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How to reduce dimension with PCA and random
projections?

Fan Yang, Sifan Liu, Edgar Dobriban, and David P. Woodruff

Abstract—In our “big data” age, the size and complexity of
data is steadily increasing. Methods for dimension reduction are
ever more popular and useful. Two distinct types of dimen-
sion reduction are ‘“data-oblivious” methods such as random
projections and sketching, and ‘“‘data-aware” methods such as
principal component analysis (PCA). Both have their strengths,
such as speed for random projections, and data-adaptivity for
PCA. In this work, we study how to combine them to get
the best of both. We study ‘“‘sketch and solve’” methods that
take a random projection (or sketch) first, and compute PCA
after. We compute the performance of several popular sketching
methods (random iid projections, random sampling, subsampled
Hadamard transform, CountSketch, etc) in a general “signal-
plus-noise” (or spiked) data model. Compared to well-known
works, our results (1) give asymptotically exact results, and
(2) apply when the signal components are only slightly above
the noise, but the projection dimension is non-negligible. We
also study stronger signals allowing more general covariance
structures. We find that (a) signal strength decreases under
projection in a delicate way depending on the structure of the
data and the sketching method, (b) orthogonal projections are
slightly more accurate, (c) randomization does not hurt too
much, due to concentration of measure, (d) CountSketch can
be somewhat improved by a normalization method. Our results
have implications for statistical learning and data analysis. We
also illustrate that the results are highly accurate in simulations
and in analyzing empirical data.

Index Terms—Dimension reduction, principal component anal-
ysis, sketching, random projection, random matrix theory.

I. INTRODUCTION

N our “big data” age, the size and complexity of data is

steadily increasing. Methods for data reduction are used
ever more commonly. Among these, dimension reduction
methods are used to summarize many features into a small
set (see see e.g., the reviews [15], [27], [68] and references
therein).
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Two prominent and very different classes of dimension
reduction exist: data-oblivious methods such as random pro-
jections and sketching (e.g., [50], [78], [100], [104] etc), and
data-aware methods such as principal component analysis
(PCA) (see e.g., the textbooks and reviews [3], [51], [67],
[68] and references therein). This is of course just one way
to classify the different methods, as there are also linear and
nonlinear approaches, etc.

Both data-oblivious and data-aware methods have their
strengths. Data-oblivious methods can be very fast and con-
venient to implement. Data-aware methods on the other hand
can better exploit the structure of the data; e.g., PCA can be
statistically optimal under certain conditions (see e.g., [3]).

Data matrix Y

l

Sketched data Y = SY

|

PCAY =VDU'

Fig. 1: Flowchart of the algorithm we analyze. We sketch or
project the data Y into SY, and then perform PCA.

In this work, we study how to combine them to get the
best of both. We study “sketch and solve” methods that
take a random projection (or sketch) first, and compute PCA
after (see Figure 1). Various versions of such algorithms
have been proposed [61], [62], [90] (see the related work
section). In applied areas, such methods are starting to be
used in economics [83], forecasting [92] and genomics [53].
In particular, such algorithms are “state of the art” for dealing
with extremely large genomics datasets, where the number of
samples (people) is in the thousands to hundreds of thousands,
and the number of features (genetic variants, basepairs) is on
the order of millions to billions [53].

However, it is not well understood how they perform in
all regimes. How can we choose the dimension of sketches?
What sketching method—e.g., subsampling or random Gaus-
sian projections—to use? How does their performance depend
on the characteristics of the data? Increasing the dimension
always increases the accuracy. However, that comes with an
increased computational and memory cost. While the existing
works do provide theoretical guarantees, they leave some
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regimes unstudied [61], [62], [90]. They typically focus on
the regime where the signal components are “dominant”, and
the sketching dimension is very small. As we will see, in a
natural model of low-rank data we can get precise results even
when the signal components are barely above the noise level,
if the sketching dimension is sufficiently large.

In our work we take a systematic approach to this problem.
We compute the performance of the most popular sketching
methods, such as uniform orthogonal projections, random
projections with iid entries, random sampling of the datapoints,
subsampled Hadamard transform [1], [91], and count sketch
[18], [22]. We work in a general “low-rank signal plus noise”
model, sometimes called the “spiked model”, which has been
widely used to study PCA (e.g., [24], [34], [33], [36], [55],
[56], [66], [67], [81], [107] etc). In the spiked model, the en-
tries of the noise matrix are independent random variables, and
the signal is an arbitrary low rank matrix that is independent
of the noise. This is also a special type of linear factor model.

Compared to well-known classical works [61], [62], [90],
our results (1) give asymptotically exact results under more
specific assumptions, and (2) apply when the signal com-
ponents are arbitrarily close to the noise level, provided the
sketching dimension is sufficiently large. In particular, a key
requirement of our analysis is that the sketching dimension
is relatively high, compared to values that practitioners may
be interested in for large computational savings. Providing
accurate predictions of the behavior of the spikes in the
regime where the sketching dimension is much smaller is not
covered by our current work and remains important future
work. In our analysis, we build on the analysis of recent
works in random matrix theory, such as [30], [106]. We also
study stronger signals, which allow more general covariance
structures. In addition, we illustrate that the results are accurate
in simulations and in analyzing empirical data. The computer
code reproducing the numerical results in the paper is available
from https://github.com/liusf15/sketching-svd.

A. Related work

In this section we review some related work. Due to space
limitations, we can only consider the most closely related
works. For overviews of sketching and random projection
methods, we refer the reader to [40], [62], [78], [100], [104].
A cornerstone result is the Johnson-Lindenstrauss lemma. This
states that norms, and thus also relative distances between
points, are approximately preserved after sketching with an
appropriate random matrix S, i.e., (1 — §)|z;]|? < [Sz;|? <
(1 + &)||z;|? for z1,...,x, € RP. This is further extended
to the subspace embedding property, that is, for all z in
a subspace of relatively small dimension, the norm of z is
preserved up to a & factor. Each projection studied in this
paper has the embedding property, and this can be used to
derive bounds for the accuracy of PCA. However, our results
are much more refined, because they quantify the precise value
of the error in an asymptotic setting, while the bounds above
are inequalities up to the constant .

Compared to well-known classical works [61], [62], [90] on
random projection + PCA, our results are in a different data

model. Our results give asymptotically exact results when the
sample size n and dimension p increase to infinity at the same
rate in a spiked model, while the previous results are bounds
up to constants. Our results are accurate in simulations and
are sharp even when the signal components are only slightly
above the noise. In additional related work, Homrighausen
and McDonald [63] study the Nystrom and column-sampling
methods for approximate PCA.

For instance, a typical result, Theorem 1.1 in [62] states that
if X is an n x p data matrix, S is an r x n sketching matrix
with iid standard normal entries, and () is the r x p orthogonal
matrix projecting into the row space of SX, then

BIX( - Q7)1 < 1+ 4L Vinin ) s

Here oy 1 is the (k+1)-st singular value of X. These bounds
are sharp if the (k + 1)-st singular value is small, and r
is slightly larger than k. In contrast, our bounds are also
applicable to the setting where the (k + 1)-st singular value
of X is only slightly smaller than the k-th one, but we take r
to be much larger than k. Thus, our results cover a different
regime. In more detail, we consider the regime where n,p, r
are all large and proportional to each other, while oy is
lower bounded by a constant. In this case, the above bound is
on the order of a constant, and hence has limited implications.

Another comparison to prior work is that worst-case bounds
for CountSketch are significantly weaker [22], whereas here
we find much tighter bounds. For instance, we can effectively
show that count-sketch reduces the signal strength by a factor
of approximately (,(1 — exp(—(,)), where (,, = r/n is the
ratio of sketched and original sample size. Our bounds more
accurately model what is observed in experiments.

However, our results only concern one-step “sketch-and-
solve” methods, while there are also other more sophisticated
methods. For instance, Frieze et al. [52] proposed randomized
SVD using non-uniform row and column sampling. After early
works [61], [73], [91] introducing methods based on random
projections, Halko et al. [62] developed a unified framework,
including iterative algorithms. Woolfe et al. [105] improved the
speed via fast matrix multiplications on structured matrices.
Musco and Musco [80] proposed a Randomized Block Krylov
Iteration methods for fast SVD. Tropp et al. [99] studied the
scenario where we can only access the A via a linear map S A.
Dasarathy et al. [28] studied how to recover a sparse matrix X
from observations AX B. In future work, it will be interesting
to extend our approach to those algorithms.

Random projection based approaches have been studied
for other problems too, including linear regression [35], [42],
[89], [91], ridge regression [20], [74], [76], [102], two sample
testing [75], [95], classification [17], convex optimization
[86], [87], [88], sparse PCA [54] etc, see [104] for a more
comprehensive list of applications.

Compared with prior theoretical work on one-step sketching
in linear regression [35], our perspective is similar, in that we
want to develop a unified framework to analyze and compare
the statistical performance of various sketching methods. In
addition, some of the conclusions are also consistent: orthog-
onal sketches are slightly more accurate, and the subsampled
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randomized Hadamard transform is the method of choice
overall. However, the similarity stops there. First, this paper
is about PCA, a different problem from prior work on linear
regression in [35]. Second, this paper considers a theoretical
approach leveraging recent results on local laws in random
matrix theory [30], [106], while the prior work [35] uses
tools such as properties of Wishart matrixes, the generalized
Lindeberg principle [19], and liberating sequences from free
probability [2]. Thus, the tools are quite different. Finally,
an additional difference is that this paper also discusses
CountSketch, which has not appeared in [35].

II. SKETCHING IN PCA

In this section we explain our main results. We have an
n x p data matrix Y containing p features of n data points,
such as p different measurements on n sensors. We want to
perform an approximate PCA of the data. To understand the
performance of dimension reduction methods, we assume that
the data follows a “low rank signal-plus-noise” or “spiked
covariance” matrix model (e.g., [24], [66], [67], [85], [107]

etc):
E

Y =WDU" + X = > diwu + X.
i=1

Here WDUT = Y¥  dywmu] is the signal component,
{d;}1<i<k are the signal strengths (also known as popula-
tion spikes), and {w;}1<i<k and {u;}1<i<k are the left and
right singular vectors of the signals, respectively. They are
arranged into the left and right matrices of eigenvectors W
and U (n x k and p x k), and the k x k diagonal matrix
D of population spikes. The matrices U, W are orthogonal:
UTU = WTW = I,. On the other hand, X is the noise
component, where the entries z;;, 1 <7 < n, 1 < j < p,
are real independent random variables with zero mean and
variance E|z;;|> = n~!. We assume that any randomness in
the signal is independent of the noise matrix X. Other than
that, the signal strengths and the singular vectors w; and u;
can be completely arbitrary. Such signal plus noise or spiked
models have been widely studied. When w; have iid entries,
this model can be viewed as a specific factor model, and thus
has a long history, see e.g., [3], [94], [97].

We consider a setting with large sample size n and dimen-
sion p. We place ourselves in a setting where computing a full
PCA on Y is too expensive. As an alternative, we are instead
interested in PCA on the sketched data matrix

Y = SY,

where S is an 7 X n (r < n) random sketching matrix that
is independent of both the signal and the noise. This can be
written as

k
Y =VDU' +8X = ) divu] + X,
i=1
where V := SW, v; := Sw; and X := SX. A similar spiked
separable model has been studied in [30], although the setting
there is somewhat different, because the spikes are added to the
population covariance matrices instead of to the data. However,
we will build on their analysis in our work.

A. Heuristics

Here we explain heuristically what the expected behavior of
sketching should be. For simplicity, we consider a one-spiked
case, and write the dataas Y = d-wu' +X. Let S be an r xn
partial orthogonal matrix such that S'S T = I... Then, we have
SY =d-Swu" + SX. Suppose X has iid Gaussian entries
with mean zero and variance n~'. Then X = SX also has
iid Gaussian entries. After projection, the distribution of the
noise is unchanged. The low-rank signal changes from d-wu’
tod-vul =d-Swu', where d := d- |Sw]|, v := Sw/|Sw]|.

Given the orthogonal invariance of the noise, only the
singular values—and not the singular vectors—of the signal
govern the behavior of the SVD of the “signal-plus-noise”
data. Thus, sketching effectively changes n — r, d — d-|Sw]|.
These fully describe the effect of the projection matrix (which
in this case was deterministic). Since |Sw| < |S||w| = 1,
both the sample size and the signal strength get reduced.

However, since we do not know w or ||Sw||, we cannot use
the above results to quantify or get insight into the reduction in
signal strength. Taking a random S allows us to characterize
average behavior of the projections, and thus to get useful
predictions. Suppose S is an  x n random partial orthogonal
matrix, i.e., S is uniformly random over the set of matrices
such that SST = I,.. Then we expect that the norm of v = Sw
is |v|| ~ (r/n)"?|w]|. This is because we can construct v by
randomly rotating w and choosing its first  coordinates. A
random rotation makes all coordinates exchangeable, and thus
choosing the first  will approximately capture about r/n of
the squared norm of w.

Let us write §,, = r/n for the reduction in sample size due
to sketching. The matrix &, Y2X has iid entries of variance
r~1. Then the projected matrix SY should be equivalent to
a spiked model with the same spike strength but in a reduced
dimension r:

VY =d-vu +€12X. L1)

Heuristically, after projection into r-dimensional space, both
the sample size and the signal strength are reduced by a
factor of &, = r/n. We will later show rigorously that this
is indeed true. For higher dimensional signals, the sketched
signal no longer has orthonormal columns, and so the singular
values of the signal slightly change. However, since we are
dealing with the one-dimensional case in this section, we
do not need to worry about this. This shows how taking a
random S can simplify our understanding of sketching in PCA.
More generally, without Gaussian noise, the randomness in .S
becomes even more crucial to get interpretable results.

B. Key takeaways

We summarize our key takeaways as follows. Clearly, the
signal strength is reduced under projection, and the amount of
decrease depends on the type of projection. Moreover:

(i) Separations between sketching methods: Our analy-
sis reveals precise separations: the subsampled randomized
Hadamard transform (SRHT) and subsampling are—slightly—
more accurate than CountSketch and projections with Gaus-
sian or iid entries. For an illustration, we refer the reader
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TABLE I: Informal summary of some of our results. For simplicity, suppose we have a single-spike model Y = d-wu' + X
of size n x p, where d - wu! is the signal and X is the noise. We do PCA after sketching on data SY, where S is an r x n
sketching matrix. We show the effective decrease of the signal strength due to sketching. The assumptions needed on X and w
depend on the sketching method. The results for iid random S are involved and only presented in the text. Finally, for a more
general multi-spike model Y = > " | d;w;u; + X, we have similar results for the eigenvalues and eigenvectors corresponding

to each spike d;w;u] .

Assumption on Gaussian mdepepdent independent entries mdepepdem
X entries entries
Assumption on Partial Haar/ Hadamard Uniform sampling (US)/ iid random
S orthonormal CountSketch (CS)
Assumg}tlon on Fixed Fixed Delocalized Fixed
Effect on . US: d d - /1/n see Theorem
signal dd-|Sw| d>d-+/r/n T/ 12

CS: d — dr/r/n(1 — exp(—n/r))

1 -
0.98 ¢
—~0.96
N
£0.94 /' |-I+Hadamard
- /| +-uniform sampling
0.92! j countSketch
: [ —F-countSketch-normalized
0.9 -I Gaussian projection
0 5 10 15 20

d,

Fig. 2: Comparing SRHT, uniform sampling, CountSketch, and
Gaussian projection in a multi-spike model, where n = 2500,
p =800, r = 2000, k =7, and dy, ..., d; are equally spaced
between unity and 20. We show the mean and one standard
deviation over 20 Monte Carlo simulations. The normalized
CountSketch will be introduced in Section III-E.

to Figure 2, where we plot the overlaps |<ul,§~1>|2 between
the population eigenvectors u; and the sample eigenvectors
& for a multi-spike model sketched by SRHT, subsampling,
CountSketch and projections with iid Gaussian entries. Here
a larger overlap indicates that the principal components of
the sketched matrix more accurately approximate the principal
components of the signal matrix. We remark that the difference
between these sketching methods is small in our simulations.
However, these minor differences may accumulate in appli-
cations, where the sketched matrix can be used repeatedly in
iterative algorithms, see e.g., [87]. This may lead to significant
differences in downstream applications. The superiority of
orthonormal projections is consistent with previous observa-
tions in different contexts [35], [71], but our work goes much
beyond to include CountSketch and also considers a different
problem. However, we point out that we have observed these
phenomena in theory and in our numerical simulations only,
and not in our experiments with empirical data.

(ii) Precise quantitative results: Our results precisely quan-

tify the locations of the sketched spikes. See Table I for an
informal summary of some of our results. We show the effec-
tive decrease of the signal strengths (i.e., spike strength d) for
various sketching methods. However, we will state our formal
results in terms of the empirical eigenvalues and eigenvectors,
because for some cases (especially for projections S with iid
entries), there seems to be no simple way to state them in
terms of the decrease in signal strength.

For large signal strengths, we can handle general noise
covariance structures, and get simpler results (cf. Section
1I-F).

(iii) Additional randomness does not hurt: A key limitation
and drawback of randomized algorithms is that they introduce
additional variability in the data. This is an undesireable
phenomenon, because the additional variability may lead to
vastly different results every time the algorithm is run, and
may reduce reproducibility.

In our case, we see that the top eigenvalues and correlations
between true and empirical eigenvectors are asymptotically
concentrated around definite limits. This means that the ad-
ditional randomness introduced by the sketching algorithm is
relatively limited, for large data sets and for those particular
functionals. However, we should still be cautious, in particular
about interpreting results obtained from other functionals.

(iv) Implications for learning: Our results have implications
for statistical learning and signal processing. In particular,
by following the methods from [38], [39], they can be used
to derive optimal eigenvalue shrinkage estimators for the
covariance matrix. Recall that the aforementioned optimal
shrinkage operations depend on the overlap between true and
empirical eigenvectors. We find those formulas for various
sketching methods, and so it becomes possible to use the
shrinkage formulas.

