é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

DART: A Scalable and Adaptive Edge Stream
Processing Engine

Pinchao Liu, Florida International University;
Dilma Da Silva, Texas A&M University; Liting Hu, Virginia Tech

https://www.usenix.org/conference/atc21/presentation/liu

This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.
July 14-16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »



DART: A Scalable and Adaptive Edge Stream Processing Engine

Pinchao Liu
Florida International University

Abstract

Many Internet of Things (IoT) applications are time-critical
and dynamically changing. However, traditional data process-
ing systems (e.g., stream processing systems, cloud-based IoT
data processing systems, wide-area data analytics systems)
are not well-suited for these IoT applications. These systems
often do not scale well with a large number of concurrently
running [oT applications, do not support low-latency process-
ing under limited computing resources, and do not adapt to
the level of heterogeneity and dynamicity commonly present
at edge environments. This suggests a need for a new edge
stream processing system that advances the stream process-
ing paradigm to achieve efficiency and flexibility under the
constraints presented by edge computing architectures.

We present DART, a scalable and adaptive edge stream
processing engine that enables fast processing of a large num-
ber of concurrent running IoT applications’ queries in dy-
namic edge environments. The novelty of our work is the
introduction of a dynamic dataflow abstraction by leverag-
ing distributed hash table (DHT) based peer-to-peer (P2P)
overlay networks, which can automatically place, chain, and
scale stream operators to reduce query latency, adapt to edge
dynamics, and recover from failures.

We show analytically and empirically that DART outper-
forms Storm and EdgeWise on query latency and significantly
improves scalability and adaptability when processing a large
number of real-world IoT stream applications’ queries. DART
significantly reduces application deployment setup times, be-
coming the first streaming engine to support DevOps for IoT
applications on edge platforms.

1 Introduction

Internet-of-Things (IoT) applications such as self-driving cars,
interactive gaming, and event monitoring have a tremendous
potential to improve our lives. These applications generate a
large influx of sensor data at massive scales (millions of sen-
sors, hundreds of thousands of events per second [20,26]). Un-
der many time-critical scenarios, these massive data streams
must be processed in a very short time to derive actionable in-
telligence. However, many IoT applications [22,23] adopt the
server-client architecture, where the front-end sensors send
time-series observations of the physical or human system

“Liting is affiliated with Virginia Tech, but was at Florida International
University during this work.

Dilma Da Silva
Texas A&M University  Virginia Tech

Liting Hu*

Sensors Edge Cloud

B — s — D

T 9 Low-latency
"'@‘ s » D results
7z v
¥ oy
Edge Stream
GPS P Processing Engine
“V2v
¥ - V21 R
Lidar \Lidal ¥ t§----%---§-
\\_Radar ~._ Cameras
((ta Direct Acyclic Graph
’\ 1 4 Engine
vai vai VfXTPMS sensors M Source
N D‘ @ sink
%ﬁf O Operator
—> Dataflow

Figure 1: Edge stream processing use case.

to the back-end cloud for analysis. Such a long-distance of
processing makes it not appropriate or time-critical IoT appli-
cation because: (1) the high latency may cause the results to
be obsolete; and (2) the network infrastructure cannot afford
the massive data streams.

A new trend to address this issue is edge stream process-
ing. To put it simply, edge stream processing applies the
stream processing paradigm to the edge computing archi-
tecture [37,50]. Instead of relying on the cloud to process
sensor data, the edge stream processing system relies on dis-
tributed edge compute nodes (Gateways, edge routers, and
powerful sensors) which are near the data sources to process
data and trigger actuators. The execution pipeline is as fol-
lows. Sensors (e.g., self-driving car sensors, smart wearables)
generate data streams continuously. They are then consumed
by the edge stream processing engine, which creates a logical
topology of stream processing operators connected into a Di-
rected Acyclic Graph (DAG), processes the tuples of streams
as they flow through the DAG from sources to sinks, and out-
puts the results in a very short time. Each source node is an
IoT sensor. Each inner node runs an operator or operators that
can perform user-defined computation on data, ranging from
simple computation such as map, reduce, join, filter
to complex computation such as ML-based classification al-
gorithms. Each sink node is an IoT actuator or a message
queue to the cloud.

Figure 1 illustrates a use case scenario [10] that benefits
from an edge stream processing engine. In future Intelligent
Transportation Systems such as the efforts currently funded

USENIX Association

2021 USENIX Annual Technical Conference 239



by the US Department of Transportation [27], cars are inter-
connected and equipped with wide-area network access. Even
at low levels of autonomy, each car will generate at least 3
Gbit/s of sensor data [25]. On the back-end, many IoT stream
applications will run concurrently, consuming these live data
streams to quickly derive insights and make decisions. Ex-
amples of such applications include peer-to-peer services for
traffic control and car-sharing safety and surveillance systems.
Note that many of these services cannot be completed on on-
board computers within a single car, requiring the cooperation
of many computers, edge routers, and gateways with sensors
and actuators as sources and sinks. They will involve a large
number of cars and components from the road infrastructure.

However, as IoT systems grow in number and complex-
ity, we face significant challenges in building edge stream
processing engines that can meet their needs.

The first challenge is: how to scale to numerous concur-
rently running loT stream applications? Due to the expo-
nential growth of new IoT users, the number of concurrently
running IoT stream applications will be significantly large
and change dynamically. However, modern stream processing
engines such as Storm [7], Flink [32], and Heron [44] and
wide-area data analytic systems [39—41,43,53,55,62,65,66]
mostly inherit a centralized architecture, in which the mono-
lithic master is responsible for all scheduling activities. They
use a first-come, first-serve method, making deployment times
accumulate and leading to long-tail latencies. As such, this
centralized architecture easily becomes scalability and perfor-
mance bottlenecks.

The second challenge is: how fo adapt to the edge dynam-
ics and recover from failures to ensure system reliability?
IoT stream applications run in a highly dynamic environment
with load spikes and unpredictable occurrences of events.
Existing studies on the adaptability in stream processing sys-
tems [34,36,38,42, 64] mainly focus on the cloud environ-
ment, where the primary sources of dynamics come from
workload variability, failures, and stragglers. In this case, a so-
lution typically allocates additional computational resources
or re-distributes the workload of the bottleneck execution
across multiple nodes within a data center. However, the edge
environment imposes additional difficulties: (1) edge nodes
leave or fail unexpectedly (e.g., due to signal attenuation, in-
terference, and wireless channel contention); and (2) accord-
ingly, stream operators fail more frequently. Unfortunately,
unlike the cloud servers, edge nodes have limited computing
resources: few-core processors, little memory, and little per-
manent storage [37,59] and they have no backpressure. As
such, the previous adaptability techniques by re-allocating
resources or buffering data at data sources cannot be applied
in edge stream processing systems.

We present DART, a scalable and adaptive edge stream pro-
cessing engine to address the challenges listed above. The key
innovation is that DART re-architects the stream processing
system runtime design. In sharp contrast to existing stream

processing systems, there is no monolithic master. Instead,
DART involves all peer nodes to participate in operator place-
ment, dataflow path planning, and operator scaling, thereby
revolutionarily improving scalability and adaptivity.

We make the following contributions in this paper.

First, we study the software architecture of existing stream
processing systems and discuss their limitations in the edge
setting. To our best knowledge, we are the first to observe the
lack of scalability and adaptivity in stream processing systems
for handling a large number of IoT applications (Sec. 2).

Second, we design a novel dynamic dataflow abstraction
to automatically place, chain and parallelize stream operators
using the distributed hash table (DHT) based peer-to-peer
(P2P) overlay networks. The main advantage of a DHT is that
it avoids the original monolithic master. All peer nodes jointly
make operator-mapping decisions. Nodes can be added or
removed with minimal work around re-distributing keys. This
design allows our system to scale to extremely large numbers
of nodes. To our best knowledge, we are the first to explore
DHTs to pursue extreme scalability in edge stream processing
(Sec. 3).

