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Abstract

Researchers often have datasets measuring features xij of samples, such as test scores of
students. In factor analysis and PCA, these features are thought to be influenced by unobserved
factors, such as skills. Can we determine how many components affect the data? This is an im-
portant problem, because it has a large impact on all downstream data analysis. Consequently,
many approaches have been developed to address it. Parallel Analysis is a popular permutation
method. It works by randomly scrambling each feature of the data. It selects components if
their singular values are larger than those of the permuted data. Despite widespread use in
leading textbooks and scientific publications, as well as empirical evidence for its accuracy, it
currently has no theoretical justification.

In this paper, we show that the parallel analysis permutation method consistently selects
the large components in certain high-dimensional factor models. However, it does not select
the smaller components. The intuition is that permutations keep the noise invariant, while “de-
stroying” the low-rank signal. This provides justification for permutation methods in PCA and
factor models under some conditions. Our work uncovers drawbacks of permutation methods,
and paves the way to improvements.

1 Introduction

1.1 Factor Analysis and PCA

Factor Analysis (FA) and Principal Component Analysis (PCA), the unsupervised discovery
of components governing variation in the data, is performed routinely by scientists and social
scientists in thousands of studies every year. In FA and PCA, we measure a number p of
indicators (features, covariates) for a set of n samples. In Spearman (1904)’s original applica-
tion, this involved p test scores of n students. In another important application to finance, we
measure the return for n assets over p (or T ) time periods. The goal is to identify the common
factors driving variation in the data, such as skills in Spearman’s example, or systemic risks
in finance. The setup for FA and PCA is similar, while not exactly the same (see e.g., Jolliffe,
2002), and hence we will focus on factor analysis for clarity in most of the paper.

Since Spearman’s time factor analysis has found a wide range of applications in a variety
of fields, becoming one of the most widely used statistical methods. Applications abound in
psychology and education (Fabrigar et al., 1999; Costello and Osborne, 2005; Brown, 2014),
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Figure 1: Visual representation of the permutation method Parallel Analysis (PA). We have an n×p
data matrix X measuring p features of n datapoints. We want to determine how many unobserved
factors or components affect the data. We examine the scree plot of the singular values of X, i.e.,
the plot of singular values in a decreasing order. Classical methods such as Cattel’s scree plot look
for the ”elbow” in this plot. Instead of such a subjective rule that may be biased by the judgement
of the user, we consider a more objective permutation method. We permute the entries within each
column of X independently, possibly several times, to get ”null” or ”fake” data matrices Xπ. We
plot some fixed percentile of the largest, second largest etc., singular values of these matrices. We
select the components of X whose singular values are larger than the permuted ones. Here, only
one factor is selected.

public health (Goetz et al., 2008), management/ marketing (Churchill Jr, 1979; Stewart, 1981;
Parasuraman et al., 1988), economics/ finance (Bai and Ng, 2008), and genomics (Leek and
Storey, 2008; Lin et al., 2016).

The most widely used approach to FA relies on the the common-factor model (e.g., Thur-
stone, 1947; Anderson, 2003, etc). For each sample i, the j-th indicator xij is a linear function
of one or more common factors ηik and one unique factor (or idiosyncratic noise) εij :

xij =

r∑
k=1

ηikλjk + εij . (1)

The factor values ηik and the factor loadings λjk are not observed. In Spearman’s example,
xij is the test score of student i on test j, the r factors are interpreted as skills, ηik is student
i’s level on the k-th skill, and λjk is the relevance of the k-th skill to the j-th test.

FA is merely one step beyond linear regression. In linear regression, ηik are observed, while
in FA they are not. This simplicity is deceiving, however, and FA can be surprisingly difficult.
A widely cited tutorial on FA notes: “Perhaps more than any other commonly used statistical
method, FA requires a researcher to make a number of important decisions with respect to how
the analysis is performed” (Fabrigar et al., 1999).

One of the key problems in FA is to select the number of factors. For instance, how many
skills control test scores? This is well known to have a large impact on the later steps of data
analysis (e.g., Hayton et al., 2004; Brown, 2014). The standard textbook Brown (2014) calls it
“the most crucial decision” in exploratory FA.
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Figure 2: How does PA work? Given a “smooth” signal S of rank one (left), a random permutation
transforms it into a “rough”, noise-like matrix Sπ. The permuted matrix is typically of full rank,
and its operator norm is much smaller than that of the signal matrix. Thus, Sπ does not perturb the
permuted noise matrix Nπ significantly, which allows the estimation of the noise level ‖Nπ‖op =d

‖N‖op (equality in distribution). Then, factors above the noise level are selected.

The factor selection problem is also important in principal component analysis (PCA).
While PCA and factor analysis are not the same (see e.g., Jolliffe, 2002, for a clear explanation),
in practice permutation methods are very popular to select the number of PCs (e.g., Friedman
et al., 2009; Zhou et al., 2017). Our work also bears on PCA.

Factor models are also well studied in econometrics, (e.g., Bai and Ng, 2008; Onatski, 2009,
2010; Fan et al., 2011; Bai and Li, 2012, etc). In that setting, the factors are assumed to be
so strong that identifying the significant factors is trivial. In contrast, we study settings with
weaker, “emergent” factors. These are common in the behavioral and biological sciences.

1.2 Parallel Analysis

Parallel Analysis (PA) (Horn, 1965; Buja and Eyuboglu, 1992) is one of the most popular
methods for selecting the number of factors. In the widely used version proposed by Buja and
Eyuboglu (1992), we start with the n × p data matrix X containing the measurements xij ,
i = 1, . . . , n, j = 1, . . . , p. We generate a matrix Xπ by permuting the entries in each column
of X separately. Here π = (π1, π2, . . . , πp) is a permutation array, which is a collection of
permutations πj of {1, . . . , n}. The permutation πj permutes the j-th column of X, so Xπ has
entries (Xπ)ij = Xπj(i),j . We repeat this procedure a few times.

We select the first factor if the top singular value of X is larger than a fixed percentile of
the top singular values of the permuted matrices. One can use the median, 95%-th, or 100%-th
percentile. If the first factor is selected, then we repeat the same procedure for the second
largest singular value of X, comparing with the second singular values of permuted matrices,
and so on. We stop when a factor is not selected.

Figure 1 illustrates parallel analysis. A data matrix X is randomly permuted, and the
singular values of both X and Xπ are plotted in decreasing order. Only the first singular value
of X is larger than that of Xπ, so one factor is selected. In a practical application, one ought
to take multiple permutations.

PA has a lot going for it. It is a simple, concrete method. It is easy to code in software,
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and it is already implemented in several R packages, including nFactors (Raiche et al., 2010).
In addition, there is a great deal of empirical evidence that it works well, compared to other
standard methods. The main other methods are Kaiser’s “eigenvalues larger than one” rule
(Kaiser, 1960), Bartlett’s likelihood ratio test (Bartlett, 1950), the scree plot (Cattell, 1966),
and Velicer’s minimum-average-partial criterion (MAP) (Velicer, 1976). Empirical evidence
favors PA. In an extensive simulation study, Zwick and Velicer (1986) concluded that PA and
MAP are consistently accurate. Peres-Neto et al. (2005) compared 20 methods for selecting
the number of components in factor analysis. They found the PA and its variants are the
best methods. Owen and Wang (2016) proposed a bi-cross-validation method, focusing on
estimating the factor component. Even for this new objective function, PA was one of the
most accurate methods.

Based on these findings, PA has become a standard textbook method:

1. Brown (2014) notes that PA “is accurate in the vast majority of cases”

2. Hayton et al. (2004) review evidence from social science and management that PA is “one
of the most accurate factor retention methods”

3. Costello and Osborne (2005) write that PA is “accurate and easy to use”

4. In the context of PCA, Friedman et al. (2009) use it as the default method for selecting
the number of significant components (see Fig 14.24, p. 538).

While PA has not been employed enough by practitioners (Hayton et al., 2004; Gaskin and
Happell, 2014), recently it has started to become more widely used by leading researchers in
applied statistics, especially in the biological sciences:

1. Leek and Storey (2008) use it in a general framework for multiple testing dependence. It
is the default method in the popular sva package for ”Surrogate Variable Analysis” (Leek
and Storey, 2007).

2. Wing H. Wong’s group used it to select the number of components when performing
dimension reduction while controlling for covariates (Lin et al., 2016).

3. Gerard and Stephens (2017) use it in their general methodology for removing unwanted
variation (RUV) based on negative controls.

4. Zhou, Marron and Wright use a block permutation version in eigenvalue significance tests
for genetic association (Zhou et al., 2017).

PA is not the end of the story, and there are newer methods (see e.g., Kritchman and
Nadler, 2008; Onatski, 2012; Josse and Husson, 2012; Gaskin and Happell, 2014). However PA
is by far the most popular method, and thus it is worth studying.