Very briefly, Donoho et al. [38] estimate the covariance
matrix X of the data optimally using eigenvalue shrinkage
estimators of the sample covariance matrix. We can replace
this with tAhe covariance mwatrNix Y, = r 1Y TY of the sketched
data. Let X =~Z;n=l?(r’p ) )\i&g; be the spectral decomposition
of X, with \; sorted in non-increasing order. Then we

consider eigenvalue estimators 3, = Z?;irll(r’p ) n(N)&ET for
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some fixed shrinker 7 : R — R. We evaluate the estimator
based on a loss L(%,, ), where ¥ = I, + 3% d2u;u] is
the covariance matrix of the original data. For instance, we
can have L(A, B) = |A— B|op be the operator norm loss, or
L(A, B) = |A — B|g be the Frobenius norm loss.

Based on the theory from [38], we can deduce that there
is an asymptotically optimal shrinker 7 for these losses (and
a number of others). For instance, for uniform orthogonal
random projection, uniform sampling and subsampled random-
ized Hadamard transform, the optimal shrinkers for operator
and Frobenius losses are, respectively,

770p(73) :)‘71(332’7‘/”)’
nee(x) =222 r/n) - (A2 r/n), r/n)
+ 82NN (@?, r/n),/n).

Here ) is the functional inverse of the spike forward map from
equation (III.15), and its expression can be found in [38], as
well as implemented in software in [32]. Also, c? is the cosine
forward map from (II1.16), and s? is the squared sine, defined

as s2 =1— 2

C. How to use our results?

In this section, we give some additional illustration and
guidance on how to use our results. Suppose we are interested
to compute the SVD or PCA of a massive dataset. Suppose that
we are in a setting where we need to use a single machine
(possibly after dividing up the data into smaller pieces and
distributing them onto different machines—our results can be
used at various steps of a broader processing pipeline). Then,
a natural approach may be to subsample the n x p data matrix
to r < n samples. However, this has a chance to miss some
datapoints with large entries. Fortunately, there are sketching
methods that take linear combinations of each data point, and
are thus more likely to pick up these large entries. Which
sketching method to use and what projected dimension do we
need to get a desired accuracy? What is the appropriate notion
of accuracy?

Using our results, we can give some insight into these
problems. First, we suggest that we can use a statistical notion
of accuracy. Suppose the data is noisy, and we believe that the
empirical principal components (PCs) are only estimators of
“true” unobserved PCs that one could recover from much more
data. Then it makes sense to consider how much sketching
reduces the “signal strength” of the PCs in the data at hand.
Intuitively, by subsampling r data points out of n, the signal
strength should decrease by a factor of r/n. It turns out this
intuition is correct, but not at all trivial: it only holds when
the “true” principal components are suitably “non-sparse”,
and requires a somewhat delicate argument. Thus, confirming
our intuition, subsampling is only guaranteed to work in
a suitable non-sparse setting. However, we show that other
orthogonal sketches enjoy the same signal strength reduction,
while also working under sparsity. Moreover, some orthogonal
sketches, such as randomized Hadamard/Fourier sketches,
can be applied in nearly the same time as subsampling. In
addition, popular non-orthogonal sketches such as Gaussian
projections have strictly worse signal preservation properties

than orthogonal ones. Thus, fast orthogonal sketches emerge
as the best choice. While this may not be extremely surprising
based on prior work, we do believe that it is not commonly
discussed in the literature; and in fact we are not aware of a
specific work that makes this point for sketched PCA. Fur-
thermore, in Section III-E, we propose a normalized version
of CountSketch, which modifies the original CountSketch. Our
results suggest that this normalized version has slightly better
signal preservation properties than the un-normalized version.
Hence our work can be a guide as to when to use the newly
proposed normalized CountSketch.

Our results can be also used as a guide to choose the
projection dimension. First, suppose we decide that we can
tolerate at most a certain factor f < 1 (say f = 1/2) of
decrease in the signal strength. Then, one should use projection
dimension r such that r = fn (say r = n/2). To compute the
estimation error for estimating the true PCs, we can simply use
the well-known formulas from spiked covariance models, see
Section III-A1. This illustrates how we may use our results.
In addition, we believe that we can use our results as a tool to
develop and analyze more complicated data analysis methods.
However, this is beyond the scope of our current work.

D. Details

Our results require a few more technical assumptions, which
are stated in detail in Section A. We use the notion of empirical
spectral distribution (ESD) of a matrix M, which is the
empirical distribution function of the eigenvalues of M.

In the end, we obtain the following steps for finding the
values of the spikes of the sketched matrix Y = SY (recall S
is 7 X n, with r < n):

(i) For any « € [0,00), we find a fundamental quantity, the
pair of weighted Srieltjes transforms (mi.(x), mac(x)), as
the solution of a certain system of self-consistent equations
(A.12). Recall that for a distribution F, its Stieltjes transform
is defined for any z € C away from the support of F' as
mp(z) = Exr(X —2)7! (see e.g., [4], [24], [107]). In our
case, (mie, ma.) are the classical limits of certain_weighted
Stieltjes transforms (m;,my) of the ESDs of X TX and
XXT for X = SX (see Section A-B); and their importance,
described below, is in how to use them.

Let us denote by ~,, = p/n the aspect ratio, by &, = r/n <
1 the sample size reduction factor, and by 7p := %2;1 s,
the empirical spectral distribution of B = SST. The self-
consistent equation shows that for any z € C,. (complex num-
bers with positive imaginary parts), (m;., ma.) are determined
by the following pair of equations:

1
T+ e ()]

mae(2) = fnj —z[1 + xzmi(2)] m5(dz).

This is a general Marchenko-Pastur or Silverstein equation;
and can also be expressed as a fixed point equation for mq.. It
can be solved explicitly in certain special cases. There are also
fast numerical solvers available, based on fixed-point methods
and ODE solvers, see e.g., [23], [25], [31]. In general, this is

mic(z) =
(IL.2)
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one of the two mathematically challenging parts of the using
these steps to characterize the behavior of the spikes after
sketching.

(i) We combine the above quantities into the 2k x 2k master

matrix . ( ) |

where M; and M are two k x k matrices defined by

Dfl
Ms(2)

Ml(Z)

D1 (IL3)

M (z) := —2_1/2(1 + mae(2)) 7ML,
My(z) := =2z YPW ST +my(2)SST)LSW.

(iii) We solve for the values x > 0 for which the matrix M (z)
is singular, i.e.,

det M(zx) = 0. (I.4)

We call this the eigenvalue master equation.

Such determinant equations have appeared in many works in
the literature (e.g., [24], [107] and references therein). In gen-
eral we expect at most k solutions for z. The theory guarantees
that these are all possible candidates for the empirical spikes of
the sketched data Y TY". This step turns out to become feasible
in several applications due to the randomness in either the
sketching matrix S or the signal matrix W. This randomness
causes the lower right block to become diagonal, and hence,
after rearrangement, the matrix M can be studied as a block
matrix with 2 x 2 blocks.

(iv) To find the angles between the eigenvectors corresponding
to an eigenvalue \; of Y 1Y, again we follow an approach used
in many works in the literature (e.g., [24], [107] and referencgs
therein). We consider a small contour I'; which encloses \;
(or its classical limit 6;, as explained below) but no other
eigenvalues of }N/TY. The overlap of the corresponding right
singular vector &; with any spike eigenvector u; of the original
data matrix Y is given by the angle master equation:

Cuj, €2 = JgeJTD‘lM(z)—lD—lejdz, (IL.5)

2mi( ;)12

i

where D is a 2k x 2k matrix defined by

o (3 2).

Again, it turns out that in certain cases we can explicitly
calculate these integrals.

This finishes the general description of the procedure for
finding the sketched spikes. See Section A for details. Next
we will go over various popular sketching methods in detail,
and show how to use this general procedure.

III. ASYMPTOTICS, TYPES OF RANDOM PROJECTIONS

In this section, we discuss the asymptotic model we con-
sider, we go over the various types of random projections, and
explain the behavior of the sketched eigenvalues and eigenvec-
tors. Fix any signal strengths d; > dy > -+ > di > 0. We
consider an asymptotic setting where the sample size n — oo,
and at the same time the data dimension p — o0 and the

sketching dimension r — oo, such that ,, := p/n — v > 0
and &, = r/n — £ > 0. The setting p/n — v > 0
is common in high-dimensional statistics and random matrix
theory [79], [4], [107], while r/n — & > 0 has been
used to study sketching in [35], [71], etc. In this setting,
many of the objects we consider will depend on n,—e.g.,
Y =Y, depends on n—but we will drop this dependence
for simplicity of notation. Moreover, we will emphasize if
certain quantities do not depend on n. For instance, the signal
strengths d; > ds > --- > d > 0 are fixed and will not
depend on it.

Without projections, when S = I,,, it is well-known that a
signal of strength d; leads to an outlier if and only if d? >
/T [6], [7]. Here outliers are the eigenvalues of the sample
covariance matrix separated and above the “bulk” of the noise
eigenvalues, which in the limit of large data is described by
a standard Marchenko-Pastur distribution [4], [79]. Moreover,
the ¢-th spiked sample eigenvalue converges to its “classical
value”

Xi = p Ad2,7y) = (1+d7) <J2 + 1> ,
K3
if v, — 7, see e.g., [6], [7]. Here “— p” denotes convergence
in probability. The map ¢ — A(¢,~) between the population
and sample spikes is sometimes referred to as the spiked
forward map. The overlaps between population and sample
eigenvectors converge to (e.g., [10])

(IL1)

1—
1+

R

|<Ujaf~i>|2 —P 5ijc2(d1277) = 5ij

, (IIL.2)

SR

where 6;; = 1 if ¢ = j and §;; = 0O otherwise. The
expression c?(d?, ) may be referred to as the squared cosine
forward map, giving the asymptotic squared cosines between
the population and sample eigenvectors. Now we consider
several choices of S, and compare the corresponding results
to the above formulas. We restrict to a certain high probability
event () (given formally in (A.25)), where the so-called “local
law” holds, and certain empirical quantities are close to their
population verions. So “with high probability” means “with
high probability on Q.

A. Uniform orthogonal random projections

We take S to be r x n partial orthonormal, so that S'S T=1.

1) Results known from prior work, Gaussian data: There
are a few results that can be readily deduced from known work.
They are not our main point (as they are limited to Gaussian
data); and our main results can handle much more general
data distributions and sketching distributions in a unified
framework. However, as they are not explicitly available in
prior work, we present them here for the reader’s convenience.

When the noise X is has iid Gaussian entries, we have seen
in Section II-A that for fixed dimensions n and p, the data Y =
X +WDUT transforms into SY = SX + (SW)DU ", with
the distribution of SX still being Gaussian. The signals are
transformed into (SW)DU'T, and we let its SVD be WDU .
As is well known from the classical theory of spiked models,
[6], the singular values of the signal control the behavior the
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data SVD. This shows that we are in a new spiked model with
new signal strengths D, which can be checked to have been
reduced compared to D.

If in addition we assume that S is distributed uniformly
over the Stiefel manifold of pa£tial orthonormal matrices, then
it is not hard to check that D ~ (r/n)/2D, so the signal
reduces by a factor of r/n. In addition, the sample size is
also reduced. To quantify the change of the outlier eigenvalues
and eigenvectors, we recall that after scaling by &, v 2, SY is
equivalent to the model in (II.1), which has the same spike
strength in a reduced dimension 7. In this model, we have
that the aspect ratio changes as v, +— £ = g—: Thus by (IIL.1)
and (IIL.2), if ~,, — v and &, — &, we have that

' (IIL.3)
= (1+d) <Jz+£>,
and
uj, &% —p 0 L= (I11.4)
|<J§>| P J1+7(T/§ J{-i-%g

for the eigenvalues and eigenvectors of SY. One can compare
them to the results in (II.1) and (IIL.2), and see how the
location of the spikes decreases.

The same logic applies to all distributions of partial or-
thonormal sketching matrices S and all signal matrices W for
which (SW)TSW ~ r/n-WTW = r/n-I;. We will discuss
this for each case separately.

2) New results, general data: When the distribution of the
data is general, the above direct argument cannot be used.
We will instead use our general framework. We assume S
is distributed uniformly over the Stiefel manifold of partial
orthonormal matrices. Then the self-consistent equation for
the Stieltjes transforms (II.2) becomes

I S
—2[1 4+ mac(2)]’
I S
—2[1+my.(2)]’

mlc(z) =Tn
(IIL.5)
m2c(z) = fn

from which we can obtain the following equation for mg.(z):
2m3, + (2 = Yo + En)Mae + & = 0. (I1L6)

This equation has a unique solution with non-negative imagi-
nary part for z € C, that is,

_(Z — Tn +€n) + \/(Z - >‘+)(Z - >‘—)
2z ’

(IIL.7)

maoc(z) =

where

Ay = (\/’%i gn)Q

Moreover, mao, is injective on the {z : Rez > A;}, and we
denote its inverse function as go., which takes the form

Y
1+4m m’

goc(m) = (I11.8)

Given mq. and mo., we now study the master matrix M (z)
in (IL.3). We can write the matrix W of eigenvectors as

_ I
o)

where W is an n x n orthogonal matrix. Now recall that V =
SW. Since the distribution of S is rotationally invariant, we
have

Ty _ ara(1n
VTV = (1,,0) § s(0>,

where § = SW is, like S, also an r x n uniformly distributed
partial orthogonal matrix. We claim that

VTV = &.1; 4+ 0o(1)  in probability. (I11.9)

This can be easily verified by a simple variance calculation
using exchangeability of the rows or columns of S; see
Appendix B. With (II.9), the eigenvalue master equation (I.4)
becomes

' —1
dot [ ~Trmam e D —o(1) (LI10)
D x m2c($)-[k

in probability. Ignoring the small (random) error on the right-
hand side, the above matrix equation holds if and only for
somei=1,...,k,

2—1/2

merm o B
det Tmaclz ' =0
d;! 2 Pmag.(z)

1
T+ ®I_920<_1+d§ ’

where in the second step we used that go. is the inverse
function of mg.. This gives an equation for any potential
outlier . However, in order to have an outlier, we need to
have that

1

_1 ’Yn
> my N\ = ————— e d? >, [ JIL12
1+df ma ( +) 1+ /% < K3 é‘n ( )

This is because the Stieltjes transform my. is increasing on
[Ay,00) outside of the bulk of eigenvalues, and so having
Ay < z is equivalent to mao. (A1) < mac(z) = —1/(1 + d?).
Then we use the known formula for mo. (A4 ) given in (IIL7).
Using (II1.8) and (III.11), we obtain that the classical location
for the outlier caused by d; is

0; = (1+d?) (jl’; +§n> .

This formula is very similar to the well known one for the
location of the empirical spike in standard spiked models,
presented above, and described in [6], [7]. However, we have
a different setting in this paper, and so the formula does not
follow from the classical one.

Next we turn to finding the formula for the angle be-
tween projected and true spikes. Using (IL.5), we obtain that
|{uj, &)? = o(1) if j # 4. If j = 4, the inverse of M(z) is
also a block matrix with 2 x 2 blocks, and so its (4, )-th entry

(IIL11)

< mac(x)

(IIL.13)
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is approximately the appropriate entry of the inverse of the
2 x 2 block it belongs to. Therefore, we have in probability,

~ 1
i &l? =o(1 7§ ;!
(s 807 = (1) + 3= $(0.d7)
r;
P ma(2) T it
d;’t 22mge(2)
1

) ()

- 1 dz +o(1)
= 2mif; (1 + d%) § mae(2) + (1 + d?)*l zZ+o0
Iy
_ 1 _ ghe(=(1+a})7")
“nareme WS T garay oW
gn - Z%
= ﬂ +o(1). (1. 14)

See Figure 3 for simulation results illustrating the accuracy
of the formulas (III.13) and (III.14). We generate ¥ =
WDU'" + X with iid entries x;; ~ Unif(—/3/n,/3/n)
(so x;; has variance 1/n), and take the rank & = 1 with
W, U being independent uniformly distributed partial orthog-
onal random matrices; or, since kK = 1, random orthogonal
vectors. We vary the value for the spike di, and compute
a random projection ¥ = SY with a uniformly random
partial orthogonal matrix S. We then compute its SVD and
find its first eigenvalue and eigenvector. We compare them to
the theoretical formulas above. See the caption to Figure 3
for more details. In Section IV-C, we will provide simulation
results where the rank k is greater than one.

Now we state the above results as the following theorem.
We shall prove it rigorously in Appendix B.

Theorem IIL.1 (Uniform orthogonal random projection). Con-
sider the r x p sketched data matrix Y = SY, where
S is v x n partial orthonormal, distributed uniformly over
the Stiefel manifold of partial orthonormal matrices. Also,
X = (x45) is an n x p random matrix where the entries
x5 are real independent random variables with mean zero,
variance n~", with their higher moments bounded as in (A.8).
Let the number of signals k be a finite fixed integer and the
strengths dy > do > --- > di > 0 be fixed constants;
{u; }1<i<k and {w; }1<i<k be deterministic sets of orthonormal
unit vectors in RP and R", respectively. Let 7, := p/n — ~
and &, :=r/n — & as n — oo. Then for any 1 < i < k, if

d; > A/7/& we have

X —p (1+d2) (;2 + §> : (I1L.15)
and .
SN —p 6 & 11
|<u]7£1>| —-p ”ﬂ (III.16)
Otherwise, if d; < +/v/E, we have
X —p As, (I11.17)
and R
[Ku, &> —=p 0 (IIL18)

for any sequence of deterministic unit vectors u := u, € RP.

‘ -+ Simulation
,/ Theory
0 5 10 15 20
dy
40}

30+ /'

<
20 A
' 4
10 " [+ Simulation
ol—" - Theory
0 5 10 15 20
dy

Fig. 3: Checking the accuracy of the spiked eigenvalue and
eigenvector formulas for orthogonal projections. We show
results with n = 4000, p = 800, »r = 400 and k =
1, and we vary the signal strength d; between unity and
20. The entries x;; are iid random variables sampled from
Unif(—4/3/n,+/3/n). We show the mean and one standard
deviation over 20 Monte Carlo simulations (the SD is very
small). Top: d; against the overlap between the spiked popu-
lation eigenvector and the sample eigenvector after sketching.
Bottom: d; against A1, the first sample eigenvalue after sketch-
ing. The theoretical and empirical results agree well.