Third, using DHTs, we decompose the stream processing
system architecture from 1:n to m:n, which removes the cen-
tralized master and ensures that each edge zone can have an
independent master for handling applications and operating
autonomously without any centralized state (Sec. 4). As a
result of our distributed management, DART improves overall
query latencies for concurrently executing applications and
significantly reduces application deployment times. To the
best of our knowledge, we offer the first stream processing
engine to make it feasible to operate IoT applications in a
DevOps fashion.

Finally, We demonstrate DART’s scalability and latency
gains over Apache Storm [7] and EdgeWise [1] on IoT stream
benchmarks (Sec. 5).

2 Background

2.1 Stream Processing Programming Model

Data engineers define an IoT stream application as a directed
acyclic graph (DAG) that consists of operators (see Figure 1).
Operators run user-defined functions such as map, reduce,
join, filter, and ML algorithms. Data tuples flow through
operators along the DAG (topology). In our case, DART sup-
ports both stateful batch processing by using windows as
well as continuously event-based stateless processing. The
application’s query latency is defined as the elapsed time
since the source operator receives the timestamp signaling the
completion of the current window to when the sink operator
externalizes the window results.

We consider typical edge environments. The edge compute
nodes consist of sensors, routers, and sometimes gateways.
They are connected by different connections such as WiFi,

240 2021 USENIX Annual Technical Conference

USENIX Association



D il

User Code Input Info & Config
¥ » Phase 1:
Operator | Query Parsing

90 & and
RO Optimization
@99

Logical execution plan

Phase 2:
— Operator
Placement
Physical execution plan
Job scheduler
‘ ' ‘ Central Data
Warehouse
Phase 3:
Compute
T, and
S - 3 Shuffle
B Shupede g™ &
/ Q) e n R ‘o
&) N

Figure 2: [oT stream applications execution pipeline.

Zigbee, BlueTooth, or LAN with diverse inbound and out-
bound bandwidths and latency. They have fewer resources
compared to the cloud servers, but more resources than em-
bedded sensor networks, and thus can afford reasonably com-
plex operations (e.g., SenML parsers, Kalman filters, linear
regressions). As shown in Figure 2, the execution pipeline for
processing an IoT stream application has a few key phases:

* Phase 1: Query parsing and optimization. When an
IoT stream application is submitted by a user, its user
code containing transformations and actions is first
parsed into a logical execution plan represented using a
DAG, where the vertices correspond to stream operators
and the edges refer to data flows between operators.

¢ Phase 2: Operator placement. Afterward, the DAG is
converted into a physical execution plan, which consists
of several execution stages. Each stage can be further bro-
ken down into multiple execution instances (tasks) that
run in parallel, as determined by the stage’s level of par-
allelism. This requires the system to place all operators’
instances on distributed edge nodes that can minimize
the query latency and maximize the throughput.

* Phase 3: Compute and shuffle. Operator instances in-
dependently compute their local shard of data and shuffle
the intermediate results from one stage to the next stage.
This requires the system to adapt to the workload varia-
tions, bandwidth variations, node joins and leaves, and
failures and stragglers.

2.2 Stream Processing System Architecture

As shown in Figure 3, existing studies [37,39-41,43,50,53,
55,62,65,66] mostly rely on a master-slave architecture, in
which a “single” monolithic master is administering many
applications (if any). The responsibilities include accepting
new applications, parsing each application’s DAG into stages,
determining the number of parallel execution instances (tasks)
under each stage, mapping these instances onto edge nodes,
and tracking their progress.

This centralized architecture may run well for handling a
small number of applications in the cloud. However, when
it comes to IoT systems in the edge environment, new IoT
users join and exit more frequently and launch a large number
of IoT applications running at the same time, which makes
the architecture easily become a scalability bottleneck and
jeopardize the application’s performance. This is because
of (1) high deployment latency. These systems use a first-
come, first-served approach to deploy applications, which
causes applications to wait in a long queue and thus leads to
long query latencies; and (2) lack of flexibility for dataflow
path planning. They limit themselves to a fixed execution
model and lack the flexibility to design different dataflow
paths for different applications to adapt to the edge dynamics.

The limitation of the centralized architecture has been
identified before in data processing frameworks such as
YARN [63], Sparrow [51], Apollo [30]. They use two masters
for task scheduling (one is the main master and one is the
backup master). However, they remain fundamentally cen-
tralized [30,51,63] and restrict themselves to handle a small
number of applications only.

3 Design

This section introduces DART’s dynamic dataflow abstraction
and shows how to scale up and down operators and perform
failure recovery on top of this abstraction.

3.1 Overview

The DART system aims to achieve the following goals:

* Low latency. It achieves low latency for IoT queries.

* Scalability. It can process a large number of concur-
rently running applications at the same time.

¢ Adaptivity. It can adapt to the edge dynamics and re-
cover from failures.

As shown in Figure 4, DART consists of three layers: the
DHT-based consistent ring overlay, the dynamic dataflow
abstraction, and the scaling and failure recovery mechanisms.

Layer 1: DHT-based consistent ring overlay. All dis-
tributed edge "nodes" (e.g., routers, gateways, or powerful
sensors) are self-organized into a DHT-based overlay, which
has been commonly used Bitcoin [48] and BitTorrent [35].

USENIX Association

2021 USENIX Annual Technical Conference 241



Application Application Layer 2:
arrives Global departures
—— [[11]
scheduler Application
DAGs ?@{%}oﬁo
- o~ o =z ;
a o o o J
g & 2 £ Ser OOIO @sink Scale up/down operators, e.g., O1's scaling factor
n - ' i =
' ' ' vee e ' Sro@7F o o, 04 =3, 02's scaling factor = 2.

Parse applications into DAGs ‘

2
‘ Set each stage’s parallelism I )
v Src1 ;4‘
‘ Map instances to nodes ‘ DHT-based
Overlay

Edge Physical

Network Edge Physical

Network

Figure 3: The global scheduler.

Each node is randomly assigned a unique “Nodeld" in a large
circular Nodeld space. Nodelds are used to identify the nodes
and route stream data. No matter where the data is generated,
it is guaranteed that the data can be routed to any destination
node within O(logN) hops. To do that, each node needs to
maintain two data structures: a routing table and a leaf set.
The routing table is used for building dynamic dataflows. The
leaf set is used for scaling and failure recovery.

Layer 2: Dynamic dataflow abstraction. Built upon the
overlay, we introduce a novel dynamic dataflow abstraction.
The key innovation is to leverage DHT-based routing proto-
cols to approximate the optimal routes between source nodes
and sink nodes, which can automatically place and chain op-
erators to form a dataflow graph for each application.

Layer 3: Scaling and failure recovery mechanisms. Ev-
ery node has a leaf set that contains physically “closest" nodes
to this node. The leaf set provides the elasticity for (1) scaling
up and down operators to adapt to the workload variations;
(2) re-planning dataflows to adapt to the network variations.
As stream data moves along the dataflow graph, the system
makes dynamic decisions about the downstream node to send
streams to, which increases network path diversity and be-
comes more resilient to changes in network conditions; and
(3) replicating operators to handle failures and stragglers. If
any node fails or becomes a straggler, the system can auto-
matically switch over to a replica.

3.2 Dynamic Dataflow Abstraction

In the P2P model (e.g., Pastry [57], Chord [61]), each node is
equal to the other nodes, and they have the same rights and
duties. The primary purpose of the P2P model is to enable

Re-plan dataflows, e.g., plan 1 and plan 2 are
different plans for the same application.

Encode operator’s state for failover. For stateful
applications, application state must be protected.