1.3 The lack of theory, and this work

Despite this empirical success, there is essentially no theoretical justification that PA works. For
instance, Green et al. (2012) calls PA “at best a heuristic approach rather than a mathematically
rigorous one”. Clearly, this lack of understanding limits the appeal of PA. The perceived lack
of rigor prevents practitioners from making the best decision on which method to use.

In this paper, we will develop the first fully rigorous understanding of PA. We will show
that PA selects the large factors in a broad range of factor models. Importantly, PA selects
only the factors whose size is above a certain well-specified threshold. The key requirements
are that (1) the dimension p is large compared to the sample size n, and (2) each factor loads
on more than just a few variables. These are quantified into precise mathematical statements.
See Thm, 2.1 for a clean result.
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The basic idea is simple: The factor model can be written in a signal-plus-noise form X =
S+N , where S is of low rank. A random permutation “destroys” the signal S, transforming it
into a noise-like matrix (see Fig. 2); while keeping the noise distribution invariant. This allows
the identification of the factors above noise level.

We hope that our results will de-mystify PA, and help practitioners understand when it is
the most suitable method in factor analysis and PCA. We also hope that the mathematical
approach developed in this paper will become useful to improve PA, as discussed at the end of
the paper. In a follow-up work, we have been able to address several of the limitations of PA
(Dobriban and Owen, 2017).

Roughly speaking, our contributions are as follows:

1. We provide an asymptotic analysis of PA in “low-rank-signal plus noise” models (Sec.
2.2). We prove a basic Consistency Lemma (Lem. 2.2) giving general conditions on the
signal and the noise when PA selects the large factors, which we call perceptible.

2. We then provide concrete assumptions under which the general conditions for the signal
(Sec. 3) and the noise (Sec. 4) hold. This involves new bounds on operator norms of
permutation random matrices (Thm. 3.1).

3. We apply these results to show that PA selects the perceptible factors in factor models
(Sec. 2.1). For pedagogical reasons, this is presented before the general signal-plus-noise
approach.

4. We discuss the application of PA in PCA (Sec. 5). We provide numerical evidence
supporting our claims (Sec. 6), which are all reproducible with software available at
github.com/dobriban/PA. We close with a discussion of future work (Sec. 7).

2 Consistency of permutation methods (PA)

2.1 A simple result

We start by presenting a simple consistency result for PA. Recall that we have observations
xij following the standard factor model (1). The vector xi = (xi1, . . . , xip)

> of observations for
the i-th sample can be expressed as

xi = Ληi + εi,

where Λ is the p×r factor loading matrix with entries λjk, ηi is the r-vector of factor values for
the i-th sample, and εi is the p-vector of unique factors. The factors ηi are random variables,
while the loadings Λ are fixed parameters. The n× p matrix X = (x1, . . . , xn)> can be written
as

X = HΛ> + E .
Here H is the n×r matrix containing the factor values ηij , and E is the n×p matrix containing
the noise εij . The covariance matrix of one sample xi is

Σ = ΛΨΛ> + Φ,

where Φ = diag(Φi) is the diagonal matrix of idiosyncratic variances.
It is well known that the parameters are not uniquely identified in this model (Anderson,

2003). It turns out, however, that the number of large factors is asymptotically well defined.
The key is to quantify the size of the noise via the operator norm of the noise matrix. For this,
we consider a sequence of factor models where the sample size n or the dimension p grows. In
this asymptotic setting, we suppose that we can re-normalize the data so that

c−1
n,p‖E‖ → b > 0
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almost surely (a.s.), or in probability. Here ‖M‖ denotes the operator norm, the largest singular
value of a matrix M , and cn,p are some constants. We define b as the size of the noise. As we
will see, there are many settings where cn,p exists and thus b is well defined. Convergence a.s.
and in probability are both considered, and allow for “parallel” theories.

We define the above-noise factors as those whose contribution to variation in the data is
larger than the size of the noise. We measure the contribution of the k-th factor by the k-th
largest singular value σk(X). We say that the k-th factor is above-noise if c−1

n,pσk(X) > b a.s,
(or in probability). It may seem surprising that this definition depends on the entire asymptotic
setting, and not just on finite values of n, p. However, since our entire approach is asymptotic,
this is reasonable. In practice, a factor is above-noise if its effect on variation is larger than the
noise.

In addition, it will be useful to define perceptible factors, whose effect on variation differs
from the size of the noise by some definite value. We define perceptible factors as those indices
k for which c−1

n,pσk(X) > b + ε a.s (or in probability) for some ε > 0. Similarly, we define
imperceptible factors as those indices k for which c−1

n,pσk(X) < b− ε for some ε > 0.
Our main result is that PA selects the perceptible factors. To state this we will need the

distribution function of Φ, the discrete probability mass function placing equal mass on all Φi.
For a bounded probability distribution H, we will also need the quantity s(H) = sup supp(H),
the supremum of the support of H. For a discrete distribution H taking values on h1 < h2 <
. . . < hl, we have s(H) = maxi hi = hl. Let Ψ1/2 be the symmetric square root of Ψ, and let
us define the scaled factor loading matrix ΛΨ1/2 = [f1, . . . , fr].

Theorem 2.1 (Parallel analysis selects the perceptible factors). Suppose we observe n inde-
pendent samples from the p-dimensional factor model xi = Ληi + εi. Assume the following
conditions:

1. Factors: The number r of factors is fixed. The factors ηi have the form ηi = Ψ1/2Ui,
where Ui have r independent entries with mean zero and variance 1.

2. Idiosyncratic terms: The idiosyncratic terms are εi = Φ1/2Zi, where Φ1/2 is a diagonal
matrix, and Zi have p independent entries with mean zero, variance one, and bounded
fourth moment.

3. Asymptotics: n, p→∞ such that one of the following conditions holds:

(a) p/n → γ > 0, while the distribution function of Φ converges weakly to H, and
max Φj → s(H). The entries of Zi have bounded 6+ε-th moment.

(b) p/n→∞, while the entries Φj ≤ C tr[Φ]/p for all j.

4. Factor loadings: The r vectors of scaled loadings fk are each bounded, in the sense that
|fk|2 ≤ Cn1/4−δ/2. They are also delocalized, in the sense that |fk|4/|fk|2 → 0.

Then with probability tending to one, parallel analysis selects all perceptible factors, and no
separated imperceptible factors.

The proof of the theorem follows from the more general approach developed below, and is
given later in Sec. 8.1.

Importantly, PA selects only the sufficiently large factors, whose size is above a certain
well-specified threshold. While in general there we are not aware of a simple description of how
large the factors must be to be selected, in the special case of spiked models, the thresholds
become much more explicit, see Corollary 5.1.

The theory allows growing factors, but only at the rate |fk|22 ∼ n1/2−δ. In econometics,
(e.g., Bai and Ng, 2008; Onatski, 2009, etc), the factors grow linearly at rate n, so the current
theory is weaker. However, PA is actually used more in computational genomics and social
science, where the factors are typically much weaker. So, we think that the current theoretical
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results are a good first step. In future work it would be important to examine the issue of
strong factors in more detail.

Assumption 3(a) is somewhat technical. We assume that the distribution function of Φ
converges weakly to a certain limit probability distribution H. This means that there is a
certain “regularity” in the overall distribution of the variances. Mathematically, it is a standard
assumption in random matrix theory (Bai and Silverstein, 2009; Yao et al., 2015). This and
max Φj → s(H) are technical assumptions needed to guarantee that the size of the noise b > 0
is well defined.

The conclusion is that under reasonable conditions, PA selects the perceptible factors with
high probability. A key feature of the theorem is that it allows both the sample size n and the
dimension p to be large. Both p/n→ γ > 0 and p/n→∞ are handled, so that p can be much
larger than n. However p/n → 0 is not handled, and we will see in simulations that PA does
not always work in this regime. This is one of the main conclusions of the current paper: PA
works well when the dimension is large. This can be interpreted as a blessing of dimensionality.

The intuitive explanation is that when p is small, the factor loadings increase the effective
variance of the features of the data. Thus, when the features are permuted, the variances
are overestimated. Hence, the true noise level is overestimated, and some smaller factors may
not be detected. However, this heuristic argument at least indicates that PA will likely be
conservative in this case.

A second key feature is that the factor loading vectors λj need to load on more than just a
few variables. Suppose for simplicity that we have an orthogonal factor model, Ψ = Ir, so fk =
λk. The formal requirement is that the ratio of the `4 and `2 norms vanishes: |λj |4/|λj |2 → 0.
For instance, λj = (1, 0, 0, . . .) does not satisfy this, but λj = p−1/2(1, 1, . . .) does. In fact, λj
can have nonzero loadings on a vanishing fraction δ of the entries, as long as nδ → ∞, and
the entry sizes are lower bounded. An interesting example is a clustering pattern, where the
λjk = |Sj |−1/2I(k ∈ Sj), and Sj are mutually disjoint clusters with sizes |Sj | → ∞1.