This result is consistent with our heuristics that the sketched
spiked model should be equivalent to a spiked model (11.1)
with the same spike strengh but in a reduced dimension r.
Moreover, the theory is also consistent with the results readily
deduced from prior work for Gaussian data presented in (II1.3)
and (IIL.4).

B. Projections with iid entries

Now we pick S to be an r xn random matrix with iid entries
of zero mean, variance n—!, and with bounded moments, as
in (A.8). In particular, S can be a random Gaussian projection
if its entries are iid Gaussian. Then B = SST is a sample
covariance matrix with identity population covariance. Before
giving the main result, Theorem II1.2, we first introduce the
notations that are used in its statement.

First, we define two functions m¥, and m3., which are the
Stieltjes transforms of the well-known Marchenko-Pastur law
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(m7. is for SST and m3, is for ST9):

—(z =146 +4/(z = A])(z = A9)

s =
mlc(z) - 22:&- )
i ) < —(z+1-6) +4/(z = M)z = A9)

e 2z ’
where )\JSL are the edges of the support of the MP law, )\i =
(1 £ +/€)?. Then g;. is defined as

v £ L s -1
cm)=——L+4+>(1-=mS (- .
nelm) = =2+ & (1= L ()

In fact, ¢i. is the inverse function of mi.(z), which is the
unique solution to the cubic equation

sz?c - Z(l + 5 - 27)m%c

[+ (A=) = ]mic -~

that satisfies Imm.(z) > 0 for any z with Imz > 0. It
is possible to give an explicit expression of mi.(z) using
the formulas for the roots of cubic equations, but we do
not state it here. Taking the limit as Imz | 0, it fol-
lows from our results that we obtaina continuous function
pic(z) := lim, o 7~ Immy.(z + in). The function £~*p;,
is a probability density function compactly supported on
R4 :=[0,00), and we denote the rightmost edge of its support
by A following the convention in random matrix theory. Then
we define a; = a(d;) as

=0,

vd; ?
(1+7d;7%) (€ +7d7%)
and d. > 0 is defined as the unique solution (which we show
is well-defined) to the equation

a(d.)

We have the following result for sketching with iid projec-
tion, which will be proved in Appendix C.

a; = a(d;) == —

= m1c(/\+).

Theorem IIL.2 (Random projection with iid entries). Suppose
that the assumptions in Theorem IlI.1 hold except that S is an
r x n random sketching matrix whose entries are independent
random variables of zero mean, variance n~Y, and with
bounded moments, as in (A.8). Then for any 1 < i < k, if
d; > d., we have

(I11.19)

and

[Cuy, €]
042 gic(al) )
Y& [(mg,) (—a; D] a2 — (1 ++d;?)

Otherwise, if d; < d., then (III.17) and (I11.18) hold.

(II1.20)

—)P(S

We can get explicit expressions for the right-hand sides of
(II.19) and (I11.20) using the formulas for m7., m3, and g;..
Since they are very complicated, we do not state them here.

Algorithmically, given ~,,&,,d?, we find the location of
the spike after random projection by calculating the value of

(II1.19) using the above formula for g;. (which involves mfc).

- —
0.8 /
=-06| [
W f
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3
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f
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A
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00— ' ' ' ‘
0 5 10 15 20
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Fig. 4: Checking the accuracy of the spiked eigenvalue and
eigenvector formulas for Gaussian projections. We follow the
protocol from the experiment in Figure 3.

See Figure 4 for simulations checking the accuracy of these
results.

Now we compare sketches with iid random entries with
uniform random projections discussed in the previous section.
The explicit expressions for #; and |<u1,§l>| are pretty
cumbersome. To simplify the expressions, we consider the
large signal case where d; is a large constant, and develop
asymptotic expressions of ; and |[(u;, &;)|? in terms of d; >
Through direct calculation, we find that

(m?.) (—a; ) = af (1 — 205 + (3 +3¢)a? + O(al)),
(mS(—a; ) = a2 (1 = 20, + (3 + 36)6n0? + O(a?) .
mie(=a; ) = a; (1 —a; + (€ + Daf +0(a7)) ,
ghe(es) = 5 = &€+ 1) +0(a).

Plugging these into (III.19) and (II1.20), we obtain that

0; = E2+ (Ey+7+&) + (Y +E+1)vd; 2+ 0(d; ), (IL.21)
and
~ —£(1 2 1L 0(a3
[Cui, €)1 —p L & +22al+ (a7)
1
X
—2¢a; + (3 + 36)¢a? + O(a?) — ~vd;?
¢ 1+ 0(d;)
: (I1.22)

e+ WL o)
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Compared with (III.16), one can see that, at least in the large
signal regime, the correlation (II.22) is smaller, and thus
worse than random uniform projection. Moreover, we have
the simple relation

(1 - |<uia gi>|2)iid projection
(1 - |<uu £i>|2)uniform projection
for these two cases, where the notations are self-explanatory.
One can see Figure 4 for simulations checking the accuracy
of the results (IIL.21) and (II1.22). Surprisingly, even for small
d;, they are already sufficiently precise.

=1+¢+0(d;?)

C. Uniform random sampling

Next, we take S to be an n x n diagonal sampling matrix,
where the entries S;; are iid with

Si‘ =&, (IH.23)

where &; ~ Bernoulli(r/n). This is closely related to
sampling r out of n datapoints uniformly at random, as
for large r and n the number sampled concentrates around
r+ O(4/r(1 —r/n)) ~ r. Then we find the following result.

Theorem III.3 (Uniform random sampling). Suppose that
the assumptions in Theorem IIlI.1 hold, but S is a random
sampling matrix as in (I1I1.23). Assume that the vectors w; are
delocalized in the following sense:

max |wille =0 as n — . (I11.24)

1<i<k

Then the results (I11.15)-(I11.18) hold.

The proof of Theorem III.3 is a minor modification of the
one for Theorem III.1 in Appendix B, and we highlight the
differences in Section D. See Figure 5 for experimental results
supporting these theoretical results.

We remark that the delocalization condition (II1.24) is
necessary for uniform random sampling. Indeed, suppose for
instance that w; only contains one non-zero entry. Then
uniform random sampling has a positive probability of missing
this entry, so that Sw; = 0. In this case, the principal
components of the sketched matrix SY will deviate greatly
from those of Y.

When w; are not delocalized, it is more natural to use non-
uniform sampling methods. We refer the reader to Section V
for a discussion of some more advanced sampling methods.

Gaussian data. For the special case of Gaussian data, recall
from Section III-Al that we can readily deduce Theorem
III.3 from known spiked model results if we can show
WTSTSW =Y, e;wli] "w[i] ~ r/n - Iy, where w[i] are the
rows of WW. This follows from standard matrix concentration
results (e.g., [98], [101] etc). Since this is not our main point,
we will not elaborate it in more detail.

D. Randomized Hadamard sampling

We consider the subsampled randomized Hadamard trans-
form. Define the n x n subsampled randomized Hadamard
matrix as 1

S=—=B,HD,
n

111.25
NG (II1.25)
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Fig. 5: Checking the accuracy of the spiked eigenvalue and
eigenvector formulas for uniform random sampling. We follow
the protocol from the experiment in Figure 3.

where B, is a diagonal sampling matrix with iid
Bernoulli(r/n) diagonal entries, H is the Walsh-Hadamard
matrix and D is a diagonal matrix of iid sign random variables,
equal to +1 with probability 1/2. Recall that the Walsh-
Hadamard matrix is defined recursively by

_ Hn/2 Hn/2
Ho ( Hypy —Hups > ’
with Hy = (1). This requires 7 to be a power of two. For n that
is not a power of two, we discuss more general constructions
below.

For S defined in (ITI.25), we denote the action of the Walsh-
Hadamard matrix H and the signflip matrix D on a vector w;
as

;= LH Dw;
ZZ T \/ﬁ 19

Note that each entry z;() is of the form

z(l) = 3, afwii),

1<i<k.

where agl) = +n~1/2 is chosen independently and uniformly.
Then a Chernoff type bound gives that the z vectors are

delocalized, i.e.,
logn

\n
with high probability. Moreover, {z;} are orthonormal since
HD/\/n is orthogonal. Then the result for uniform random

lzille < C

(II1.26)
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sampling can be applied here without the delocalization as-
sumption in (II1.24), because (II1.26) already gives the desired
delocalization for z;-s after acting HD on w;-s.

The argument above applies more broadly to general
Hadamard matrices. An n x n possibly complex-valued matrix
H is called a Hadamard matrix if H/s/n is orthogonal and
the absolute values of its entries are unity, |H,;| = 1 for
1,7 = 1,...,n. The Walsh-Hadamard matrix above clearly has
these properties. Another construction is the discrete Fourier
transform (DFT) matrix with the (u,v)-th entry equal to
Hy, = e 2miu=1(=1/n Multiplying this matrix from the
right by X is equivalent to applying the discrete Fourier trans-
form to each column of X, up to scaling. The time complexity
for the matrix-matrix multiplication for both transforms is
O(nplogn) using the Fast Fourier Transform.

To summarize, we have the following theorem as a corollary
of Theorem II1.3 and the delocalization property in (I11.26).

Theorem II1.4 (Randomized Hadamard sampling). Suppose
that the assumptions in Theorem IllI.1 hold except that S is
now a random sampling matrix as in (IIL.25), where H is a
general n x n Hadamard matrix. Then the results (I11.15)—
(II1.18) hold.

See Figure 6 for experimental results supporting this theo-
rem.

1 L —
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Fig. 6: Checking the accuracy of the spiked eigenvalue
and eigenvector formulas for the subsampled randomized
Hadamard transform. We follow the protocol from the exper-
iment in Figure 3.

Gaussian data. From Section III-A1, we find the same results
for Gaussian noise if we can show WTSTSW =~ r/n-Ij. This
follows from the same argument as for uniform sampling.

E. CountSketch

Another popular sketching method is CountSketch [18],
also known as Clarkson-Woodruff sketch [22]. Here S is
an r x n matrix that has a single randomly chosen non-
zero entry Sp(jy,; in each column j, for a uniformly random
mapping 5 : {1,...,n} — {1,...,r}. Moreover, each Sj;)
is a Rademacher random variable, i.e., Sh(j)yj = +1 with
probability 1/2. In other words, we have

Sij = Oin(j)ay, (IIL.27)

where a; are iid Rademacher random variables that are inde-
pendent of h. Intuitively, S maps the vector = to a random
partition of its entries (mapping into random buckets), and
takes randomly signed sums of the entries in each element of
the partition (or in each bucket).

When applied to an n X p matrix X, SX computes an 7 X p
matrix, such that each row is a randomly signed sum of some
rows of X. This is similar to random sampling. However, the
advantage is that no rows of X are “left out”, and thus we
automatically get a type of adaptive leverage score sampling,
see e.g., [22]. The only constraint is that we need r to be large
enough so that we avoid collisions of rows with large leverage
scores.

In our case, it turns out that it is advantageous to study a
slightly modified “normalized” CountSketch. To see this, we
denote

SST = diag(cy, ..., e,
that is, ¢; is the number of coordinates from 1,...,n that
map into the i-th bucket. Then (cy, ..., ¢,) has the exact joint
distribution

(c1y...,¢r) ~ Multinomial(n; 1/r, ..., 1/r).

Each ¢; has a marginal distribution ~ Binomial(n, 1/r), with
mean n/r, and variance 2(1—1). As 7/n — £ > 0 when n —
o0, ¢; converges in distribution to a Poisson random variable
with constant rate. We know that the Poisson distribution is
unbounded, which gives that for any fixed constant C' > 0,
limsupIP’(HSSTH =>C)=c
n—w

for some constant ¢ > 0 depending only on C' and £. Hence
the operator norm of the sketching matrix is unbounded (i.e.,
the first bound in (A.7) in our derivation fails) with non-zero
probability. This is a problem because, theoretically, the spikes
may be “covered up” by the noise eigenvalues. For example,
there exists an event, say =, of non-zero probability such that
there is a small portion of c;-s that are at least, say C' =
103. Then on Z, the limiting noise singular value spectrum of
SX is very wide, and hence can cover up the true signals.
Such an event = holds with small (but non-zero) probability,
which is not a problem in applications if n/r is large. However,
it prevents us from getting results that hold with probability
1 —0(1) in the setting with lim sup,,_, . n/r < c0. Moreover,
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the spectral distribution of SST spreads out widely, but we
will see that it is better to have a more concentrated spectral
distribution (cf. Remark III.7). Hence we propose a simple
normalization, in which we divide each bucket by the square
root of the number of entries mapped into it. Formally, we
define S := (SST)7'23, such that SST = I,. Then we
shall use S as our sketching matrix. With &, converging to
a constant, there is a significant number of zeros among the
counts. Hence (SS)~1/2 should be understood as a pseudo-
inverse. Alternatively, we can discard the buckets of size zero
at the beginning.

Experiments show that the simple normalized version of
CountSketch works similarly to uniform projection. As dis-
cussed above, we normalize SX as B~1/2SX, where B =
SST is the matrix of counts mapped into each bucket. In the
regime where n/r is a constant, the probability of getting a
Zero count is approximately

P(Poisson(1/¢,) = 0) = exp(—1/&,) = exp(—n/r).
We discard those rows. Fer Figures 7, 8, 11 and 13, we
find that the value of |(u;,&;)|* for normalized CountSketch
is larger—if only slightly—than the one for CountSketch.
This shows that normalized CountSketch is more accurate
than the original CountSketch, in the sense that the principal
components of the sketched matrix approximate the principal
components of the signal matrix in a better way. The reason
is that CountSketch has some large buckets, and the sum
of the rows mapped into them can sometimes dominate the
eigenvectors, leading to a loss of precision. In Remark III.7
below, we will also give another heuristic explanation. (Note
that in Figure 7 in particular, normalized CountSketch and the
original one have similar accuracy. This is because r/n = 0.1
is small and hence SST concentrates well around oI

In Figure 8, we compare the accuracy of CountS-
ketch and normalized CountSketch where p = 500, n €
{20, 50,100,500}, and & = 0.2. We see that normalized
CountSketch is more accurate than the unnormalized version,
especially for small n and large p. However, the standard errors
overlap, so one must exercise some caution when reading these
figures. This simulation also shows that our theoretical formula
is accurate even when n, p, and r are relatively small.

If n » r, say n = Crlogn for some large constant C' > 0,
then each ¢; concentrates around n/r. In much of the literature
on sketching, this is a common assumption [78], [104]. In this
case, we have

S~ ¢€,8,

and hence S is simply a rescaling of the CountSketch matrix
S, and thus immaterial.

We now state the theoretical results for CountSketch. The
proof is presented in Section D.

Theorem IILS (CountSketch). Suppose that the assumptions
in Theorem III.1 hold, except we assume the delocalization
condition (II1.24) and that S is a random sampling matrix
as in (IT1.27). Then (II1.15)—(II1.18) hold if we replace & with

§=¢[1—exp(=1/9)]

CountSketch can be regarded as an interpolation between
the uniform random sampling and randomized Hadamard

1 //—‘"— —
o /
I/: l‘
05 |
3 |
— j +CS
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Theo
0" ‘ ‘ Y. ‘
0 5 10 15 20
dy
40 +CS
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<20 ;
10+ /
ol—"" ‘ ‘ ‘
0 5 10 15 20
dy

Fig. 7: Checking the accuracy of the spiked eigenvalue and
eigenvector formulas for CountSketch. We follow the protocol
from the experiment in Figure 3. Here we rescale \; for
CountSketch by a factor of r/n.
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Fig. 8: Comparing the accuracy of CountSketch and normal-
ized CountSketch. We take n € {20, 50, 100, 500}, p = 500,
and r/n = 0.2. The setting is the same as in Figure 3.

sampling. For the time complexity, we have “uniform random
sampling < CountSketch < randomized Hadamard sampling”.
However, unfiorm random sampling and CountSketch are
much closer in complexity (within a constant), while random-
ized Hadamard sampling has an additional logarithmic factor
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in the cost. On the other hand, uniform random sampling and
the CountSketch requires the delocalization condition (I11.24),
while randomized Hadamard sampling does not.

One of the advantages of CountSketch is that it is extremely
fast for sparse datasets. For example, we can consider sparse
sample covariance matrices which are Hadamard products of
the form X = Ao X , where X is a random matrix considered
in this paper and A is a random matrix with iid Beroulli(p,)
entries. Then 0 < p,, < 1 controls the sparsity of the sample
covariance matrices. We expect that CountSketch will perform
well in the sparse case with p,, « 1. Unfortunately, this case is
beyond our current setting—the moment condition (A.8) will
be violated if the entries of X are scaled to have variance n~!.
However, we expect that our results still hold under the sparse
setting, although we need to rebuild the whole theory in [106]
from scratch using the methods in [47] for sparse Erd6s-Rényi
graphs. This is beyond the scope of the current paper, and we
will explore this topic in future work.

We also remark that the delocalization condition (II1.24) is
needed for CountSketch because we are considering the setting
where 7 is of the same order as n. In the conventional setting
where n » 7 >» p, this condition is not needed [22]. In our
setting, we can recover this result. With a simple Chernoff
inequality and a union bound, we know that if n > Crlogr
for a large enough constant C' > 0, then with probability 1 —
o(1) all the ¢;-s are concentrated around n/7. Moreover, as for
Hadamard sampling in Section III-D, Sw; will be delocalized,
ie., |Sw;|- —p 0 as n — oo0. This bound holds for the
same reason as (II1.26), because we take random averages over
roughly n/r entries of w;.

F. Strong signals

Finally, in this subsection, we consider a more general
spiked covariance matrix model

E

Y = dwu + X2, (I11.28)
i=1

where the covariance matrix ¥ can be non-identity. In this

case, the covariance matrix of the spiked model is of the form

k
S=354) duu] . (111.29)
i=1
Since u;’s are not necessarily the eigenvectors of X, they are
also not the eigenvectors of ¥ in general. However, if we
assume the signal strengths to be sufficiently large, then we
can regard u; as an approximate eigenvector of X. This is the

setting we shall consider in this subsection.