Figure 4: Dynamic dataflow graph abstraction for operator placement.

all nodes to work collaboratively to deliver a specific service.
For example, in BitTorrent [35], if someone downloads some
file, the file is downloaded to her computer in bits and parts
that come from many other computers in the system that
already have that file. At the same time, the file is also sent
(uploaded) from her computer to others who ask for it. Similar
to BitTorrent in which many machines work collaboratively
to undertake the duties of downloading and uploading files,
we enable all distributed edge nodes to work collaboratively
to undertake the duties of the original monolithic master’s.

Figure 5 shows the process of building the dynamic
dataflow graph for an IoT stream application. First, we or-
ganize distributed edge nodes into a P2P overlay network,
which is similar to the BitTorrent nodes that use the Kademila
DHT [46] for “trackerless” torrents. Each node is randomly
assigned a unique identifier known as the “Nodeld” in a large
circular node ID space (e.g., 0 ~ 2128). Second, given a stream
application, we map the source operators to the sensors that
generate the data streams. We map the sink operators to IoT
actuators or message queues to the Cloud service. Third, ev-
ery source node sends a JOIN message towards a key, where
the key is the hash of the sink node’s Nodeld. Because all
source nodes belonging to the same application have the same
key, their messages will be routed to a rendezvous point—the
sink node(s). Then we keep a record of the nodes that these
messages pass through during routings and link them together
to form the dataflow graph for this application.

To achieve low latency, the overlay guarantees that the
stream data can be routed from source nodes to sink nodes
within O(logN) hops, thus ensuring the query latency upper
bound. To achieve locality, the dynamic dataflow graph covers
a set of nodes from sources to sinks. The first hop is always

242 2021 USENIX Annual Technical Conference

USENIX Association



Node Id D45A35
( Prefix[D45A3])

Routing Table

Leaf Set
[CDa5A3C ]
;

JOIN(D45A36)

Node Id D45342
( Prefix[D45])

Routing Table

Node Id D4A8A1
( Prefix(D4])

Routing Table

DAABAL 7BAC8S
A45A21 C42A31 321B21 587A62

Node Id 75A342
Routing Table

Figure 5: The process of building dynamic dataflow graph.

the node closer to the data source (data locality). Each node
in the path has many leaf set nodes, which provides enough
heterogeneous candidate nodes with different capacities and
increases network path diversity. For example, if there are
more operators than nodes, extra operators can map onto leaf
set nodes. For that purpose, each node maintains two data
structures: a routing table and a leaf set.

* Routing table: it consists of node characteristics orga-
nized in rows by the length of the common prefix. The
routing works based on prefix-based matching. Every
node knows m other nodes in the ring and the distance
of the nodes it knows increases exponentially. It jumps
closer and closer to the destination, like a greedy algo-
rithm, within [log,,N| hops. We add extra entries in
the routing table to incorporate proximity metrics (e.g.,
hop count, RTT, cross-site link congestion level) in the
routing process so as to handle the bandwidth variations.

e Leaf set: it contains a fixed number of nodes whose
Nodelds are “physically" closest to that node, which
assists in rebuilding routing tables and reconstructing
the operator’s state when any node fails.

As shown in Figure 5, node 75A342 and node 156426 are
two source nodes and node D45A3C is the sink node. The
source nodes route JOIN messages towards the sink node, and
their messages are routed to a rendezvous point (s) — the sink
node(s). We choose the forwarder nodes along routing paths
based on RTT and node capacity. Afterward, we keep a record
of the nodes that their messages pass through during routings
(e.g.,node D4A8A1, node D45342, node D45A55, node D45A35,
node D45A3C), and reversely link them together to build the
dataflow graph.

The key to efficiency comes from several factors. First,
the application’s instances can be instantly placed without

the intervention of any centralized master, which benefits the
time-critical deadline-based IoT application’s queries. Sec-
ond, because keys are different, the paths and the rendezvous
nodes of all application’s dataflow graphs will also be dif-
ferent, distributing operators evenly over the overlay, which
significantly improves the scalability. Third, the DHT-based
leaf set increases elasticity for handling failures and adapting
to the bandwidth and workload variations.

3.3 Elastic Scaling Mechanism

After an application’s operators are mapped onto the nodes
along this application’s dataflow graph, how to auto-scale
them to adapt to the edge dynamics? We need to consider
various factors. Scaling up/down is to increase/decrease the
parallelism (#instances) of the operator within a node. Scaling
out is to instantiate new instances on another node by re-
distributing the data streams across extra network links. In
general, scaling up/down incurs smaller overhead. However,
scaling out can solve the bandwidth bottleneck by increasing
network path diversity, while scaling up/down may not.

We design a heuristic approach that adapts execution based
on various factors. If there are computational bottlenecks, we
scale up the problematic operators. The intuition is that when
data queuing increases, automatically adding more instances
to the system will avoid the bottleneck. We leverage the Se-
cant root-finding method [29] to automatically calculate the
optimal instance number based on the current system’s health
value. The policy is pluggable. Let f(x) represent the health
score based on the input rate and the queue size (0 < f(x) < 1,
with 1 being the highest score). Let x,, and x,,—; be the number
of instances during phases p, and p,_;. Then the number of
instances required for the next phase p,+; such that f = 1
can be given by:

Xp — Xn—1

J(n) = f (xn-1)

For bandwidth bottlenecks, we further consider whether the
operator is stateless or stateful. In the case of stateless opera-
tors, we simply scale out operators across nodes. For stateful
operators, we migrate the operator with its state to a new node
in the leaf set that increases the network path diversity. Intu-
itively, when the original path only achieves low throughput,
an operator may achieve higher throughput by sending the
data over another network path.

xn+1:xn+(1_f(xn))x (1)

3.4 Failure Recovery Mechanism

Since the overlay is self-organizing and self-repairing, the
dataflow graph for each IoT application can be automatically
recovered by restarting the failed operator on another node.
Here, the challenge is, how to resume the processing without
losing intermediate data (i.e., operator state)? Examples of
operator states include keeping some aggregation or summary

USENIX Association

2021 USENIX Annual Technical Conference 243



of the received tuples in memory or keeping a state machine
for detecting patterns for fraudulent financial transactions
in memory. A general approach is checkpointing [7, 8, 54,
64], which periodically checkpoints all operators’ states to a
persistent storage system (e.g., HDFS) and the failover node
retrieves the checkpointed state upon failures. This approach,
however, is slow because it must transfer state over the edge
networks that typically have very limited bandwidth.

We design a parallel recovery approach by leveraging the
robustness of the P2P overlay and our previous experience
in stateful stream processing [45]. Periodically, the larger-
than-memory state is divided, replicated, and checkpointed to
each node’s leaf set nodes by using erasure codes [56]. Once
any failure happens, the backup node takes over and retrieves
state fragments from a subset of leaf set nodes to recompute
state and resume processing. By doing that, we do not need
a central master. The failure recovery process is fast because
many nodes can leverage the dataflow graph to recompute the
lost state in parallel upon failures. The replica number, the
checkpointing frequency, the number of encoded blocks and
the number of raw blocks are tunable parameters. They are
determined based on state size, running environment and the
application’s service-level agreements (SLAs.)

4 Implementation

Instead of implementing another distributed system core, we
implement DART on top of Apache Flume [3] (v.1.9.0) and
Pastry [16] (v.2.1) software stacks. Flume is a distributed ser-
vice for collecting and aggregating large amounts of streaming
event data, which is widely used with Kafka [4] and the Spark
ecosystem. Pastry is an overlay network and routing network
for the implementation of a distributed hash table (DHT) sim-
ilar to Chord [61], which is widely used in applications such
as Bitcoin [48], BitTorrent [35], and FAROO [15]. We lever-
age Flume’s excellent runtime system (e.g., basic API, code
interpreter, transportation layer) and Pastry’s routing substrate
and event transport layer to implement the DART system.

