e+00 1.262e+00 1.262e+00
t, df=4 2.149e+00 2.113e+00 2.113e+00
t, df=3 4.922e+00 4.940e+00 4.943e+00
t, df=2.5 6.693e+00 6.703e+00 6.706e+00

Table 4: Average and maximum relative errors of estimation; see Section 7.6 for simulation details. The
naive rank estimate r̂naive from (34) tends to overestimate the true rank r = 2, whereas the estimate r̂KN

of Kritchman and Nadler [36] is more accurate. However, the difference between the errors in the resulting
estimates of X is not large. Both methods perform poorly for heavy tailed distributions.

Mean rank
Noise type Oracle K-N Naive
Gaussian 2.000e+00 2.000e+00 2.084e+00
Rademacher 2.000e+00 2.000e+00 2.037e+00
t, df=10 2.000e+00 2.000e+00 2.094e+00
t, df=5 2.000e+00 2.128e+00 2.443e+00
t, df=4 2.000e+00 2.858e+00 3.577e+00
t, df=3 2.000e+00 7.875e+00 8.967e+00
t, df=2.5 2.000e+00 1.643e+01 1.716e+01

Max rank
Noise type Oracle K-N Naive
Gaussian 2 2 3
Rademacher 2 2 3
t, df=10 2 2 3
t, df=5 2 4 5
t, df=4 2 7 8
t, df=3 2 16 17
t, df=2.5 2 26 26

Table 5: Average and maximum rank estimates; see Section 7.6 for simulation details. The naive rank
estimate r̂naive from (34) tends to overestimate the true rank r = 2, whereas the estimate r̂KN of Kritchman
and Nadler [36] is more accurate. However, the difference between the errors in the resulting estimates of X
is not large. Both methods perform poorly for heavy tailed distributions.
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does not match.

7.6 Rank estimation

In this section, we explore estimation of the rank r of X from the observed matrix Y, a topic that has
received considerable attention [36, 37, 17, 15, 46, 45]. The naive estimator r̂naive is defined by

r̂naive = #{k : λk > 1 +
√
γ}; (34)

this simply counts the number of Y’s singular values exceeding 1 +
√
γ, the asymptotically largest singular

value of the noise matrix G. It is known that r̂naive may overestimate the rank; see, e.g., [28]. The rank
estimator of Kritchman and Nadler from [36], denoted by r̂KN, is designed to prevent attributing noisy
singular values to signal. We compare the performance of r̂naive and r̂KN for different noise distributions in
terms of the accuracy of estimating r and the effect on the denoising error.

For p = 300 and n = 600, we generate a p-by-n signal matrix X with rank r = 2 and singular values
γ1/4 + 1 and γ1/4 + 2. The left singular vector u1 is uniformly equal to 1/

√
p, and u2 is 1/

√
p on entries

1, . . . , p/2, and −1/
√
p on entries p/2 + 1, . . . , p. The right singular vectors v1 and v2 are generated the

same way, with n in place of p. The noise matrix G had iid entries of variance 1/n, drawn from one a
specified distribution, namely: Gaussian, Rademacher, or the t distributions with 10, 5, 4, 3 and 2.5 degrees
of freedom, where the t distributions are normalized to have variance 1/n. The p-by-p weight matrix Ω
is diagonal with diagonal entries linearly spaced between 1/p and 1. The n-by-n weight matrix Π is also
diagonal, with diagonal entries linearly spaced between 1/p and 1/γ. In each run, we apply Algorithm 1
with the oracle r = 2, the naive r̂naive from (34), and r̂KN from [36], with 0.1 confidence level1. For each
noise distribution, the experiment is repeated 1000 times. In Tables 4 and 5 we record the relative errors
‖Ω(X̂−X)ΠT ‖F/‖ΩXΠT ‖F and the estimated ranks.

For the Gaussian, Rademacher, and t10 distributions, the Kritchman-Nadler estimate r̂KN is typically
closer to the true rank, r = 2, than is the naive estimate r̂naive. However, the average and maximum errors
are close regardless of the rank estimator used, since even when r̂naive = 3, the third singular value of Y is
so close to the detection edge 1 +

√
γ that the estimates of the cosines c3 and c̃3 are nearly 0. With the t5

distribution, both r̂naive and r̂KN are more likely to overestimate the true rank. While the average errors are
close to those for the Gaussian, Rademacher, and t10 distributions, the maximum errors are much larger,
indicating that while this noise distribution’s “typical” behavior may be close to the thinner tailed ones, a
small number of extreme draws of G can result in very poor performance. For the t distributions with 4, 3,
and 2.5 degrees of freedom, both r̂naive and r̂KN drastically overestimate the rank, and the resulting relative
errors are enormous.

