
Distributed Kalman Filter for 3-D Moving Object Tracking
over Sensor Networks

Pengxiang Zhu and Wei Ren

Abstract— This paper studies the problem of distributed state
estimation (DSE) over sensor networks. Unlike the existing
filtering algorithms that only consider targets moving in two-
dimension (2-D) environments, we address this problem in
three-dimension (3-D) scenarios where each agent equipped
with the communication and sensing capabilities cooperatively
track the state of a 3-D moving object. First, it is shown
that the existing distributed Kalman filter (DKF) algorithms
cannot solve the quaternion-based six degree-of-freedom (6-
DoF) motion tracking. Then, a novel DKF applicable for the
3-D tracking is introduced for a general nonlinear system. The
proposed algorithm is fully distributed and robust to time-
varying communication topologies and changing blind agents
(the agents that lose sight of the whole target object). Finally, we
apply the proposed algorithm to a camera network to track the
6-DoF pose (position and orientation) of a moving target object.
The effectiveness of our approach is demonstrated through
Monte-Carlo simulations.

I. INTRODUCTION

State estimation in sensor networks has a wide range of
applications such as target tracking, environmental monitor-
ing and surveillance. It is assumed that a state of interest
is evolving according to noisy dynamics, and each agent
may or may not get measurements that are related to the
state. The objective is to obtain an accurate estimator of this
state on every agent. In conventional centralized algorithms,
all the agents send their measurements to a fusion center
that runs a centralized Kalman filter (CKF) to get an op-
timal estimator. This estimator is then sent back to every
agent. This approach requires expensive communication and
computational resources. Moreover, it has the potential for
the failure on the fusion center. In contrast, distributed ap-
proaches that have the advantages of effectiveness, scalability
and robustness have drawn more attentions in the research
community. In 3-D environments, quaternions have been
introduced to express orientations due to its unambiguity
and computational efficiency. Furthermore, compared to the
Euler angle expression, quaternions avoid singularity when
calculating rotations [1]. However, quaternions are not valid
vector quantities, which makes the existing DKF algorithms
not suitable for the quaternion-based 3-D motion tracking in
sensor networks.

Due to the aptitude for distributed computing, most of the
existing DKF algorithms are derived from the information
filter (IF) (information form of the Kalman filter) which

This work was supported by National Science Foundation under Grant
CMMI-2027139.

Pengxiang Zhu and Wei Ren are with the Department of Electrical
and Computer Engineering, University of California, Riverside, CA 92521,
USA(pzhu008@ucr.edu, ren@ee.ucr.edu).

propagates and updates, instead of the state estimate and the
covariance, the information pair that contains the information
matrix and the information vector 1. The consensus algorithm
as a tool of distributed averaging has been exploited in
DSE. Three kind of consensus filters are proposed in [2]
where the consensus-on-information algorithm performs the
consensus on the prior information pair and the consensus-
on-measurements algorithm performs the consensus on the
measurements. These two algorithms are then combined
to provide a hybrid consensus filter. Ref. [3] develops a
Kullback–Leibler average consensus filter where the local
measurement is first used to update the local prior informa-
tion pairs and then the consensus is exploited on the resulting
posterior information pairs. Some other consensus filtering
algorithms derived from the IF can be found in [4]–[7].

Apart from the consensus-based algorithms that require
several communication iterations for each measurement, a
more efficient kind of DKF is based on the covariance
intersection (CI) algorithm presented in [8], [9]. The CI
algorithm is proposed to obtain an improved and consis-
tent estimator from the fusion of multiple estimators with
unknown correlations by using a convex combination of the
local information pairs. The weights are chosen to minimize
the trace or determinant of the fused covariance. Refs. [10]
and [11] let each agent compute an estimator by using its
own measurements independently and then fuse the resulting
posterior information pairs among the neighborhood with CI
to obtain an improved estimator. Only the posterior informa-
tion pairs are transmitted. Another typical CI-based approach
is proposed in [12]–[14] where the prior information pairs
are first fused with CI and then the resulting prior estimator
at every agent is further updated with all the measurements
among the neighborhood. Here, the prior information pairs
and the local measurements are transmitted. Some other CI-
based DKF can be found in [15], [16].