We made three major modifications to Flume and Pastry:
(1) we implemented the dynamic dataflow abstraction for op-
erator placement and path planning algorithm, which includes
a list of operations to track the DHT routing paths for chaining
operators and a list of operations to capture the performance
metrics of nodes for placing operators; (2) we implemented
the scaling mechanism and the failure recovery mechanism
by introducing queuing-related metrics (queue length, input
rate, and output rate), buffering operator’s in-memory state,
encoding and replicating state to leaf set nodes; and (3) we
implemented the distributed schedulers by using Scribe [33]
topic-based trees on top of Pastry.

Figure 6 shows the high-level architecture of the DART
system. The system has two components: a set of distributed
schedulers that span geographical zones and a set of workers.
Unlike traditional stream processing systems that manually

Worker

Zone Scheduler

AN
1‘1 (YY)
Stream
Applications

User Codes

Direct Acyclic
Graphs

Zone Scheduler

;‘1
eee
. ) loT Stream Direct Acyclic

Applications Graphs |:> Stages

User Codes

‘ﬁ >/

YY)

.] 10T Stream
Applications

Zone Scheduler

DirzcrtaA;\gclic |:> Stages \ . '_|:
User Codes g i - Worker
Zone2's Pastry DHT-based

Scheduler —~ . overla
Gossip - v

TN
D \
loT Stream
Application’s
User Code Zone 1's

Scheduler Zonen's
Scheduler

Figure 6: The DART system architecture.

assign nodes as “master" or “workers", DART dynamically
assigns nodes as “schedulers" or “workers". For the first step,
when any new IoT stream application is launched, it looks for
a nearby scheduler by using the gossip protocol [31], which
is a procedure of P2P communication that is based on the
way that epidemics spread. If it successfully finds a sched-
uler within Jog(N) hops, the application registers itself to this
scheduler. Otherwise, it votes any random nearby node to be
the scheduler and registers itself to that scheduler. For the
second step, the scheduler processes this application’s queries
by parsing the application’s user code into a DAG and divid-
ing this DAG into stages. Then the scheduler automatically
parallelizes, chains operators, and places the instances on
edge nodes using the proposed dynamic dataflow abstraction.
These nodes are then set as this application’s workers. The
system automatically scales up and out operators, re-plans,
and replicates operators to adapt to the edge dynamics and re-
cover from failures by using the proposed scaling mechanism
and failure recovery mechanism.

The key to efficiency comes from several factors. First, all
nodes in the system are equal peers with the same rights and
duties. Each node may act as one application’s worker, another
application’s worker, a zone’s scheduler, or any combination
of the above, resulting in all load being evenly distributed.
Second, the scheduler is no longer any central bottleneck.
Third, the system automatically creates more schedulers for
application intensive zones and fewer ones for sparse zones,
thus scaling to extremely large numbers of nodes and applica-
tions.

244 2021 USENIX Annual Technical Conference

USENIX Association



5 Evaluation

We evaluate DART on a real hardware testbed (using Rasp-
berry Pis) and emulation testbed in a distributed network
environment. We explore its performance for real-world IoT
stream applications. Our evaluation answers these questions:

* Does DART improve latency when processing a large
number of IoT stream applications?

* Does DART scale with the number of concurrently run-
ning [oT stream applications?

* Does DART improve adaptivity in the presence of work-
load changes, transient failures and mobility?

* What is the runtime overhead of DART?

5.1 Setup

Real hardware. Real hardware experiments use an inter-
mediate class computing device representative of IoT edge de-
vices. Specifically, we use 10 Raspberry Pi 4 Model B devices
for hosting source operators, each of which has a 1.5GHz
64-bit quad-core ARMv8 CPU with 4GB of RAM and runs
Linux raspberrypi 4.19.57. Raspberry Pis are equipped with
Gigabit Ethernet Dual-band Wi-Fi. We use 100 Linux virtual
machines (VMs) to represent the gateways and routers for
hosting internal and sink operators, each of which has a quad-
core processor and 1GB of RAM (equivalent to Cisco’s [oT
gateway [11]). These VMs are connected through a local-area
network. In order to make our experiments closer to real edge
network scenarios, we used the TC tool [17] to control link
bandwidth differences.

Emulation deployment. Emulation experiments are con-
ducted on a testbed of 100 VMs running Linux 3.10.0, all con-
nected via Gigabit Ethernet. Each VM has 4 cores and 8GB
of RAM, and 60GB disk. Specifically, to evaluate DART’s
scalability, we use one JVM to emulate one logical edge node
and can emulate up to 10,000 edge nodes in our testbed.

Baseline. We used Storm and EdgeWise [37] as the edge
stream processing engine baseline. Apache Storm version is
2.0.0 [7] and EdgeWise [37] is downloaded from GitHub [14].
Both of them are configured with 10 TaskManagers, each
with 4 slots (maximum parallelism per operator = 36). We run
Nimbus and ZooKeeper [9] on the VMs and run supervisors
on the Raspberry Pis. We use Pastry 2.1 [57] configured with
leaf set size of 24, max open sockets of 5000 and transport
buffer size of 6 MB.

Benchmark and applications. We deploy a large number
of applications (topologies) simultaneously to demonstrate
the scalability of our system. The applications in the mixed set
are chosen from a full-stack standard IoT stream processing
benchmark [60]. We also implement four IoT stream process-
ing applications that use real-world datasets [12, 13,24,47].
They employ various techniques such as predictive analysis,
model training, data preprocessing, and statistical summa-
rization. Their operators run functions such as transform,

filter, flatmap, aggregate, duplicate, and hash. For
example, we implement the DEBS 2015 application [13] to
process spatio-temporal data streams and calculate real-time
indicators of the most frequent routes and most profitable
areas in New York City. The sensor data consists of taxi trip
reports that include start and drop-off points, corresponding
timestamps, and payment information. Data are reported at
the end of the trip. Although the prediction tasks available in
this application do not require real-time responses, it captures
the data dissemination and query patterns of more complex
upcoming transportation engines. An application that inte-
grates additional data sources — bus, subway, car-for-hire (e.g.,
Uber), ride-sharing, traffic, and weather conditions — would
exhibit the same structural topology and query rates that we
use in our experiments while offering decision-making sup-
port in the scale of seconds. We implement the Urban sensing
application [12] to aggregate pollution, dust, light, sound, tem-
perature, and humidity data across seven cities to understand
urban environmental changes in real-time. Since a practi-
cal deployment of environmental sensing can easily extend
to thousands of such sensors per city, a temporal scaling of
1000 x the native input rate can be used to simulate a larger
deployment of 90,000 sensors.

Metrics. We focus on the performance metrics of query
latency. Query latency is measured by sampling 5% of the
tuples, assigning each tuple a unique ID and comparing times-
tamps at source and the same sink. To evaluate the scalability
of DART, we measure how operators are distributed over
nodes and how distributed schedulers are distributed over
zones. To evaluate the adaptivity of DART, we cause bottle-
necks by intentionally adding resource contention and we
intentionally disable nodes through human intervention.

5.2 Query Latency

We measure the query latencies for running real-world IoT
stream applications on the Raspberry Pis and VMs across a
wide range of input rates.