8 Conclusion

This paper has introduced a family of spectral denoisers for low-rank matrix estimation, which generalizes
singular value shrinkage. We have derived optimal spectral denoisers for weighted loss functions, and dis-
cussed applications. By judiciously combining these denoisers for different weights we contructed the method
of localized denoising, which outperforms singular value shrinkage under heterogeneity. While this paper has
focused on theoretical and algorithmic development, in future work we plan to apply the methods to prob-
lems where related but suboptimal methods have previously been employed. This includes the problems of
denoising and deconvolution of images from cryoelectron microscopy [9]; 3-D reconstruction of heterogeneous
molecules from noisy images [1]; and denoising XFEL images [42, 59].
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A Proof of Theorem 3.2

The proof of Theorem 3.2 is similar to the analysis found in [40], in that it rests on the same decomposition
of the empirical singular vectors ûj and v̂j into the signal and residual components. If a and b are vectors
of the same dimension, we will write a ∼ b as a short-hand for ‖a−b‖ → 0 almost surely as p, n→∞. The
statements are symmetric in the left and right singular vectors, so for compactness we will only prove them
for the left ones. The proofs for the other side are identical.

Because the noise matrix G has an isotropic distribution, we can write:

ûj ∼ cjuj + sjũj , (35)

where ũj is a unit vector that is uniformly random over the sphere in the subspace orthogonal to u1, . . . ,ur
(see [47]). Because ũj is uniformly random, it is asymptotically orthogonal to any independent unit vector
w; that is,

ũTj w ∼ 0. (36)

Furthermore, ũj satisfies the normalized trace formula, namely if A is any matrix with bounded operator
norm, then

ũTj Aũj ∼
1

p
tr(A). (37)

We refer the reader to [7, 21, 57, 49] for details. We will use (36) and (37) repeatedly. Furthermore, when
j 6= k it follows from Lemma A.2 in [40] that

ũTj Aũk ∼ 0. (38)

Applying Ω to each side of (35), we have:

Ωûj ∼ cjΩuj + sjΩũj . (39)

The proofs of the identities in Theorem 3.2 now follow by manipulating the asymptotic equation (39) ap-
propriately, in conjunction with (36), (37) and (38).

We first show the formulas for cωjk. We take inner products of each side of (39) with Ωuk:

cωjk ∼ 〈Ωûj ,Ωuk〉 ∼ cj〈Ωuj ,Ωuk〉+ sj〈Ωũj ,Ωuk〉 ∼ cj〈Ωuj ,Ωuk〉 ∼ cjejk, (40)

where we have used (36).
To derive the formula for dj , we take the squared norm of each side of (39):

dj ∼ ‖Ωûj‖2 ∼ c2j‖Ωuj‖2 + s2
j‖Ωũj‖2 ∼ c2jαj + s2

jµ. (41)

The first asymptotic equivalence follows from (36), and the second from (37).
Finally, we derive the formula for djk, j 6= k. From (39), we have

〈Ωûj ,Ωûk〉 ∼ cjck〈Ωuj ,Ωuk〉+ sjsk〈Ωũj ,Ωũk〉+ sjck〈Ωũj ,Ωuk〉+ cjsk〈Ωuj ,Ωũk〉. (42)

From (36) and (38), the terms involving ũj and ũk vanish, and we are left with

djk ∼ 〈Ωûj ,Ωûk〉 ∼ cjck〈Ωuj ,Ωuk〉 ∼ cjckejk. (43)

This completes the proof of Theorem 3.2.
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B Proof of Theorem 4.1

The target matrix X may be written

X =
r∑

k=1

tkukv
T
k = Udiag(t)VT , (44)

and our estimate X̂ is of the form

X̂ = ÛB̂V̂T , (45)

where U = [u1, . . . ,ur], V = [v1, . . . ,vr], Û = [û1, . . . , ûr], V̂ = [v̂1, . . . , v̂r], and t = (t1, . . . , tr)
T .