Thus, our assumptions are not restrictive. In practice, they mean that the loadings cannot
concentrate on a small number of variables. This assumption is similar to non-sparsity, delo-
calization, or incoherence conditions seen in other works. This is the second main conclusion
of the current paper: PA works well when the factors load on more than just a few variables.

In summary, our main conclusion is that PA works well when:

1. the dimension of the data is large, and

2. the factors load on more than just a few variables

Finally, this result concerns only separated factors, for which c−1
n,pσk(X) > b+ε or c−1

n,pσk(X) <
b − ε, but not factors near the noise level. Intuitively, these latter are “hard to distinguish”
from the noise. This is related to the difficulty of understanding the critical regime of spiked
models (e.g., Yao et al., 2015). At the moment, we do not have a clear understanding of PA in
the critical regime.

In addition, we note that the new theoretical guarantees for PA cover roughly the same
regime as when some of the existing methods based on eigenvalues are known to work (Kritch-
man and Nadler, 2008; Onatski, 2012). However, PA is a very popular method, used widely in
science, and thus it is important to understand what it does.

2.2 The general approach: signal-plus-noise matrices

We now shift to a more general approach, which will be used in the rest of the paper. We will
work with signal-plus-noise matrices X = S+N , where S is an n×p signal matrix of low rank,

1We thank Jingshu Wang for this example.
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and N is an n× p noise matrix. In the standard factor model, X = HΛ> + E . The first term
is the signal due to the factor component, whose rank is at most r. Thus the factor model falls
into the signal-plus-noise framework.

PA works with the permuted matrices Xπ. By linearity, π acts separately on S and N ,
so Xπ = Sπ + Nπ. Intuitively, permutations keep the noise distribution unchanged, while
“destroying” the signal. Think of S as a “smooth” matrix, which can be achieved by reordering
rows and columns. A typical permutation π transforms this into a “rough”, “noise-like” matrix
Sπ. See Figure 2. This has the same entries as S, but is typically of full rank. While the
Frobenius norm (sum of squared entries) is preserved, the operator norm can be dramatically
reduced. Symbolically:

Xπ = Sπ +Nπ ≈ Nπ.
Therefore, Xπ behaves like the noise Nπ. If the noise is sufficiently ”invariant under permuta-
tions”, then it may be possible to estimate its ”size”. Write X =d Y if the random variables
X,Y have the same distribution, and suppose that Nπ =d N . Then from the previous two
equations,

‖Xπ‖ ≈d ‖N‖.
Thus, the operator norms of the permuted matrix Xπ and the noise matrix are roughly the
same. Selecting factors whose singular values are larger than |Xπ| is roughly the same as
comparing to the operator norm of the noise. This provides an intuitive justification that PA
selects the perceptible factors, as defined above. The rest of the paper makes this intuition
precise.

2.2.1 The consistency lemma

The first step is to formalize the above argument into a rigorous consistency lemma. This is
a general result that gives broad conditions for the signal and the noise under which PA is
consistent. We will then give examples when the two sets of conditions hold.

In the signal-plus-noise model X = S + N , suppose S is deterministic and N is random;
this can be achieved by conditioning on S. We want to provide a result that holds under a
variety of asymptotic settings. Thus, consider an asymptotic setting A, for instance

1. Classical asymptotics, where n→∞ and p is fixed

2. Proportional-limit asymptotics, where n, p → ∞, such that p/n → γ > 0. This is also
known as high-dimensional asymptotics, random matrix asymptotics, or the thermody-
namic limit (e.g., Paul and Aue, 2014; Yao et al., 2015; Dobriban and Wager, 2015).

3. “Big n, bigger p” asymptotics, where n, p→∞, such that p/n→∞,

Our consistency lemma does not depend on the specific type of asymptotics. It applies to
all of the above settings.

Next, fix a mode of stochastic convergence, either convergence almost surely (a.s.), or in
probability. Below we will use a.s., but the equivalent results hold for in probability, mutatis
mutandis. We will use both in the application to factor models.

In the asymptotic setting A, suppose that the signal matrix belongs to some parameter space
S ∈ Θ, and the noise has some distribution N ∼ PN . Suppose that we have re-normalized the
data such that under A,

‖N‖ → b > 0

a.s. As in the special case of factor models discussed above, we define the above-noise factors
as those indices k for which σk(X) > b a.s.

Consider also a distribution of permutation arrays Π, defined for all n, p of interest; for
instance each permutation πj sampled independently and uniformly from the set of all permu-
tations of [n] = {1, . . . , n}.
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Before turning to usual PA, it is pedagogically helpful to define asymptotic PA as a theoret-
ical version of PA leading to a particularly simple analysis. Consider a finite set of permutation
arrays Π0 sampled independently, each according to Π. Asymptotic PA selects those factors for
which σk(X) > maxπ∈Π0 ‖Xπ‖ a.s. This definition depends on the entire asymptotic setting
A, not just on finite values of n, p. In finite samples, we instead select the factors for which
σk(X) > maxπ∈Π0 ‖Xπ‖. Asymptotic PA is an “oracle method”, but it leads to very elegant
results. The second definition is practically feasible, and we will see that the results are still
nice.

As we will see, in our setting selecting the factors above the 95th percentile of {‖Xπ‖ :
π ∈ Π0} leads to an entirely equivalent method. This is because the values ‖Xπ‖, π ∈ Π0 all
converge a.s. to the same value. The difference is only important for the properties of PA
as a hypothesis testing method, specifically its control of the type I error. Thus, we focus on
asymptotic PA as defined above:

Lemma 2.2 (Consistency lemma). Suppose the following

1. Noise invariance: The distribution of the noise is invariant under permutations, so
N =d Nπ, where the equality in distribution is taken with respect to the joint randomness
of the noise matrix N ∼ PN and the independently chosen permutation π ∼ Π.

2. Signal destruction: Under the asymptotics A, we have ‖Sπ‖ → 0 a.s., for all S ∈ Θ,
where the randomness is induced by the random permutation π ∼ Π.

Then, asymptotic parallel analysis is consistent for selecting the above-noise factors.

Proof. Since Xπ = Sπ + Nπ, by the triangle inequality we have |‖Xπ‖ − ‖Nπ‖| ≤ ‖Sπ‖ → 0.
Now, by invariance N =d Nπ, and by the convergence ‖N‖ → b to the noise level, we have
that the operator norms of the permuted matrices also converge: ‖Nπ‖ =d ‖N‖ → b. Hence,
it follows that ‖Xπ‖ → b.

Asymptotic parallel analysis selects the factors for which σk(X) > maxπ∈Π0 ‖Xπ‖ a.s. Since
Π0 is of fixed size, based on the above argument, this is the same as those factors for which
σk(X) > b a.s., which are exactly the above-noise factors. This finishes the proof.

This result is a very elegant form of the statement that PA selects the number of above-
noise factors. However, it deals with asymptotic PA, which is an oracle method only defined
asymptotically. Can we remove the asymptotics from the definition of the method?

Recall that we consider the version of non-asymptotic parallel analysis which selects the
factors for which σk(X) > maxπ∈Π0 ‖Xπ‖. Since above-noise factors are defined asymptotically
by comparing σk(X) to b, and non-asymptotic PA depends only on finite n, p, it is not clear
how to show that PA selects all above-noise factors. However, this becomes clear if we focus
on separated above-noise factors, called perceptible factors, as indicated previously. Thus, we
define perceptible factors as the k for which σk(X) > b+ ε a.s. for some ε > 0. We also define
imperceptible factors as the k for which σk(X) < b− ε a.s. for some ε > 0. We then have the
following analogue of the previous lemma:

Lemma 2.3 (Consistency lemma for non-asymptotic PA). Under the conditions of Lemma
2.2, PA selects all perceptible factors, and no imperceptible factors, a.s.

Proof. Non-asymptotic parallel analysis selects the factors for which σk(X) > maxπ∈Π0 ‖Xπ‖.
Since maxπ∈Π0 ‖Xπ‖ → b a.s., it is immediate that this includes all perceptible factors, and no
imperceptible factors, a.s.
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These results give broad conditions for the signal and the noise under which PA is consistent.
The real work is always to show that these conditions hold in particular cases of interest, such
as for factor models.

2.2.2 Conditions on the signal and the noise

When do our assumptions hold? We start here with a brief discussion.
For the noise, we need two assumptions.

1. The existence of a well-defined asymptotic noise level b > 0 such that ‖N‖ → b > 0.
This imposes a restriction on the noise models. For this condition, it will be helpful that
operator norms of random matrices have been studied thoroughly, and thus there are
broad conditions under which such convergence is known.