Figure 7a and Figure 7b show the latency comparison
of DART vs EdgeWise for (a) DAG queue waiting time
and (b) DAG deployment time for an increasing number of
concurrently running applications. We choose applications
from a pool that contains dataflow topologies (DAGs)
including  ExclamationTopology, JoinBoltExample,
LambdaTopology, Prefix, SingleJoinExample,
SlidingTupleTsTopology, SlidingWindowTopology
and WordCountTopology. EdgeWise is built on top of
Storm. Both of them rely on a centralized master (Nimbus)
to deploy the application’s DAGs, and then process them
one by one on a first-come, first-served basis. Therefore,
we can see that EdgeWise’s DAG queue waiting time
and deployment time increase linearly as the number of
applications increases. As such, the centralized master
will easily become a scalability bottleneck. In contrast,

USENIX Association

2021 USENIX Annual Technical Conference 245



- 3000 T B 4000 V7] EdgeWise|
gzsoo--DART 7| o |EEIDART
= 7 £

2 2000 9 %3000-

T 1500/ -y E

: 00 & 2000}

=] 2 / ? ’ Q 7
sl a0 B .7
=) a4 U0 1000 7
= A90 09 1 @ 2 U
o 0 pAdl 2 O
2 Gemaahanna © Jmal

Number of applications

(a) DAG queue waiting time comparison
of DART vs EdgeWise.

Number of applications

(b) DAG deployment time comparison
of DART vs EdgeWise.

60

~ —=— 5s window
—e— 10s window
30s wind
. 7 & 4511 500 window
% S
7B =
7 g ? & 30
= U 07 5
7001 g
7007 ;
el C
g g g é i———‘-‘""f/}/

00 20 40 80 160 320 6401280
Number of applications

(c) Query processing time.

Figure 7: The latency comparison of DART vs EDGEWISE for (a) DAG queue waiting time, (b) DAG deployment time, and (c)
query processing time by increasing the number of concurrently running applications.

50 0 60
R Storm R Storm XY Storm
B8 EdgeWise B8 EdgeWise B 50 B338% EdgeWise
40} B DART I DART A I DART
0 2\ [
E 30 % Ne Nl £ 40 g
3 ¥ B NN 3 NE
g N Lo N NANE 230 Lo N
@ 20 T N: : N5 N NG (. & By NN
= &R NB N . Nl El Nl & T N N N
S ] N §?§ N §:~:< % % S 20 i, SN §.¢§ §.¢2 §w
N5 IN: N % N5 NS NS 10 aINEINE N N
N N N ] . £ NN N SNE N N N
4 N NS N : : i N5 INE N2 NG ING NN N
o Ll N N N N N NN o Ll N Nl N N NN N o Ll N Nl N N N
0 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Events/s (*10%) Events/s (*103) Events/s (*103)

(a) Calculating the frequent route in the (b) Calculating the most profit area in (c) Visualizing environmental changes

taxi application.

the taxi application.

in the urban sensing application.

Figure 8: The latency comparison of DART vs Storm vs EdgeWise for (a) frequent route application, (b) profitable area application,

and (c) urban sensing application.

DART avoids this scalability bottleneck because DART’s
decentralized architecture does not rely on any centralized
master to analyze the DAGs and deploy DAGs.

Figure 7c shows the query latency of DART for an increas-
ing number of concurrently running applications. Results
show that DART scales well with a large number of concur-
rently running applications. First, DART’s distributed sched-
ulers can process these applications’ queries independently,
thus precluding them from queuing on a single central sched-
uler which results in large queuing delay. This is similar to
the idea that supermarkets add cashiers to reduce the waiting
queues when there are many people in supermarkets. Sec-
ond, DART’s P2P model ensures that every available node
in the system can participate in the process of operator map-
ping, auto-scaling, and failure recovery, which could avoid
the central bottleneck, balance the workload, and speed up
the process.

The performance comparison results for running the fre-
quent route application, the profitable areas application, and
the urban sensing application are shown in Figure 8. In gen-
eral, DART, Storm and EdgeWise [37] have similar perfor-
mance when the system is under-utilized (with low input).

When the system is averagely utilized (with relatively high
input), DART achieves around 16.7% ~ 52.7% less query la-
tency compared to Storm. DART achieves 9.8 % ~ 45.6% less
query latency compared to EdgeWise. This is because DART
limits the number of hops between the source operators to sink
operators within log(N) hops by using the DHT-based consis-
tent ring overlay, and DART can dynamically scale operators
when input rate changes. DART has better performance in
the urban sensing application because this application needs
to split data into different channels and aggregate data from
these channels, which results in a lot of I/Os and data transfers
that can benefit from DART’s dynamic dataflow abstraction.
We expect further latency improvement under a limited band-
width environment since DART selects the path with less
traffic for the data flow by using the path planning algorithm.

5.3 Scalability Analysis

We now show scalability: DART decomposes the traditional
centralized architecture of stream processing engines into
a new decentralized architecture for operator mapping and
query scheduling, which dramatically improves the scalability

246 2021 USENIX Annual Technical Conference

USENIX Association



2 10 )
-§ = 250 Apps 0.9999 g6 Ve i .
h * 500 Apps 0.999 V 2 v T
g 8 750 Apps 8 0.99 i V g4, v la .
e v 1000 Apps| | = ; 3 vy,
@ S 09 ; ol -~y
s 6 v g i 5] | v
g v 8_ 0.5 /i Q Y ° ¥y | v
» 4F ~ o A A g = Schedulers for 250 Apps | Y—m .
= Schedulers for 500 Ay
g=] rrrememey v vyovmee g 01 o 250 Apps 9 i sﬁthﬁlZét&mmﬁSi 7:‘29
B D e OOt S vy SO e € vt @I € 0 g 0.01 o 500 Apps Schedulers for 1000 Apps| N
2 : 750 Apps S5 S Q&
o 0.001 v 1000 Apps Nog, of
# 0 0.0001 e Iy S~z
%in T S0
0 2000 4000 6000 8000 10000 0 5 10 15 20 Seque S
Node Id in sequence Number of operators mapped per node lce 19

(a) The distribution of DART’s operators
over different edge nodes.

(b) Normal probability plot of the num-
ber of operators mapped per node.

(c) The distribution of DART’s sched-
ulers over different zones.

Figure 9: Scalability study of DART for the distribution of operators and schedulers over edge nodes.

10000

—=— Overlay recovery
—e— Overlay and dataflow recovery

8000
¢ [ I

6000

4000+ {P//f’_’%_’%_%
2 4 8 16
Number of fault operators

Failure recovery time (ms)

2000 3'2

Figure 10: Overlay and dataflow recovery time.

for the system to scale with a large number of concurrently
running applications, application’s operators, and zones.

Figure 9a shows the mappings of DART’s operators on
edge nodes for 250, 500, 750, and 1,000 concurrently running
applications, respectively. These applications run a mix of
topologies with different numbers of operators (an average
value of 10). Figure 9b shows the normal probability plot of
the number of operators per node. Results show that when
deploying 250 and 500 applications, around 96.52% nodes
host less than 3 operators; and when deploying 750 and 1000
applications, around 99.84% nodes host less than 4 operators.
From Figure 9a and Figure 9b, we can see that these appli-
cations’ operators are evenly distributed on all edge nodes.
This is because DART essentially leverages the DHT rout-
ing to map operators on edge nodes. Since the application’s
dataflow topologies are different, their routing paths and the
rendezvous points will also be different, resulting in operators
well balanced across all edge nodes.

Figure 9c shows the mappings of DART’s distributed sched-
ulers on edge nodes and zones for 250, 500, 750 and 1,000
concurrently running applications, and the average number of
hops for these applications to look for a scheduler. For DART,
it adds a scheduler for every new 50 applications. Accord-
ing to the P2P’s gossip protocol, each application looks for a
scheduler in the zone within [log,»N| hops, where b = 4. If

there is no scheduler in the zone or the number of applications
in the zone exceeds a certain threshold, a peer node (usually
with powerful computing resources) will be elected as a new
scheduler. Results show that as the number of concurrently
running applications increases, the number of schedulers over
zones increases accordingly. All schedulers are evenly dis-
tributed over different zones. Most of the schedulers can be
searched within 4 hops.