Define W = ΩU, Z = ΠV, Ŵ = ΩÛ, and Ẑ = ΠV̂. We may then write the weighted loss as follows:

L(X̂,X) = ‖Ω(X̂−X)ΠT ‖2F = ‖ΩX̂ΠT − ΩXΠT ‖2F = ‖ŴB̂ẐT −Wdiag(t)ZT ‖2F, (46)

which is the unweighted Frobenius loss between ŴB̂ẐT and Wdiag(t)ZT . Continuing, we have:

L(X̂,X) = ‖Wdiag(t)ZT − ŴB̂ẐT ‖2F
= ‖Wdiag(t)ZT ‖2F + ‖ŴB̂ẐT ‖2F − 2〈Wdiag(t)ZT ,ŴB̂ẐT 〉F
= 〈WTWdiag(t)ZTZ, diag(t)〉F + 〈ŴTŴB̂ẐT Ẑ, B̂〉F − 2〈ŴTWdiag(t)ZT Ẑ, B̂〉F
∼ 〈Ediag(t)Ẽ, diag(t)〉F + 〈DB̂D̃, B̂〉F − 2〈Cdiag(t)C̃T , B̂〉F. (47)

Defining the operator T by T (B̂) = DB̂D̃, the pseudoinverse of T is given by T +(B) = D+BD̃+.

Consequently, the choice of B̂ that minimizes L(X̂,X) is given by:

B̂ = D+Cdiag(t)C̃T D̃+. (48)

The error may then be evaluated by substituting this expression for B̂ into (47), completing the proof.

C Proof of Theorem 4.2

Under weighted orthogonality, ejk = ẽjk = 0 whenever j 6= k, and so djk = d̃jk = cωjk = c̃ωjk = 0 when j 6= k

as well. Consequently, the matrices E, Ẽ, D, D̃, C, and C̃ are diagonal. The optimal B̂ is given by:

B̂ = D+Cdiag(t)C̃D̃+, (49)

which is also diagonal, with diagonal entries

t̂k =
tkc

ω
k c̃
ω
k

dkd̃k
=

tkckαk c̃kβk
(c2kαk + s2

kµ)(c̃2kβk + s̃2
kν)

= tkck c̃k
αkβk

(c2kαk + s2
kµ)(c̃2kβk + s̃2

kν)
, (50)

which is the desired expression.

D Proof of Proposition 4.3

Suppose a coordinate has signal strength t = tk (we drop the subscript as we are only considering one
component). We may assume without loss of generality (and by rescaling α and β) that µ = ν = 1.
Consequently, the optimal singular value is equal to:

t̂ = tcc̃ · α

c2α+ s2
· β

c̃2β + s̃2
. (51)
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By taking α and β sufficiently large, this value can be made arbitrarily close to

t

cc̃
=
t
√

(1 + γ/t2)(1 + 1/t2)

1− γ/t4
=

λ

1− γ/t4
> λ. (52)

That is, the optimal singular value t̂ will be greater than the observed singular value λ in this parameter
regime.

On the other hand, if β ≤ 1 = ν, we have:

t̂

λ
=

1

λ
tcc̃ · α

αc2 + s2
· β

βc̃2 + s̃2
. ≤ 1

λ
t
c̃

c
=

t√
(t2 + 1)(t2 + γ)

t

√
t2 + γ

t2 + 1
=

t2

t2 + 1
≤ 1, (53)

which shows that t̂ ≤ λ. A nearly identical proof works if α ≤ µ. This completes the proof.

E Proof of Proposition 4.4

Without loss of generality, we will assume µ = ν = 1. We consider the functions c(t) =
√

(1− γ/t4)/(1 + γ/t2)

and c̃(t) =
√

(1− γ/t4)/(1 + 1/t2). Define the functions ϕ(t) and ψ(t) by

ϕ(t) =
αc(t)

αc(t)2 + 1− c(t)2
(54)

and

ψ(t) =
βc̃(t)

βc̃(t)2 + 1− c̃(t)2
. (55)

Then we may write the optimal singular value t̂ as a function f(t) as follows:

f(t) = tϕ(t)ψ(t). (56)

Let us assume that α ≤ 1; the proof for β ≤ 1 will be nearly identical. We wish to show that f ′(t) ≥ 0, for
t > γ1/4. We have

f ′(t)

f(t)
=
ϕ′(t)

ϕ(t)
+
ψ′(t)

ψ(t)
+

1

t
, (57)

and since f(t) > 0, we must show that the right side is positive. It is straightforward to verify that

ϕ′(t) =
αc′(t)[1− (α− 1)c(t)2]