We write © = O(y) if |z| < C|y| for some constant C > 0
that does not depend on n or [;. We will denote a A b =
min(a, b) and

l; := d? A min|d? — d§|
J#i

Combining the arguments in the proof of Theorem III.1 with

standard perturbation theory for matrices, we can obtain the

following theorem. The proof of will be given in Appendix E.

Theorem III.6 (Large signals). Suppose that the assumptions
in Theorem III.1 hold, so we consider uniform orthogonal
random projections. Moreover, assume that for some fixed
ky <F,

max I; > Co|3)| (I11.30)

1§i§k+

for a sufficiently large constant Cy > 0 that does not depend

on n,p, % or l;. Then for any 1 < i < k., we have
Xi —=p 0; = E(d2 + Ei) +vp1 + O(I7Y). (IIL.31)

Here E := UTXU, and p; are the moments of the spectral
distribution of ¥,

pi = J zimy(dz). (I11.32)
Also,
i, €2
§— Jipe I11.33
—p voy,
£+ z [p1 +d;7*(p2 — p1Eii)]
and for j # 1,
[Cuj, 5[
§—Jip2 . [ ,
- ; T +00).
" §+ [p1 + d;7%(pa — pEii)] d? — d?

Similarly, if the assumptions in Theorem III.3 (uniform
random sampling) or Theorem II1.4 (Hadamard transform)
hold, then the same results hold; if the assumptions in Theorem
I11.5 (CountSketch) hold, then the same results hold if we
replace & with &.

We check the formulas in simulations. In the first example,
we take ¥ = OTAO, where O is a p x p orthogonal matrix, A
is a diagonal matrix with A;; =5, A;; = 2 for 2 < i < p/2,
A;; = 1 for p/2 < i < p; see Figure 9. In the second example,
we take ¥ to be the Toeplitz matrix with ¥;; = 0.9/ 77I; see
Figure 10. In general, for a Toeplitz matrix whose (4, j)-th
entry is ¢"~Jl, we have p; = p~'Tr(X) = 1 because the
diagonal entries are all ones. For py, we have

1 1 1
po=—Tr(¥?) = -8 = = ) ¥2.
2= (39) pH Iz p; j

Among the p? entries of ¥, the p diagonal entries are equal
to 1; and for i = 1,...,p — 1, there are 2(p — ¢) entries that
are equal to ¢°. Thus,

1 1% N
S2Sh =14 > 2p i)
P Pio
R B G e )
pll-¢ (1-¢2)? |
lJrq2

which converges to T4 as p goes to infinity. We see a good
match between the simulation and the theoretical result, as
long as the signal strength d; is reasonably large.

In fact, we can get more precise results by deriving higher
order asymptotic expansions in terms of [, 1. The calculations
become more tedious, so we do not pursue this direction here.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
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Fig. 9: Checking the accuracy of the spiked eigenvalue and
eigenvector formulas for large signals in a single-spiked
model. We follow the protocol from the experiment in Figure
3. Here ¥ = OTAO, where O is a p x p orthogonal matrix, A
is a diagonal matrix with Ayy =5, A;; =2 for 2 < i < p/2,
A;; =1 for p/2 < i < p, and d ranges from unity to 20 with
equal spaces.

Remark TI1.7. The two terms on the right-hand side of (II1.31)
can be understood heuristically as follows. First, based on
standard perturbation theory, the i-th largest eigenvalue of %
is approximately d? + u] Yu; = d? + Ej;;. As discussed in
Section II-A, heuristically after projection into r-dimensional
subspace, the signal strength should go down by a factor of
&, which leads to the term &(d? + Ej;) in (I11.31). For the
vp1 term, we consider the extreme case where & — 0 and
hence the signal strength goes down to zero. Without loss of
generality, we assume that S is random sampling. Then by
concentration of measure, one can see that

1 P
(SXEY2) (22X TS ~ (n 2, Ez‘z‘) Liosr = P11y
1=1

This leads to the yp; term that does not depend on &.

This analysis also allows to gain some insights into the
comparison of different sketching methods. For simplicity,
suppose U is a uniform partial orthonormal matrix. Then E;;
is well-concentrated around p;. Now we notice that for a
fixed p;, the right-hand side of (III.33) becomes smaller as
p2 increases. In particular, the second moment of the spectral
distribution of X is minimized when it is degenerate (i.e.
concentrates on one point).

7= 4000,k = 1,7 = 0.20,¢ = 0.10

:5 0.5
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d;

Fig. 10: The protocol is the same as in Figure 9, except that 3
is the Toeplitz matrix with the (i, j)-th entry equal to 0.91° =71,

With a similar method, in the setting with ¥ = I;,, a general
sketching matrix S and a uniform partial orthonormal W, we
can derive that

s
I\

€—
£+

i)
IS

[Cui, ED* —p +0(17%),

>

S|

)
=

where p; and po are the first and second moments of the
spectral distribution of SST. We omit the details, since the
derivation is similar to the one in Appendix E. One can
also compare it with (III.22). Hence it is better to use a
sketched matrix with smaller ps/p?, which is minimized at
unity when the spectral distribution of SST is degenerate.
This heuristically explains why projections with iid entries
and CountSketch are slightly worse than other methods—they
have less concentrated spectrum compared to other methods.

To our knowledge, a model at the level of generality of
(II1.28) has not been studied in the literature, even in the strong
signal regime. In the classical setting, it is usually assumed that
Y is identity or a finite rank perturbation of identity matrix; see
e.g., [6], [7], [8], [10], [29], [66] etc. This is also our setting
in Sections III-A to III-E. Another type of spiked covariance
model has spikes added to the population covariance matrices
directly; see e.g., [2], [13], [30], [84] etc. That model is given
by X¥%/2, where ¥ is a spiked covariance matrix of the form
(II1.29). By diagonalizing the matrix X, one can assume that
u;-s are also eigenvectors of X, which is more restrictive than
our model (II1.28). Thus we believe that the Theorem III.6 and
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the method used in its proof may be of independent theoretical
interest.

IV. EMPIRICAL SUPPORT
A. Proposed method

We aim to verify our results empirically. In previous work
for linear regression [35] we developed formulas for the be-
havior of the OLS residuals under sketching. We predicted the
behavior of the ratio of residuals, as a function of the known
quantities n,p,r only. This idea is similar to constructing a
pivotal random variable in statistical inference, whose behavior
does not depend on un-measured quantities. Surprisingly, we
found that the ratio of residuals can be close to the predicted
value in empirical datasets.

Here we do not have the direct analogue of the residuals.
However, we can work from first principles to derive a similar
method. We know that the top eigenvalues in standard spiked
models follow the spiked forward map ¢ — A({,7) from
equation (IIL.1) (see e.g., [6], [7]). A well known method to
estimate the spike is to invert this map. These methods have
been implemented in the EigenEdge package [32].

Thus, we propose to calculate the inverse both for the
original and sketched data. In our model, both should be close
to £. We propose the statistic

A1 (al(X)Q,p/n)
A= (01(SX)2,p/r)

Our theoretical results predict that we should have T' ~ 1.

T =

B. Datasets tested

We consider three data sets to test our theoretical results:
the Human Genome Diversity Project (HGDP) dataset (e.g.,
[16], [72]), the Million Song Dataset (MSD, [11]) and New
York Flight Dataset [103]. For each, we take uniform orthog-
onal random projections on the data with r = |&n], with
& =0.8,0.5,0.3. For HGDP, we repeat this while subsampling
(1) every 20th column; (2) every 10th row and 20th column.
These values of ¢ are relatively high, compared to values
that practitioners may be interested in for large computational
savings. The reason is that the current asymptotic framework,
with a fixed number of spikes just above the noise level, is
expected to be accurate when r is not too small. Providing
accurate predictions of the behavior of the spikes in the regime
where r/n = o(1) is not covered by our current work and
remains important future work.

For some context, the purpose of collecting the HGDP
dataset was to evaluate the diversity in the patterns of genetic
variation across the globe. We use the CEPH panel, in which
single nucleotide polymorphism (SNP) data was collected
for 1043 samples representing 51 different populations from
Africa, Europe, Asia, Oceania and the Americas. We obtained
the data from www.hagsc.org/hgdp/data/hgdp.zip. We provide
the data and processing pipeline on this paper’s GitHub page.

The data has n = 1043 samples, and we focus on the
p = 9730 SNPs on chromosome 22. Thus we have an n x p
data matrix X, where z;; € {0, 1,2} is the number of copies

of the minor allele of SNP j in the genome of individual <.
We standardize the data SNP-wise, centering each SNP by its
mean, and dividing by its standard error. For this step, we
ignore missing values. Then, we impute the missing values as
zeroes, which are also equal to the mean of each SNP.

For the HGDP dataset, we have seen in previous work that it
is not well modeled by a matrix with iid Gaussian entries [36].
In particular, there are correlations both between the columns
and between the rows. Despite this model mismatch, for £ =
0.8 we find values of I" between 1.2 and 1.4 on this dataset,
which are quite close to the expected value of unity under
correct model specification. This suggests that our theory may
sometimes be applicable and relevant even when the data do
not follow the theoretical model.

We also consider the Million Song Dataset [11] and New
York Flights Dataset [103]. For £ = 0.8, we find T = 1.26 and
T = 1.24, respectively. However, for both datasets, if we use
r = 0.5n, then T is about 2; if » = 0.3n, T is about 3. This
also suggests that, in these datasets where the assumptions
does not hold, the theoretical results become somewhat less
accurate as r/n decreases.

C. Simulation for multi-spike model

From Section III-A to Section III-F, the simulations all
concern the single-spiked model with rank & = 1. Here
we verify our theoretical results on a multi-spiked model
with k& = 5. The results for |[(u;,&;)? and \; are shown
in Figures 11 and 12 respectively. We see that the formulas
are very accurate for \; , but less accurate for |(u;,&;)? for
large signals. Heuristically, this is because the variance of
[<u, §Z>| increases compared to the single-spike case due to
the repulsion between different spikes, see e.g. [84].

V. DISCUSSION

We have chosen to present results with convergence in
probability in this paper, because we want our assumptions
to be as general as possible. However, with certain stronger
assumptions, it is possible to improve the results to almost
sure convergence.

One obstacle for improving the results is the convergence of
the block W ST (14+m1.(x)SST)~LSW of the master matrix
M (z) in equation (II.3). In the manuscript, we only show
convergence in probability. To have a stronger convergence
for uniform random sampling and CountSketch, we need
conditions on the vectors w; that are stronger than (II1.24).
For uniform random sampling, suppose we assume a stronger
delocalization condition on the vectors w;,

max il < c(logn) !

for a small enough constant ¢ > 0. Then with a Chernoff or
Bernstein type matrix concentration bound, we can obtain that
HWTSTSW - kaH = O((logn)~12),
n
with probability 1 — O(e~¢1°8™) for a large constant C' >
0. Then using the Borel-Cantelli lemma, we can show that
WTSTSW converges almost surely to = Ij.


www.hagsc.org/hgdp/data/hgdp.zip
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Fig. 11: Checking the accuracy of the formulas for |[(u;, & )2
for different sketching methods. We take n 20000, p =
2500, » = 2000, k = 5. We plot the mean and standard error
over 20 repeated experiments. The signal strengths dy, . .., ds
range from 20 to 3 with equal spaces.

Another obstacle is the moment assumption on the matrix
entries of X. Right now, we assume that the entries of X have
a finite (4 + £)-th moment as in equation (A.8). Then we can
truncate the entries as in (F.1) such that for a small constant ¢,
max; ; [z;;| < 7% on an event with probability 1 — O(n~?).
The bounded entry condition max; ; |x;;| < n~? is necessary
for our Theorems A.7 and A.8, but the probability 1—O(n?)
is not sufficient. To improve this probability, we need a
stronger moment assumption. For example, if the entries of X
have finite (6 + £)-moment, then we can truncate the entries
of X such that for a small constant §, max; ; |z;;| < n™°
on an event with probability 1 — O(n~'=%). Then we can use
the Borel-Cantelli lemma to improve the results to almost sure
convergence.

In addition, in future work, it may be of interest to inves-
tigate other sketching methods that have been proposed. In
particular, uniform sampling can work poorly when the data
are highly non-uniform, because some datapoints are more
influential than others for the PCs. There are more advanced
sampling methods that sample each row of X with some non-
uniform probability 7; which relates to the importance of the
ith sample, such as ds sampling [41], where 7; is proportional
to the squared norm of the ith row, or leverage score sampling,
where the scores are proportional to the leverage scores [21],
[771, [78].
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Fig. 12: Checking the accuracy of the formulas for X for
different sketching methods. The protocol is the same as
Figure 11.

Another frequently used type of random projections are
the so-called oblivious sparse norm-approximating projections
(OSNAPs) [69], [82]. More precisely, an r x n random
projection matrix S is an OSNAP if S;; = d;;0,;//s, where
s > 1 is a fixed integer, o;; are random signs, and J;; are
indicator random variables satisfying the following properties:

« fixed number of nonzeros per column: for any 1 < j < n,
>i_,8;; = s with probability 1;
« negative correlation between the nonzeros: for any £ <
{1,---,r} x{1,---,n}, EH(z’,j)eE 5ij < (s/r)‘El
A concrete example is when we independently choose s
nonzero locations for each column, uniformly at random over
all possible subsets of size s.

The difficulty in analyzing leverage score sampling and
OSNAP lies in a complete understanding of the exact ESD of
SST, which is needed in both the study of the self-consistent
equations in (II.2) and the matrix (IL.3). However, if the signals
are strong, then it is possible to obtain some approximate
results using the argument in the proof of Theorem III.6, where
only the first few moments of the ESD of SST is needed.

We can compare leverage score sampling and OSNAP
with the sketching methods analyzed in Section III through
simulations; see Figure 13. We take n = 4000, p = 800, k = 8
with varying signal strengths and different r. The error bars
are the standard deviations over 20 independent repetitions.
We plot the overlap between the spiked population eigenvector
and the sample eigenvector after sketching. From Figure 13,
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we observe the following common phenomena:

» Haar projection, uniform sampling, subsampled random-
ized Hadamard transform, and normalized CountSketch
have roughly the same efficiency, and they are all better
than iid Gaussian projection, as discussed in Section
III-B. Moreover, unnormalized CountSketch is less accu-
rate than normalized CountSketch. (However, of course,
CountSketch can have other advantages like running time
adapted to input sparsity.)

« Leverage score sampling behaves similarly to uniform
sampling. Note that this is related to the choice of model
in this paper. When the data is highly non-uniform, we
expect that leverage score sampling will be better than
uniform sampling.

o« OSNAP is less accurate than all the other methods.
Again, this method can have other advantages, like near-
optimally small r to ensure oblivious subspace em-
bedding for sparse inputs. Moreover, the gap between
OSNAP and other sketching methods gets smaller as r
increases.

For Haar projection, uniform sampling, subsampled random-
ized Hadamard transform, and normalized CountSketch, the
ESD of SST is a singleton at unity. On the other hand, for iid
Gaussian projection, unnormalized CountSketch and OSNAP,
the ESD of SST is supported on an interval around unity.
Thus based on the simulations and the discussion in Remark
II1.7, we see that in order to better preserve the eigenspace of
the signal, it is better to have a more “concentrated” ESD for
SST.

Finally, it could be of interest to generalize the argument to
methods designed for the streaming data setting, such as core
sketching [99], and iterative methods that can achieve arbitrary
accuracy, such as blanczos [62], [90] and randomized block
Krylov iteration [80].

APPENDIX A
THE SKETCHED SPIKED MODEL

A. The model

We start by recalling the “low-rank-signal plus noise” or
“spiked covariance” matrix model studied in the paper, with
additional details to follow. The data is generated as

k
Y = diwu] + XSV,

i=1

Here Zle d;w;u, is the signal component, {d;}i<;<k give
the strengths of the signals, and {w; }1<i<r and {u;}1<i<k are
the left and right singular vectors of the signals, respectively.
Also, XX'/2 is the noise component, where X is a p X p
deterministic covariance matrix, and X = (z;;) is an n x p
random matrix, where the entries z;;, 1 <7< n, 1 <j <p,
are real independent random variables satisfying

Ez;; = 0, ]E|xij|2 =n L (A.1)

We assume that the signal is independent of the noise matrix
X. Such signal plus noise or spiked models have been widely
studied. The special case ¥ = I, is known as the standard
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Fig. 13: Comparing different sketching methods. Here n =
4000, p = 800, k = 1, r € {200,400, 800,1600}, and
Tij U Unif(—/ 3/n,+/3/n). The error bars are the standard
deviations over 20 independent repetitions. We order all meth-
ods according to their accuracy. The signal strengths d; range
from unity to 20.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

or (Johnstone’s) spiked model [66], and more general spiked
models have been proposed and studied, see [24], [85], [107]
and references therein. When ¥ is diagonal, and when w; have
iid entries, this model can be viewed as a specific factor model,
and thus has a long history see e.g., [3], [34], [94], [97]. This
model is fundamental for understanding principal component
analysis (PCA), and has been thoroughly studied under high-
dimensional asymptotics. Its understanding will serve as a
baseline in our study.

In this paper, we are interested in the PCA of the sketched
data matrix N

Y =5Y

where S is an 7 x n random sketching matrix that is inde-
pendent of both the signal and the noise. This can be written
as

k
Y = SX2¥2 4 > diviu)

') V; = Swl
i=1

(A.2)
A similar spiked separable model has been studied in [30],
although their setting is different, because the spikes are added
to the population covariance matrices. However, we will still
follow the presentation from [30] to some extent. We will
study the spiked eigenvalues and eigenvectors of

O =YY eR, Qy:=YY' eR™".