The above results demonstrate DART’s load balance and
scalability properties: (1) by using DHT-based consist ring
overlay, the IoT stream application’s workloads are well dis-
tributed over all edge nodes; and (2) DART can scale well with
the number of zones and concurrently running applications.

5.4 Failure Recovery Analysis

We next show fault tolerance: in the case of stateless IoT appli-
cations, DART simply resumes the whole execution pipeline
since there is no need for recovering state. In the case of state-
ful IoT applications, distributed states in operators are contin-
uously checkpointed to the leaf set nodes in parallel and are
reconstructed upon failures. We show that even when many
nodes fail or leave the system, DART can achieve a relatively
stable time to recover the overlay and dataflow topology.

Figure 10 shows the overlay recovery time and the dataflow
topology recovery time for an increasing number of simulta-
neous operator failures. To cause simultaneous failures, we
deliberately remove some working nodes from the overlay
and evaluate the time for DART to recover. The time cost
includes recomputing the routing table entries, re-planning
the dataflow path, synchronizing operators, and resuming the
computation. Results show that DART achieves a stable recov-
ery time for an increasing number of simultaneous failures.
This is because, in DART, each failed node can be quickly
detected and recovered by its neighbors through heartbeat
messages without having to talk to a central coordinator, so
many simultaneous failures can be repaired in parallel.

USENIX Association

2021 USENIX Annual Technical Conference 247



6 50
1.0 1.0 AN s
@ 5F o 40t R -~ )
8 8 b 08 08F NN NS
S 4t ] 20 ' emmmemaeeee o o Y P
-— -— k ! ”
2. 2 i 806 806 N
© © 20} __t [ £ £ \ \”:
5 2f 5 " 5 04 T 04
3 3 v
[S —— RemoveDuplicates [S N - - - RemoveDuplicates T —— RemoveDuplicate T - - - RemoveDuplicate|
21t —— TopK e 10¢ - - - TopK 0.2 —— TopK 0.2 b - - TopK
—— WordCount - - - WordCount —— WordCount - - - WordCount
0 0

0 30 60 90 120 150 180 0
Elaspsed time (s)

30 60 90 120 150 180
Elaspsed time (s)

(b) Process of scaling up and
scaling out.

(a) Process of scaling up.

(c) Health score changes corre-
sponding to Figure 11a.

0 30 60 90 120 150 180
Elaspsed time (s)

0 30 60 90 120 150 180
Elaspsed time (s)

(d) Health score changes corre-
sponding to Figure 11b.

Figure 11: Adaptivity study of DART for the scaling up and the scaling out.

5.5 Elastic Scaling Analysis

Although scaling is a subject that has been studied for a long
time, our innovation is that we use the DHT leaf set to select
the best candidate nodes for scaling up or scaling out. There-
fore, our approach does not need a central master to control,
which is fully distributed. If many operators have bottlenecks
at the same time, the system can adjust them all together. The
periodical maintenance and update of the leaf set ensure that
the leaf set nodes are good candidates, which are close to the
bottleneck operator with abundant bandwidth, so there is no
need for us to search for the appropriate nodes globally.

The auto-scaling process takes the system snapshot col-
lected every 30 seconds for statistical analysis. We de-
ploy three 4-stage topologies (RemoveDuplicates, Topk,
WordCount). Figure 11a shows the process of scaling up only.
The process starts from the moment of detecting the bottle-
neck to the moment that the system is stabilized. Figure 11b
shows the process of scaling up and then scaling out. For this
experiment, we put pressure on the system by gradually in-
creasing the number of instances (tasks) (10 every 30 s) until
a bandwidth bottleneck occurs (at 60 s for the blue line and
the black line, and at 90 s for the red line). This bottleneck can
only be resolved by scaling up. Results show that the system
is stabilized by migrating the instance to another node.

Figure 11c shows how the health score changes correspond-
ing to Figure 11a. Figure 11d shows how the health score
changes corresponding to Figure 11b. Note that if the goal
of pursuing a higher health score conflicts with the goal of
improving throughput, we need to strike a balance between
health score and system throughput by adjusting the health
score function, i.e., aiming at a lower score.

5.6 Overhead Analysis

We evaluate the DART’s runtime overhead in terms of the
power usage and the CPU overhead. We run the same DEBS
2015 application [13] in Sec. 5.2 to calculate real-time indi-
cators of most frequent routes in New York City with source
rate at 100K events/s.

)

% 55 [—— Storm Supervisor DART|
j=2]
©
2]
=
o
2
(e}
£ . . . . .
0 100 200 300 400 500 600
Time (s)
(a) Power overhead
10
g\i 8t [* Storm Supervisor —— Storm Nimbus —— DART|
S 4t
2 2
(6] 0 L ) s
0 100 200 300 400 500 600
Time (s)
(b) CPU overhead

Figure 12: Overhead comparison of DART vs Storm.

Power usage. Most IoT devices rely on batteries or energy
harvesters. Given that their energy budget is limited, we want
to ensure that the performance gains achieved come with an
acceptable cost in terms of power consumption. To evaluate
DART’s power usage, we use the MakerHawk USB Power
Meter Tester [18] to measure the power usage of the Rasp-
berry Pi 4. When plugged into a wall socket, the idle power
usage is 3.35 Watt. Figure 12a shows the comparison of the
averaged single device per-node power usage of DART node
with Storm’s supervisor when running the DEBS 2015 appli-
cation. Results show that DART has less power usage with an
average value of 5.24 Watt compared to Storm with an aver-
age value of 5.41 Watt, demonstrating that DART efficiently
uses energy resources.

CPU overhead. Figure 12b shows the comparison of the
CPU overhead of DART with Storm. Results show that DART
uses more CPU than Storm Nimbus and Storm supervisor.
DART continuously monitors the health status of all oper-
ators to make auto-scaling decisions to adapt to workload
variations and bandwidth variations in the edge environment,
while Storm ignores it. This CPU overhead is an acceptable
trade-off for maintaining performance and could be further
reduced with a larger auto-scaling interval.

248 2021 USENIX Annual Technical Conference

USENIX Association



6 Related Work

Existing studies can be divided into four categories: cluster-
based stream processing systems, cloud-based loT data pro-
cessing systems, edge-based data processing systems, and
wide-area data analytics systems.

Category 1: Cluster-based stream processing systems. Over
the last decade, a bloom of industry stream processing sys-
tems has been developed including Flink [2], Samza [5],
Spark [6], Storm [7], Millwheel [28], Heron [44], S4 [49].
These systems, however, are designed for low-latency intra-
datacenter settings that have powerful computing resources
and stable high-bandwidth connectivity, making them unsuit-
able for edge stream processing. Moreover, they mostly inherit
MapReduce’s “single master/many workers” architecture that
relies on a monolithic scheduler for scheduling all tasks and
handling failures and stragglers, suffering significant short-
comings due to the centralized bottleneck. SBONs [52] lever-
ages distributed hash table (DHTSs) for service placement.
However, it does not support DAG parsing, task scheduling,
data shuffling and elastic scaling, which are required for mod-
ern stream processing engines.

Category 2: Cloud-based IoT data processing systems. In
such a model, most of the data is sent to the cloud for analysis.
Today many computationally-intensive IoT applications [22,
23] leverage this model because cloud environments can offer
unlimited computational resources. Such solutions, however,
cannot be applied to time-critical IoT stream applications
because: (1) they cause long delays and strain the backhaul
network bandwidth; and (2) offloading sensitive data to third-
party cloud providers may cause privacy issues.

Category 3: Edge-based data processing systems. In such
a model, data processing is performed at the edge without
connectivity to a cloud backend [19,21, 58]. This requires
installing a hub device at the edge to collect data from other
IoT devices and perform data processing. These solutions,
however, are limited by the computational capabilities of the
hub service and cannot support distributed data-parallel pro-
cessing across many devices and thus have limited throughput.
It may also introduce a single point of failure once the hub
device fails.