[1 + (α− 1)c(t)2]2
(58)

from which it follows that

ϕ′(t)

ϕ(t)
=
c′(t)

c(t)

1− (α− 1)c(t)2

1 + (α− 1)c(t)2
≥ c′(t)

c(t)
. (59)

Similarly, we can show

ψ′(t)

ψ(t)
=
c̃′(t)

c̃(t)

1− (β − 1)c̃(t)2

1 + (β − 1)c̃(t)2
≥ − c̃

′(t)

c̃(t)
. (60)

Consequently, it is enough to show

c′(t)

c(t)
− c̃′(t)

c̃(t)
+

1

t
≥ 0. (61)
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Direction computation shows

c′(t)

c(t)
= γ

t4 + 2t2 + γ

t(t2 + γ)(t4 − γ)
(62)

and

c̃′(t)

c̃(t)
=

t4 + 2γt2 + γ

t(t2 + 1)(t4 − γ)
. (63)

Substituting (62) and (63) into the left side of (61) and multiplying by t(t2 + γ)(t2 + 1), we get:

t(t2 + γ)(t2 + 1)

(
c′(t)

c(t)
− c̃′(t)

c̃(t)
+

1

t

)
= t(t2 + γ)(t2 + 1)

(
γ

t4 + 2t2 + γ

t(t2 + γ)(t4 − γ)
− t4 + 2γt2 + γ

t(t2 + 1)(t4 − γ)
+

1

t

)
= t4 + 2γt2 + γ > 0, (64)

which is the desired result.

F Proof of Theorem 5.1

We denote by t̂shr
1 , . . . , t̂shr

r the singular values of X̂shr, and t̂shr = (t̂shr
1 , . . . , t̂shr

r )T . We may then write

X̂shr = Ûdiag(t̂shr)V̂T . (65)

This is a spectral denoiser (in the set S), and hence its weighted loss with weights Ωi and Πj cannot be less

than that of the optimal spectral denoiser X̂loc
(i,j). That is,

‖Ωi(X̂loc
(i,j) −X)ΠT

j ‖2F ≤ ‖Ωi(X̂shr −X)ΠT
j ‖2F (66)

Because the Ωi and Πj are pairwise orthogonal projections which sum to the identity, the total Frobenius
loss can be decomposed:

‖X̂loc −X‖2F =
I∑
i=1

J∑
j=1

‖Ωi(X̂loc −X)ΠT
j ‖2F =

I∑
i=1

J∑
j=1

‖Ωi(X̂loc
(i,j) −X)ΠT

j ‖2F

≤
I∑
i=1

J∑
j=1

‖Ωi(X̂shr −X)ΠT
j ‖2F = ‖X̂shr −X‖2F, (67)

which is the desired inequality.

G Proof of Theorem 5.2

For 1 ≤ k ≤ r, 1 ≤ i ≤ I, and 1 ≤ j ≤ J , let α
(i)
k = ‖Ωiuk‖2, µ(i) = tr(Ωi)/p, β

(j)
k = ‖Πjvk‖2, and

ν(j) = tr(Πj)/n. Then

I∑
i=1

α
(i)
k =

I∑
i=1

µ(i) =

J∑
j=1

β
(j)
k =

J∑
j=1

ν(j) = 1. (68)

Let X̂dd
(i,j) be the optimal diagonal denoiser with weights Ωi and Πj . Because of the weighted orthogonality

condition, Theorem 4.2 states that the AMSE for X̂dd
(i,j) is

‖Ωi(X̂dd
(i,j) −X)ΠT

j ‖2F =
r∑

k=1

t2kα
(i)
k β

(j)
k

(
1− c2k c̃2k ·

α
(i)
k

c2kα
(i)
k + s2

kµ
(i)
·

β
(j)
k

c̃2kβ
(j)
k + s̃2

kν
(j)

)
. (69)
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Since X̂loc
(i,j) minimizes the weighted error with weights Ωi and Πj , we have:

‖X̂loc −X‖2F =
I∑
i=1

J∑
j=1

‖Ωi(X̂loc −X)ΠT
j ‖2F =

I∑
i=1

J∑
j=1

‖Ωi(X̂loc
(i,j) −X)ΠT

j ‖2F

≤
I∑
i=1

J∑
j=1

‖Ωi(X̂dd
(i,j) −X)ΠT

j ‖2F

=
I∑
i=1

J∑
j=1

r∑
k=1

t2kα
(i)
k β

(j)
k

(
1− c2k c̃2k ·

α
(i)
k

c2kα
(i)
k + s2

kµ
(i)
·

β
(j)
k

c̃2kβ
(j)
k + s̃2

kν
(j)

)
.