We denote their (nontrivial) eigenvalues in descending order
as A1 = ... = Ap.r. On the other hand, we will also use the
non-spiked matrix

X = Sxxn12, (A.3)

We denote the corresponding non-spiked matrices as
Ql = )’ZT)’\(‘GRPXP, QQ = )?XTERTXT,

with eigenvalues Ay = ... = A ... We can study centered
sample covariance matrices using our approach by setting

k
Y= —ee)SXOV2 4 (I —ee') Z divsu;
i=1
with e := r=1/2(1,--- ,1)T e R", or

k
Y =S —e XS24+ 5 Z di(I — eewsu,
i=1
with e := n~Y2(1,--- ;1) € R". In Appendix G, we show
that this does not affect our results.

We assume that the number of signals %k is a finite fixed
integer, the strengths d; > dy > --- > di > 0 are fixed
constants, and u;, w; are deterministic unit vectors. We shall
consider the high-dimensional setting in this paper. More
precisely, we assume that the aspect ratios

fni=7/n—>¢&,

for some constants vy € (0,0) and £ € (0, 1).
We assume that the noise covariance X and the outer product

(A4)

T 1= p/n =7, as n — o,

of the sketching matrix B := SS' (an r x r matrix) have
eigendecompositions
Y =020/, B=03%,0,, (A.5)

where

Y, =diag(oq,---,0p), 2o =diag(si,---,s,).

The eigenvalues of ¥ and B are arranged in descending order

as
o12022...20,20, s1282=2...25 20.

We denote the empirical spectral distributions (ESDs) of ¥
and B = SST by

1 & 1 «
WZ::I;;(SU“ 71'322;;(551..

We assume that there exists a small constant 0 < 7 < 1 such
that for all n large enough,

(A.6)

max{oy, s} <7 0,

max {rx([0,7]),75([0,7])} < 1—T.

Both of these conditions are natural: the first condition means
that the operator norms of ¥ and B are bounded by 7!, and
the second condition means that the spectra of ¥ and B do
not concentrate at zero. Moreover, we assume that 7s; and 7
converge to certain probability distributions as n — oo. We
will also assume some regularity conditions on 7y, and 7p
later.

Finally we assume that the random variables z;; have finite
(4+7)-moments, in the following sense: there exists a constant
7 > 0 such that

(A7)

max E[v/nx;[*7 < 77h (A.8)
¥

All constants appearing in our proof below may depend on
the constants «, £ in (A.4) and the constant 7 in (A.7), (A.8)
and (A.16) below. However, for simplicity of presentation, we
often do not indicate this dependence. Whenever we say “fix
any constant C”, this constant C' does not depend on other
constants (including v, £ and 7).

B. Resolvents and limiting laws

As usual in random matrix theory dating back to the seminal
work of [79], we study the eigenvalue statistics of Qj o
and @1,2 through their resolvents (or Green’s functions). For
quantities M7, M5 indexed by | = 1,2, we will sometimes
abbreviate M;, Ma by M 2. Throughout the following, we
shall denote the upper half complex plane and the right half
real line by

Cy:={2z€eC:Imz >0}, R, :=][0,0).
Definition A.1 (Resolvents). For z = E +in € C,, and
l = 1,2 we define the following resolvents:

Gi(X,2) = (Q(X) = 2) ",
Gi(X,2) = (Qu(X) = 2) .
Note that the subscript “1” appears on p x p matrices, while
the subscript “2” appears on v X r matrices. We denote the

ESD p'?) of Q, and its Stieltjes transform as
»

1
p=p" = ’ PIINERE

=1

m(z) = m"(z) := J

(A9)

(A.10)
PP (dz) = %Tr Gi(2).

r—z
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We also introduce the following quantities, which can be
viewed as weighted Stieltjes transforms of Q1 and Qs, re-
spectively:

ma(z) = m(2) : %Tr (361(2)),

mi™ (z) = %Tr (BGa(2)).

Notice that in equation (C.2) below, different from (A.11),
we used the factor p—! instead of n~! in the definition of
m?;. We adopted that notation there because mf(z) in that
case actually plays the role of m(z) in (A.10).

We now describe the limiting behavior of the density p and
its Stieltjes transform m(z). We consider the system of self-
consistent equations for (mi.(z), ma.(2)) € C2

(A.11)
ma(z) =

1 P a;
Mie = E ; Z(l + O'Z'mgc)
T
= %J m(dzx),
—z [1 4 x2ma.(2)] (A12)
1 S
moe = — Z L

n —z(1 + s,mic)

p=1

x
= Qn mr(dx).
¢ J —z[1 4+ 2mi.(2)] 5(dz)
It is known that this system admits a unique solution, see e.g.,
[43], [108]. Then we define m, in terms of mo.:

; z(1 +almgc) (A13)

1
B J —z[1 4+ zma.(z)] m(de).

It is easy to verify that m.(z) € C, for z € C,. It turns
out that this is the Stieltjes transform of the limiting spectral
distribution of the non-spiked sketched matrix Q; = XTX,
where X is defined in (A.3). We can recover the distribution
of eigenvalues in the usual way, by inverting the Stieltjes
transform. Letting | 0, we obtain the probability measure
pe which describes the limiting distribution of the eigenvalues
with the Stieltjes transform inversion formula

pe(F) = lim — Im me(E +1n).

A.14
nl0 ( )

Moreover, under the assumption (A.7), the supremum of the
support of p.(E) is at a finite value A, known as “the right
edge”, which is also the “classical location” and almost sure
limit of the largest eigenvalue of Q;. These known results are
collected in the following lemma.

Lemma A.2 (Existence, uniqueness, and continuous density).
For any z € C_, there exists a unique solution (mq., ma.) €
(Cﬁ_ to the systems of equations in (A.12), such that both
Sfunctions mq., ma. are Stieltjes transforms of two measures
(not necessarily probability measures) (11, and po. supported
on R,. The function m. in (A.13) is the Stieltjes transform
of a probability measure . supported on R.. Moreover, ji.
(resp. e, | = 1,2) has a continuous density p.(x) (resp.
pic(z)) on (0,00), which is defined by (A.14). The densities

pe and pi. all have the same support on (0,00), which is a
union of intervals:
N (0,00) = supp pc N (0, 0)

a A.15
= U [e2k, e2k—1] N (0, 00), ( .

k=1

Supp p1,2¢

where the number of components a € N depends only on ms,
and . Here we order the components so that esy, < egp_1 <
eo_o, hence ey is the supremum of the support—or “right
edge”—of the densities. Under the first assumption in (A.7),
we have e; < C; for a consmnt C; > 0 depending on T.

Moreover, mi.(e1) € (—s7*,0) and mac(e1) € (—o7t,0).
Proof. The proof of this lemma is contained in [108, Theorem
1.2.1], [60, Theorem 2.4] and [26, Section 3]. O

We shall call e, the spectral edges. In particular, we will
only focus on the rightmost edge A, := e;. Now we make
the following assumption, which guarantees a classical square-
root behavior of the spectral densities p. near A\ and rules
out the existence of spikes for Q; . In other words, the spikes
of @172 are only caused by the signals in (A.2). We note that
this is a mild condition, and holds in particular when the ESDs
of ¥ and B are well behaved. Specifically, when B = I,
(i.e., when there is no projection), then it is known that the
square root behavior holds as long as the limit of the ESD of
Y is sufficiently “regular” at its right edge. For instance, it is
enough if the right edge of the limiting ESD is a point mass, or
has a density bounded away from zero and infinity, see e.g.,
[5], [93]. This is a mild condition that, while possibly hard
to check in applications, does not appear to be a significant
limitation.

Assumption A.3 (Right edge regularity). There exists a con-
stant T > 0 such that

1+mic(A)s1 =7, 14+moc(A)or =7 (A.16)

Under this assumption, we have the following lemma.

Lemma A.4 (Lemma 2.6 of [106], square root density at
edge). Under assumptions (A.4), (A.7) and (A.16), there exists
a value a > 0 of order 1 such that

pe(Ay —x) = az'/? + O(z), as x 0, (A.17)

and
= me(Ay) +ma(z = A )2 +0(]z— Ay ), (A.18)

as z — Mi. The bound (A.18) also holds for mjy 2. with
possibly different constants a2 > 0.

me(2)

We introduce a classical self-adjoint linearization trick,
dating back at least to Girko, see e.g., the works [57], [58],
[59] and references therein. Define the linearization matrix as
the following (p+1) x (p+7) self-adjoint block matrix, which
is a linear function of X:

e 0 X7
X 0

where recall that X = SXX/2 is the projected non-spiked
matrix, and z!/2 is taken to be the branch cut with positive

H=H(X,z):= >, 2eCy, (A.19)
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imaginary part. Then we define its resolvent (Green’s function)
as

G=G(X,2):=(H(X,z)—2)"". (A.20)
By the Schur complement formula and (A.9)
G 2TVGXT
G(z) = ~
(=) ( 2 12XG G2
(A.21)

_ G1 72XTG,
272G, X G2 -

Thus, an analysis of G yields directly_an analysis of the

resolvents G1 2. Similarly, we can define H and G by replacing

X with the spiked version Y. For simplicity of notation, we
will sometimes use the index sets

Ty :={1,...,p}, Lo:={p+1,.,p+r}, T:=TyUl,

to label the indices of the matrices. For instance, since X is
an n x p matrix, we will label its row indices according to Z,
and its column indices according to Z;:

X = (Xpi)uezy ier,, X =

In the rest of this paper, we will consistently use the elements
of the latin alphabet 7,7 € Z; and the elements of the greek
alphabet p,v € Iy or 7.
We define the following matrix, which turns out to be
the deterministic limit of the resolvent G of the linearization
I, 0

matrix H, as
H(z):=< 0 I >,

where (using the notation 1/A for the inverse of the matrix

A)

(Eij)i,jefla S = (SHV)MEIQ,VEIS'

(A.22)

2,'71 271

P R
! 1+ ma(z)8’ 7 1+ my.(2)B

Note that from (A.12) we can express the Stieltjes transforms
m. and mq 2. (Which determine the limiting spectral distribu-
tion), as the following weighted traces of the functionals of
II:

1 1
—Trlly =m., —Tr(XZI;) =my,,
n n (A.23)

1
—Tr (BHQ) = M2ec-
n

In [30], [106], an anisotropic local law away from the support
of p. was proved in the form of Theorem A.7 below. Roughly
speaking, the local law means that the random resolvent
matrix G is well approximated by the deterministic matrix II
defined above. This holds in the sense that linear combinations
of entries of G can be approximated by the same linear
combinations of entries of II. This has been more formal in
work on deterministic equivalents, see e.g., [37], [60].
Before stating the local law, for convenience, we recall
the following notion of stochastic domination, which was
introduced in [44] and subsequently used in many works on
random matrix theory [12], [13], [14], [45], [46], [70]. It
simplifies the presentation of the results and their proofs by
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systematizing statements of the form “¢ is bounded by ¢ with
high probability up to a small power of n”.

Definition A.5 (Stochastic domination). (i) Let
gz(émm%neNmeUWD,

(= <C(”)(u) :neNue U(”)>,

be two families of nonnegative random variables, where U™
is a possibly n-dependent parameter set. We say & is stochas-
tically dominated by (, uniformly in u, if for any fixed (small)
€ > 0 and (large) D > 0,

sup P (¢ () > n*¢")(w))

ueU (1)

-D
<n

Sfor large enough n = ng(e, D), and we shall use the notation
&< Cor&=0-(Q). If for some complex-valued family £ we
have [€| < ¢, then we will also write £ < (.

(ii) Let A be a family of random matrices and { be a family of
nonnegative random variables. Then A = O () means that
[All < ¢

(iii) We say an event = holds with high probability if for any
constant D > 0, P(Z°) < n=P for all large enough n. We
say an event = holds with high probability on an event ) if
for any constant D > 0, P(O\Z) < n~? for all large enough
n.

The following lemma collects basic properties of stochastic
domination, which will be used repeatedly in the proof.

Lemma A.6 (Lemma 3.2 in [12], Closure properties of

stochastic domination). Let & and ( be families of nonnegative

random variables. Let C' > 0 be any (large) constant.

(i) Sums. Suppose that £(u,v) < ((u,v) uniformly in
weUandveV.If|V] <n then Y, ., {(u,v) <
D vev C(u,v) uniformly in wu.

(ii) Products. If &1 (u) < (1(u) and &3(u) < Co(w) uniformly
in u€ U, then & (u)éa(u) < (i (u)la(u) uniformly in u.

(iii) Taking expectations. Suppose that ¥(u) > n~C is deter-
ministic and ¢ (u) satisfies BE(u)? < nC for all u. Then
if £(u) < U(u) uniformly in u, we have E{(u) < ¥(u)
uniformly in u.

In this paper, given (possibly complex-valued) vectors u, v
and a matrix A of conformable dimensions, we denote the
inner product by

(u, Av)y = u" Av,

where u ' is the complex conjugate of u. For simplicity, we
shall also write (u, Av) as a generalized entry A, := {u, Av).

Now we are ready to state the anisotropic local law for
G, which will be the main tool of this paper. It essentially
follows from Theorem 4.10 of [30]. However, our setting is
a little different from the setting there, so we will give the
necessary details in Appendix F to adapt the proof in [30] to
our setting.

Theorem A.7 (Anisotropic local law outside of the spectrum).
Suppose the setting in Section A-A and Assumption A.3 hold.
Let &/ be any set of (complex-valued) deterministic unit
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vectors of cardinality |</| < n® for some constant C > 0.
Fix any small constant ¢y > 0 and large constant Cy > 0,
and define

Sout(co, Co) :={E+in: Ay + ¢y < E < Cy,

A.24
ne[0,Col}. (A2

There exists a set Q with P(Q) = 1 —n~° for some constant
0 < § < 1/2 depending on 7 in (A.8) only, such that the
following anisotropic local law holds:

1(2) max |(u, G(X, 2)v) — (u, TI(2)v)] < n~ % (A.25)

uniformly in z € Syy1(co, Co).

We remark that Theorem 2.4 of [12] is actually a special
case of our Theorem A.7 by replacing X = S (i.e., we replace
X — S8, ¥+ I,and § — I,), but on a bigger domain of
z. In fact, our Theorem A.7 can be also generalized to such a
bigger domain of z by Theorem 3.6 of [106], and the reader
can check that (C.6) below holds due to the claim in (A.25).

Moreover, we have the following local law for z near the
edge A\, of the spectrum, which will be used to study the
non-spiked eigenvalues and eigenvectors. It is a corollary of
Theorem 3.6 of [106], and we shall give the proof in Appendix
F. The only difference between the local law outside the
spectrum and the one near the edge is that the argument
z = E +1n of the resolvent G(X, z) is restricted to have real
part E strictly larger than the right edge A\ for the law outside
the spectrum, and there are no restrictions on the imaginary
part n. For the law near the edge, z is restricted to have real
part E around the right edge AL, but the imaginary part n
must have absolute value at least of the order of n—'/2+¢1 for
some c; > 0.

Theorem A.8 (Anisotropic local law near the edge). Suppose
the assumptions of Theorem A.7 hold. Fix any small constants
co,c1 > 0 and large constant Cy > 0, and define

Sedge(CO7C(),Cl) = {E + 1’17 : /\+ —c < E<L CO,

A.26
e [n—1/2+C1’CO]} . ( )
There exists a set 2 with P(Q) = 1 —n~° for some constant
0 < § < 1/2 depending on 7 in (A.8) only, such that the
following anisotropic local law holds as long as co is small
enough depending on v,&,T:

1() max [Cu, G(X, 2)v) — (u, T(2)v)] < n%  (A27)

uniformly in z € Seqge(co, Co, c1). Moreover, fixing any w €
N, we have that

1() max [\; — Ay <n°,

1<i<w

(A.28)

We mention that such local laws are part of a much broader
line of work in random matrix theory, going back to the
Marchenko-Pastur law [79]. See e.g., [48], [49] for more recent
results on related topics such as universality. The topic of
deterministic equivalents is also related, see e.g., [37], [60].
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C. The spiked eigenvalues and eigenvectors

With the anisotropic local law, we can derive a so-called
master equation for the outlier eigenvalues and eigenvectors.
We write the sketched signal matrix as

k
Y diu] =VDUT, D = diag(dy,- - ,dy),
=1

where U, V and W are p x k, r x k and n x k matrices:
U:(Ul,"',Uk), V:(Ul,"'7U]€)ZSVV,
W = (wy,- -, wg).

Then we define the linearization of the sketched signal as the
following (p + ) x (p + r) block matrix:

AH = z'/? ( 0 upv? ) = 2'2ADAT,

VDUT 0
0 D
i )

) o

Lemma A.9. If x > A\ is not an eigenvalue of Q1 = XTX,
then it is an eigenvalue of Q1 = Y'Y if and only if the
following determinant (of a 2k x 2k matrix) vanishes:

det (Dil + ;vl/QATG(:E)A> =0.

where

U 0
0 Vv

(A.29)

Proof. The proof is similar to the one for Lemma 5.1 of [30].
Since our setting is somewhat different, we give a full proof.
The non-zero eigenvalues of z~/2H are

i\/)\1(@1)7 i\/)\Q(él)7 s,y )\p/\T(él)‘

Hence x > 0 is an eigenvalue of O, if and only if

det (ﬁl(X,a:) _ x) —0, (A.30)

from which we obtain that
0 =det(H + AH —x)
= det(H — x) det (I + G(x)AH)
= det(H — x)det(I + 2'/2ATG(x) AD)
= det(D) det(H — z) det(D " + 2?ATG(2)A),

where in the third step we used identity det(I+CB) = det(I+
BC) for any two matrices B and C of conformable dimensions,
and identity matrices of appropriate dimensions. The claim
then follows since det(H — ) # 0. O

Using Theorem A.7, up to some small error of order
0~ (n~?), equation (A.29) gives approximately the following
eigenvalue master equation for any possible spike x:

det M(z) := det( Agfff) J\ZE;) ) —0, (A3
where
My(z) := =27 2UT (1 + mae(2)8) 7' U,
My(z) == —z Y2V T (1 + my.(z)B) V.
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In summary, we have the following setup for finding the

limiting locatons of the spikes after sketching:

(i) We are given the population covariance X (p X p).

(i) We have the sketching matrix S (rr x n).

(iii)) We are given the left and right matrices of eigenvectors
Vand U (r x k and p x k).