Both the IF-derived consensus filters and the CI-based
DKF algorithms need to compute the information vector.
However, we cannot calculate the information vector for
a quaternion due to the mismatching dimension between a
quaternion and the corresponding covariance [17]. We further
explore the existing DKF without the need of computing the
information vector. The Kalman consensus filter (KCF) in

1Given a true value x, x̄ and x̂ denote, respectively, the prior and posterior
estimates with the corresponding covariances p̄ and p. The information
pair can be divided into the prior and posterior information pair. The prior
information pair contains the information matrix p̄−1 and the information
vector p̄−1x̄, while the posterior information pair contains the information
matrix p−1 and the information vector p−1x̂.

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7446-4/20/$31.00 ©2020 IEEE 2418



[18] and the Generalized KCF (GKCF) in [19] perform an
average consensus on the prior estimates in the update step.
KCF use equal weights, which causes large estimation errors
with blind agents. This issue is avoided by using GKCF that
weights the prior estimates by their covariances. Ref. [20]
presents the diffusion Kalman filter where each agent first
updates the local estimates using its own and the neighbors’
measurements, and then computes a convex combination of
the resulting estimates. Nevertheless, quaternions are not
in the vector space. Then, the arithmetic mean (average
consensus) or a convex combination computed is no longer a
valid quaternion and has no physical meaning, which renders
the approaches in [18]–[20] not applicable.

Indirect Kalman filter has been proposed in [17], [21] to
address the problem of single robot 3-D localization where
the quaternion is used to represent the orientation. But how
to fuse the information especially the quaternions from other
sensors in a sensor network has not been addressed. From
the above observations, it is clear that the existing DKF
algorithms are not applicable for the quaternion-based 3-D
tracking, which limits their applications in many real-world
scenarios where the target exhibits 3-D motion. Hence, the
main contribution of this paper is that a novel DKF suitable
for the 3-D DSE over sensor networks is proposed and
further applied to camera networks. The proposed approach
is fully distributed and applicable for generic target motion
and measurement models. It can also handle time-varying
communication topologies and changing blind agents.

II. PRELIMINARIES

A. Quaternion

A quaternion consists of a vector and scalar portion as

q̄ = q1i + q2j + q3k + q4.

For notation simplicity, q̄ can be further written as a four-
dimensional column matrix given by

q̄ =

[
q
q4

]
=
[
q1 q2 q3 q4

]T
.

Orientation is represented as a unit quaternion [22] which
satisfies |q̄| =

√
|q|2 + q2

4 = 1. A rotation can be represented
by a unit quaternion

q̄ =

[
q
q4

]
=

[
msin(θ/2)
cos(θ/2)

]
, (1)

where m is the unit vector defining the rotation axis and θ
is the angle of rotation. A rotation can also be described by
a rotation matrix R which is related to the unit quaternion
q̄ by

R =
(
2q2

4 − 1
)
I3 − 2q4bq ×c+ 2qqT

where b·×c denotes the skew symmetric matrix. Moreover,
q̄ and −q̄ describe the same rotation [23].

The error vector and its covariance are usually expressed
in terms of the arithmetic difference between the true and
estimated values. However, using this representation for a
quaternion would make the corresponding covariance sin-
gular [24]. Instead, the quaternion error δq̄ is represented

as a rotation between the estimated and true quaternion as
q̄ = ˆ̄q ⊗ δq̄, where ⊗ denotes the quaternion multiplication.
When representing the uncertainty of a quaternion error, a
minimal representation of the 3-dimension vector is required
[25]. Since the rotation associated with δq̄ can be assumed
to be very small, the mapping between δq̄ and the minimal
representation, the rotation angle error δθ ∈ R3, is obtained
from (1) with small angle approximation as

δq̄ =

[
δq
δq4

]
=

[
msin(δθ/2)
cos(δθ/2)

]
≈
[

1
2δθ
1

]
,

where δθ = mδθ. Then, the uncertainty of δq̄ is represented
as the covariance of δθ. It is evident that for a quaternion
estimate ˆ̄q, we cannot compute its information vector, as the
dimension for the covariance of ˆ̄q is 3×3 but ˆ̄q is 4×1.