=
r∑

k=1

t2k

1− c2k c̃2k
I∑
i=1

J∑
j=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)
·

(β
(j)
k )2

c̃2kβ
(j)
k + s̃2

kν
(j)

 . (70)

On the other hand, the error obtained by X̂shr is equal to

‖X̂shr −X‖2F =
r∑

k=1

t2k(1− c2k c̃2k). (71)

Comparing (70) and (71), the result will follow if we can show that for each 1 ≤ k ≤ r,

I∑
i=1

J∑
j=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)
·

(β
(j)
k )2

c̃2kβ
(j)
k + s̃2

kν
(j)
≥ 1, (72)

where the inequality is strict so long as one of uk or vk is not generic with respect to some Ωi or Πj ; or

equivalently, either α
(i)
k 6= µ(i) for some i, or β

(j)
k 6= ν(j) for some j. Because

I∑
i=1

J∑
j=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)
·

(β
(j)
k )2

c̃2kβ
(j)
k + s̃2

kν
(j)

=

(
I∑
i=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)

)
·

 J∑
j=1

·
(β

(j)
k )2

c̃2kβ
(j)
k + s̃2

kν
(j)

 , (73)

it is enough to show that

I∑
i=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)
≥ 1, (74)

with the inequality being strict so long as α
(i)
k 6= µ(i) for some i.

For each 1 ≤ i ≤ I, let ri = α
(i)
k /µ(i). Then

I∑
i=1

(α
(i)
k )2

c2kα
(i)
k + s2

kµ
(i)

=
I∑
i=1

µ(i) r2
i

c2kri + s2
k

. (75)

The function F (r) = r2/(c2kr + s2
k) is convex. Since

∑I
i=1 µ

(i) = 1, Jensen’s inequality implies

I∑
i=1

µ(i) r2
i

c2kri + s2
k

=
I∑
i=1

µ(i)F (ri) ≥ F

(
I∑
i=1

µ(i)ri

)
= F

(
I∑
i=1

α
(i)
k

)
= F (1) = 1, (76)

which is the desired inequality. The inequality will be strict so long as ri = α
(i)
k /µ(i) is not constantly equal

to 1 over i, or equivalently if α
(i)
k 6= µ(i) for some i. This is the desired result.
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H Proof of Proposition 6.1

Since Y0 = ΩYΠT has only n0 columns, to ensure that the scaling of the noise matches that of the standard
spiked model, we must multiply it by

√
n/n0 = 1/

√
ν. We define Ỹ0 = Y0/

√
ν and X̃0 = X0/

√
ν. Then

Ỹ0 follows a standard spiked model with signal matrix X̃0.
For 1 ≤ k ≤ r, we let uk and vk denote the kth singular vectors of X; ûk and v̂k denote the kth

singular vectors of Y; u0
k and v0

k denote the kth singular vectors of X0 (and X̃0); and û0
k and v̂0

k denote

the kth singular vectors of Y0 (and Ỹ0). We let t01, . . . , t
0
r denote the singular values of X̃0. We also let

γ0 = p0/n0 = (µ/ν)γ be the aspect ratio of the submatrix.
If t1, . . . , tr are the singular values of the full p-by-n signal matrix X, then we may write the rescaled

submatrix X̃0 as

X̃0 = ΩXΠT /
√
ν =

1√
ν

r∑
k=1

tkΩukv
T
k ΠT =

r∑
k=1

tk

√
αkβk
ν

Ωuk
‖Ωuk‖

(
Πvk
‖Πvk‖

)T
. (77)

Because the Ωuk and Πvk are assumed to by pairwise orthogonal, (77) is the SVD of X̃0. Consequently:

u0
k =

Ωuk
‖Ωuk‖

, v0
k =

Πvk
‖Πvk‖

, t0k = tk

√
αkβk
ν

. (78)

We define the cosines

c0k = 〈û0
k,u

0
k〉, c̃0k = 〈v̂0

k,v
0
k〉. (79)

Following Remark 7, we may assume that the singular vectors have been chosen so that both c0k and c̃0k are

non-negative. Then the AMSE obtained by first applying optimal singular value shrinkage to Ỹ0, and then
rescaling by ν, is