(iv) We have the k x k diagonal matrix D of population spikes.

(v) For any given z, we calculate the pair (m1.(x), ma.(z)),
arising as the solution to the self-consistent equations in
(A.12).

(vi) We combine the above quantities into the 2k x 2k master
matrix M (x) from (A.31).

(vii) We solve for the values x for which this matrix is
singular, i.e., solve equation (A.31). In general we expect
at most k such values. These are all possible candidates
for the limits of the empirical spikes of the sketched data.

To get concrete results, we solve the master equation in

special cases as in Section III.

Next we discuss the sample eigenvectors for the outliers
(i.e., the spikes). For now, suppose we know that the i-th
largest outlier )\; is close to a “classical location” 6;, which
does not depend on m,p,r, but can depend on the other
parameters. Moreover, assume that these values are well-
separated from each other (i.e. there exists a constant € > 0
such that |; — 6;| > ¢ for any i 5 j).! We want to study the
overlap between the sample eigenvector and the population
eigenvector u;. Let

ZXi "G

be a singular value decomposition of the sketched spiked
matrix, where

A=A 2

/0:)\p/\r+1:~~':)\pvr

are the eigenvalues of Q; = YTV, while {Ek}2:1 and {Ek}izl
are the left and right singular vectors of Y, respectively. Then
using (A.21) for G, we find that for ¢,j € 77 and u,v € I,

'2)\;7/\7“>

0 Ck Ck
Gi; = , , (A.32)
7 kzjl )\k —Z Z k —Z
and
Gy = 1253 MGG 0
’ e (A.33)
G — 1251 MGE)
l k=1 )‘k -z

We also recall the following well known lemma, which
follows from a simple algebraic calculation.

Lemma A.10 (Woodbury matrix identity). For A, S,B,T of
conformable dimensions, we have
(A+SBT)™*

A34
= A - ATIS(BTL+TATIS) T AL (A-34)

'In our paper € denotes a constant, and its value can change at each
appearance.
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as long as all operations are well defined. As a special case,
we have the following equation, sometimes known as Hua’s
identity:

A—AA+B) ' A=B-B(A+B)'B (A.35)
if A+ B is non-singular.
With (A.34), we can write that
~ 1
AT A=AT A
G(z) H— 24 z2ADAT
1
= AT [G(z)—G(2)A ATG(2) ) A.

Our goal is to study |<uj,@>|2 for some spiked eigenvector
é. We cgnsider a small contour I'; around 6;, which only
encloses \; and no other eigenvalues. Then using Cauchy’s
Theorem, we obtain the following angle master equation:

N _1 ~
2 TAT
[{uj, E)° = 5 §ej A G(z)Ae;dz (A.36)
I;
1 Try-1 1 ~1
_ - D D idz.
2mi(N0)1/2 3€ 9T DgarATGAT T

This gives an expression for the inner product of the true
and empirical spike eigenvectors. To evaluate it in specific
cases, again we need to study the master matrix M (z)~! =
(D7t + 2'1/214—'—67’(2)14)_1

APPENDIX B
PROOF OF THEOREM 1I1.1

In this section, we prove Theorem III.1 based on the master
equations (A.31) and (A.36), and the local laws, Theorems
A.7 and A.8. We give the details of the proof in this section,
which can be applied to Theorems III.2-II1.6 directly. The
only differences will be the analysis of the master equations,
which we will perform in a case by case manner.

In our proof, we will use the following asymptotic notations.
Given (n-dependent) quantities A,, and B,,, we write A, =
O(By) or |A,| < |By| if there exists a constant C' > 0 such
that | A, | < C|B,| for large enough n, and we write A,, ~ B,
if A, = O(B,) and B, = O(A,). We write A,, = o(B,)
or |[A,| « |By| to indicate that |A,| < ¢,|B,| for a positive
sequence of numbers ¢, | 0 as n — 0.

We first introduce some preliminary bounds. For z = E+in,
we define the distance to the rightmost edge as

k=kg:=|E—A] (B.1)

Then we summarize some basic properties of m1 o.. We define
the domain

S(co, Co) —{z =FE+in: Ay —cp <

S CO} .
Lemma B.1 (Lemma 3.4 of [106]). Suppose (A.4), (A.7),
and Assumption A.3 hold. Fix any constant Cy > 0. Then

there exists a sufficiently small constant c¢o > 0 depending on
v, &, T such that for z = E + in € S(co, Cp),

E< G, (B.2)
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(i) for a = 1,2,
1 ifE >\
[Mac(2)| ~ 1, Immge(z) ~ { Vet lf * : (B.3)
\/H+7’7 le‘< )‘-‘r

(ii) there exists a constant 7' > 0 such that

min |1+ mye(2)s,] = 7/, min|l + moc(2)o;| = 7. (B.4)
m i

In fact, (B.4) holds if we replace s, (resp. o;) with any positive
value that is smaller than sy (resp. 01).

The functions m1.(z) and ms.(z) are holomorphic on the
right half complex plane {z : Rez > A,}. Moreover, they
are one-to-one in the region near the real axis, so that we
can define their inverse functions g;. and go.. The following
lemma gives some basic bounds on mq 2., g1,2. and their
derivatives.

Lemma B.2 (Lemma 4.5 of [30]). Suppose the assumptions
of Lemma B.1 hold. Then for any constant ¢ > 0, there exist
constants Ty, T1,Te > 0 depending on v,&, 7,5 such that the
following statements hold.

(i) m1. and ma. are holomorphic homeomorphisms on the
spectral domain

D(70,¢) :={z=FE+in: A\f <E<g, —19 <1 <19}
As a consequence, the inverse functions of mi. and mo. exist
and we denote them by gi. and go., respectively.

(ii) We have Di(11,5) © mi.(D(70,5)) and Dy(72,5) <
mac(D(70,5)), where

Di(11,¢) :={{=FE+in: mi(Ay) < E <mi(s),
-7 <n<T1},
and
Dy(12,6) :={C = E +1in: mac(Ay) < E < mac(s),
—To <N < Ta}.

In other words, g1. and gs. are holomorphic homeomorphisms
on D1(711,5) and Ds(7s,5), respectively.

(iii) For z € D(19,5), we have

Imic(z) = mic(Ayp)] ~ |z — >\+|1/2, (B.5)
Imae(2) = mac(A)] ~ |2 = As| 2,
and
()]~ Jo = Al e
Imbe(2)] ~ [z = Ay |72, .
(iv) For z1, 25 € D(79,5), we have
Imic(21) — mic(z2)] ~ [mac(z1) — mae(z2)]
|Zl — 22| (B7)

~

max;=1,2 |2 — A2

The following eigenvalue interlacing result follows directly
from the Cauchy interlacing theorem.
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Lemma B.3 (Eigenvalue interlacing). Recall that the eigenval-
ues of Oy and Q1 are denoted by {\;} and {\;}, respectively.
Then we have

Xi € Dk il (B.8)

where we adopt the convention that \;
ANi=0ifi>par.

= o ifi < 1 and

With the above preparations, we are ready to prove Theorem
III.1. We first prove the near-orthogonality of columns of
partial orthogonal matrices, (IIL.9).

Proof of (II1.9). Let us represent S as the upper r X n sub-
matrix of some n x n Haar distributed matrix 7'. Then we
have

EV'V); =E Z

1_7EZZ Jk_i

j=1k=1
2
Var [(VTV)1] =E Z 52,82,
J:3'=1
oo 2

=EY Sh+ ) ESLSE -
j=1 g#3’e[1,r]

—EZT:T“ el > TAT ~
— n(n —1) n?
j=1 j#j3'€l1,n]

_ N 4 r(r—1) S 4

EZTJI_ n(n—l)EZ:TJ1
j=1 j=1
r(r—1) - r? _
gy E ) TAT}, = =0(n""),
7,3'=1

where we used that ET}; = O(n~?), since the random vector
t1 := (T)j1) has the same distribution as a normalized Gaussian
vector:

d
tr=g/lgl-

Here g € R” has iid standard normal entries. Similarly, we
can calculate that

E(VTV), =

1 T
- m Z E Z Tjijk'Tj/ij/k,
53'=1 ke#k'e[ln]

1 r n
- m D E Y, Tl Ty
73,7'=1  k,k'=1

r
- E T : 7.
n(n—l) Z Z gL S n(n —1)
J.y'=1 k=
Then we conclude (II1.9) by Chebyshev’s inequality. O
In fact, we know that a much stronger bound holds:
VTV = &0 + O (n~1/?) (B.9)

using more advanced tools from random matrix theory. Al-
though we will not use such a strong bound in this paper,
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it may be helpful to keep in mind that our result can be
improved to give much better convergence rates. For example,
if the entries of X have finite a-th moment for a constant
a > 4, then the results in Theorem III.1 can be obtained with
an explicit convergence rate O~ (n~%) for § = 1/2 — 2/a.
In particular, if the entries of X have finite moments up to
any order (e.g. when the entries of X are sub-Gaussian), then
we can get the optimal convergence rate O<(n_1/ 2) using
(B.9) in our proof. The behavior of submatrices of random
orthogonal matrices has been well studied, see e.g., [64], [65]
and references therein. These works study approximation by
Gaussian random random variabes, and require more than what
we need in this work.

Now we are ready to prove the eigenvalue bounds in
Theorem III.1.

Proof of (III.15) and (I11.17). By Lemma A.9, it is enough
to study the behavior of ATG(x)A. By Theorem A.7 and
Theorem A.8, we can choose a high-probability event = c €2,
such that the following bounds hold for some constants
co,¢1,Co > 0 and any fixed large integer @ € N:

1) AT(G(2) - T(2) Al < n™*2, (B.10)
for z € Seage(co, Co, 1) U Sout(co, Co);
L(E) [\ = A <72, (B.11)

for 1 < ¢ < w. We remark that the randomness of X only
comes into play to ensure that = holds with high probability.
The rest of the proof is restricted to = only, and will be entirely
deterministic.

We denote d. := 4/7n/En, and define the index sets

Op ={1<i<k:d;>d}, (B.12)

which is the set of the indices of outliers. We also denote
k+ = |O+|

Step 1: Our first step is to prove that on =, there are no
eigenvalues outside a neighborhood of the classical outlier
locations 6;. For each 1 < ¢ < k., we define the permissible
interval

L =1Le) :=1[0; —¢,0; +¢],

where ¢ is a constant that can be arbitrarily small as long as
we have

Iiﬁljzg,

Moreover, we define the permissible interval Iy = Ig(e) :=
[0, A1 + €] for other eigenvalues, and denote

I:=Iou< U 1)

€Oy

i # ], (B.13)

(B.14)

We claim the following result.

Lemma B.4. The complement of 1 contains no eigenvalues of

Q.

Proof. By (A.29), (B.10) and (B.11), we see that z ¢ Ij is an
eigenvalue of Q; if and only if

D+ 22ATG(2)A

B.15
=D + 2 2ATII(z)A + O(n~%/?) (15

24

is singular. By (B.11), we know on =, A\; < (v/A1+d;1)% < Co
as long as () is taken large enough. Here we used the trivial
bound for the operator norms,

M=V < IX] +dv= A+ da
Moreover, by (II.9), we have that with probability 1 — o(1),
D+ xl/QATH(x)A
—27 2 (14 mae(x) T i D!
= 1
( D1 2 mo.(x) I +o(l)

for all = € [0, Cy]\I. Thus to prove the lemma, it suffices to
show that if = € [0, Cy]\l, then

‘ mac(x) 2

=, 1<i<k,
1+ mae(x) v ’

(B.16)

for some constant ¢ > 0 depending only on €. If (B.16) holds,
then we immediately obtain that
) —1

—z7 Y2 (1 + maoe(z) ' I D!
D1 2 Pmy,(2)1;,
and hence (D! +2'/2ATG(2)A) must be non-singular. This
means that = cannot be an eigenvalue of Q.
For the proof of (B.16), by (IIL.11), 6; satisfy
m2c(9i)

= 0(1),

— = — 4% 1<i<kg.
1 + mgc(ﬁi) v ! +
Thus we have that for 1 <¢ < k.,
mac () mac() mac(6;)

2 4 d;?
1+ mac(x) t

- ‘1 +mge(x) 1+ mae(6;)
R |mac(z) —mac(0:)] 2 1,

where we used (B.4) in the second step and (B.7) in the last
step. Moreover, using 0 > mac(z) = ma.(Ay +¢) > —1 for
z € [0,Co]\I and ma.(A;) = —(1 +d?)~1, we find that for
ki <i<k,

_mae(2)
~ 14 mao.(x)
= mQC()\J,- + E) — mQC(A_,_) = 1,

Mo () —2

el g, +d.% 2 ma,
1+m20(x) i c ma (x)

_1’_7
1+ d?2

where again we used (B.4) in the second step and (B.7) in the
last step. This concludes (B.16), which further proves Lemma
B.4. O

Step 2: In this step, we claim the following result.

Lemma B.S. Each 1;, 1 < i < ky, contains precisely one
eigenvalue of Q1.

Proof. Fix any 1 < ¢ < k4 and pick a sufficiently small

positively oriented closed contour C < C/[0, A\, ] that encloses

6; but no other point of the set {Hi}f;rl. By (B.13), we can

choose the contour C as a circle around 6; with radius .
Now we define two functions

h(z) == det(D~! 4 21/2ATG(2)A),
I(z) := det(D™! + 22 ATTI(2) A).

By (B.11), the functions h,! are holomorphic on and inside
C when n is sufficiently large. Moreover, by the construction
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of C, the function [ has precisely one zero inside C; at ;. By
(B.10) and a similar argument as for (B.16), we have

min[I(2)] 2 1, [h(2) = U(2)] = O(n=%?).
ZEl
The lemma then follows from Rouché’s theorem. O

Combining Steps 1 and 2 with a simple eigenvalue counting
argument, we obtain that

1E) N — 0] <e, 1<i<ky, (B.17)

and

1E)N <1E)A, +e, ky <i<k, (B.18)

for any small constant € > 0. The first bound (B.17) concludes
(IIL.15). To prove (LIL.17), we still need to provide a lower
bound for \;, k4 < i < k. In fact, with (B.8) and (B.11), we
obtain that

1E)N = 1E)A —n

Together with (B.18), we conclude (III.17). L]

=02k, <i<k.

Finally we prove the eigenvector bounds in Theorem III.1.

Proof of (II1.16) and (I11.18). In the following proof, we
again always work on the event = such that (B.10) and (B.11)
hold. Again the randomness of X only comes into play to
ensure that = holds with high probability, and the rest of the
proof is deterministic on =.

For &£(z) = 22AT(II(z) — G(z))A, we have
ZPATG()A = 2'PATI(2)A — £(2). By (B.10), we
have that

1€ <n92  for  ze€ Soulco,Co). (B.19)

We now perform a resolvent expansion for the denominator in
(A.36) as
1 B 1
D14 212ATG(2)A D1+ 212ATTI(2)A
n 1 < 1
D14+ 212ATH(2)A D1 + 212ATG(2)A’
We define the contour T'; = {z : |z — 6;| = &}, where ¢ > 0
is a sufficiently small constant such that
inf

_ i — 0 >
zel'; <|Z >\+| A lg’ilér]i_'_ |Z el|> Z &

By (UL15) and (IIL.17), for large enough n, we h~ave @)
T'; only encloses );, and no other eigenvalue of Q;; (ii)
I'; does not enclose any pole of G (i.e. any eigenvalue of
Q7). Note (i) implies that I'; only encloses one pole of
(D! + 21/2ATG(2)A)~! at \;. Moreover, with a similar
argument as for (B.16), one can obtain that

max (D7 + 2Y2ATTI(2)A) 7 < et
zel;

(B.20)

(B.21)

for some constant ¢ > 0 depending on ¢ only. Together with
(B.19), we find that

1 1
£
el [ DT SPATH(2)A D1 + zl/QATG(z)A‘
<n 92 (B.22)

25

Now inserting (B.20) into (A.36), choosing I'; as above, and
using (B.22), we obtain from Cauchy’s integral formula that
for1<i<kyand1<j<k,

L EN2 = L —1
(3,801 = o) + Fgf(o,dn
-1

) ()

x ( e (1+m2c( )R

21/2mgc(z)
~ 27, 1+d2 §;m26 1+d2) rdz+o(l)
T+ d2) mr ey T oW
_ ngc( (1+d})™")
=0 6.1+ &) +0(1)
_bm 1 B.23
_§n+d2+0()' ®.23)

where we used (III.15) in the second and third steps, and (IIL.8)
in the last step. This concludes (II1.16).

Next we prove (IIL.18). For ky < i < k, we choose a
specific spectral parameter as z; = \; + irn;, where n; =
n~ ¢ for some sufficiently small constant € > 0. Note that
by (II1.17), we have z; € Seqqe(co, Co,c1). With the spectral
decomposition (A.32), we obtain that

i nl¢u, &I

ImGuu(E—i—ln ,
(\j — E)2 + 12

J=1

which implies

[, €7 < i T, G (2 u). (B.24)
Applying (A.34) to G(z) = (H + ,22»1/2ADAT —z)7 L, we
obtain that
Qu, G(z)u) = Guulz:)
1 (B.25)

— zg/2uTG(zi)A ATG(z)u.

D1 + zl-l/QATG(zi)A

For the denominator, we claim that for sufficiently small ¢,

H (D*l + z1/2ATG(zi)A)7 < (Immao(z))~" . (B.26)
To prove this claim, we first notice that
m2c(Zi) _2 1
2 4 2 mael(#) +
‘1 T mae(z) ‘mz @)+ 17 a2 (B.27)

2 Immoac(z) 2 mi,

where we used (B.4) in the second step and (B.3) in the last

step. This shows that the smallest singular value of
M(z) =Dt +22ATTI(z)A

is at least of order 2 Immo.(z;). Then by (B.10), we have
that

D' 4 2 PATG(z) A = M(z) + O(n~%?).
Thus as long as we choose £ < ¢/2, the bound (B.26) holds.
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Now using (B.10), we get
Guu(z) = O(1),  [u"G(z)A] = O(1).
Together with (B.25) and (B.26), we obtain that

< max{\/1;, \//175”}

ni Imdu, G(z)uy < ——2

Immac(2;)
where Ky = |3\z — A4 | (recall (B.1)) and in the last step we
used '
. i
Immoc(n;) 2 min < /7, ——
//i;\i

by (B.3). Hence with 7; = n™° and x5 =
we conclude from (B.24) that ’

~ |2 ~
[, €] < mi T, G(z)u) = o(1).
This completes the proof of (IIL.18). O

o(1) by (II.17),

APPENDIX C
PROOF OF THEOREM I11.2

In this section, we prove Theorem III.2. For the reader’s
convenience, we first provide an informal argument, and then
the fully rigorous proof.