2. The invariance of the distribution of noise to permutations: N =d Nπ. There is a tradeoff:
the more general the noise distribution, the smaller the set of permutations that keeps
it invariant. Thus, this also imposes a restriction, because we may need a large set of
permutations to cancel out the signal terms, as we see next.

For the signal, we need one assumption:

1. The operator norm of the permuted signal matrices vanishes, ‖Sπ‖ → 0 a.s. for all S ∈ Θ.
There is a tradeoff here too: The larger the parameter space Θ, the harder this is, and
the more permutations are needed to get enough “averaging” for this to hold. For certain
signals, e.g., the all ones matrix with Sij = 1, this is entirely impossible, because every
permutation keeps the matrix unchanged.

In the next two sections, we examine the two sets of conditions in more detail.

3 Signal models

When do our assumptions on the signal hold? We need that permutations “destroy” the signal
structure, so that ‖Sπ‖ → 0 a.s., for all S ∈ Θ. Consider a rank one signal matrix S = uv>.
Then, acting on this by a permutation array π we get (denoting by � elementwise product of
matrices):

Sπ = (uv>)π = (u1>)π � 1v> = [π1(u);π2(u); . . . ;πp(u)]� 1v>.

Each permutation πj permutes the corresponding column j of S. This column equals vju, so
πj permutes the entries of u. Since πj is a uniformly random permutation, the distribution
of this column is uniform on all permutations of u, and is “modulated” by vj . If the entries
of u sum to zero, this is effectively “noise” of variance approximately v2

j /n. The n entries of
column j are exchangeable random variables, which are almost independent for large n. Hence,
(uv>)π is a random matrix whose columns are independent, and within each column the entries
are nearly independent, with variance approximately v2

j /n. If the entries of the matrix were
independent, we could use well-known results controlling its operator norm (e.g., Vershynin,
2010). However, since the entries are dependent, we need to establish these results here from
first principles.

A first simplification is that we can separate the component corresponding to u ∈ span(1),
where 1 = (1, 1, . . .)> is the all ones vector, and its orthocomplement. The first part is kept
invariant by the permutation. So we just need to assume that it goes to zero. Let θ ·n−1/21 ·v>
be this component, where |u|2 = |v|2 = 1. Then, we need to assume that θ → 0, because we
need

‖π(θ · n−1/21 · v>)‖ = ‖θ · n−1/21 · v>‖ = θ|v|2 = θ → 0.

10



In our application to factor models, we will separate this component, and show that θ → 0
holds.

On the orthocomplement, we will use the moment method to show ‖Sπ‖ → 0. We have
that ‖A‖k ≤ tr(A>A)k for all k. Hence,

P (‖A‖ > ε) = P (‖A‖k > εk) ≤ P (tr(A>A)k > εk) ≤ ε−kE tr(A>A)k

Thus, to show that ‖Sπ‖ → 0 in probability, it is enough to argue that E tr(A>A)k → 0 for
some k > 0. To show a.s. convergence, by the Borel-Cantelli lemma we need that E tr(A>A)k is
summable for some k > 0. After the appropriate moment calculations, we obtain the following
result:

Theorem 3.1 (Requirements on the signal). Consider signals of the form S = n−1/2θ·1v>0 +T ,
where T =

∑r
i=1 θiuiv

>
i , with |ui|2 = |vi|2 = 1, and u>i 1 = 0 for all i. Here r can be fixed or

change with the dimensions n, p. Suppose that θ → 0. Define the constants Ank for k = 2, 3, 4
as

Ank =

r∑
i=1

θi · Ck(vi)
1/(2k)

where Ck(v) are defined as

1. C2(v) = 1/(n− 1) + |v|44
2. C3(v) = 1/(n− 1)2 + 9n−1|v|44 + |v|66
3. C4(v) = 1/(n− 1)3 + 4/(n− 1)2|v|44 + 12n−1[|v|84 + |v|66] + |v|88

Then,
[E tr(S>π Sπ)k]1/(2k) ≤ Ank.

Therefore,

1. If Ank → 0, then ‖Sπ‖ → 0 in probability.

2. If A2k
nk are summable, then ‖Sπ‖ → 0 almost surely.

The proof is provided in Sec. 8.2. Note that the second condition can only hold for k ≥ 3,
because n−1 . A4

n2.
An interesting consequence of this result is that PA works in certain cases even when the

number of signals as well as the strength of signals grows to infinity simultaneously. Indeed,
suppose vi are all maximally delocalized, so that |vi|∞ ≤ Cp−1/2 for some C > 0. Then, we
have |vi|44 ≤ C4p−1, and |vi|66 ≤ C6p−2, therefore C3(vi) ≤ C′(n−2 + p−2) and

A6
n3 ≤ C′

[
r∑
i=1

θi

]6

·
(

1

p2
+

1

n2

)
So we need to find conditions under which this goes to zero or is summable. When n, p→∞,

for An3 → 0 it is enough that
∑r
i=1 θi = O(min(n, p)1/3−ε) for some ε > 0. For instance, when

p/n → γ > 0, is enough that m|θ|∞ = O(n1/3−ε). We can take n1/6 spikes (signals) of size
n1/6−ε each, and parallel analysis will work. Alternatively, we can take one spike of strength
θ = n1/3−ε.

This is important, because it allows us to handle two seemingly very different regimes simul-
taneously: the “explosive”, i.e., growing, spikes of the type that are common in econometrics
(Bai and Ng, 2008), while also handling the constant-sized spikes that are common in the lit-
erature in random matrix theory and applications to statistics (e.g., Paul and Aue, 2014; Yao
et al., 2015).
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3.1 Optimality considerations

3.1.1 Signal strength

The above results and discussion show that PA selects the perceptible factors in models of the
form θuv> + N as long as the signal strengh θ is not too large. For instance, we saw that
θ = min(n, p)1/3−ε suffices for delocalized signals. It may seem counterintuitive that a strong
signal can decrease the performance of PA. Is this a weakness of our theoretical analysis, or a
weakness of the method?

To understand this issue, we recall that PA “transforms the signal into noise”. Thus, a
large signal is transformed into large noise, which can lead to the overestimation of the true
noise level. In turn, this may prevent the selection of the above-noise factors which are not
above the estimated noise level. So the problem is with PA, not with our result.

More precisely, the permuted matrix Sπ = (θuv>)π is a matrix with independent columns,
and within each column, with approximately independent (in truth, exchangeable) bounded
entries. If the entries were independent with variance σ2/n, the operator norm would be of
order σ · [1 + (p/n)1/2] (Bai and Silverstein, 2009; Vershynin, 2010). In our case, tr S>π Sπ =
trS>S = θ2, so heuristically, pσ2 ≈ θ2. Thus, heuristically

‖Sπ‖ ≈ θ · [n−1/2 + p−1/2].

In our consistency lemma, we showed that PA will select the above-noise factors if ‖Sπ‖ → 0,
which amounts to θ · [n−1/2 + p−1/2] → 0. In particular, under high-dimensional asymptotics
when p/n → γ > 0, this holds if θ/n1/2 → 0. This suggests that our result θ = n1/3−ε is not
optimal, and PA works more broadly. We note that a k-th moment bound in Theorem 3.1
will allow θ = o(p1/2−1/(2k)). However, much more work is needed to show such a bound. In
principle, the current moment calculations should work, but this is much beyond the scope of
this work, as they become too hard for large k.

Thus it appears that very strong factors lead to problems with PA. This is counter-intuitive,
because strong factors should be easy to detect. However, this apparent paradox can be re-
solved. The noise level estimated by PA is of the order of

fest ≈ max(b,

r∑
k=1

θk · [n−1/2 + p−1/2]).

A factors is not selected if σk(X) < fest. From the analysis of spiked covariance matrix
models, when the noise is of the form n−1/2X for X with iid entries, we expect the empirical
singular values to behave (very roughly speaking) like σk(X) ≈ θk + (p/n)1/2. From these
two approximations, a factor k is not selected only if θk/

∑r
k=1 θk . n−1/2 + p−1/2. This

shows that only the relatively unimportant factors are not selected by PA, in the sense that the
relative strength of the factor k, θk/

∑r
k=1 θk, must be small. In this sense, PA still selects the

”relatively large” factors.

3.1.2 Delocalization

What is the precise condition needed on v? In Theorem 3.1 we gave several conditions de-
pending on the norms |v|k, for k = 4, 6, 8, which all amount to some form of delocaliza-
tion, in the sense that v is non-sparse. Some non-sparsity condition is needed. Indeed, when
v = (1, 0, . . . , 0), then a permutation only acts on the first column of uv>, thus the operator
norm is unchanged. Some form of delocalization is needed, but finding the precise condition
may need a new theoretical approach, which is beyond our current scope.
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4 Noise models

When do our assumptions on the noise hold? We need two assumptions: invariance to permu-
tations, and operator norm convergence.

