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Fully Distributed Joint Localization and Target
Tracking With Mobile Robot Networks

Pengxiang Zhu

Abstract—1In this article, we study the problem of joint
localization and target tracking using a mobile robot network.
Here, a team of mobile robots equipped with onboard sensors
simultaneously localize themselves and track multiple targets.
We introduce a fully distributed algorithm that is applicable to
generic robot motion, target process, and measurement models
and is robust to time-varying sensing and communication topolo-
gies and changing blind robots (the robots not directly sensing
the targets). Instead of treating localization and target tracking
as two separate problems, we explicitly account for the influence
of one to the other and exploit it to improve performance in a
fully distributed context. Two novel kinds of distributed estimates
are derived. By employing them, each robot can estimate the
pose (position and orientation) of itself (localization) and the
states of targets (tracking) using only its local information and
information from its one-hop communicating neighbors while
preserving consistency. Furthermore, it is proven that, in the case
of linear time-varying models, the estimation errors are bounded
in the mean-square sense under very mild conditions on the
sensing and communication graph and system observability. The
effectiveness of our approach is demonstrated extensively through
Monte Carlo simulations, and experiments carried out using a
real-world data set. It is also shown better performance in the
pose estimates of the robots is achieved when jointly estimating
the robots’ poses and targets’ states.

Index Terms— Cooperative localization (CL), distributed
estimation, Kalman filter, multi-robot systems, target
tracking.

I. INTRODUCTION

ENSOR networks with the ability to communicate, sense,
Sand interact with surroundings have a wide range of
applications, such as region monitoring, area surveillance,
and search and rescue. When mobile robots equipped with
sensors are employed, a large area can be covered without
the need to increase the number of sensors in the net-
work. In addition, the robots can actively pursue targets
and prevent them from escaping the sensing regions of
their onboard sensors. In this article, a team of, possibly
heterogeneous, mobile robots is employed to track multiple
targets in a fully or intermittently absolute measurement
(e.g., GPS data) denied environment. To perform this task,
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distributed strategies outperform centralized approaches in
scalability, energy (e.g., processing and communication) effi-
ciency, and robustness against failures or attacks. In particular,
we aim to propose a fully distributed algorithm with only local
information and local communication in the absence of global
parameters and multihop information propagation or flooding.
As we do not assume a priori known information about the
robots’ poses, to successfully track the targets, it is necessary
for the robots to determine their poses precisely. Cooperative
localization (CL) is a widely used technique to achieve mul-
tirobot localization in the absence of absolute measurements.
In CL, by cooperating with other robots, each robot can esti-
mate its own pose using relative measurements (e.g., relative
distance, bearing, relative pose, or any combination of them)
between robots. In particular, distributed CL has gathered sig-
nificant attention in robotics. However, distributed centralized-
equivalent algorithms presented in [1]-[5] are not fully
distributed. At each occurrence of the measurements, some
variables need to be shared among the team through infor-
mation propagation rather than purely one-hop neighbor-to-
neighbor communication. For example, a distributed algorithm
equivalent to the centralized extended Kalman filter (EKF) is
presented in [1]. But the measurements obtained by one robot
are required to be transmitted to all teammates. For another
instance, [2] introduces new intermediate local variables to
decouple the propagation stage of the EKF. However, the com-
munication graph is required to have a spanning tree rooted
at the interim master in order to propagate the intermediate
local variables to the rest of the team through multiple hops
in one time step. To relax the communication limitations in
centralized-equivalent approaches, [6] presents an EKF-based
distributed algorithm to handle asynchronous communication.
But the cross correlations between robots are ignored, which
leads to inconsistent estimates. In contrast, the distributed
algorithm proposed in [7] is able to approximate the cross
correlations between robots. Nevertheless, the estimate is not
guaranteed to be consistent. The covariance intersection (CI)
technique is used in [8] to compute a consistent estimate. How-
ever, the estimate requires a particular measurement model,
specifically, the relative poses of neighbors. The interleaved
update (IU) algorithm in [9] can handle generic models and
compute consistent estimates. Nevertheless, each robot in
a team of M robots has to maintain 2¥ filters and keep
tracking the origin of the measurements. Besides the above-
mentioned limitations, all the aforementioned approaches do
not consider robots working in a dynamic environment where
moving targets exist and hence ignore the effect resulting
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from jointly estimating the targets’ states. In addition, there
exist some cases where robots need to co-work with targets
(e.g., humans), and then it is essential to estimate the poses
of targets in addition to localizing themselves.

In another aspect, many algorithms have been proposed
to address the distributed target estimation problem with
sensor networks. Each sensor fuses local information with
information from its neighbors to estimate the state of a
common target. Current approaches, either consensus-based or
diffusion-based algorithms, solve the tracking problem using
a static sensor network, where the sensors’ positions are
assumed to be known explicitly or implicitly [10]-[18].

However, there exist several approaches to solving the prob-
lem of joint localization and target tracking (JLATT). Mobile
robots are adopted in [19]-[21]. A consistent unscented incre-
mental smoothing algorithm is introduced in [19] by enforcing
the observability constraint on the unscented transformation.
In [20], the problem is modeled under a least square minimiza-
tion framework, where the states of the robots, the targets, and
static landmarks are jointly estimated. To mitigate, not avoid,
the risk of using the measurements more than once, a com-
mon reference is defined by using static landmarks which
might be unavailable. By assuming that robots have access
to the measurements of absolute orientations, an EKF-based
approach is presented in [21]. Furthermore, it is analytically
shown that jointly estimating the robot and target positions
results in better accuracy of the robots’ position estimates in
the steady state, in comparison with the CL. It is worth noting
that the algorithms mentioned earlier are all centralized.

A distributed algorithm for JLATT is presented in [22],
where static sensors are used. The sensors are localized via
a Jacobi algorithm that computes the best linear unbiased
estimates in a distributed matter. In order to use the Jacobi
algorithm, the measurements between sensors are required to
have a particular linear model. In addition, each sensor has
to maintain a history of the average measurements. As the
number of sensors increases, the storage and computational
costs increase dramatically. In addition, a distributed Kalman
filter is designed to estimate the target’s state. Here, only the
prior estimates from neighbors are used, and the neighbors’
relative measurements to the target are neglected. As a result,
some useful information might be lost. Although this approach
is distributed, it is limited to static sensor networks where each
sensor’s state is a static parameter to be estimated. When a
mobile robot network is employed, each robot propagates its
pose according to a noisy motion model. The state estimates
of two robots or one robot and one target become correlated
after updating the estimates using the relative measurements
between them. Note that directly fusing these two estimates
would yield an inconsistent estimate. Then, there exist signifi-
cant challenges to avoid information double-counting between
robots and account for the coupling between localization and
target tracking.

The earlier observations motivate us to derive a fully
distributed algorithm for JLATT with mobile robot networks.
We explicitly account for the mutual influence between local-
ization and target tracking and exploit it to improve perfor-
mance in a fully distributed way. In terms of stability analysis,
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it is worth pointing out that a few works analyze the stability
in CL, while all the works on target tracking are limited to
static sensor networks. We aim to jointly analyze the stability
in both the localization and tracking parts. Our approach is
based on two fully distributed estimates and able to track
multiple targets by using mobile robots whose poses are
unknown. The main contributions are summarized as follows.