Category 4: Wide-area data analytics systems. Many
Apache Spark-based systems (e.g., Flutter [39], Iridium [53],
JetStream [55], SAGE [62], and many others [40,41,43,65,
66]) are proposed for enabling geo-distributed stream pro-
cessing in wide-area networks. They optimize the execution
by intelligently assigning individual tasks to the best data-
centers (e.g., more data locality) or moving data sets to the
best datacenters (e.g., more bandwidth). However, they make
certain assumptions based on some theoretical models which
do not always hold in practice. For example, Flutter [39],
Tetrium [40], Iridium [53], Clarinet [65], and Geode [66]
formulate the task scheduling problem as a ILP problem. Pix-
ida [43] formulates the task scheduling problem as a Min

k-Cut problem. They assume that the workload, the inter-DC
transfer time, and the WAN bandwidth are known beforehand
and do not change, which is rarely the case in practice. More-
over, these systems also suffer significant shortcomings due
to the centralized bottleneck.

To our best knowledge, Edgent [1], EdgeWise [37], and
Frontier [50] are the only other stream processing engines
tailored for the edge. They all point out the criticality of edge
stream processing, but no effective solutions were proposed
towards scalable and adaptive edge stream processing. Ed-
gent [1] is designed for data processing at individual IoT
devices rather than full-fledged distributed stream process-
ing. EdgeWise [37] develops a congestion-aware scheduler to
reduce backpressure, but it can not scale well due to the cen-
tralized bottleneck. Frontier [50] develops replicated dataflow
graphs for fault-tolerance, but it ignores the edge dynamics
and heterogeneity.

7 Conclusion

Existing stream processing engines were designed for the
cloud environments and may behave poorly in the edge con-
text. In this paper, we present DART, a scalable and adaptive
edge stream processing engine that enables fast stream pro-
cessing for a large number of concurrent running IoT appli-
cations in the dynamic edge environment. DART leverages
DHT-based P2P overlay networks to create a decentralized
architecture and design a dynamic dataflow abstraction to au-
tomatically place, chain, scale, and recover stream operators,
which significantly improves performance, scalability, and
adaptivity for handling large IoT stream applications.

An interesting question for future work is how to optimize
data shuffling services for edge stream processing engines
like DART. Common operators such as union and join may
require intermediate data to be transmitted over edge networks
since their inputs are generated at different locations. Each
shard of the shuffle data has to go through a long path of data
serialization, disk I/O, edge networks, and data deserialization.
Shuffle, if planned poorly, may delay the query processing.
We plan to explore a customizable shuffle library that can
customize the data shuffling path (e.g., ring shuffle, hierarchi-
cal tree shuffle, butterfly wrap shuffle) at runtime to optimize
shuffling. We will release DART as open source, together with
the data used to produce the results in this paper!.

8 Acknowledgment

We would like to thank the anonymous reviewers and our shep-
herd, Dr. Amy Lynn Murphy, for their insightful suggestions
and comments that improved this paper. This work is sup-
ported by the National Science Foundation (NSF-CAREER-
1943071, NSF-SPX-1919126, NSF-SPX-1919181).

Uhttps://github.com/fiu-elves/DART

USENIX Association

2021 USENIX Annual Technical Conference 249



References

[1] Apache Edgent - A Community for Accelerating Ana-
lytics at the Edge. https://edgent.apache.org/.

[2] Apache Flink. https://flink.apache.org/.
[3] Apache Flume. http://flume.apache.org/.
[4] Apache Kafka. https://kafka.apache.org/.
[5] Apache Samza. http://samza.apache.org/.
[6] Apache Spark. https://spark.apache.org/.
[7] Apache Storm. http://storm.apache.org/.

[8] Apache Trident. http://storm.apache.org/
releases/current/Trident-tutorial.html.

[9] Apache ZooKeeper.
org/.

https://zookeeper.apache.

[10] AVA: Automated Vehicles for All.
https://www.transportation.gov/
policy-initiatives/automated-vehicles/
10-texas-am-engineering-experiment-station.

[11] Cisco Kinetic Edge & Fog Processing Module
(EFM). https://www.cisco.com/c/dam/en/us/
solutions/collateral/internet-of-things/
kinetic-datasheet-efm.pdf.

[12] Data Canvas: Sense Your
https://grayarea.org/initiative/
data-canvas-sense-your-city/.

City.

[13] DEBS 2015 Grand Challenge: Taxi trips. https://
debs.org/grand-challenges/2015/.

[14] EdgeWise source code. https://github.com/
XinweiFu/EdgeWise-ATC-19.

[15] FAROO - Peer-to-peer Web Search: History. http:
//faroo.com/.

[16] FreePastry. https://www.freepastry.org/.

[17] Linux Traffic Control. https://tldp.org/HOWTO/
Traffic-Control-HOWTO/index.html.

[18] MakerHawk USB Power Meter Tester. https://www.
makerhawk.com/products/.

[19] Microsoft Azure IoT Edge. https://azure.
microsoft.com/en-us/services/iot-edge.

[20] A new reality for oil & gas. https://www.cisco.com/
c/dam/en_us/solutions/industries/energy/
docs/0ilGasDigitalTransformationWhitePaper.
pdf, 2017.

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Amazon AWS Greengrass.
com/greengrass, 2017.

https://aws.amazon.

Google Nest Cam.
2017.

https://nest.com/cameras,

Netatmo. https://www.netatmo.com, 2017.

Soil Moisture Profiles and Temperature Data from
SoilSCAPE Sites. https://daac.ornl.gov/LAND_
VAL/guides/SoilSCAPE.html, 2017.

Autonomous cars will generate more than 300 tb
of data per year. https://www.tuxera.com/blog/
autonomous-cars-300-tb-of-data-per-year/,
2019.

HORTONWORKS: iot and predictive big data ana-
lytics for oil and gas. https://hortonworks.com/
solutions/oil-gas/, 2019.

The ITS JPO’s New Strategic Plan 2020-2025. https:
//www.its.dot.gov/stratplan2020/index.htm,
2020.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale.
Proc. VLDB Endow., 6(11):1033-1044, August 2013.

Mordecai Avriel. Nonlinear programming: analysis and
methods. Courier Corporation, 2003.

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and Coordinated Scheduling
for Cloud-scale Computing. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 14, pages 285-300, Berkeley,
CA, USA, 2014. USENIX Association.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and
Devavrat Shah. Randomized gossip algorithms.
IEEE/ACM Trans. Netw., 14(S1):2508-2530, June 2006.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine.
IEEE Data Eng. Bull., 38(4):28-38, 2015.

M. Castro, P. Druschel, A. . Kermarrec, and A. 1. T.
Rowstron.  Scribe: a large-scale and decentralized
application-level multicast infrastructure. IEEE Jour-

nal on Selected Areas in Communications, 20(8):1489—
1499, Oct 2002.