To simplify the notation, we will sometimes denote A+z :=
A+ zI, for a ¢ x ¢ matrix A and a complex scalar z. We will
need the following resolvents of S (compare with Definition
A.l):

R1(S,2) := (SST —2) 7",
1(5,2) ( Z)—1 (C.1)
R2(S, 2) := (STS -z)
and the normalized traces
1 1
my(z) 1= ’ TrRi(2), m5(z) =~ TrRQ( ). (C2)

Let m7, and m3, be the limiting Stieltjes transforms of SST
and ST S. They are determined by the following self-consistent
equations:

1
miy(z) = ————=—,
1 —z [1 + T{”Lgc(z)] ©3)
ms.(2) = .
Ze —z [1 + Enmfc(z)]
Solving (C.3), we can obtain that
() = (r—146) + \/(z —A9)(z =A%)
lc 225“ ) (C4)
o 1= g) /- AD - A9
m2c(z) = 2 )

where )\i are the edges of the support of the standard
Marchenko-Pastur (MP) distribution,

)‘f = (1 mulV gn)2
Denoting the inverse functions of m?,. by gf,.. we also
obtain from the equations in (C.3) that

1 1

S _ _ =
glc(m) - 1 +£nm m7 ch(m)

€n 1

1+m m

(C.5)

26

By the local law for isotropic sample covariance matrices,
Theorem 2.4 of [12], we know that for any deterministic unit
vectors uq,uz € R” and vy, vy € R”,

(uy, R (2)u) = m?,(2){uy, uz) + o(1),
(v1, Ra(2)v2) = mi5.(2){v1,v2) + o(1),

with high probability, uniformly in the following region of z
bounded away from the support of the MP law:

L(144/60)7]

for any constant 7 > 0. In particular, (C.6) implies that

mi (z) = m3 () = m3e(2) +o(1),

uniformly in z € S;.
Now using m{, we can write the self-consistent equations
in (A.12) as

(C.6)

S, = {z € C:dist(z, [(1—/&)? =71} (C7)

m?.(2) + o(1), (C.8)

o
—z[1 + mac(2)]

e (1- S mieme)).

—zmic(2) mie(z)

Mmic(z) = T ;

(C.9)
mae(z) =

Suppose that (C.8) can be applied to m7. Then we obtain the
following self-consistent equation satisfied by m1.:

T,
mlc(z)n 1 s ) (CIO)
mic(2) <1  mie(2) my.(—my, (Z))> +o(1).

This immediately gives the inverse function g;. of mi.:

5” (1 — %mfc( m—1)> +0o(1). (C.11)

mm

gla(m) =

Next we find the function m;.(z). Using the function g7, as
an inverse function of mfc, we can obtain that mq. in (C.10)
satisfies (approximately) the following equation:

1 Yn — & z
- = glsc <_ - nmlc - m%c)

mie gn fn
B 1
1= (yn — &)mie — zmi,
+ fn

(1 = &n)mac +2m3.’

which can be reduced to a cubic equation
22m3, — 2(1 4+ &, — 2v,)m3.,
- (Z + (1 - ’Yn)(’yn - gn)) Mic

There is only one solution to this equation such that
Immy.(z) > 0 whenever Im z > 0. After obtaining m1.(2),
we immediately obtain that the Stieltjes transform m, the limit
of Tr(YTY —2)7", has the form

me(2) +0(1), me(2) := &, 'mi(2),

with high probability. Hence we can define the asymptotic
spectral density p. using the inversion formula p.(E) =
lim, o 7 "Imm.(E + in), and find its right edge A;.

I (C.12)

m(z) =
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To study the spiked eigenvalues and eigenvectors, we again
need to study the master matrix M (z) in (I.3). With the
Woodbury matrix identity (A.34), we obtain that

1
14+ m.SST

1 1
S Sl N —
x12my.. < 1 +mlcSTS>

Applying the local law (C.6), we obtain that with high
probability,

z PwTsT SW

1
“12ppTeT_ L
R T
1 1
= _ml/le <1_ my mgc( mlc )> Ik+0( )

Now the eigenvalue master equation (A.31) becomes, approx-
imately,

Y 0
e _ _ _ =0,
D ! mllc (1 - mlln mgc(_mlcl)>‘[k
which gives the following equations for 1 <
1

-1 S —1 -2
— 1- =d. "~
Tn < Mie mQC( My )) 7

Using the inverse function of m3., g5., in (C.5), we obtain
that

-my)} = g5, (14 ymd;?)mae)
which gives
Tnd; ?
(U477 (G md; )

Similarly to (III.12), in order for the signal strength d; to give
an outlier, we need to have that

mic(z) = (C.13)

Ynd;
(1470, ?) (€0 + 7ad; %)

In particular, there exists a d. > 0 determined by the equation

a(d;) = (C.14)

> mlc()\+).

a(de) = mic(Ay), (C.15)

such that (C.14)~holds if and only if d; > d.. If d; > d., then

the i-th outlier \; will concentrate around
-2
7nd

&:g“( (1 +ndy )@n+%d%> (€.16)

by (C.13), where g;. is defined in (C.11).

Next we study the spiked eigenvector corresponding to the
outlier \; using the angle master equation (A.36). First it is
easy to see that [(uj, &)? = o(1) if j # i. If j = i, then we
have that with high probability,

|<Uz‘,§i>|2

_21/27717711 (z)

1 §
= o7 — _
271\/97di v ’ynl (1 - )mgsc( my,; ( ))) +d

mic(z
+o(1)

dz

27
__mi(6:) 1 &
2mid; N (1 + ynd; )mic(2) — m3,(—mi, (2))
+o(1)
_ mi(6:) 4; gic(é)
= T ond? (14 1md 2 —me(—C- 1)d§+°(1)
QIC(F’i)
2 ’ .
_ % g1c(i) +o(1), (C17)

47 o 2(m3,) (—oy ) — (14 ynd; ?)

where we used that o; = a(d;) = m1.(6;) + o(1).

One can see that in order to make the above calculations
rigorous, we only need to repeat the arguments in the proof
for Theorem III.1, with two additional steps. (i) We need
to verify that the “right edge regularity” condition (A.16)
holds, such that the anisotropic local law outside the spectrum
(Theorem A.7) can be applied. (ii) We need to verify that
—my}(2) € S, for some constant 7 > 0 for all z €

Sout(co, Co) U Sedge(co, Co, c1), such that we can apply (C.6).

Proof of Theorem II1.2. We first verify the condition (A.16).
The self-consistent equation (A.12) now becomes
Tn

zmi(z) = TFma(a)’
1 (C.18)

T
Sp
2maze(2) n Z:: 1+ s,mic(z)

By the last statement of Lemma A.2, the two sums on the right-
hand side of the above two equations are all positive sums if
we take z = A;. If 1 4+ mac(Ay) = o(1), then from the first
equation we find that |my.(\; )| » 1, which contradicts the
fact that |mi.(\,)| < st

On the other hand, suppose

1+ mic(As)s1 =o(1). (C.19)

From (C.18), we obtain the following self-consistent equation
for mo..:

f(mae(2)) =0,

where

T

f(mQC) = Moe — % Z

pu=1

sp(1+ mac)
—2(1 4+ mae) + Sun

If we regard f as a function of mg., then by Lemma 2.5 of
[106], we know that 0,,,, f = 0 at z = A;. Hence we get

1 o Yn
1=— § il
n L [=A (L +mac(Ay)) + spvn]?
" (C.20)
2 2 —1
1 ;LWVL

- e Z
n —

By the eigenvalue rigidity result for SST, Theorem 2.10 of
[12] or Theorem 3.8 of [106], we know that for any small
constant € > 0,

1+ sumic(A)]?

max |[s, —s1| < Ce®?  with high probability,

I<p<en
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for some constant C' > 0 that is independent of . Combining
it with the hypothesis (C.19), we obtain from (C.20) that with
high probability,

mi.(\y) < Ce'?

for some constant C' > 0 that is independent of €. However,
this contradicts (C.19) if we take ¢ to be sufficiently small.
Thus (A.16) holds with high probability.

Next we show that —m7,!(z) € S, for some constant 7 > 0
for all z € S(cy, Co) (recall (B.2)) as long as co is sufficiently
small. Again by the eigenvalue rigidity result for SST, The-
orem 2.10 of [12], we know that |s1 — (1 + +/&,,)?| = o(1)
with high probability. Hence together with (A.16), we have

—mi ) = (1+
for some constant ¢; > 0 depending on 7. Moreover, since

mie(Ay) < mic(x) < 0 for x > A, and myc(z) is
monotonically increasing in z € (A4, ), we obtain that

1 +&)? +cr

< ¢ for some constant § > 0, by

fn)Q +

inf [—m}(z)] >
mgl)\+ [ mic (33)]
Next if dist(z, [A+,Co])
(B.5) we obtain that

inf min{l + s,mi.(2)} = ¢1/2

z:dist(z,[A4,Co]) <8

as long as ¢ is taken sufficiently small. If we take ¢y < J, the
above bound covers all the domain S(co, Cy) except for the
part {z € S(cg,Cp) : Imz = ¢p}. On this part of domain, we
use (B.3) to get that

. -1
_inf [—mlc (z)]

2€5(c0,Co):Im z=cq

>c, _ inf Immi.(z) = co

2€5(c0,Co):Im z=cq

for some constants cg, ¢ > 0 depending on co.
In sum, we find that —m,'(z) € S, for some constant
=7 > 0 for all z € S(cp,Co) D Sout(co,Co) U

T = Teie
Sedge(CO7 Co, Cl)'

The above proof justifies our calculations between (C.9) and
(C.17). The rest of the proof is exactly the same as the one
for Theorem III.1, so we omit the details. ]

APPENDIX D
PROOF OF THEOREM III.3 AND THEOREM III.5

As remarked at the beginning of Appendix B, we only need
to analyze the master equations (A.31) and (A.36) under the
settings of Theorem III.3 and Theorem III.5, respectively. The
rest of the proof will be exactly the same as the one for
Theorem III.1 in Appendix B.

Proof of Theorem II1.3. We define the random variable

gn = lZ:Su

3

28

to be the fraction of non-zero diagonal entries of S. We fix a
realization of S. Then the equations in (A.12) become
(=) :
m C z = n-_ r4 . 7 10
! T+ mae(2)]
~ 1
mac(2) = fnm

(D.1)

Thus (III.7) and (IIL.8) are accurate asymptotically, since §~n
concentrates around &, for large r and n. Indeed, we can
calculate that

27 PWTST(1 4+ mye(z)SST)~LSW
1
=— WTS2w.
212(1 + ma.(z))
This equality holds because SST = S? is a diagonal matrix
with 0-1 entries. Now under the assumption (II1.24), we claim
that

WTS2W — &,1;, in probability. (D.2)

Again this follows from a simple moment calculation. We can
calculate that

EE SZw; (Hw; (1)

=1

T n r
- Z = 0ij-
n “~ n

Then we can calculate the variances: for ¢ # j,
n 2
E (Z Sl%wi(wwj(o>
=1
=K Z aw; (w3 () + E Z erepw; (Dw; (1w, (Hw; (1)
=1 12l

T\, 2 2
- Z wi (wi (1) +

:wa

and

n

(%)2 3] iy, (O (1)

L=1

V/A\

< i3, =0,

(z (-3)» m)Q

=1
r
“L(-1)
To-D) e
Hence (D.2) holds and we obtain that

e V2PWTST(A 4+ my(2)SST)LSW
—1/2 fn
14+ mie
Hence the matrix M (x) takes the same form as the one in the
uniform orthogonal random projection case in Section III-A,

which concludes Theorem III.3 with the same arguments as
in Appendix B. O

< Jwil, - 0.

—p —T I, = x1/2m20(x)lk..

Proof of Theorem IIL.5. In general, we can write

B =587 = diag(&y,--- ,&,), @ = leo.

Let 7 be the random number of nonzero c;-s, and denote

€ 1= En [1 — exp(—1/6,)].
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By the Poisson convergence theorem, we have

IS

=&, [1 — P(Poisson(1/£,) = 0)] +o(1) = &n +0(1)

in probability. Thus the self-consistent equation (A.12) be-
comes
@ 1
mic(2) = \—————,
! I+ mae(2)]
~ 1
Mmaoc(2) = &—————= +0(1
2¢(2) = ¢ B [ p—Cy (1)

in probability. We claim that under the delocalization condition
(111.24),

WTSTSW = &,1, + o(1) in probability.
If (D.4) holds, then we have
WTST(1 4 mye(z)SST) 1SW

(D.3)

(D.4)

_ L &
1+ mae(x) 1+ my(x)

in probability, which shows that the master matrix has the

following form
+o(1
o ) (1)

in probability. Again M (x) takes the same form as in the
uniform orthogonal random projection case in Section III-A,
except that we replace &, with &,. Then one can conclude
Theorem III.5 with the same arguments in Appendix B.

It remains to prove the concentration claim (D.4). We again
calculate the means and variances. Note that for any vector v,

(Sv) (i) =

WTSTSW = +o(1)

—xT1/? I D—l
M(zx) = < T+mac(a) 'k

D1 :171/2777,20(

61>O\/72h2 Sh(j )5V

[

For 1 < o, B < k, we have
WT§T§W)
ap
. 1Ci 0 - y
=N Y qual) Y apwal).
=1 " jih(j)=i J'h(j") =i

We first calculate the mean. Notice that the following condi-
tional expectation can be calculated exactly as

(&

Eéag, (D.5)

El > walws(i)|ei| =
J:h(3)=i

because by definition {j : h(j) = i} is a randomly chosen
subset of size c¢;, and the vectors w,-s are orthonormal.
Applying (D.5), we get
E(WTSTSw)

af

-F i 1CI>OE

Ci

i=1 Jh(]) i

S les0 G
=E{ ”50[3} € +0(1)) das
=1

wa (J)ws(d)]| ci

29

Then for a # 3, we have
2

E ‘ (WT§T§W)

af
4 Ci, C ) o )
i1,i2=1 e h{j1)=h(j})=i1 h(j2)=h(j})=i2

aj, A5 Aj, Qg wa(]l)wﬁ(ji)wa (.72)w5(jé)}

=E

1 i1>0,¢i5>0 . .
= Z % Z wa(j1)ws(j1)
117102 Cir Ciz Ji:h(j1)=11
x> walj2)wp(la)
Jo:h(j2)=i2

T

fEY ez

| 2we (J1)ws (J1)wa(j2)ws(J2)

i=1 0 jigath(ji)=h(j2)=i
T 1Ci>0 . \2 : \2
L E Z = wea (j1) wps(J2)
i=1 0 jigaih(i)=h(j2)=i
2
1Ci >07Ci >0 ) 1
- B! Y ﬁ D1 walj2)ws(h2)
i1 iy 2 27 \d2ihljz)=ia
+o(1) = o(1).

Here in the third step we used (II1.24) to get that

T

1,
DI DY

. C; L :
i=1 v gi#gerh(j1)=

+3 S s

4
v j2'h(j1)—h(j2)—

2|wa(j1)wﬁ(jl)woc(j2)wﬁ(j2)|
h(j2)=i

< 2fwalloe [ws] Z > |wa(j1)w5(j1)|
1=1j,:h(j1)=
+ wg, Z > wal)

i=1j1:h(j1)=i

< 2fwalllwsle + ws]3, = o(1),

and a similar result as in (D.5), that is, given c¢;, and the js-s
such that h(js) = io,

wa(u)ws (i) |n ()]

(& . .
= - _ Z wa(])wﬁ(j)
n—=Cg, . N
J:h(§)#iz
Ciy . .
=——"— > waliuws(j)-
2 jih(g) =iz
With Asim/\ilar methods, we can calculate the variance of
(WTSTSW)pa:
IE‘(WT§T§W)
5 Loy >0,6,>0
=B Y ) 2
i1,i2=1 e h(j1)=h{j1)=i1 h(j2)=h(js)=1i2
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a’jla’J ajza]éwa(]l)wa(jl)wa(JZ)wa (32)}

_E Z 1ci1 >0,c5,>0 Z W (j1)2

. L Ci, Ci
i1#0 e Ji:h(j1)=i1
- \2
X Z W (J2)
J2:h(j2)=i2

3wa(j1)*wa(j2)?