1) To the best of our knowledge, it is the first time that
a distributed algorithm with a consistency guarantee is
proposed for JLATT in mobile robot networks. Each
robot only needs to exchange information with its one-
hop communicating neighbors.

2) The algorithm can handle multiple measurements simul-
taneously, including multiple relative measurements
(i.e., robot-to-robot and robot-to-target measurements)
and absolute measurements if available. Furthermore,
it supports generic robot motion, target process, and
measurement models.

3) In the case of linearized time-varying systems, it is
proven that the estimated error covariances of both
robots’ poses and targets’ states are bounded under
certain mild conditions on the sensing and communi-
cation graphs and system observability. To the best of
our knowledge, it is the first time that the stability for
CL or JLATT in mobile robot networks is analyzed in
a distributed setting, even for the linearized system.

Some preliminary results of this article are presented in our
previous conference article [23]. Compared with this prior
article, first, we introduce an alternative update strategy to
guarantee consistency instead of using IU, which requires
more storage and higher communication and computational
costs. Second, robot-to-target measurements are fused with
the prior estimates of robot poses. As a result, better accu-
racy in the robot pose estimates is achieved. In addition,
we theoretically demonstrate the consistency and stability of
the proposed algorithm under certain conditions and further
present experimental evaluations with a real-world data set.

II. PRELIMINARIES
A. Notations and Definitions

Let the vector x* represent the actual pose of a robot or the
actual state of a target at time k. Given a real-valued x*,
the prior estimate is X* and the posterior estimate is £*. Denote,
respectively, & = x* — %* and e = x* — %F, the prior
and posterior estimation errors. Then, we use p* and p* to
represent, respectively, the estimated covariance of & and e.
We distinguish the variables associated with robot i’s self-
estimate by the subscript R;, e.g., ’_‘];e,- representing robot i’s
prior estimate of its own actual pose X];e,- and pllci,- representing
the estimated covariance of é];el- with é’,‘?i = X];el- — ’_‘];el-- Further-
more, we distinguish the variables associated with robot i’s
estimate of target j by the subscript 7j;, e.g., X’} denoting
robot i’s prior estimate of target j’s actual state x; and pT

denoting the estimated covariance of € eT with eT = x’; —x’},,.

We denote by I, the identity matrix of dimension 1 x . The
superscript T denotes transpose and superscript —1 represents
inverse. E{-} computes the expectation of a random variable.
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Diag{-} and Max{-} denote, respectively, the block-diagonal
matrix constructed from the elements and the maximum of the
elements. We let Tr{-} denote the trace of a matrix. The interval
of time instants ’];l; is defined as [ko, ..., k,], where 0 <
ko < k, < oo. For symmetric matrices A and B, the notation
A > B (or A > B) means that A — B is positive semidefinite
(or definite). For finite sets A and BB, we denote by A\B the
set whose elements include all elements in A that are not
in B. The transition matrix on ’TT @ (7, kp), is defined as
O (7, ko) = O Lo, CD];SI,H 1;3 and @ (ko, ko) is the identity
matrix.

Definition 1 [24]: Suppose that x* is a random variable.
Let ¢ and pk be, respectively, the estimate of x* and the
estimated error covariance. The pair (%%,p*) is said to be
consistent if the actual error covariance E{e*(eX)T} < p*.

The consistency is a critical property of estimates that the
estimated error covariances realistically express the covari-
ance of actual errors. In contrast, an inconsistent estimate
that underestimates the actual errors might diverge as a
result [25], [26].

B. Graphs

In the network of M robots, we define a directed com-
munication graph G¥ = (V, &), where V = {Ry,..., Ry}
is the robot set and é’f C V x V is the edge set, which
stands for the communication links between robots at time k.
We assume that self-edge (i,i) € Ef, Vi € V), exists in the
communication graph. If there exists an edge (j,i) € &F,
where j # i, which means that robot i can receive information
from robot j, then robot j is a communicating neighbor of
robot i. At time k, the communicating neighbor set of robot 7 is
defined as ./\fckl ={i|(l,i) € EC",VI #i,1 € V}; The inclusive
communicating neighbor set of robot i is jckl N kU i)

Similarly, we define a directed sensing graph G* = (V, £F)
to describe robot-to-robot measurements, where 8!.‘ CVYxV
is the edge set, which stands for the detection links between
robots at time k. For example, when robot i detects robot j
at time k, there exists an edge (j,i) directed from robot j
to robot i in EX. At time k, we denote the sensing neighbor
set of robot i by N¥; = {i|(,i) € EF, VI # i, 1 € V} (ie.,
all robots detected by robot 7). A directed path is a sequence
of edges in a directed graph of the form (i, i1), (i1,72), .. .
where i; € V. Besides, the set of N targets is denoted by
U ={Ty, ..., Ty} and the subset of targets detected by robot i
at time k is denoted by Z/{ik. We assume that for each robot,
the communication radius is larger than the sensing radii of
all robots. Then, when robot i detects robot j, robot i can
receive the information broadcast by robot ;.

C. Track-to-Track Fusion

Track-to-track fusion is the problem of combining multiple
estimates of a state into a single and more accurate estimate.
At time k, consider two consistent estimation pairs (pf , &%
and (pa2, &K ,) of x¥, we seek to compute an improved con51s-
tent estimate (pk, % ’C‘) The cross correlation between &5 and
&% is denoted as pf , . If pf , is known, the consistent fused
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estimate with minimum covariance is given by [27]
k k k
pc = pal - (pa1 - paldz)

Ty—
X[p];] +p§2 - plglﬂz - (pl;]ﬂz) ] l[p];]
C ﬁla(l + (p];l - pzlaz)

— (Pha)']

>
Il

X[pla(] + p]a(2 - p]a(]a2 - (pla(]az)T]_l (ﬁzz - A]a(])
Furthermore, if &% and %! are independent, by setting
pt ., =0, we have

()" = (6) "+ (o)

% = pi[(pf,) 85+ (6F) %] M

On the other hand, if pf , is unknown, CI, a well-known
conservative fusion scheme that yields a consistent fused
estimate, is given as follows [24]:

[Pile = [ (o) " + (1= af) (o) ']
[ﬁlg]CI = [p]g]CI[alf (p§1)71’2§1 + (1~ “lf) (pﬁz)ilf‘]{;z] )

where af € [0, 1]. Compared with CI, the recently proposed
inverse CI (ICI) [28] provides an optimal consistent and tight
solution, and therefore, is more accurate. The ICI is given
as [28]

k\—1 n—17—1
(paz) - (rc) ]

[p ]ICI [(pal) 't
[%

%l = [PE] oo (KERG, +Leky,) 3)
where
Ie = aypg, + (1 - a3)pj,
Kf = (p},) " —a(rf)
LE = () —(1-ad) ()™
for any o € [0, 1]. The time-varying parameters af and a

can be chosen to minimize an optimality criterion, such as
the traces of [p’c‘]CI and [p’c‘]ICI, respectively. (l”f)’1 can be
considered a tight outer bound of the common information.

Lemma 1 [28]: Let [p’c‘]éI and [p’c‘];‘CI be, respectively, the
fused covariances with minimal traces by using CI and ICI at
time k. Then, [pXlie; < [pf1E.