B. Notation and Definitions

Im×n (0m×n) is the identity (zero) matrix of size m×n. If
m = n, for simplicity, we use Im (0m) to denote the square
identity (zero) matrix. We denote G, T and Ci, respectively,
as the global frame, the target’s body frame and the ith
camera frame. T

Gq̄, the target’s orientation, describes the
rotation from G to T . TGR is the rotation matrix associated
with T

Gq̄. GpT , the target’s global position, denotes the
position of T in G. For vector quantities, the error δx is
defined as the standard additive error δx = x − x̂. For a
vector x = [x y z]T, the projection function is defined as
Π(x) = 1

z [x y]T whose state Jacobian

Hp(x) =
1

z

[
1 0 −xz
0 1 −yz

]
.

We define a directed communication graph Gk = (V, Ek),
where V is the agent set and Ek is the edge set defined
as Ek ⊆ V × V . Ek stands for the communication links
between agents at timestep k. We assume that self edge
(i, i) ∈ Ek, ∀i ∈ V , exists in the communication graph.
If there exists an edge (j, i) ∈ Ek, where j 6= i, which
means that agent i can receive information from agent j,
then agent j is a communicating neighbor of agent i. The
communicating neighbor set of agent i at timestep k can be
defined as N k

i = {i|(l, i) ∈ Ek, l ∈ V}. Note that i ∈ N k
i .

III. 3-D DISTRIBUTED STATE ESTIMATION ALGORITHM

A. Problem Formulation

Consider a network of agents, where each agent has the
ability to communicate with its neighbors and sense the target
with limited sensing region. The target is moving in a 3-D
environment. Without loss of generality, we represent the 3-
D motion of the target with the following state,

x =

[
T
Gq̄
xv

]
=
[
T
Gq̄

T GpT
T GvT

T
]T
, (2)

where x includes the target’s 6-DoF pose, T
Gq̄ and GpT

in addition to the target’s global linear velocity GvT ; xv
contains all the vector quantities in x. Consider the following
nonlinear motion model as the dynamics of the target object:

xk = f(xk−1,nk−1), (3)

2419



where xk is the target’s state at timestep k, n is the zero-
mean white Gaussian noise with covariance O. The local
measurement zki obtained by each agent i, i ∈ V , is given
by the following general nonlinear model:

zki = hi(x
k,wk

i ), (4)

where wi is the local measurement noise assumed to be
zero-mean white Gaussian with covariance Ri. We further
suppose that the measurement and target process noises
are mutually uncorrelated. The objective is to compute an
accurate estimate of the target’s state x on every agent
by only using the information from itself and the one-hop
communicating neighbors.

B. Proposed Distributed Kalman Filter

Suppose that at timestep k, each agent maintains a prior
estimator (x̄ki , p̄

k
i ) after propagation. Now, agent i aims to

update its local estimator (x̄ki , p̄
k
i ) by using its local infor-

mation and the information from its one-hop communicating
neighbors. The first step is to fuse all prior estimation pairs
among the neighborhood, i.e., (x̄kj , p̄

k
j ), ∀j ∈ N k

i . Recall
that we cannot directly compute the information vector of a
quaternion and then use the consensus or CI algorithms to
fuse the prior estimation pairs. Instead, we first weighted syn-
chronize the prior estimation pairs to reduce its uncertainty.
The weight πj satisfies πj ∈ [0, 1] and

∑
j∈Ni

πj = 1, which
makes sure that we do not overuse the information among
the neighborhood. For the estimates of the vector quantities
xv in x, we compute

x̌kvi =
∑
j∈Nk

i

πkj x̄
k
vj . (5)

Note that for the quaternions, our objective is to average the
orientations described by the quaternions, not the average
of the quaternion. Simply taking the same form of xvi
cannot even get a valid quaternion (e.g., change the sign
of a quaternion should not change the described orientation).
Here, we employ the method in [26] which provides a closed
form solution of the averaged quaternion Ti

G
ˇ̄q by the following

maximization procedure
Ti,k

G
ˇ̄q = arg max

q̄∈S3
q̄TMq̄,

M =
∑
j∈Nk

i

πkj (
Tj,k

G
¯̄q)T

Tj,k

G
¯̄q,

(6)

where Tj,k

G
¯̄q is agent j’s prior estimate of Tk

G q̄; S3 denotes
the unit 3-sphere. Solving (6) in fact gives a quaternion that
minimizes the weighted sum of the orientation errors. We
define a compatible symbol � for computing the weighted
average and then we obtain

x̌ki =

[Ti,k

G
ˇ̄q

x̌kvi

]
=
∑
j∈Nk

i

πkj � x̄kj .