4.1 Invariance

We need the that noise is invariant in distribution to permutations N =d Nπ, where the
permutation π is also random. We will study when invariance holds for any fixed permutation
π; then it will also hold for random permutations π ∼ Π0 chosen indepenendently from N .
This is a non-asymptotic condition, so the findings will apply to any asymptotic setting we
consider.

For N =d Nπ it is enough if columns of N are independent, and each column has ex-
changeable entries. But a weaker condition is enough. Suppose for instance that (Nij)ij are an
equicorrelated Gaussian random vector, in matrix form. Then clearly they are not independent,
but are still invariant under any permutation.

Following this logic, if we vectorize the matrix N into an np-length vector, whose blocks of
size n are the different features indexed from 1 to p, the condition N =d Nπ means that the
distribution is invariant under permutations within the blocks. For a Gaussian random vector,
in terms of the covariance matrix, this means that it has the following block structure:

• Var [Nij ] = σ2
j : Within any column j, the entries Nij are exchangeable random variables.

Thus, they must have the same variance σ2
j .

• Cov [Nij , Ni′j ] = τ2
j for i 6= i′: Similarly, distinct entries Nij , Ni′j in the same column

must have the same covariance.

• Cov [Nij , Nkj′ ] = η2
jj′ for j 6= j′: Consider two distinct columns j, j′. Since the entries

within each of them can be permuted independently of each other while preserving the
distribution, the covariance between any two entries Nij , Nkj′ must be the same.

Equivalently, one has the explicit representation:

N = ED1/2 + 1z>Σ1/2,

where E is n × p matrix of iid Gaussians, D is diagonal, z ∼ N (0, Ip), and Σ is p × p
PSD. Here Σ induces the correlations between the different columns, and is not necessarily
diagonal. Thus each sample has the form Ni = D1/2εi + Σ1/2z ∼ N (0, D+ Σ), which is a sum
of a sample-specific independent diagonal normal random vector D1/2εi, and the same normal
random vector Σ1/2z added to each sample.

A bit more generally, we have the following representation for noise models invariant under
permutations. The proof is immediate, and thus it is omitted.

Proposition 4.1 (Requirements for noise invariance). Suppose that the noise matrix N has
rows of the form Ni = D1/2εi + z, where εi are iid across i, and z is any random vector
independent of all εi. Suppose that εi have independent standardized entries. and D1/2 is
diagonal. Then, the distribution of N is invariant under column permutations, i.e., N =d Nπ
for any fixed permutation array π.

This result covers factor models, where the noise is of the form Ni = D1/2εi. The term
z is allowed by the theory, but it is usually not of practical interest. This common term can
be viewed as the mean of Ni. Even if the mean is zero, this can be viewed as a common
perturbation affecting all samples. However, z increases the overall noise level, because the
operator norm ‖N‖ is of order (np)1/2. Thus, the presence of z renders many previously
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above-noise factors to sink below the noise. The practically interesting scenarios usually have
z = 0, which can be achieved by de-meaning the data.

In addition, there are other noise models that can be reduced to the model from Prop. 4.1.
A prime example is correlated noise models where taking the Fourier transform, or some other
known orthogonal transform in space-time, leads to independent coordinates.

For instance, in time series analysis (e.g., Brockwell and Davis, 2009), stationary processes
can be transformed into having approximately independent coordinates by the Fourier trans-
form. By the spectral representation theorem, every zero-mean stationary process has the
representation Xt =

∫
(−π,π]

exp(itν)dZ(ν), where Z is an orthogonal-increment process.

The autocovariance function can be written as γ(h) =
∫

(−π,π]
exp(itν) dF (ν), for a distri-

bution function F . If γ is absolutely summable and real-valued, then the process has asymp-
totically uncorrelated Fourier components (e.g., Brockwell and Davis, 2009, Prop. 4.5.2.). In
particular, permutation methods are heuristically reasonable. However, making this rigorous
would require us to understand what happens to the permutation distribution when we have
only an approximate invariance of the noise. This is beyond our scope, but is interesting for
future work (see Sec. 7).

4.2 Operator norm convergence

The second condition that we need for the noise is the convergence of the operator norm:
‖N‖ → b > 0. Operator norms of random matrices have been studied for a long time, see
e.g., Bai and Silverstein (2009); Vershynin (2010). We are fortunate that we can leverage some
of these results. For instance, Bai, Yin, Silverstein and others have showed convergence of
the operator norm of matrices of the form N = n−1/2XT 1/2, where the entries of X are iid
standardized random variables, and where p, n → ∞ such that p/n → γ > 0. We state this
result together with another one for the case p/n→∞.

Proposition 4.2 (Requirements for noise operator norm, partly a corollary of Cor. 6.6 in (Bai

and Silverstein, 2009)). Suppose that the noise matrices have the form N = c
−1/2
p XT 1/2 with

cp = trT , where the entries of X are independent standardized random variables with bounded
fourth moment, and T are diagonal positive semi-definite matrices. Suppose that p→∞, and
one of the following two sets of assumptions holds:

1. p/n → γ > 0, while the distribution function of the entries of T converges weakly to
a limit distribution H, FT ⇒ H. Moreover, the operator norm of T converges to the
supremum of the support of H, ‖T‖ → supp sup(H), and the entries of X have bounded
6+ε-th moment.

2. The entries of T are bounded as tj ≤ C tr[T ]/p for all j, while (A) p/n → ∞ or (B)
n2+ε ≤ p for some ε > 0.

Then, we have ‖N‖ → b for some b > 0, in probability under (2A), and almost surely under
(1) or (2B).

The second statement allows n fixed while p → ∞, which is the “transpose” of classical
asymptotics where p is fixed and p → ∞. The proof is provided later in Sec. 8.3. Combined
with the conditions on noise invariance, and with the conditions on the signal, this result
provides a broad set of concrete scenarios when PA selects the perceptible factors.

5 PCA and spiked models

Should we select the number of components in PCA using PA? As Jolliffe (2002) clearly ex-
plains, there is a substantial difference between PCA and FA, and ”it is usually the case that
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the number of components needed to achieve the objectives of PCA is greater than the number
of factors in a FA of the same data”.

However, we can understand the behavior of PA in PCA within a certain class of popular
spiked models. Spiked models have served as a theoretical tool to understand PCA in high
dimensions. There are several versions, some of them mutually exclusive, see for instance
Johnstone (2001); Paul (2007); Nadler (2008); Bai and Ding (2012); Benaych-Georges and
Nadakuditi (2012); Onatski et al. (2013); Nadakuditi (2014), and Paul and Aue (2014); Yao
et al. (2015) for more references.

An important class of signal-plus-noise spiked models was studied in Benaych-Georges and
Nadakuditi (2012). Here X = S +N , where S =

∑r
i=1 θiuiv

>
i , and n1/2ui, p

1/2vi are each iid
vectors with iid entries from a distribution that satisfies a log-Sobolev inequality. It is assumed
that n, p→∞ such that p/n→ γ > 0, the spectral distribution of N converges to a compactly
supported distribution, and the top and bottom singular values converge to the respective
edges a < b of the distribution. The rank r and the spike strengths θi are fixed constants.
Under these conditions, Benaych-Georges and Nadakuditi (2012) derive the asymptotic limits
of the empirical singular values of X. They establish the BBP phase transition phenomenon
discovered earlier by Baik et al. (2005) in a special case. For θi above a critical value, the
corresponding empirical spike σi(X) will converge to a definite value larger than b. In this case
θi is said to be above the phase transition. These correspond to the perceptible factors in our
terminology. For θi below the critical value, σi(X)→ b.

Our assumptions are neither more general, nor more specific. Indeed, we allow p/n→∞ and
diverging spikes, while they allow a general converging spectral distribution, without requiring
permutation-invariance.

However, our assumptions do have a nontrivial intersection. We can state the conclusion
as a corollary. This justifies the use of permutation methods in PCA:

Corollary 5.1. (PA in spiked models) Suppose we observe a signal-plus-noise spiked model
X = S +N , where S =

∑r
k=1 θkukv

>
k , and n1/2uk, p

1/2vk are each iid vectors with iid entries
from a distribution that satisfies a log-Sobolev inequality. Suppose that n, p → ∞ such that
p/n→ γ > 0. Suppose that the noise matrix is of the form N = n−1/2Y T 1/2, where the entries
of Y are independent standardized random variables with bounded 6+ε-th moments, and T
are diagonal positive semi-definite matrices such the distribution function of the entries of T
converges weakly to a limit distribution H. Suppose that the operator norm of T converges to
the supremum of the support of H, ‖T‖ → supp sup(H).