CI is generalized to fuse an arbitrary number of estimation
pairs (pﬁi, f(fji), i =1,...,n, according to [29]

[Pi]e = |:i az{((pﬁi)_l]
o=l St % | o

where af € [0, 1] and >, a,’f = 1. For the sake of compu-
tational simplicity, we use the simplified algorithm in [30] to
calculate af as

e UTe{pl}
Sl Sy e §)
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D. Problem Formulation

Consider a group of M heterogeneous mobile robots and
N targets moving within the same space. Each robot carries
proprioceptive sensors (e.g., odometries) to measure its self-
motion and exteroceptive sensors (e.g., cameras or laser scan-
ners) to generate relative measurements to other robots and
multiple targets. Besides, some robots might have access to
the absolute measurements intermittently. The motion of robot
i is described by a nonlinear model

k k=1 k-1 k-1
Xi, = fi(xg | — W) (©6)

where x’,‘el_, “l;e,-7 and W];e,- are, respectively, the ith robot’s pose
(position and orientation), the measured input, and the process
noise at time k. We assume that the noise wg, is zero-mean
white Gaussian.

The state of target j at time k is represented by x’; , which
might contain the target’s pose or velocity components. The
process model of target j is given as

o =) o
where Wr, is the process noise, assumed to be zero-mean white
Gaussian.

At time k, if robot j (respectively, target j) is within
the sensing region of robot i, robot i obtains the robot-
to-robot measurement z* R, (respectively, robot-to-target mea-
surement zT) If accesmble robot i receives the absolute

measurement zk &,- We model the collected measurements as

= h}, (xR,xR)—i—vR
z’}i =h;, (XR,XT) +VT
Zy, = h{(xk ) + v, ®)

where vk | vA | and vk are the corresponding measure-
0 VI ;

ment noises, assumed to be zero-mean white Gaussian. The
covariance matrices are, respectively, represented as R" =
E[V (Vi )], R} = E[v; (v; )], and R} = E[vj, (v, bt
Note that at any time, some robots might not be able to obtain
any relative or absolute measurement. Furthermore, we assume
that the measurement noises are mutually uncorrelated across
robots and are uncorrelated with the process noises.

The objective of our work is for each robot i to construct
estimates of its own pose and of each target’s state by using its
local measurements if available and the information received
from its one-hop communicating neighbors at the current time.

III. PROPOSED FULLY DISTRIBUTED ALGORITHM

In this section, we derive a fully distributed scheme for
JLATT from the perspective of extended information filter
(EIF), the information form of the Kalman filter.

A. Distributed Extended Information Filtering

1) Localization: Unlike the existing works on distrib-
uted target estimation with static sensor networks where the
pose of each sensor is deterministic and known, we con-
sider the general scenario where the poses of the mobile
robots (serving as mobile sensors) are states to be estimated.
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Robot i estimates x’}ei by using its available relative measure-
ments to other robots and targets. At time k, when robot i
detects another robot / € V, robot i obtains the relative
measurement z¥ %, and receives the information broadcast by
robot /. The broadcast information contains robot I’s current
pose estimate Xk ®, With estlmated covarlance p k- After lin-
earization of the measurement zk ®, at & % and XK %> We compute
the measurement residual

z, =Hf & +HY & +vh )
where Z];e = Z];h — hl’l(xR ,XR) with Hk = (0h},/oxg,)

(XR,XR)ande = (0h] /ale)(xR,xR) By deﬁmnng =
HY & + vk | we get
Z];e, = H];e,é];e —i—VRI
The corresponding covariance for v &, 18 given by
= L T
Rk, = Ry, + Hj, Bl (HY,) (10)

which has included the uncertainty of robot I’s pose estimate.
Then, define the relative correction pair (s§ , yi ) as

k kAT Rk ! k

Sky = (HRil) (RRH) H

k kAT k(! ko ok

Yre = (HRH) (RRi) ( Ri +HR1XR) (11)

Similarly, when robot i detects target j € U, robot i

obtains the relative measurement zT After linearization of the
measurement zT at x¢ % and XT , we compute the measurement
residual

z; =Hy & +HY & v (12)
where 2’;} = z’;l_j — hﬁj(XRi,iTij) with H’}j = (ohj;/oxg,)

(X’,‘? , i’;l_j) and H’}j

iy Ik sk k
VT = HTU er, + V7, We get

(8h§j/6xrij)()'(’,‘ei,il}ij). By defining

7k k gk ok
zr, _HTl_jeRl_ + vz,

. . _k . .
The corresponding covariance of vz, is given by

R, =R: +H; ph (A )T (13)
Then, define the relative correction pair (STU , y’}ij) as
T,= _
sf, = (Hf,)' (Rf)"'Hj,
= ) (RE) @, )

Note that unlike (1 1) no Communicatlon is needed to compute
(14) as (pT , ij) %k & and zT are all available at robot i.

Remark 1: As shown in (10) and (13), the noise covariances
R’,‘e and R’} are, respectively, suitably increased by a p051—
tive semldeﬁnlte quantity Hk f) R (H )T and Hk,f’r ,-,-)T'
As a result, a large uncertalnty in robot I’s pose or tar-
get j’s state leads to a large Rk or R’} , which makes
(sRl,yR”) or (sT ,yT ) small. Then the mﬂuence caused by
the correspondmg inaccurate measurements will be alleviated.

At time k, if robot { has access to its absolute measure-
ment Z];el-’ the measurement residual after linearization at ’_‘];el-
is given by

zZy = Ch el + v (15)
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where z§, = z§, — h{(%}) with C} = (oh{/oxg,)(X}).

For notation convenience, if robot i’s absolute measurement
is not accessible, we let Rl}e = 00, which assumes infinite
uncertainty about Z];e-- Then, we denote the absolute correction

pair (S];?H R y];el_l_) as
T _
sk, = (Ck) (RY)™'Ck
Vh, = (Ck) (RE) ™ (2, + Ci%h).
ok

Next, the task is to compute the posterior estimate X
with the estimated covariance pR from the available cor-
rection palrs and the prior estimate X% with the estimated
covariance pX k- Although the relative measurement noises are
mutually uncorrelated, the defined VR and vT are corre-
lated for different / and j due to the correlations between
the estimates of the robots’ poses and the targets’ states.
Accordingly, the corresponding relative correction pairs are
correlated. We apply the CI algorithm (4) on the relative
correction pairs to guarantee consistency with the simplified
weight selection strategy (5). The absolute correction pair can
be directly incorporated, as it is uncorrelated with the relative
correction pairs. Therefore, at time k, we can compute an
estimate of X]fe,. by using all available correction pairs. We have

(16)

-1

f)];?; = Z rillsR,I + Z nljST +SR (173)
leN; jeuf
X = Bl | 2 vk, + 2 ¥y, + ¥k, | (170)
leN; jeuf

where 7% € (0,1] and r]l’?j € (0,1] subject to > ypr 7 +

Siaerl =1
jeuk Mij = 1

Recall that another estimate of X];Q’_ is the prior estimate )'(’1‘?’_.
Here, one might be tempted to directly fuse them using (1) as

ph, = [(Bk) " + (k)]
ﬁ];?i = p];%[(p];?,)_ XR + (pR)_li];?f]

-1

(18)

which implicitly assumes that ’_‘]1(?, and i];e, are uncorrelated.
However, this is not the case. For example, when robot i
uses robot [’s pose estimate to update its own, their estimates
become correlated. If we use (18) directly, when there exists a
chain of updates back to robot /, robot [’s pose estimate will be
overconfident, since we incorporate the common information
twice. In fact, the posterior estimation process becomes the
problem of track-to-track fusion under unknown correlations.
In order to guarantee the consistency while improving the
accuracy, we adopt an ICI-based update approach to fuse ’_‘];e,-
and X}, in this step. The proposed distributed EIF (DEIF)
algorithm for localization is summarized in Table I.