Z ot 2

i=1 et J1#42:h(j1)=h(j2)=i1

1c,;>0 Z
02

i=1 7t jih(j)=i

Z c71>0 ciy >0 (1
i17#142 ¢y (n

+
=

wa(j1)4

O(es, [wal))

C12)

x Y walja)” p+o(l)
J2:h(j2)=i2
. Lo, =0 ,
=&ES D] % D1 walja)® p+o(1)
i "% jaih(ja)=is
A~ A~ 2
— & 4o(1) = ‘]E (WTSTSW) +o(1),

where in the third step we again used (II1.24), and that given
¢i, and the jo-s such that h(js) = io,

E[Z

wa(j1)2‘h_1(1'2)]

Jih(j1)=t1
¢ .
e wa()?
"2 jih(j)#ia
¢ .
—ooal- X wlr]
‘2 jih(5)=i2

Combining the above results with Chebyshev’s inequality,
we conclude the concentration result (D.4), which further
concludes Theorem IIL.5. O

APPENDIX E
PROOF OF THEOREM II1.6

In the following proof, we only consider the uniform ran-
dom projection. However, as we have already seen in Section
III, the same result also holds for uniform random sampling
under the delocalization condition (III.24), for randomized
Hadamard sampling, and for CountSketch under the delocal-
ization condition (II1.24) but with £ replaced by f

Now we study the i-th spiked eigenvalue and its eigenvector
under the assumption (III.30) for some large enough constant
Co > 0. First, the self-consistent equations in (A.12) become

mlC(Z) = ’Ynf —z [1 —+ meC(Z)]
6
—z [1 -i-Tnlc(Z)]7

Tz(d(E),
(E.1)

maoe(z) =

30

which are generalizations of (IIL.5) with ¥ = I. If 6; is the
classical location for the largest eigenvalue, then we have 6; ~
d? and

dpqac(x
0 < —miy2(6;) = —J%é)

Then for x around 6;, we study the master matrix in (A.31)
(up to an o(1) error in probability)
—z7 20T (1 4+ mae(2)2)" U D!
M(x) = ¢
) < D~ w2 myc(z)

—27 Y2 (1 = mac(z)E + O(1]%)) D!
D1 1/2 (Jc) ’
where recall that £ =

formula, we obtain

det M (x)
= det (=1 + mac(z)E + O(l;z))
x det (mac(z) + D' (L 4+ maoc(z)E + O(1;7?)) D)
= det (=1 + mac(z)E + O(1;%)) det (mac(z)D™?)
x det (D* + E) + O(l; ') + my.} (2)) .
By standard results from perturbation theory (e.g., [96]), we
know that the first order perturbation of the i-th eigenvalue of
D? + E is given by d? + E;; + O(l;!). Hence, by solving
det (D? + E) + my, (z)) for 0; = z, we get

1 .
0; = gac <_d2+En + O(l; 3))

1
=gy | ———— 11
gz'( d?+Eii>+O(Z )

in probability, where we recall that go. is the inverse function
of ma,.

Then we consider the corresponding eigenvectors: using the
Schur complement formula, we find (up to an o(1) error in
probability)

—2
~d;2.

UTXU. Then using Schur complement

(E.2)

~ 1
2 —1/2. T -1
|<uj7£i>| = QWI\/E Z / €; D
T;
X ! D le;dz
mae(2) + D=1 (1 + maoc(2)E + O(1; %)) D1 !
1
e;jdz.

" 27160, J U mae(2) (D2 + E + O(72) + 1

Again, standard perturbation theory (e.g., [96]) tells us that
the eigenvector of D? + E up to the first order perturbation is

given by
DI PP
jrid<j<k i Y

e; +

Thus we find that in probability,

9/20 (_al) (&7}

SN2 —2
e = J2ct T ; E.
|<u7,7 £Z>| ch(_Oéi) + O(lz )7 ( 3)
and for j # 1,
>q2 . 95 (—au) a; Ej; _3
& = 177, E.4
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where
o = (dg + E;; + O(l;l))_l

It remains to study the expression for go.. From (E.1), we
obtain that

Z ="y J L7rg(d33) _ b

1+ 2mac(2) mae(z)’

which gives
g2¢(m) = J

Then we can calculate that

1 -1
0; = gac (_M) +0(;77)
= &u(d? + Eii) + ymp1 + O,

x én
1+ xmﬂz(dx) m’

(E.5)

and

g (o) i €n— M § s (da)
g2(—0s) &+ o (da)
_ &n — T (azQ P2)

&n + nlaipr + apo)

&n — %}LPQ
G ;*3 (p1 +d;*(p2 — p1Ei))
where p; are the moments of the ESD of X (recall (II1.32)).
With the above calculations, the rest of the proof is exactly

the same as the one for Theorem IIl.1 in Appendix B. We
omit the details.

+0(1;?)

+0(;%), (E6)

APPENDIX F
PROOF OF THEOREM A.7 AND THEOREM A.8

In this section, we provide the necessary details to complete
the proof of Theorem A.7 and Theorem A.8 based on the
results in [106] and [30].

We use a standard cutoff argument. We choose the constant
0 > 0 small enough such that (n1/2’5)4+7 > n?*%. Then we
introduce the following truncation

X = 1loX, Q:= {max |zi;] < n_‘s}. (F.1)

)

By the moment conditions (A.8) and a simple union bound,
we have

P(X # X) =0(n"°). (E2)

Using (A.8) and integration by parts, it is easy to verify that
E|2ij] 14, j5n-s = O(n™27%),
E |z Lz, jsn—s = O(n 27,
which imply that
|EZ;;| = O(n27°%), E|zi|>=n"t4+0(n"27%). (F3)
Moreover, we clearly have
ElZ;|* < Elzy|* = O(n™?).
We define the following centered version of X:Z=X-
[EX. Then we have the following proposition for the resolvent

G(W, z2).

31

Proposition F.1. Suppose the assumptions of Theorem A.8
hold and define Z as above. Then we have

max |(u, G(Z, 2)vy — {u, TI(2)v)| < n~° (F4)
u,vEH
uniformly in z € Seqge(co, Co, ¢1). Moreover, we have that for
any fixed w € N,

max |A; — Ay| <n”?, (E5)

I<i<w

where \; denotes the i-th largest eigenvalue of Q1(Z) :=
(SZEY)TSZ%2,

Proof. The bounds (F.4) and (F.5) has essentially been proved
in Theorem 3.6 and Theorem 3.8 of [106], respectively. The
only difference is that in [106], the entries of the random
matrix Z all have variances n~!, while in the current case
we have

E|Z1]|2 = Tl71 + O(?’LiQié).

However, one can check that the error O(n~27?) is sufficiently
small such that it is negligible at each step of the proof in
[106], which concludes (F.4) and (F.5). We remark that the first
author proved stronger results in Theorem 3.6 and Theorem
3.8 of [106], but they are not necessary for our purpose in this
paper. O

Then we show that G ()2' ,z) is sufficiently close to G(Z, z)
in the sense of the anisotropic local law.

Proposition F.2. The bound (F.4) holds uniformly for G(X, z)
in z € Seqge(co,Co, c’}) Moreover, (F.5) holds with high
probability for A;(Q1(X)).

Proof. We write X =Z+EX , where by (F.3), we have

max |E)?w| = 0(n279). (F.6)
LK
In particular, this gives that HIEXH < HIE)?HF = O(n=179),
which implies (E.5) for A;(Q1(X)).

For (F.4), we abbreviate G(X,z) = G and G(Z,z2) = G.
Then it suffices to show that for any deterministic unit vectors
u, v,

‘(u, G(2)) — (u, G(z)v}‘ <n (E7)
uniformly in z € Seqge(co, Co,c1). We can write that
G = (G =) +V)
where
Y. ( 0 SUZEX)TST ) |
S(EX)x1/? 0
Then we expand G using the resolvent expansion
G=a-ava. (F.8)

Using the spectral decomposition for G as in (A.32) and
(A.33), one can easily see that the following deterministic
bound holds:

IG(2)] = O(n~Y).
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Then we can bound the second part on the right-hand side of
(E.8) as

—1/2
Ku, GV GoY| <! (Z Ku, GVea>|2>

ael

—1/2
-1 (Z Z |vaa|2> < n—1/2—6.
acZ bel

where e, denotes the standard unit vector along the a-
th direction, and in the second step we applied (F.4) to
{u,GVeyy = Guw by taking w := Ve,, and in the third
step we used that |[V|p < HIEXHF < n~179. This concludes
(F.4) for G(X z). O

Finally we show that (A.25) holds for G()’f ,z) for z with
imaginary part down to the real axis in the spectral domain

Sout (o, Co).

Proposition F.3. The bound (F.4) holds uniformly for G()z' )
in z € Sout(co, Co).

Proof. In this proof, we abbreviate G()A( ,z) = G and use the
notation X = SX¥/2 as in (A.3). It remains to show that
(F.4) holds for z = E +in € Spui(co, Co) with np < n~1/2+e1,
We denote 7y := n~Y2%¢1 and zy := E + iny. With (F4) at
2o, it suffices to prove that

(u, (T(2) — I(20)) v) < n~ M2, (F.9)
and
(u, (G(z) — G(z0)) vy < n7°. (F.10)
With (B.4), to prove (F.9) it is enough to show that
[m1e(2) =mie(20) +mac(2) =mae(z0)| < n™ /21, (B11)
which follows immediately from (B.7).
For (F.10), we write u = e and v = “ , and in

the following proof, we will always identify vectors v; and vs
U1
0

PAT

X = Vel
k=1

with their embeddings and , respectively. Let

be the singular value decomposition of X. We shall use
(A.32)-(A.33) with G replaced by G. First, the upper left block
gives that

|<U17 (G(2) — G(20)) v1)l
o |<U1 ) €k>|2

<Z [(E = Ak)? + 02 2 [(B = M)

By (F.5), we have for any k, E — Ay = E — A\ = ¢o/2 » 1o
with high probability for z € S,u:(co,Cp). Hence we can
bound (F.12) by

|{ut, (G(2) — G(20)) v1)
3 770|<U1»§k>|2 S
SPNGE e AP

k=1

(F.12)
172]1/2 :

molCvr, &)l
(E = X\gp)?

32

= Im{uy Zp: Skt w1y + Im{vy N Sbi vy
S E- 7 0

= E—2z
=Im Gulul (Z()) + Im Gylvl (ZO)
+ Im Hulul (Z()) + Im H’U1U1 (ZO) < n_é’

<n~?

where in the fourth step we used (F.4) for G(z), and in the
last step we used (A.22), (B.4) and (B.3) to get

Im Ty, 4, (20) + ImIL,,4, (20) < Mo-
Similarly, for the upper right block we have

[Cu, (G(2) = G(20)) v2)l

< ‘271/2 - (20271)1/2‘ [Cur, G(20)v2))|

pAn

n Z no [{u1, Ex){Ck, v2)]

|)\k —Z||)\k — Z0|

pAn

<1+ €S o |<ula€k>| Mo |U27 <k>|2
R Y = A — 20[?

="no + Im Gulul (ZO) +Im szvz (ZO) <n-

0

The lower left and lower right blocks can be handled in the
same way. This proves (F.10), which completes the proof. [

Finally, with Proposition F.2, Proposition F.3, and the defi-
nition of the truncation (F.1), we conclude Theorem A.7 and
Theorem A.S8.

APPENDIX G
EXTENSION TO CENTERED MODEL

In this section, we explain how to extend our results to
centered sample covariance matrices. We will only consider
the following model

k
}7@ = Xa + (I — eeT) Z diviu;r,

where
Xo=(I—ee")SXR2.

The other model

k
Yy =S —ee")XDV? + 2 d;S(I — ee wsu,
i=1
can be studied with exactly the same method. N
_ Our goal is to study the principal components of Qf :=
Y,'Y, using the methods in Section A-C. Then we have the
following claim.

Claim G.1. If

max |e' Sw;| = o(1), (G.1)
and uniformly in z € Syyi(co, Co),
1
max |e " Sw;| = o(1), (G.2)

2 1 +m16(z)SST

then the spike eigenvalues and eigenvectors of Qa have the
same asymptotic behavior as those of Q1 YTY.
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Proof. Note that under (G.1), we have

k k
lee™ Z divgu] | = |lee™ S Z diwgu] | = o(1).

i=1 i=1
Then by (A.31) and (A.36), it suffices to show that the same
local law holds for G (z): with high probability in £2,

s, (S, [Ga(2) ~ )] Swp)| = o)) (G3)
uniformly in 2 € S,y (co, Co), Where
- -1
-
- 1/2 9 Xa _
Gu(2): lz < % 0 > z] .
We denote S, := (I —ee')S, and B, = S,S] with

eigenvalues s§ > s§ > ... = s > 0. Then we can define m{,
and m$, using the self-consistent equation (A.12) by replacing
mp with mp_, and define II,(z) by replacing B with B,, and
my 2. With m§ 5.. We claim that

o(n ™)
uniformly in z € Sy, (co, Co). We postpone the proof of (G.4)
until we complete the proof of Claim G.1. Now using s <
s1 we find that (A.16) holds for m{ ,. and o1, s{. Thus by
Theorem A.7, we have that with high probability in €2,

max, |<u Go(X, 2)vy — (u, I (2)v)| = o(1)

U, Ve

|mtllc - m1C| + |mgc - m20| = (G4)

uniformly in z € S,y:(co, Co). Hence to show (G.3), it suffices
to prove that

1213§k [(Sw;, [T14(2) — II(2)] Sw;)| = o(1). (G.5)
Using (G.1), (G.2) and (G.4), we obtain that
—Z TaT
. I _II ,
mlc(z)wz S [ a(Z) (Z)] Sw]
1
— a1 QT
=wi S [1 +mic(1—ee")B(l —eel)
x (Bee' +ee' B +ee' Bee') Hmch] Sw;
[ 1
=o(1 gl
o(l) +w;i S |14+ mic(l —eeT)B(1 —eel)
X (eeT ) HM] S’U.)j
[ 1
= o1 TgTl
o(l) +wi |14+ mic(l —eeT)B(1 —eel)
_ 1
xmlcleeT (1 — H%B)] SU)J
= o(1).
This concludes (G.5). O]

Proof of (G.4). We claim that approximately, m o, satisfy
the self-consistent equations for m{ 5.

1
@
1 T

mlc
+ O'zmzc)
(G.6)

Mae( +0(n™ Y.
2 z(1 +samlp) ( )

33

Then (G.4) follows from Lemma 5.11 of [106], which gives
the stability of the self-consistent equations. Roughly speak-
ing, stability means that if (uj,us) are satisfy the self-
consistent equation for (m{,,m3,) up to some sufficiently
small error €, then we also have

|ur(2) —mae(2)] + Juz(2)

uniformly in 2 € S,y¢(co, Co).
It remains to prove (G.6). The first equation is the first one
in (A.12), while for the second equation, we claim that

—ma.(2)| < e

1 i Su 1 zrj SZ
n = —z(1+s,mi) n = —2(1 + s¢mic)
=0(n ).

For the imaginary part, we have
T s a
Im(izliuml_i 1+31m1)
p=1 pe n= ¢
Immq, " 1 " 1
— (Z st + macf2 _MZ:: [(s2)-1 +mlc|2> .
By the Stieltjes transform

p=1
At
mic(z) = j dplc(x))
0

r—z

(G.7)

we obtain that for z = E +in € S,ut(co, Co), Imma.(2) = 0
and

0> Remic(E) = mic(Ay) = —(s)~ 1L
Hence the function |z + my.|? is increasing in z € (57", ).
Using the Cauchy interlacing theorem

—1
_31 Z

sp < sp <o < 855 < 5o < s < sy,

we find that

T

D

pn=1

Z (T T~ O

|Sp, +mlc|2

Hence we obtain that

1 T 1 s a
I - =0(n ).
Hl(n MZ_: 1+5um16 n'uz 1+Sam1c> (n )
Together with a similar bound for the real part, we find (G.7),

which concludes (G.6). O]

Finally, we show that (G.1) and (G.2) hold (at least in
probability) for all sketching methods we used in this paper.

(1) Uniform random projection in Section III-A: In this
case SST = I,, so we only need to check that (G.1) holds.
By the rotational invariance of S, we have

Z Szla

where S is also an r x n uniform random projection matrix.
By exchangeability, we have

—'—SwZ

1. G a
;Ei;sﬂsﬂ
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7]1":2 ZSW JM:*

i,j=1p=1
Hence we have e’ Sw; — 0 in probability.

(2) iid projection in Section III-B: Note that z; :=
ey Skrw;(1) are iid random variables with mean zero and
variance n~'. Hence by the law of large numbers (LLN), we

have
53
— rr — 0 as.
Vi

For the bound (G.2), we use the local law, Theorem A.7. If
we take Y = S, then

el Sw; =

S

L+ 88T

me(z)~

is (proportional to) the lower left block of G(—m1.(z)~!) in
(A.21), and the local law (A.25) gives that (G.2) holds with
high probability. If one is worried about —m.(z)~! may not
be in the domain given in Theorem A.7, we remark that a
local law in [12] for the Y = S case was proved on a more
general domain.

(3) Random sampling in Section ITI-C: In this case, the
leading principal components of the centered model é“ =
YTY will behave differently from those of the model Ql =
YYT under the sketching method (II1.23). However, we can
consider a slightly different random sampling S with random
signs:

Sii = eiai, (G.8)
where a; is a Rademacher random variable uniform on {—1, 1}
independent of ¢;. In this case, we have that ):T§T§Y =
YTSTSY, hence Theorem II1.3 still holds for Q7 under the
sketching (G.8). On the other hand, we now check that (G.1)
and (G.2) hold foz S, so that Theorem II1.3 also holds for the
centered model Qf under the sketching (G.8). Note that we

have
1

1+ mie(2)SST

Hence again we only need to check that (G.1) holds. We can
calculate that

-~ 1 LY 2 1r &
Ele" Sw;|> = EE‘ Z Sllwi(l)‘ = Z lw; (1)]* <
=1 =1

o 1 o
S = S.
1+ mie(2)

(G.9)

1
~
Hence we have e Sw; — 0 in probability.

(4) Randomized Hadamard sampling in Section III-D: In
this case, we also have (G.9) and hence we only need to check
that (G.1) holds. We calculate that

2
]E|6TSwZ|2 E|6TB zi|* = fE‘ Z ”zz(l)‘
For | # I’, we have

E(z(1)z (I

34

which gives that

Ele' Sw;|? =

S |-

1r & 9
—— D Elu()f <
s

Hence we have e Sw; — 0 in probability.
(5) CountSketch in Section III-E: In this case, we also have
1 1 ~
1+ mi(2)987 1+mie(2)

and hence we only need to check that (G.1) holds. Again we
calculate the second moment of

el Sw; Z Z SwwZ

S =

’L 1 'S h
For i # i/, we have that
E Y SuSnewi(mun(n) =0,
o’ sh(p)=i,h(p')=i
which leads to
~ 1 & ~ A
Ele’ Swil” = — D.E > SipSipewi () ws (1)

=1 p,p':h(p)=h(p')=1

_ % 3 71(Cicjé O > wi(w)?

i1 (=i
1 & 1(02‘ #O) C; 2 1
= — _ . < -,
n; C; n %}wz(ﬂ) n

where we used the exchangeability in the third step. Hence
we have e Sw; — 0 in probability.
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