According to Benaych-Georges and Nadakuditi (2012), Thm. 2.9, for θk above the phase
transition, when θk > θ̄ for a certain θ̄, the empirical singular values σk(X) converge, σk(X)→
λk a.s., for some λk > b, where b > 0 is the limit ‖N‖ → b, as guaranteed by Prop. 4.2.

Then, parallel analysis selects all spikes above the phase transition.

The analysis for the spikes below the transition is more delicate, and our results do not
address it.

We also emphasize that, the threshold θ̄ above which the factors are selected becomes much
more explicit. In particular, when the covariance of the noise is identity, θ̄ =

√
γ, which is

completely explicit as a function of n and p.

6 Numerical simulations

We perform numerical simulations to understand the behavior of PA. We wish to understand
the effect of key parameters of the factor model, including signal strength and delocalization
of loadings, on the accuracy of PA.
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Figure 3: Mean and SD of number of factors selected by PA as a function of signal strength (left),
and sparsity (right).

6.1 Effect of signal strength

We simulate from the factor model xi = Ληi + εi. We generate the noise εi ∼ N (0, Ip), and
the factor loadings as Λ = θZ̃, where θ > 0 is a scalar corresponding to factor strength, and Z̃
is generated by normalizing the columns of a random matrix Z ∼ N (0, Ip×m).

We use a one-factor model, so m = 1, and work with sample size n = 500 and dimension
p = 300. It is well known that the critical regime for the signal strength θ is of the order of
γ1/2. We vary θ on a grid of the form γ1/2 · s, for s on a linear grid between 0.2 and 6.

We use PA to select the number of factors. We perform 10 Monte Carlo iterations for each
parameter. Motivated by our theoretical understanding, for each Monte Carlo realization of X,
we generate only one permutation Xπ. We select the first factor if ‖X‖ > ‖Xπ‖. The results in
Fig. 3 (a) show that PA is selects the right number of factors as soon as the signal strength s
is larger than ∼ 4. This agrees with our theoretical predictions, since it shows that PA selects
the perceptible factors.

It may seem “wrong” that PA selects a factor even when the signal strength is nearly 0.
However, this result is in agreement with our theoretical predictions. Indeed, such a factor is
below-noise, but non-separated. In line with the discussion in Sec. 5, the singular value σk
corresponding to a spike below the phase transition converges to the noise level b. Thus, the
empirical singular value does not separate from the noise level, hence PA cannot identify it as
below-noise.

6.2 Effect of delocalization

We provide numerical evidence for our claim that “PA works when the factors load on more
than just a few variables.” We use the same model as above. To change the delocalization of
the factor scores, we define the sparsity parameter c, and generate c-sparse factors, by setting
the first bc · pc coordinates of Z to be iid Gaussians, and the remaining coordinates to be zero.
One can verify that for every vector λ of factor scores, the expected “localization” parameter
L = |λ|4/|λ|2 is approximately L = (9/cp)1/4, which decreases with c. Our theoretical results
suggest that PA should select the right number of factors for “delocalized” or “non-sparse”
vectors, when c is large and L is small.
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Figure 4: Mean and SD of number of factors selected by PA as a function of sample size for p = 3
(left) and p = 1000 (middle). Same quantity in a 2-factor model as a function of stronger factor
value (right).

We set θ = 2 to place ourselves in a critical regime where the effect of delocalization is
visible. This choice was made empirically. We vary c on a grid from 1/p to 10/p. We perform
100 Monte Carlo iterations for each setting of the parameters.

The results in Fig. 3 (b) show that PA tends to select the right number of factors for
non-sparse, delocalized factor loadings (large c). This agrees with our theoretical predictions.

It is remarkable that PA already works when the sparsity is 2% (c = 0.02). That is, if the
factor loads on at least 6 out of 300 variables, PA selects the right number of factors! This
surprising result suggests that PA is likely to perform well in many realistic settings, and that
delocalization is not a stringent requirement.

6.3 Effect of dimension

We provide numerical evidence for our claim that “PA works when the dimension of the data
is large, even when the di.” Using the same model as in the first simulation, we compare the
accuracy of PA for p = 3 and p = 1000. We set the signal strength to θ = 6γ1/2, which is
a perceptible factor. This corresponds to the same signal strength for all p. Thus, the two
problems are equally hard statistically; or put it differently, the SNR is the same for the two
values of p. We vary the sample size from n = 10 to n = 100 in steps of 10.

The results in Fig. 4 show that PA tends to select the right number of factors almost
without error for p = 1000, but not for p = 3. This holds already for p = 10 (data not shown).
This agrees with our theoretical predictions. Moreover, this also suggests that the requirement
on the sample size is not stringent.

6.4 Effect of strong signals on detectability of weak signals:
Shadowing

We provide numerical evidence for the claim that “PA selects the relatively important factors.”
Using the same model as in the first simulation, we evaluate the accuracy of PA in a two-factor
model. We set the smaller signal strength to θ1 = 6γ1/2, which is a perceptible factor. We vary
the larger signal strength as θ2 = c2γ

1/2 on a grid between c2 = 6 and 50.
The results in Fig. 4 (c) show that PA tends to select the right number of factors almost

without error for c2 < 25, but it starts making errors above that value. Above c2 > 35, PA
consistently selects only one perceptible factor. Qualitatively, these agree with our theoretical
predictions. A strong factor is transformed into noise by PA, thus “shadowing” the weaker
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factor. Quantitatively, in this example the ratio of small-to-large signal strength where PA
breaks down is θ1/(θ1 + θ2) ≈ 6/35 ≈ 0.17. According to our theory, this should be on the
order of n−1/2 + p−1/2 = 0.1. Thus, our predictions seem quite accurate.

7 Discussion

In this paper we provided a theoretical analysis of parallel analysis (PA). We established precise
conditions under which PA consistently selects the perceptible factors for large datasets. We
argued that PA works when the dimension of the data is large, and when the factors load on
more than just a few variables.

There are numerous important directions for future research. First, there are variants of PA
developed in applied research (see e.g., Peres-Neto et al., 2005; Brown, 2014; Crawford et al.,
2010; Gaskin and Happell, 2014). When are they useful? These methods differ in:

1. The test statistic, for instance: singular value gap, fraction of variance explained, robust
correlations, loadings (Buja and Eyuboglu, 1992).

2. The number of permutations, and percentile used: mean of eigenvalues (Horn, 1965),
other percentiles (Buja and Eyuboglu, 1992; Glorfeld, 1995).

3. Using stepwise testing (Horn, 1965).

4. Using the correlation matrix.

Can we understand when they help, and possibly develop improvements? This is especially
interesting for tasks other than selecting the number of factors, such as estimating the factor
loadings.

Second, what should one do when the noise is correlated? Independent permutations on
the original columns do not generate the correct null distribution. In Sec. 4.1 we saw that
taking the Fourier transform may help for stationary time series. However, this will need a
much more careful analysis.

Third, an important issue that we have not discussed is the computational cost of PA.
The cost of permutations and SVDs for PA can become a problem for “big data”. Another
important issue is the randomness introduced by PA, which can lead to arbitrary decisions.
Can we speed up PA, or remove the randomness? Zhou et al. (2017) developed such a method,
by employing Dobriban (2015)’s Spectrode algorithm to approximate the noise level. Can we
develop a theoretical understanding of this method, with suitable improvements?

8 Proofs

8.1 Proof of Thm. 2.1

We will check that the conditions of the Consistency Lemma 2.3 hold with probability tending
to one. In matrix form, the factor model reads X = UΨ1/2Λ> + ZΦ1/2. We first normalize it
to have operator norm of unit order: n−1/2X = n−1/2UΨ1/2Λ> + n−1/2ZΦ1/2.

Let us verify the required conditions:

1. Signal: Let ΛΨ1/2 = [f1, . . . , fr].

The signal component is S = n−1/2UΨ1/2Λ> = n−1/2∑r
k=1 ukf

>
k

Since there are only a fixed number of factors, it is enough to analyze one term n−1/2uf> =
n−1/2|u|2|f |2 · ũf̃>, where ·̃ denotes normalized vectors. Let e = n−1/21.
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(a) Mean term: The term in the span of 1 is n−1/2|u|2|f |2 · ũ>e · ef̃>. We need that
n−1/2|u|2|f |2 · |ũ>e| → 0.
Now, |f |2 ≤ Cn1/4−δ/2 by assumption. Moreover, if ui has iid entries with mean 0
and variance 1, then by the LLN n−1/2|u|2 → 1. Thus it is enough that n1/4−δ/2|ũ>e| =
|n−1/4−δ/2(

∑
ui)| → 0. This holds by the CLT.