Remark 2: We incorporate robot-to-target measurements
z’;ij in the localization part. Intuitively, this can result in more
accurate estimates of the robots’ poses, since the targets can
be treated as moving references to the robots. This is one
of the advantages resulting from jointly estimating the states

of both robots and targets. The algorithm in Table I is still
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TABLE I
DEIF ALGORITHM FOR LOCALIZATION

Propagation:
k—1 _ Of; ,ok—1 kfl
B = i (k)
k—1 _ of; k—1 _ k—1
Gr, = dwg, “R; 'UR; )

Qﬁzlsz LE[wh- 1(W

Pl = @kflp’;—.l(@’glf +Qi

HTIGE DT

k=1 k=1
).

k
xR —f( Up

Compute the update terms:

Obtain (Bf; , X%, ) using (10)-(17).

—1%k

Qf, = ®k,)"" af, = Bk,) %R,

rh = ®%) ok ®Bh,) "t + (1 - )0k 1710k
K’f%i = Q’f%_ — ozfrk .

L, = Bk) ™ - (1—af)Th,.

Pk, = Q% +®B,)" ~Tk 1!

Ak —PR [Kk (Qk )71qR +Lk v’jf%]

The time-varying weight ai subject to ozi € [0,1]
is selected to minimize Tr{p% 1.

applicable in the case of CL without targets involved by simply
letting Uik = @& in (17). In this case, we refer to the algorithm
as CL-DEIF. Compared with the existing works on CL, our
approach is a fully distributed solution that is consistent,
amenable to general models, and computationally simple while
accounting for the possible existence of targets.

2) Target Tracking: Recall that when robot i detects target
J € U at time k, linearization of zT at xT and x% &, yields the
measurement residual (12) By deﬁmng vT = Hk é ® T VT ,
we get zT = Hk éT +v VT The correspondmg covarlance of

ok
VT,_J, is given by

R}, = Rf, +HY pf, (H},)". (19)
Then, define the relative correction pair (§Tij , y’;ﬁ) as
~ T,~ 1~
s, = () (R))) G,
7, = ()T(®) @, + %) Qo)

Next, all available prior estimation pairs and correc-
tion pairs from the inclusive communicating neighborhood,
(PT, le) and (sT[ ,yTI) Vi € jcki, are incorporated

to compute the posterior estimate x’} with the estimated
covariance pT It is possible that a certain robot, say robot /,
cannot dlrectly detect target j. Then, for notation convenience,
we let Rk = 00, which assumes infinite uncertainty about
the correspondmg measurement zT As a result, the received

yTI —OandsT =0.
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The first step is to use all available correction pairs to
compute an estimate of XT Similar to the localization part,
due to the correlatlons between the robot pose estimates,
the defined VT are correlated for different i. Accordingly,
we apply the Cl algorithm (4) on the relative correction pairs
to guarantee consistency with the simplified weight selection
strategy (5). Then, at time k, by using all available relative
correction pairs, we have

“k 2 ~k <k
pTij - '71] STIJ
leJk

ok _ xk ~k «
X, = Py Z ”IJYTI,

172,

-1

21

where 77, = 0 if robot [ cannot directly detect target Js
otherwise 77, € (0, 1] is the weight subject to Zlejt r]lj =1
The second step is to fuse all available prior estimation pairs.
Due to the common process model of target j, the local
prior estimates (p’;ﬁ,i’;ﬁ), vl e J},, are highly correlated
after propagations. Therefore, the CI algorithm (4) is used
to guarantee consistency with the simplified weight selection
strategy (5). We have

@, = 2,

]Eja]fi

@, = 2

leJh

77:1»]7 (p%j ) -
zh(Bh,) %S, (22)

where 7Z'lkl >z > 0 is the weight subject to zlejk ”11 =1

with 7 being the uniform lower bound of all the welghts at
all time steps.

The third step is to fuse (pT s ) with (Q r qT ) to
compute the posterior estimate of target j.One mlght con51der
that the relative correction pairs and the prior estimation pairs
are uncorrelated and directly fuse (f’%j’ i’}ij) with (Q%ﬂ q’}ij)
using (1) as

k k ok 11
pr, = [Q, + (B7,) ]

ij
f(’}” = p%f [ql%f.f + (pl}”)—lil%”]

This is the case when static sensor networks with known
positions are employed. However, as target j’s state estimate
has been used to update the robots’ pose estimates in the
localization part, its state estimate becomes correlated with
the robots’ pose estimates. Hence, here, we adopt the ICI (3)
to fuse (f’];,-j , i’}ij) with (Qkij , q’}ij) to avoid information double-
counting when the robots’ pose estimates are, in turn, used in
the relative correction pairs to compute the posterior estimate
of target j. The proposed DEIF algorithm for target tracking
is summarized in Tabel II.

Remark 3: In Table II, the prior estimates are weighted
averaged over the communicating neighborhood. Therefore,
a robot directly sensing target j can either directly or indi-
rectly influence the other robots through the communication
topology. Hence, target j’s state is cooperatively estimated
by each robot even if some robots cannot detect target j

(23)
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TABLE 11
DEIF ALGORITHM FOR TARGET TRACKING

Propagation:

k—1 0gj ok—1 kfl 0gj (o k—1
fI>Tij = 7J(x , Gr = aw; (xTij ),
Qf ! =Gh 1Et THwy, )T](G’“ 1)T

f)% = @k~ 1p’% 1(<I> ol
_gJ( T )

Compute the update terms:

+Q,

Obtain (f)l;, , ;“cl}, ) and (Q’ij , q’ij) using (19)-(22).

Fk (PT ) 1[ fj(f’%j)il“"(l afj)ﬂl%ij}ilﬂk s

Tij
Kk__ = Q%j —af;Tg,
Ly =®F,) ' — (1 —af)Th,
ph,, =@, + 7)) -Tf 17!
X, = Pl [K%j(ﬂﬁj)* af,, + L%j X, )

The time-varying weight o +; subject to a

selected to minimize Tr{p’:“n .
24

L€ [0, 1] is

at a certain time. In addition, data association is required
for multitarget tracking. However, it is out of the scope in
this article. We assume that each robot knows exactly which
measurement belongs to which target.

B. Joint Localization and Target Tracking

Based on Section III-A, we propose the JLATT algorithm
from the DEIF perspective in a mobile robot network, where
multiple relative measurements might take place at one robot,
and each robot can communicate with its nearby neighbors
within the communication range. We refer to the algorithm as
JLATT-DEIFE. It is worth noting that the communication and
sensing topologies are subject to change with time and the
robots not directly sensing the targets.

Initialization: For robot i € V, initialize the DEIF estimates
P(J)e,-JA‘R, and p%j,f(%j, Vjel.