‖X̂shr
0 −X0‖2F ∼ ν

r∑
k=1

(t0k)2(1− (c0k c̃
0
k)2) ∼

r∑
k=1

t2kαkβk(1− (c0k c̃
0
k)2) (80)

We now turn to the weighted estimator X̂0 = ΩX̂ΠT . From the weighted orthogonality condition,
X̂ = X̂dd, the optimal diagonal denoiser. From Theorem 4.2, the AMSE of X̂0 may be written

‖X̂0 −X0‖2F = ‖Ω(X̂shr −X)‖2F ∼
r∑

k=1

t2kαkβk

(
1− c2k c̃2k ·

αk
c2kαk + s2

kµ
· βk
c̃2kβk + s̃2

kν

)
. (81)

Comparing (80) and (81), the result will be proven if we can show

(c0k)2 < c2k ·
αk

c2kαk + s2
kµ
, 1 ≤ k ≤ r, (82)

and

(c̃0k)2 < c̃2k ·
βk

c̃2kβk + s̃2
kν
, 1 ≤ k ≤ r. (83)

By the symmetry in the problem, it is enough to prove (82). Because we are working with each singular
component separately, we will drop the subscript k. From Proposition 3.1, the formula for (c0)2 is given by

(c0)2 =

{
1−γ0/(t0)4

1+γ0/(t0)2 , if t0 > γ
1/4
0 ,

0, if t0 ≤ γ1/4
0 .

(84)

If t0 ≤ γ
1/4
0 , then (82) is trivial. Consequently, we assume t0 > γ

1/4
0 . Because t0 = t

√
αβ/ν and

γ0 = γµ/ν, this is equivalent to the condition

t4 > γ
µν

α2β2
. (85)
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Defining R = γ/t4, we may consequently assume that

R <
α2β2

µν
≤ 1. (86)

We may rewrite (c0)2 in terms of R as follows:

(c0)2 =
α2β2 −Rµν

α2β2 + t2αβµR
. (87)

From the formula

c2 =
1− γ/t4

1 + γ/t2
, (88)

we may rewrite the right side of (82) as

c2α

c2α+ s2µ
=

α2β2 −Rµν +R(µν − α2β2)

α2β2 + t2αβµR + αβR[t2µβ + µβ − αβ − t2µ]
. (89)

Comparing (87) to (89), the inequality (82) is equivalent to showing

(α2β2 −Rµν)[t2µβ + µβ − αβ − t2µ] < (µν − α2β2)(αβ + t2µR). (90)

Because each side is affine linear in R, and 0 ≤ R ≤ α2β2/(µν), it is enough to verify (90) at R = 0
and R = α2β2/(µν). When R = α2β2/(µν), the left side of (90) is 0, whereas the right side is non-negative
because α <

√
µ and β <

√
ν, verifying the inequality in this case. When R = 0, the difference between the

right side and left side of (90), divided by αβµ, is equal to

ν − α2β2/µ− αβ[t2β + β − αβ/µ− t2] = ν − αβ[t2β + β − t2]

= ν − αβ2t2 − αβ2 + αβt2

= t2αβ(1− β) + ν − αβ2. (91)

Since β2 ≤ ν ≤ 1 and α ≤ 1, this expression is positive, verifying (90) and completing the proof.

I Proof of Proposition 6.2

From a standard Bernstein-type inequality for subexponential random variables (e.g. Proposition 5.16 from
[56]), for every θ > 0 we have:

P(max
i
|âi − E[âi]| > θ) ≤ Cp exp{−C ′nmin(θ2, θ)}, (92)

for constants C,C ′ > 0. Since p ∼ γn, the right hand side is summable in n; it follows from the Borel-Cantelli
Lemma that maxi |âi −E[âi]| → 0 almost surely as n→∞. From the delocalization of X’s singular vectors,
supi,j |Xij |2 = o(1/n). Since tr(T)/n = 1, we then have

E[âi] = E

 n∑
j=1

X2
ij + 2

n∑
j=1

Xij

√
aibjGij +

n∑
j=1

aibjG
2
ij

 = ai + o(1). (93)

Consequently, ‖Ŝp − Sp‖op = max1≤i≤p |âi − ai| → 0 almost surely, as desired. Similar reasoning also shows
that