(b) Zero-mean term: We need to analyze the term in the orthocomplement of 1. Let
P = I − ee> be the de-meaning projection operator. Our term is n−1/2Puf> =
n−1/2|f |2|Pu|2 · P̃ uf̃>
From Thm 3.1, where the low rank part has form θuv>, we need a bound on θ(2n−1+
|v|44)1/4. But note that

θ/[Cn1/4−δ/2] = n−1/2|f |2/[Cn1/4−δ/2]|Pu|2 ≤ n−1/2|u|2 → 1

a.s., so we need only
n1/4−δ/2(2n−1 + |v|44)1/4 → 0.

i.e., n1/4−δ/2|f̃ |4 → 0, or also n1/4−δ/2|f |4/|f |2 → 0.

2. Noise: We need first that n−1/2ZΦ1/2 has a distribution that is invariant under permu-
tations, as discussed in Sec. 4.1. This holds by inspection.

We need second that ‖n−1/2ZΦ1/2‖2 → b. Conditions for this are given in Prop. 4.2, and
one can verify that the conditions given in the theorem match these. Thus, PA selects all
perceptible factors, and no imperceptible factors.

8.2 Proof of Thm. 3.1

We need to show that ‖Sπ‖ → 0, where S = n−1/2θ ·1v>+
∑r
i=1 θiuiv

>
i . The term n−1/2θ ·1v>

is handled by the assumption θ → 0, so we can focus on the rest, and assume θ = 0 from now on.
Note that [tr(A>A)k]1/(2k) = ‖A‖2k is the Schatten 2k-norm of A. By the triangle inequality
for the Schatten norm, ‖Sπ‖2k ≤

∑r
i=1 θi|(uiv

>
i )π|2k. Hence,

‖Sπ‖2k2k ≤

[
r∑
i=1

θi‖(uiv>i )π‖2k

]2k

,

therefore

[E tr(S>π Sπ)2k]1/(2k) ≤

[
E(

r∑
i=1

θiD
1/(2k)
i )2k

]1/(2k)

,

where Di = E tr[(uiv
>
i )>π (uiv

>
i )π]2k. Next, by the triangle inequality for the `2k norm X →

[E‖X‖2k]1/(2k),

[E(

r∑
i=1

θiD
1/(2k)
i )2k]1/(2k) ≤

r∑
i=1

θi[EDi]1/(2k).

Let us focus on bounding one such term EDi, and denote u = ui, v = vi for simplicity. Let us
write A = (uv>)π.

The simplest calculation is the first moment bound ‖A‖2 ≤ tr(A>A). However, this is not
effective, as tr(A>A) =

∑
ij [π(uv>)ij ]

2 =
∑
ij [(uv

>)ij ]
2 = ‖uv>‖2 = |u|22|v|22 = 1, because the

permutation of the entries does not change the sum of squares.
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8.2.1 Second moment

We turn to the second simplest calculation, the second moment bound. This starts with the
identity

tr(A>A)2 = trA>AA>A =
∑
ijkl

AijA
>
jkAklA

>
li =

∑
ijkl

AijAilAkjAkl.

We have Aab = uπb(a)vb. The vectors u, v are fixed, while πb are random and independent
across b. Thus, if j 6= l, then A·j and A·l are independent. Moreover, the joint distribution
of (Aij , Akj), for i 6= k, is equal to that of vj · (uτ1 , uτ2), where τ is a permutation chosen
uniformly at random. Thus,

(uτ1 , uτ2) ∼ Unif{(ui, uj) : i 6= j}.

With this observation, we can make the following moment calculations:

1. EAij = vj · Euτ1 = vj ·
∑
i ui/n = 0.

2. EA2
ij = v2

j · Eu2
τ1 = v2

j ·
∑
i u

2
i /n = v2

j /n.

3. EAijAkj = v2
j · Euτ1uτ2 = v2

j ·
∑
i6=j uiuj/[n(n − 1)] = v2

j · [(
∑
ui)

2 − 1]/[n(n − 1)] =

−v2
j /[n(n− 1)].

Therefore, we conclude that∑
ijkl

EAijAkjAilAkl =
∑
ik,j 6=l

EAijAkj · EAilAkl +
∑
ik,j

E(AijAkj)
2

= n(n− 1)
∑
j 6=l

EA1jA2j · EA1lA2l + n
∑
j 6=l

EA2
1j · EA2

1l

+
∑
j

(E
∑
i

A2
ij)

2

= n(n− 1) · I + n · II + III.

Then, we have the following bounds for I, II, and III:

1.

I =
∑
j 6=l

EA1jA2j · EA1lA2l =
∑
j 6=l

−v2
j /[n(n− 1)] · (−v2

l /[n(n− 1)])

= 1/[n(n− 1)]2
∑
j 6=l

v2
j v

2
l = (1−

∑
j

v4
j )/[n(n− 1)]2 ≤ 1/[n(n− 1)]2

Note that I ≥ 0, so |I| ≤ 1/[n(n− 1)]2

2. II =
∑
j 6=l EA

2
1j · EA2

1l = 1/n2∑
j 6=l v

2
j v

2
l = (1−

∑
j v

4
j )/n2 ≤ 1/n2

3. III =
∑
j(E

∑
iA

2
ij)

2 =
∑
j(nEA

2
1j)

2 =
∑
j v

4
j

Above we used E
∑
iA

2
ij = nEA2

1j = v2
j .

Combining the bounds for I, II, and III, we get the upper bound

E tr(A>A)2 ≤ 1/[n(n− 1)] + 1/n+
∑
j

v4
j = 1/(n− 1) + |v|44

In conclusion EDi ≤ 2/n + |vi|44, and [E tr(S>π Sπ)4]1/4 ≤
∑r
i=1 θi[1/(n − 1) + |vi|44]1/4. This

finishes the second moment bound.
The overall rate at which tr(S>π Sπ)2 decays is 1/n. For a.s convergence, we need the bounds

to be a summable sequence; thus one can not to prove a.s convergence using only a second
moment argument. This motivates us to look at the third moment.
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8.2.2 Third moment

The third moment bounds proceeds similarly. We start with the identity

tr(A>A)3 = trA>AA>AA>A =
∑
ijklmq

AijAkjAklAmlAmqAiq.

In this expression, the random variables with this the same second index (j, l or q) are depen-
dent, thus there are at most three groups of independent random variables. There are three
cases, depending on how many distinct indices there are among j, l or q:

Three distinct indices: j 6= l 6= q. In this case, we can write the sum over all j 6= l 6= q
as A1 =

∑
ijklmq EAijAkj · EAklAml · EAmqAiq. We already calculated that EAijAkj = v2

j /n ·
[τ + δikη], where τ = −1/(n− 1), η = 1− τ = n/(n− 1). Thus,

A1 = n−3
∑
j 6=l6=q

v2
j v

2
l v

2
q ·
∑
ikm

[τ + δikη] · [τ + δkmη] · [τ + δmiη].

Now, we need to evaluate

A2 =
∑
ikm

[τ + δikη] · [τ + δkmη] · [τ + δmiη].

For the formal calculation, we can factor out τ3, even though τ may be 0, and so this may
technically not be allowed. However, the formal calculation still leads to the correct answer. If
τ = 0, the result is A2 = nη3, which agrees with what we get below. Let thus ζ = η/τ , and we
want

τ−3A2 =
∑
ikm

[1 + δikζ] · [1 + δkmζ] · [1 + δmiζ]

=
∑
ik

[1 + δikζ] ·
∑
m

[1 + δkmζ] · [1 + δmiζ]

=
∑
ik

[1 + δikζ] · [n+ 2ζ + δkiζ
2]

= [n+ 2ζ]
∑
ik

[1 + δikζ] + ζ2
∑
ik

[1 + δikζ]δik

= [n+ 2ζ] · [n2 + nζ] + nζ2[1 + ζ]

= n3 + 3n2ζ + 3nζ2 + nζ3.

Above we used that
∑
m[1 + δkmζ] · [1 + δmiζ] = n+ 2ζ + δkiζ

2. Hence

A2 = n3 · τ3 + 3n2 · τ2η + 3n · τη2 + n · η3 = (nτ + η)3 + (n− 1)η3.

However, we also have nτ + η = nτ + 1− τ = (n− 1)τ + 1 = 0, and (n− 1)η3 = n3/(n− 1)2.
Therefore, we conclude that A2 = n3/(n− 1)2. Going back to the definition of A1, we thus see
A1 = 1/(n− 1)2 ·

∑
j 6=l6=q v

2
j v

2
l v

2
q .

Now
∑
j 6=l6=q v

2
j v

2
l v

2
q ≤

∑
jlq v

2
j v

2
l v

2
q = |v|62 = 1, so we conclude that A1 ≤ 1/(n− 1)2.