Propagation: As in Tables I and II.

Update:

1) Robot i obtains available relative measurements z’,‘e to

the other robots in N¥, and zT to the targets. Recall
that if target j is out of the sensmg region of robot i,
R;)™' =0.

2) Robot i obtains its absolute measurement Z];e,- if available

and otherwise (R];e,-rl =0.

3) Receive {p’},j,i’;lj, §’;lj,y’;,j} from robot £, VI € N¥; and

Vjiel.

4) Compute localization correction pairs {s’,‘h,y’,‘h} /S
Nk as in (10) and (11) {ST ,yT },Vj e I/{k as in (13)
and (14) and {sR ,yR } as in (16)

5) Update the pose estimate of robot i as in Table I.

6) Compute tracking correction pairs {§’}ij , y’}”}, Vjelas
in (19) and (20).
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7) Update the state estimate of target j € U as in Table II.

Remark 4: The state and covariance propagations and
updates described in Tables I and II allow for a fully distributed
JLATT-DEIF algorithm, which uses one-hop communication
and requires no global parameter.

IV. STABILITY ANALYSIS

In this section, the stability of the proposed algorithm is
analyzed in the linearized time-varying systems. By lineariz-
ing (6), the error propagation equation for robot i is given
by

e = o lel ! + G 'wi ! (24)
where (I)ljg1 and Gl,‘{l are defined in Table I, with the
measurement error equations given by (9), (12), and (15).
By linearizing (7), the error propagation equation for target j
is given by
& = ok lel 4
where (Dk ! and Gk ! are defined in Table II, with the mea-
surement error equatlon given by (12). We refer to (9), (12),
(15), and (24) as the localization system and (25) and (12)
as the tracking system, respectively. Furthermore, the motion,
process, and measurement noise covariances are assumed to
be time invariant for simplicity (i.e., Q];e,- Qr > 0O,
Q’;ij = Qg > 0, R];ei, = Rg, > 0, Rl;ei = Rg, > 0, and
R’}i - = Rg; > 0). Next, we focus on the localization part.
We first give the definition of observable pairs.
Definition 2: The pair (A7, C*), where 7 is the time index,
is observable on ij) ', if and only if the observability grammian

+Gh W (25)

Ji
D 1A, j)IT(C)TCT A, jo) > 0
=Jo
where A(z, jo) is the transition matrix on 7.
In order to evaluate the stability of the algorithm in Table I,
we make the following assumptions.
Assumption 1: There exists a positive integer k such that at
each time k > k, the following statements hold.

1) There exists a nonempty subset Yk C V, such that for
each robot i € V¥, the pair (®%., Ck,) is observable on
THR where 0 < 71 < k.

2) For each robot j € V\V*, there exists a directed

path from a certain robot i € V¥ to j in the form

of (io,il) (i],iz) (i[ 1,i1) where i() = | and
i; = j, and [ consecutive intervals of the form 7:;”1, R
’T”’Zl“i], where mg = k — k + 7 and m = k,

such that (@ , H
s=1,...,0.
Assumption 2: For each k > 0 and each robot i € V,
the system matrix @}, is invertible.
Assumption 3: For each robot i € V), the initialized estima-
tion pair (ﬁ%i, p%i) is consistent. That is,

E{e%i (e%i)T} = p%: :

) is observable on 7 , where
—1 s—
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Remark 5: As for Assumption 1, V¥ can be changing over
time. For example, V¥ might just contain one robot at times.
Furthermore, none of the robots needs to receive absolute mea-
surements on ’T"’f In other words, for either absolute or relative
measurements, only a sparse possibly changing subset of the
team needs to have access to, and those measurements can be
intermittent. Assumption 2 is automatically satisfied as (D’jel_
is obtained by the discretization of a continuous-time system
before linearization. Finally, Assumption 3 can be guaranteed
by initializing p%i with a sufficiently large value.

Next, we give the main stability result of the localization
part and then prove it step by step.

Theorem 1: Suppose that Assumptions 1-3 hold. Then,
the pose estimate of each robot is stable under the algorithm
in Table I. That is, for each robot i € V, there exists a positive
definite matrix p; such that

E{eR (eR) J=<p

for any k > k.

In order to prove the above stability result, we first study
the consistency of the estimates.

Lemma 2: Let Assumption 3 hold. For each robot i € V,
the estimation pair (’A‘];e,- , P];e,-) obtained from the proposed DEIF
in Table I is consistent, that is,

Efek (ek )"} <ph VK >0.

Proof: The proof is shown by induction. When k = 0,
Assumption 3 implies that E{e%}((e%i)T} < p%,. Then, it is
assumed that at time k — 1, IE{ele(elgl)T} < p]gl.
that the propagation error satisfies

& kolghol 4 Gholyyke!
€, = Py, + Gg, W

Notice

Because E{é];ei (WRI_)T} = 0, it follows that:

E{el, ()"} = o 'Efel (el ) (@) +Qx
f ! (fb" N+ Qr, = Py

Next, as analyzed in Section III-A, by exploiting the consis-
tency property of ICI, the update step in Table I is guaranteed
to be consistent. It follows that E{e}, (e} )"} < p . O

Lemma 2 points out that, in order to prove the boundedness
of the actual error covariance, it is sufficient to show that
the estimated covariance Pl;el- is upper bounded by a certain
constant matrix.

Lemma 3 [13]: Let ® be a nonsingular matrix. For any
Q > 0 and p > O, there exists a parameter § € (0, 1] such
that (Pp®™ + Q)~! > 0 Tp~'®~! for any p > p.

Lemma 4: Suppose that Assumptions 1-3 hold. Then, for
each i € V, there exists a positive-definite matrix p; such that

Vk > k.

IA

P];e,. =pi

Proof: To simplify the notation, for certain time z and 7,
we define 7,, = v — 7¢. First, we focus on robot i € Yk, At any
time a € 7,;, the inverse of the updated covariance can be
written as

(P%) "

— a a a a a a _ a
= Qf + z NiSg, + Z ;1 + SR, Iz,
leN}; jeu;
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Invoking Lemma 1, one can get the lower bound

a -1 a a oa a
(pRl.) = aaQRi + (1 —aq) Z ik, + Sk,
leNY,
a1y —1
= a0, P{(p% ")+ U —ad) [ D nish, + sk,
IeN;
where ‘I’{(p”,’ei’ ) = [0% ' p% (@4 )T + Qg 17" and a, €

(0, 1). Furthermore, under Assumptlon 2, it follows from
Lemma 3 that:

{05 ) ) = (@) T %) T (@)
with B, € (0,1], for any pf ' > E{ej‘{l(e?{l)T}. Then, one
can obtain
()" = aupu(@57) 0 (0%
(1—ad)| D nish, +5sk, (26)
leNT;
where we can further write
(%) = daifumt (057) T (05 (057
+(U—a)| D s s ). @D

N

By recursively substituting (27) into (26) for @ = a — kg
times, one can write
a—1 B o - - -
(p%) = D @fe®p (a,a) A0 (@,a:)  (28)
=0
where (I)R (a d,) is the transition matrix on 7o, A =
ZIEN:” i SE, —i—sR s = (1 —ag)[]}Z Oaa] and f, =
1520 Ba,. for = > 0, and &, = (1 — a,) and f; = 1, for
7 = 0. Note that the right-hand side of (28) can be equivalently
written as (D1_e,-T(a» 51@)‘1'(131;,.1 (a, az), where

a
¥ =D b f O (ar, da) ADg, (ar, da)
=0
a—n—1

>

=0

& fe @ (@c, da) ADg, (@r, da)

a
+ D acfe @ (@c, da) AD, (. da).