∑p
i=1(âi − ai)/n → 0 almost surely as n → ∞. A nearly identical argument applied to the numerator

of b̂j then shows ‖T̂n −Tn‖op → 0 almost surely, completing the proof.
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J Proof of Proposition 6.3

To prove Proposition 6.3,we begin by deriving a lower bound on the operator norm of the noise matrix
N = S1/2GT1/2. We let a and b be unit vectors so that GTb = ‖G‖opa. Then

‖GT1/2‖op ≥ ‖T1/2GTb‖ = ‖G‖op‖T1/2a‖. (94)

Next, we take unit vectors c and d so that GT1/2d = ‖GT1/2‖opc. Then we have

‖N‖2op ≥ ‖S1/2GT1/2d‖2 = ‖GT1/2‖2op‖S1/2c‖2 ≥ ‖G‖2op · ‖T1/2a‖2 · ‖S1/2c‖2. (95)

Since the distribution of G is orthogonally-invariant, the distributions of a and c are uniform over the unit
spheres in Rn and Rp, respectively. Consequently, ‖T1/2a‖2 ∼ tr(T)/n and ‖S1/2c‖2 ∼ tr(S)/p. Therefore,

‖N‖2op & (tr(S)/p) · (tr(T)/n) · ‖G‖2op (96)

where the inequality holds almost surely in the large p, large n limit. Note that ‖G‖op ∼ 1 +
√
γ (see, e.g.,

[2]), though we do not need to use this fact.
Furthermore, we also have

t̃2k = t2k‖S−1/2uk‖2‖T−1/2vk‖2 ∼ t2k ·
1

p
tr(S−1) · 1

n
tr(T−1). (97)

Consequently,

SNRk =
t2k
‖N‖2op

.
t2k

(tr(S)/p) · (tr(T)/n) · ‖G‖2op

=
t2k · (tr(S−1)/p) · (tr(T−1)/n)

τ‖G‖2op

=
t̃2k

τ‖G‖2op

=
1

τ
S̃NRk, (98)

completing the proof.

K Proof of Proposition 6.4

Let δij be 1 if entry (i, j) is sampled, and 0 otherwise. Then δij ∼ Bernoulli(piqj). Let ∆ = (δij); then
F∗(F(X)) = ∆�X, where � denotes the Hadamard product. Let qr = (qr1, . . . , q

r
p)T and qc = (qc1, . . . , q

c
n)T .

The matrix ∆− qrq
T
c is a random matrix with mean zero, whose entries are uniformly bounded. It follows

from Corollary 2.3.5 of [54] that ‖∆− qrq
T
c ‖op/

√
n ≤ A a.s. as n→∞, for some constant A > 0.

We may write PXQ = X � (qrq
T
c ), and consequently ∆ � X − PXQ = (∆ − qrq

T
c ) � X. Since

X =
∑r
k=1 tkukv

T
k , it is enough to show that

‖(∆− qrq
T
c )� ukv

T
k ‖op → 0 (99)

almost surely, for each k.
Suppose a and b are two unit vectors. Then

|aT [(∆− qrq
T
c )� ukv

T
k ]b| = |(a� uk)T (∆− qrq

T
c )(b� vk)| ≤ A

√
n‖a� uk‖‖b� vk‖ (100)

almost surely as n→∞.
Now, since a is a unit vector,

‖a� uk‖ =

√√√√ p∑
j=1

a2
ju

2
jk ≤ ‖uk‖∞ (101)

and similarly,

‖b� vk‖ ≤ ‖vk‖∞. (102)

Since max1≤k≤r ‖uk‖∞‖vk‖∞ = o(n−1/2), the result follows.

31


	Introduction
	Main ideas
	Illustrative example
	Outline of the paper

	Preliminaries
	The observation model
	Heterogeneity, genericity, and weighted orthogonality
	Spectral denoisers and weighted loss functions

	Asymptotic theory for the spiked model
	Optimal spectral denoising
	Diagonal denoisers
	Behavior of the optimal singular values

	Localized denoising
	Definition of localized denoising
	Performance of localized denoising

	Applications of weighted denoising
	Submatrix denoising
	Doubly-heteroscedastic noise
	Matrices with missing/unobserved values

	Numerical results
	Localized denoising
	Submatrix denoising
	Doubly-heteroscedastic noise
	Missing data
	Non-Gaussian noise
	Rank estimation

	Conclusion
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Proposition 6.1
	Proof of Proposition 6.2
	Proof of Proposition 6.3
	Proof of Proposition 6.4