Two distinct indices: j = l 6= q and the other two symmetric cases. In this case,
we can write the sum as B1 =

∑
j 6=q,ikm EAijA2

kjAmj · EAmqAiq. Now, it is easy to see that

the vj terms contribute a factor of at most (
∑
j v

4
j )(
∑
j v

2
j ) =

∑
j v

4
j . In the remainder, it is

enough to work with the u-part. This equals B2 =
∑
ikm Eτiτ2

k τm ·Eτiτm, where τ is a random
permutation of the set of values u1, . . . , un. Now we can sum over k first to get

B2 =
∑
im

Eτiτm ·
∑
k

Eτiτ2
k τm =

∑
im

Eτiτm · E[τiτm(
∑
k

τ2
k )]

21



However,
∑
k τ

2
k =

∑
k u

2
k = 1 is a deterministic quantity, so we obtain B2 =

∑
im(Eτiτm)2.

Now, recall that Eτiτk = 1/n · [τ + δikη], where τ = −1/(n− 1), η = 1− τ. Therefore,

n2B2 = n(n− 1) · 1/(n− 1)2 + n · n2/(n− 1)2.

So B2 ≤ 3/n and B1 ≤ 3n−1|v|44
One unique index: j = l = q. In this case, we can write the sum as

C1 =
∑
j,ikm

EA2
ijA

2
kjA

2
mj =

∑
j

(
∑
i

EA2
ij)

3 =
∑
j

(v2
j )3 =

∑
j

v6
j .

Putting together the results from the three cases, we obtain

E tr(A>A)3 ≤ 1/(n− 1)2 + 9n−1|v|44 + |v|66.

This finishes the proof.

8.2.3 Fourth moment

The fourth moment bounds proceeds similarly, except the calculation is more complicated. We
start with the identity

tr(A>A)4 =
∑

i1i2i3i4j1j2j3j4

Ai1j1Ai2j1Ai2j2Ai3j2Ai3j3Ai4j3Ai4j4Ai1j4 .

As before, in this expression, the random variables with this the same second index (j·) are
dependent, thus there are at most four groups of independent random variables. There are now
four cases, depending on how many distinct indices there are among them.

Four distinct indices. In this case, we can write the sum over all js as

A1 =
∑

i1i2i3i4j1j2j3j4

EAi1j1Ai2j1EAi2j2Ai3j2EAi3j3Ai4j3EAi4j4Ai1j4 .

We already calculated that EAijAkj = v2
j /n · [τ + δikη], where τ = −1/(n − 1), η = 1 − τ =

n/(n − 1). Thus, denoting I = (i1, i2, i3, i4), J = (j1, j2, j3, j4), ṽJ = vj1vj2vj3vj4 , i ∈ I
summation over all is, and j ∈ J summation over distinct js: A1 = n−4∑

J∈SJ
ṽJ · A2(J),

where, with ζ = η/τ ,

τ−3A2(J) =
∑
I∈SI

4∏
l=1

[1 + δilil+1ζ].

This equals ∑
i1,i3

∑
i2

[1 + δi1i2ζ][1 + δi3i2ζ] ·
∑
i4

[1 + δi1i4ζ][1 + δi3i4ζ]

=
∑
i1,i3

(∑
a

[1 + δi1aζ][1 + δi3aζ]

)2

=
∑
ik

[n+ 2ζ + δikζ
2]2

= n4 + 4n3ζ + 6n2ζ2 + 4nζ3 + nζ4.

Here we used identities established in the previous section. This also equals (n+ζ)4 +(n−1)ζ4.
Hence A2 = (nτ + η)4 + (n − 1)η3 = n4/(n − 1)3. Therefore, A1 = 1/(n − 1)3∑

J∈SJ
ṽJ ≤

1/(n− 1)3.

22



Three distinct indices: j1 = j2, other js different, and the other three symmetric
cases. In this case, we can write the sum as

B1 =
∑

i1i2i3i4;j1j3j4

EAi1j1A
2
i2j1Ai3j1 · EAi3j3Ai4j3EAi4j4Ai1j4 .

As before, it is easy to see that the vj terms contribute a factor of at most (
∑
j v

4
j )(
∑
j v

2
j )2 =∑

j v
4
j . In the remainder, it is enough to work with the u-part. This equals

B2 =
∑
ikml

Eτiτ2
k τm · Eτmτl · Eτlτi =

∑
iml

Eτiτm · Eτmτl · Eτlτi,

using that
∑
k τ

2
k = 1. However, this expression is precisely the one that came up in the

calculation of the third moment bound for three distinct indices. There we saw that it equals
1/(n − 1)2. Hence, B1 ≤ |v|44/(n − 1)2, and the overall contribution of the terms with three
distinct indices is four times this.

Two distinct indices: j1 = j2 6= j3 = j4, and the other three symmetric cases.
Here we need

B1 =
∑

i1i2i3i4;j1j3

EAi1j1A
2
i2j1Ai3j1 · EAi3j3A

2
i4j3Ai1j3 .

The vj terms contribute a factor of at most (
∑
j v

4
j )2. The u-part contributes

B2 =
∑
ikml

Eτiτ2
k τm · Eτmτ2

l τi =
∑
im

(Eτiτm)2,

using that
∑
k τ

2
k = 1. In the calculation of the third moment bound for two distinct indices

we saw that B2 ≤ 3/n. Hence, B1 ≤ 3|v|84/n. The overall contribution is four times this.
Two distinct indices: j1 = j2 = j3 6= j4, and the other three symmetric cases. In

this case we need

B1 =
∑

i1i2i3i4;j1j4

EAi1j1A
2
i2j1A

2
i3j1Ai4j1 · EAi4j4Ai1j4 .

The vj terms contribute a factor of at most (
∑
j v

6
j )(
∑
j v

2
j ) =

∑
j v

6
j . The u-part contributes

B2 =
∑
ikml

Eτiτ2
k τ

2
mτl · Eτlτi =

∑
im

(Eτiτm)2,

using that
∑
k τ

2
k = 1. In the third moment bound for two distinct indices we saw that

B2 ≤ 3/n. Hence, B1 ≤ 3|v|66/n, and the overall bound is four times this.
One distinct index: j1 = j2 = j3 = j4, and the other three symmetric cases. In

this case, we can write the sum as

B1 =
∑

i1i2i3i4;j1j4

EA2
i1j1A

2
i2j1A

2
i3j1A

2
i4j1 .

The vj contribute a factor of at most
∑
j v

8
j , while the u-part contributes

∑
ikml Eτ

2
i τ

2
k τ

2
mτ

2
l = 1,

using that
∑
k τ

2
k = 1. Hence, B1 ≤ |v|88.

In conclusion we obtain the desired bound

E tr(A>A)4 ≤ 1/(n− 1)3 + 4/(n− 1)2|v|44 + 12n−1[|v|84 + |v|66] + |v|88.
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8.3 Proof of Prop. 4.2

The first part essentially follows from (Bai and Silverstein, 2009, Cor 6.6). A small modification
is needed to deal with the non-iid-ness, as explained in Dobriban et al. (2017).

For the second part, we will show that |[trT ]−1/2XT 1/2| → 1. For this, it suffices to show
that |[trT ]−1XTX>− In| → 0 in probability (or a.s.). For the convergence in probability, it is
in turn enough to show that E tr[XΣX> − In]2 → 0, where Σ = [trT ]−1T . We calculate

A = E tr[XΣX> − In]2 = E tr[XΣX>]2 − 2E trXΣX> + n.

Now XΣX> =
∑p
j=1 σjxjx

>
j , where the xj are independent n × 1 random vectors whose

entries are iid random variables (whose distribution may depend on j). They collect the j-th
coordinates of the observed data. So, E trXΣX> =

∑p
j=1 σjE|xj |

2 = n
∑p
j=1 σj = n. Also,

E tr[XΣX>]2 = E tr[

p∑
j=1

σjxjx
>
j ][

p∑
k=1

σkxkx
>
k ] =

p∑
j,k=1

σjσkE[x>j xk]2.

To evaluate this expression, we need to find E[x>j xk]2. If j 6= k, then xj and xk are independent,
and we can take expectation over j first, to get E[x>j xk]2 = E tr[xjx

>
j xkx

>
k ] = E tr[xkx

>
k ] = n.

This leads to

E tr[XΣX>]2 = n

p∑
j,k=1

σjσk +

p∑
j=1

σ2
j [E|xj |4 − n].

Therefore we find that A =
∑p
j=1 σ

2
j [E|xj |4 − n]. Thus, we need to show that A → 0. Since

σj ≤ Cp−1 for all j,

A = p−2
n∑
i=1

p∑
j=1

(Ex4
ij − 1) ≤ p−2 · Cnp = Cn/p→ 0

if n/p → 0, since the 4-th moments are bounded. This shows that n/p → 0 guarantees
convergence in probability, and finishes the proof of (2A). If in addition n/p ≤ 1/n1+ε, then
by the Borel-Cantelli lemma we conclude that |[trT ]−1XTX> − In| → 0 a.s., as needed. This
finishes the proof of (2B). Therefore, the proof of the proposition is complete.
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