Invoking part (1) of Assumption 1, (®% , Cj) is observable
on 7' %" We have

a
> O (@, a2)(CE)TCk O, (@, az) > 0.
T=a—n

Recall that s, = (C5)TR,'C% . Then, by noticing that ¢, €
0, 1), p, € (0, 1] and R;I_l > 0, it can be seen that

a
W= D b fe O (G, da)sy, Pr, (@, da) > 0.

T=a—n
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Hence, we can obtain a positive-definite matrix

D @fe®] (@, ansy, Oy (a.ar)

T=a—n

PH ' =

such that p§, < p{. Furthermore, let p; = ®g,p; (P 8)T+ Qg
where ®p, > @, Vr € 7" . We have pj, < p!. As a
is arbitrary in ’Z;’f, it follows that there exist, respectively,
positive matrices p; and p; such that p; < p;, pp < p; and
Vr e Tk,

Next consider the robots in V\ V. Starting from robot j
to which there exists an edge from one robot i € V¥ on T
Such robot j exists due to part (2) of Assumption 1. Following

a similar process, at any time b € ’T"’f ,after b = b — myg
iterations, one can obtain
b
b\l T -1 7
%) = D @ or 0.b) [ D alisk, |0R 0.5
T=b—ii; Ie/\/'b’

where @ (b, b,) is the transition matrix on ’Tbb’, and m; =
my — mg. Note that it is possible that SR =0,Vr e ’T" but

./\fgr j contains i on ’Tn’]f)‘ Then, one can wrlte
1 ’ ~
%) = D @ b, bonsy, ©F (b, b).
1=57H'11
Recall from (10) and (11) that
sk, = (Hy,) (Ry,)"'Hy,
= (H‘;?‘i)T{RRfi + ﬁ;hpk (ﬁ%'i)T}_lH%‘i'

It can be immediately seen that the boundedness of pj
related to py . As p; < P;, there exists HR € {H
7'} such that R’ < RR = Rg, + HR p,(HR T,

Vr € T™. Then, we can write Sk, z Sk, > 0, where
= (H} )T(RR”) 1HT R vVt € T";‘ Invoking part (2) in

mg
Assumptlon 1, ((D’ » Hﬁe-,-) is observable on ’];}'__EH';”. We have

|r€

b
> ©F (b bs) My )THY @ (b.. by) > 0.
r=b—i;

Then, by noticing that &, € (0,1), f € (0,11, 7’5 € (0,1]
and R,}jli > 0, we can obtain a positive-definite matrix

b

>

z:lgfn'n

@)= G S @7 (b, )y 7' (b, br)

such that p?e < p’. Hence, we can claim that there exists a
matrix p; such that Pk, =Pj, VT € 7% . In addition, we can
find an upper bound p; of p; R where 7 € 7, k.

Similarly, for another robot leV\Vrto wh1ch there exists
an edge from robot j on 7,">. We can obtain a positive-definite
matrix p; which is associated with p;, such that pp < py,
vVt € T,,]fz

Part (2) of Assumption 1 says that for each robot in V\ V¥,
there exists a directed path from one robot in V¥ to that robot.
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By applying the above-mentioned approach orderly along that
directed path, it takes k—7 time instants to make the estimated
pose covariance of the farthest robot upper bounded, where
k — @ is the total length of [ consecutive intervals. As this is
the case for any k > k, we can conclude the proof. O

Hence, the statement of Theorem 1 follows directly from
Lemmas 2 and 4.

Since the stability analysis is the same for each target,
we focus on one target j € U. Furthermore, as the proof
follows a similar approach to that of Theorem 1, only the
different parts are shown in detail in the following. We first
give the definition of the observable joint set and orderly
appearing path as follows.

Definition 3: Let V' be a nonempty subset of V. The
tracking system (12) and (25) of target j is jointly observable
to the robots in V' on ’Tjﬁ " if and only if the joint observability
grammian

Ji
> > 1@, (e o)) () R, @7, (2. jo) > 0
eV t=jj
where @7, (7, jo) is the transition matrix on 7.

Definition 4 [31]: Let B = {ey,...,ep,}, where e¢; =
(ij-1,ij), Yj =1,..., p, be a direct path in a graph. Then,
B is an orderly appearing path on 7', if there exist p time
instants 7;, < 7, <,...,< 7, on sz‘ such that e; is an
edge (including the self-edge) of that graph at time 7;,, where
i=1,...,p!

In order to derive the stability result of the algorithm
in Table II, the following assumptions and a lemma are needed.

Assumption 4: There exists a positive integer /, such that
for each robot i € V at each time k > k + [, where k is from
Assumption 1, one can find a nonempty robot subset V¥ C V
that satisfies the following statements.

1) V¥ has joint observability about target j on T+,

where 0 < m < [.

2) Every robot in Vk has an orderly appearing path in the

communication graph Gl toi on T k L

Assumption 5: For any k > 0, the system matrix (D’}_ is
. . I‘I
invertible.

Assumption 6: For each robot i € V), the initialized estima-
tion pair (ﬁ%j, p%j) is consistent. That is

Efel, (e7,)") < pf..

Let D* = [D}] be the stochastic adjacently matrix associ-
ated with G* at time k, where DY, = 7% with z% € (0, 1]
being the welghts from the algorithm in Table Il if I € J_; K
and D, = 0 otherwise. ' '

Lemma 5 [31]: Given a finite-time interval ’Z;{) ' let Dj(‘) =
D/t, ..., DiFIDio, Then, {Dj:;},-l > 0 if and only if there exists
an orderly appearing path from i to [ on ’Z;f) "

The following theorem shows the stability result of the
tracking part.

Theorem 2: Suppose that Assumptions 1-6 hold. Then,
target j’s state estimate obtained by each robot is stable under

By default (i, i) itself can be an orderly appearing path.
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the algorithm in Table II. That is, for each i € V, there exists
a positive-definite matrix p; ; such that

Efef, (ef,)'} <pis

for each k > k + 1.

Proof: Notice that the consistency of the update step is
preserved by ICI, as shown in Section III-A2. Then, under
Assumption 6, following the same process as in Lemma 2,
we can get the consistency result. That is, for each roboti € V

Efe;. (e7)'} <py,

As Assumption 5 holds, for each robot i € V' at time k,
where k > k + I, by following a similar approach to that in
Lemma 4, we have:

— >Zakﬂk (Dk 1

ley

VT > 0.

Tof ) (@)

(1 - OC]() Z ”IJSTIJ

legh

where a; € (0, 1) and f; € (0, 1]. Then, by noticing that
e 8, = 2y DSy, . after [ iterations, one can write

I

D dfe D 0Tk, ko)

ey

(#f,) " =
r=I—m

x<{Df_ ), 35, @7 (k. ko)

where ¢, = (1 — aaT)H _0 ag, and B = ]_[T_ fa,» for > 0,
and &¢; = 1 —a, and ﬁ, = 1, for = = 0. Equation (29) can be
further written as

DI (N

ey

X Z ﬁq)ﬂ,( ke)

r=I—mm

(29)

x{D} }llﬁfj 5’;11 Oy, (ke, k) | @7 (K, k).