250 2021 USENIX Annual Technical Conference

USENIX Association


https://edgent.apache.org/
https://flink.apache.org/
http://flume.apache.org/
https://kafka.apache.org/
http://samza.apache.org/
https://spark.apache.org/
http://storm.apache.org/
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.transportation.gov/policy-initiatives/automated-vehicles/10-texas-am-engineering-experiment-station
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://grayarea.org/initiative/data-canvas-sense-your-city/
https://grayarea.org/initiative/data-canvas-sense-your-city/
https://debs.org/grand-challenges/2015/
https://debs.org/grand-challenges/2015/
https://github.com/XinweiFu/EdgeWise-ATC-19
https://github.com/XinweiFu/EdgeWise-ATC-19
http://faroo.com/
http://faroo.com/
https://www.freepastry.org/
https://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://www.makerhawk.com/products/
https://www.makerhawk.com/products/
https://azure.microsoft.com/en-us/services/iot-edge
https://azure.microsoft.com/en-us/services/iot-edge
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/energy/docs/OilGasDigitalTransformationWhitePaper.pdf
https://aws.amazon.com/greengrass
https://aws.amazon.com/greengrass
https://nest.com/cameras
https://www.netatmo.com
https://daac.ornl.gov/LAND_VAL/guides/SoilSCAPE.html
https://daac.ornl.gov/LAND_VAL/guides/SoilSCAPE.html
https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/
https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/
https://hortonworks.com/solutions/oil-gas/
https://hortonworks.com/solutions/oil-gas/
https://www.its.dot.gov/stratplan2020/index.htm
https://www.its.dot.gov/stratplan2020/index.htm

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating scale out
and fault tolerance in stream processing using operator
state management. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 725-736, New York, NY,
USA, 2013. ACM.

Federico Concone, Alessandra De Paola, Giuseppe Lo
Re, and Marco Morana. Twitter analysis for real-time
malware discovery. In AEIT International Annual Con-
ference, 2017, pages 1-6. IEEE, 2017.

Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram
Rao, and Karthik Ramasamy. Dhalion: Self-regulating
stream processing in heron. Proc. VLDB Endow.,
10(12):1825-1836, aug 2017.

Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongy-
oon Lee. Edgewise: A better stream processing engine
for the edge. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), Renton, WA, 2019. USENIX
Association.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta
Patino-Martinez, Claudio Soriente, and Patrick Val-
duriez. StreamCloud: An Elastic and Scalable Data
Streaming System. IEEE Trans. Parallel Distrib. Syst.,
23(12):2351-2365, dec 2012.

Z Hu, B Li, and J Luo. Flutter: Scheduling tasks closer
to data across geo-distributed datacenters. In IEEE
INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pages 1-9,
apr 2016.

Chien-Chun Hung, Ganesh Ananthanarayanan, Leana
Golubchik, Minlan Yu, and Mingyang Zhang. Wide-
area analytics with multiple resources. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys *18, pages
12:1—-12:16, New York, NY, USA, 2018. ACM.

Chien-Chun Hung, Leana Golubchik, and Minlan Yu.
Scheduling Jobs Across Geo-distributed Datacenters.
In Proceedings of the Sixth ACM Symposium on Cloud
Computing, SOCC *15, pages 111-124, New York, NY,
USA, 2015. ACM.

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,
Desislava Dimitrova, Matthew Forshaw, and Timothy
Roscoe. Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming
dataflows. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
783-798, Carlsbad, CA, 2018. USENIX Association.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

Konstantinos Kloudas, Margarida Mamede, Nuno
Preguica, and Rodrigo Rodrigues. Pixida: Optimizing
data parallel jobs in wide-area data analytics. Proc.
VLDB Endow., 9(2):72-83, oct 2015.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. In Pro-
ceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pages
239-250, New York, NY, USA, 2015. ACM.

Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang,
Sarker Tanzir Ahmed, and Liting Hu. Fp4s: Fragment-
based parallel state recovery for stateful stream appli-
cations. In 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2020.

Petar Maymounkov and David Mazieres. Kademlia: A
peer-to-peer information system based on the xor met-
ric. In International Workshop on Peer-to-Peer Systems,
pages 53-65. Springer, 2002.

L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-
Moreira, and L. Damas. Predicting taxi passenger de-
mand using streaming data. IEEE Transactions on Intel-
ligent Transportation Systems, 14(3):1393—-1402, Sep.
2013.

Satoshi Nakamoto. Bitcoin : A Peer-to-Peer Electronic
Cash System. Technical report, 2008.

Leonardo Neumeyer, Bruce Robbins, Anish Nair, and
Anand Kesari. S4: Distributed Stream Computing Plat-
form. In Proceedings of the 2010 IEEE International
Conference on Data Mining Workshops, ICDMW 10,
pages 170-177, Washington, DC, USA, 2010. IEEE
Computer Society.

Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch.
Frontier: resilient edge processing for the internet of
things. Proceedings of the VLDB Endowment, 11:1178—
1191, 2018.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, Low Latency Schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP *13, pages
69-84, New York, NY, USA, 2013. ACM.

Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie,
Matt Welsh, Margo Seltzer, and Mema Roussopou-
los. Evaluating dht-based service placement for stream-
based overlays. In International Workshop on Peer-to-
Peer Systems, pages 275-286. Springer, 2005.

USENIX Association

2021 USENIX Annual Technical Conference 251



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM
"15, pages 421-434, New York, NY, USA, 2015. ACM.

Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu,
Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and
Zheng Zhang. TimeStream: Reliable Stream Compu-
tation in the Cloud. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys
"13, pages 1-14, New York, NY, USA, 2013. ACM.

Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S
Pai, and Michael J Freedman. Aggregation and degrada-
tion in jetstream: Streaming analytics in the wide area.
In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’ 14,
pages 275-288, Berkeley, CA, USA, 2014. USENIX
Association.

Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300-304, 1960.

Antony I T Rowstron and Peter Druschel. Pastry: Scal-
able, Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. In Proceedings of
the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Middleware’ 01, pages
329-350, London, UK, UK, 2001. Springer-Verlag.

Zhitao Shen, Vikram Kumaran, Michael J Franklin,
Sailesh Krishnamurthy, and Amit Bhat. CSA : Stream-
ing Engine for Internet of Things. Bulletin of the Techni-
cal Committee on Data Engineering, 38(4):39-50, 2015.

W Shi, J Cao, Q Zhang, Y Li, and L Xu. Edge com-
puting: Vision and challenges. IEEE Internet of Things
Journal, 3(5):637-646, oct 2016.

Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan.
Riotbench: An iot benchmark for distributed stream pro-
cessing systems. Concurrency and Computation: Prac-
tice and Experience, 29(21):e4257, 2017.

Ion Stoica, Robert Morris, David Karger, M Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable

[62]

[63]

[64]

[65]

[66]

Peer-to-peer Lookup Service for Internet Applications.
In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149-160, New
York, NY, USA, 2001. ACM.

R Tudoran, G Antoniu, and L Bouge. SAGE: Geo-
Distributed Streaming Data Analysis in Clouds. In 2073
IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, pages 2278—
2281, may 2013.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Nego-
tiator. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC *13, pages 5:1———5:16,
New York, NY, USA, 2013. ACM.

Shivaram Venkataraman, Aurojit Panda, Kay Ouster-
hout, Michael Armbrust, Ali Ghodsi, Michael J Franklin,
Benjamin Recht, and Ion Stoica. Drizzle: Fast and
Adaptable Stream Processing at Scale. In Proceedings
of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 374-389, New York, NY, USA, 2017.
ACM.

Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. CLARINET: Wan-aware optimization
for analytics queries. In /2th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 435-450, Savannah, GA, 2016. USENIX As-
sociation.

Ashish Vulimiri, Carlo Curino, P Brighten Godfrey,
Thomas Jungblut, Jitu Padhye, and George Varghese.
Global Analytics in the Face of Bandwidth and Regula-
tory Constraints. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’ 15, pages 323-336, Berkeley, CA,
USA, 2015. USENIX Association.

252

2021 USENIX Annual Technical Conference

USENIX Association



	Introduction
	Background
	Stream Processing Programming Model
	Stream Processing System Architecture

	Design
	Overview
	Dynamic Dataflow Abstraction
	Elastic Scaling Mechanism
	Failure Recovery Mechanism

	Implementation
	Evaluation
	Setup
	Query Latency
	Scalability Analysis
	Failure Recovery Analysis
	Elastic Scaling Analysis
	Overhead Analysis

	Related Work
	Conclusion
	Acknowledgment