As part (2) of Assumption 4 is satisfied, it follows from
Lemma 5 that {Dk i > 0,V € Vk and Vr € ’T’ . Then,
from part (1) of Assumptlon 4, we can claim that

> Z O] (ke k) (D ) (A ) THY @ (k.. k)

eV t=[-m

is positive definite. Recall from (13) and (14) that
T o\ T
St, = (Hn,) (er) Hn,

-1
= (H;Ij)T[RTI,f + HIT; [_’;1 (HITU)T] HITU

Invoking Theorem 1, for any t > k, there exists an upper
bound p; for pg , VI € V. Then, there exists Hy, € {H”T” | 7 €

T4} such that Ry, < Ry, = Ry, + Hy,pi(Hz)T, v

k—I+m s et T P
_ > =
T € ’Z;(_l . Then, we can write ST, = 87, where 57,
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(Hy )TR;'HJ, , ¥ € T}/™". Let B* €V be the set of blind
robots at time 7. On 7;{":7”"_1, as V} is nonempty, V\B® (the
set of robots directly detects target j) is nonempty. For any
[ € V\B*, we have 7ij; € (0, 1] and R;,| > 0, V7 € T
Furthermore, by noticing that &, € (0, 1), f; € (0,1] and
VI € V\B?, we can obtain a positive-definite matrix (p; ;)"
as

I
DD ey O (e, kDS Jusy 7 (K, ko)

€Y t=]—m

such that pf, < p; ;.

Hence, the proof can be concluded by noticing that in
the above proof, i is arbitrary chosen from ) for each time
k>k+1. O

V. SIMULATION

In this section, the performance of the proposed
JLATT-DEIF algorithm is tested via a series of Monte Carlo
simulations. We consider the scenario, where a team of M = 4
robots randomly move on a surface and track multiple targets
with N = 2. While any type of motion and process model is
applicable for the proposed algorithm, we adopt the unicycle
model for both robots and targets, to be consistent with the
ensuing experimental case. The robot pose x’,‘ei is described
with the position [x} , y} ] and the orientation ¢}, in the global
frame. Then, the motion model is expressed as

X = xp '+l orcos(py )
k k—1 k=1 s (k=1
Vi, =Yg +vg otsin(¢ )

k k—1 k—1
Pr, = Pr, +op Ot

(30)

where J¢ is the length of the sampling time interval, and vg,,
wg, represent, respectively, the linear and rotational velocity
of robot i. These velocities are measured by the odometries
equipped on the drive wheels and the associated noise is
assumed to be white Gaussian with the standard deviation of
0.02 m for position and 2° for orientation. Each robot moves
with a constant linear velocity of vg, = 0.5 m/s, and the
rotational velocity wg, is chosen from a uniform distribution
over [—(x /6), (x /6)] rad/s. Similarly, the targets move in the
same area following the process of (30) with v7;, = 0.6 m/s and
wr, € [—(7/5), (= /5)] rad/s, subject to the same noise of the
robot odometry measurements. The state X7, to be estimated
contains the position and orientation of target i also in the
global frame.

In the test, the robots and the targets start from different
locations and follow the real trajectories depicted in Fig. 1.
Although our approach can deal with generic measurement
models, to be consistent with the experiment, each robot
records the relative distance and bearing to other robots and
targets within its sensing region. In order to fully validate our
algorithm, in the simulation case no absolute measurements
exist and the relative measurements are generated randomly in
time, while in the following experimental case, the landmarks
provide absolute measurements and the relative measurements
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Robot 1
Robot 2
Robot 3
Robot 4
—=%— Target
15 —— Target

25 20 -15  -10 -5 0 5 10 15 20 25

Fig. 1. Team of four robots move randomly and track two targets. Their
starting positions are marked by circles.

obtained are related to the pose of each robot. For robot i,
if robot j is detected, the relative measurement is given by

o [ O T Ok k)

O Latan2((vk, — vk ). (k, —xk)) — ok,

where v, is a zero-mean white Gaussian noise. The distance
noise is set to be 3% of the actual value and the standard
deviation of the bearing noise equals to 3°. The same model
is used for the robot-to-target measurement z7;, .

Consider a general case in which each robot performs
relative measurements to the other robots with a probabil-
ity of 20%, while the probability of detecting the targets
is 40%. We consider a weak communication link with a failure
probability of 30% between each pair. Since the absolute mea-
surement is not accessible, we assume that each robot knows
its initial global pose. The initial estimates of the targets’ states
obtained by each robot are set to %7 ~ N (xr,(0), p}, ), where
x7,(0) is the initial true state of the target, and the initial
covariance p(}ij =I5, for j = 1,2. We run 50 Monte Carlo
simulations and compare the following four cases under the
same setup.

k
+ vk,

1) Dead reckoning (DR): No relative measurements exist.
The robots propagate their estimates by integrating the
measured velocities. Target tracking is not considered
here, since good knowledge of the robots’ poses is a
prerequisite for tracking.

2) CL-DEIF: To show the strength of jointly estimating
the states of robots and targets, we purposely neglect
the existence of targets and perform CL using the novel
DEIF in Table I without incorporating robot-to-target
measurements.

3) JLATT-DEIF: Based on the algorithms of Tables I and II,
we achieve localization and target tracking
simultaneously.

4) CEKF: To the best of our knowledge, none of the
existing works can address the same problem in a fully
distributed way. We, hence, use CEKF as the benchmark.
The centralized state vector contains all the robots’ and
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Fig. 2. Position RMSE for four robots averaged over 50 Monte Carlo runs.
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Fig. 3. Orientation RMSE for four robots averaged over 50 Monte Carlo

runs.

targets’ states. Whenever a relative measurement occurs,
the EKF-based update invokes.

We employ the root-mean-square error (RMSE) to quan-
tify the accuracy. Figs. 2 and 3 show the average RMSE
over 50 Monte Carlo runs in positions and orientations for
the four robots. As expected, without relative measurements,
the estimation errors of DR increase quickly as time goes
on. When relative measurements take place in the other three
cases, due to the collected information regarding the relative
motion to the other robots and targets, the pose uncertainties
are significantly reduced. It is evident that JLATT-DEIF results
in better accuracy for the estimates of both robot positions
and orientations, compared with CL-DEIF in which robot-
to-target measurements are ignored. Figs. 4 and 5 show the
position and orientation RMSE for the state estimates of
two targets obtained by four robots using JLATT-DEIF and
the benchmark CEKF. It becomes clear that four robots can
track the targets with performance close to CEKF through
communicating only with one-hop neighbors. In comparison
with CEKF, which achieves the best accuracy, the errors
of JLATT-DEIF are slightly larger in both localization and
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tracking. This is due to the fact that each robot only uses the
information from itself and one-hop communicating neighbors.
However, it allows for a fully distributed implementation with
less computational and communication costs while preserving
consistency.

To illustrate the consistency issue considered in Section III,
we show how the algorithm would perform if the update steps
in Tables I and II are replaced with, respectively, (18) and (23).
The resulting algorithm is denoted as the inconsistent
JLATT-DEIF (iJLATT-DEIF) and is then compared with
the JLATT-DEIF. The normalized estimation error squared
(NEES) [32] is used to evaluate the filter consistency. Specif-
ically, if a filer is consistent, it is expected that the average
NEES overall Monte Carlo runs for both robots’ and targets’
states will be close to 3 (i.e., should be close to the dimension
of the state errors). A larger NEES value indicates inconsis-
tency. Fig. 6 shows the average NEES for the estimates of one
robot and one target. We note that the average NEES of the
JLATT-DEIF is close to that of the benchmark CEKF and the
ideal value 3 in both the localization and tracking parts. While
the average NEES of the iJLATT-DEIF in these two parts is
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Fig. 6. Average NEES for Robot 1 and Target 1 (obtained by Robot 1)
averaged over 50 Monte Carlo runs.

gradually increasing over time, indicating that the estimates
become inconsistent quickly.

VI. EXPERIMENT WITH REAL-WORLD DATA

We further evaluate the performance of our approach on
the publically available UTIAS multirobot CL and mapping
data set [33], where a fleet of five ground robots move in
an indoor area of 15 m x 8 m with 15 static landmarks.
Each robot is equipped with a monocular camera with a
field of view (FOV) of about 60°. The robot makes range
and bearing measurements when another robot or landmark is
inside its FOV. In the meanwhile, a Vicon system is used to
monitor the robots’ poses and the positions of the landmarks,
serving as the ground truth in the global frame. Note that the
original intention of the data set is not for target tracking.
In order to test our approach, we treat one of the robots
as the target whose exteroceptive measurements are dropped
and the other four forms a robot network. We sample the
logged data at 50 Hz. In the data set, there are numerous
occlusions between the robots and the target assigned for our
purpose, which does not allow the recovering of the target
trajectory. To test the target tracking scenario, the ground truth
is used to synthesize robot-to-target measurements with the
accuracy of 1% of the actual value for the position and 1° for
bearing. Note that the synthesized data is only incorporated
in the tracking part. Table III gives an overview on the
number of actual measurements (including odometry data and
relative and absolute measurements obtained by cameras), and
the synthesized robot-to-target measurements for each robot
within the first 30000 time instants. The values in parentheses
are the actual robot-to-target measurements.

The initial estimates for the robot poses are obtained by
adding (or subtracting) 0.5-m offset to (or from) the true
positions and 5° to (or from) the true orientation, rather
than the true poses in the preceding simulation. For each
robot, the target state estimate is initialized at ’A‘(}e,-,l ~
N (x7, (O)»P?e,-,l)’ where P(1)e,-,1 = 0.5I3. As in the preceding
simulation test, we compare the performance of our approach
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TABLE III
OVERVIEW OF HOW MANY MEASUREMENTS ARE USED

Actual Measurement Synthesized Measurement

Odometry Camera (robot-to-target)
Robot 1 30000 2184 (124) 297
Robot 2 30000 2424 (136) 272
Robot 3 30000 2874 (153) 259
Robot 4 30000 3530 (155) 267

Real

Robot 1 Robot2 |-~ — —DR

~ = —CEKF
= = —JLATT-DEFF

Fig. 7.  Trajectories of four robots. In these lines, the black solid lines
correspond to the real value, the blue dashed lines to DR, the green dashed
lines to CEKF, and the red dashed lines to JLATT-DEIF. The initial true
and estimated positions are marked by circles with the corresponding colors.
Circles of DR, CEKF, and JLATT-DEIF are overlapped for each robot.

By Robot 1 By Robot 2 Real
~ — —CEKF
o. — — —JLATT-DEIF
2 2
E Eo
> >
2 -2
0 1 2 3 4 0 1 2 3 4
x (m) x (m)
By Robot 3 By Robot 4
. -
2 2
Eo Eo
> >
2 -2
0 1 2 3 4 0 1 2 3 4
X (m) X (m)

Fig. 8. Trajectories of the target obtained by four robots. In these lines,
the black solid lines correspond to the real value, the green dashed lines to
CEKEF, and the red dashed lines to JLATT-DEIF. The initial true and estimated
positions are marked by circles with the corresponding colors.

JLATT-DEIF with the benchmark CEKF and the DR. Fig. 7
shows the real and estimated trajectories for the robots and
Fig. 8 shows the results of the target estimates obtained by
four robots over the first 30 000-time instants. It becomes clear
that each robot’s estimate of its own position (respectively,
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Fig. 9. Orientations for four robots. In these lines, the black solid lines
correspond to the real value, the blue dashed lines to DR, the green dashed
lines to CEKF, and the red dashed lines to JLATT-DEIF.
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Fig. 10. Orientations for the target obtained by four robots. In these lines,

the black solid lines correspond to the real value, the green dashed lines to
CEKEF, and the red dashed lines to JLATT-DEIF.

the target’s position) well tracks the real trajectory of its own
(respectively, the target) without knowing the initial true pose.
Furthermore, as shown in Figs. 9 and 10, each robot can also
well estimate the real orientations of itself and the target.
This is due to the existence of the landmarks, which provide
the robots with intermittent absolute information in addi-
tion to the relative measurements. Furthermore, the proposed
JLATT-DEIF performs comparably to CEKF and the ground
truth.

Fig. 11 presents the recorded absolute value of x errors
for one of the robots and the 3¢ bound for these errors
over a time interval of 10000 instants. The top plot shows
the result for iJLATT-DEIF. There are some time intervals in
which the absolute x error is outside the 30 bound, a clear
indication that the iIJLATT-DEIF estimate is overconfident,
which may cause the estimate to diverge. Unlike that, in the
bottom one, the resulting absolute x error of JLATT-DEIF
is well enveloped by the 30 bound, which agrees with the
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Fig. 11.  Position error in the x-direction for one of the robots by using
iIJLATT-DEIF (top) and JLATT-DEIF (bottom). The solid lines correspond to
the absolute value of x errors and the dashed lines to the 30 bounds.
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Fig. 12. Position error in the x-direction for the target by using iJLATT-DEIF
(top) and JLATT-DEIF (bottom). The solid lines correspond to the absolute
value of x errors and the dashed lines to the 30 bounds.

previous simulation result that JLATT-DEIF is consistent in
the localization part. Fig. 12 shows the comparative result
along the x-direction for one target. Note that robot-to-target
measurements have been incorporated in the localization part.
Hence, directly using (23) leads to an inconsistent estimate,
as shown in the top plot. While as shown in the bottom
one, JLATT-DEIF also computes consistent estimates in the
tracking part.

VII. CONCLUSION

In this article, we have introduced a fully distributed algo-
rithm for the problem of JLATT when both the sensor network
and the targets are mobile. Each robot maintains only the latest
estimates of its own pose and the states of the targets. The
proposed algorithm only requires one communication iteration
with the nearby neighbors at one time instant. Furthermore, our
approach supports generic robot motion, target process and
measurement models, changing communication topologies,
and dynamic blind robots. These properties ensure that our
approach is applicable in a wide range of multirobot scenarios.
We have also theoretically justified that the proposed estimates
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are consistent and stable, with the errors being bounded in the
linearized case. The effectiveness of our approach has been
validated by using Monte Carlo simulations and the real-world
data set in different scenarios.
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