As for the synchronized covariance, we can directly compute
p̌ki =

∑
j∈Nk

i
πkj p̄

k
j , since the quaternion error is represented

by the error of the rotational angle that is a vector quantity.

The weight πkj is chosen to minimize the determinant or the
trace of p̌ki .

For the sake of computational simplicity, we use the
simplified algorithm in [27] to calculate πkj as

πkj =
1/Tr(p̄j)∑

j∈Nk
i

1/Tr(p̄j)
,

where Tr(·) computes the trace of a matrix. Clearly, more
weights will be given to the prior estimation pairs with small
covariances.

The second step is to fuse the intermediate estimation pair
(x̌ki , p̌

k
i ) with all the local measurements zkj , ∀j ∈ N k

i . If
agent j cannot sense the target directly, we assume infinite
uncertainties in zkj , that is, Rk

j = ∞. After linearization of
zki about the current estimated state, we compute

ski = (Hk
i )T(Rk

i )−1Hk
i , yki = (Hk

i )T(Rk
i )−1z̃ki , (7)

where z̃i = zi − hi(x̄i) and Hi = ∂hi

∂xi
(x̄i). Then, we

obtain the updated covariance pki and the state correction
δxki according to

pki =

(p̌ki )−1
+
∑
j∈Nk

i

skj

−1

,

δxki =

[
δθki
δxkvi

]
= pki

∑
j∈Nk

i

ykj ,

(8)

where δθi is the orientation correction while δxvi is the
corrections of the vector quantities. Next, we update x̌i by
using δxi. For the vector quantities x̌vi in x̌i, we have x̂kvi =

x̌kvi + δxkvi . We update the quaternion Ti,k

G
ˇ̄q according to

Ti,k

G
ˆ̄q =

Ti,k

G
ˇ̄q ⊗ δq̄i (9)

where δq̄i represents a rotation that is supposed to be a
unit quaternion. Recall that δq̄i is approximately equal to
[ 1
2δθ

T
i 1]T, which is however not a unit quaternion. To obtain

a unit quaternion, we let δq̄i = 1√
1+ 1

4 δθ
T
i δθi

[
1
2δθi

1

]
. We

define a compatible symbol � for updating x̌ki . Then we
have

x̂ki =

[
Ti,k

G
ˆ̄q

x̂kvi

]
= x̌ki � δxki . (10)

By adding the standard propagation step, the proposed 3-D
DKF algorithm is summarised in Algorithm I.

IV. SIMULATIONS

In this section, we apply the proposed 3-D DKF to address
the DSE problem over a camera network where 10 cameras
are employed to track a drone executing 3-D motion (see
Fig. 1). Each camera has a limited field of view. The
status of which cameras are directly sensing the target over
the tracking period is shown in Fig. 2. Clearly, all of the
cameras could turn into blind cameras for long time periods.
Moreover, each camera’s intrinsic parameters are known via
prior calibration [28]. We perform extensive Monte-Carlo
simulations to validate the effectiveness of the proposed
algorithm.

2420



Algorithm I: 3-D DKF Algorithm Implemented by Agent i
at Timestep k.

Propagation:

Φk−1
i = ∂f

∂xi
(x̂k−1

i ), Gk−1
i = ∂f

∂n
(x̂k−1

i ),

Qk−1
i = Gk−1

i Ok−1(Gk−1
i )T,

p̄k
i = Φk−1

i pk−1
i (Φk−1

i )T + Qk−1
i ,

x̄k
i = f(x̂k−1

i ).

Update:

(1) compute the update terms ski , yk
i ;

(2) receive skj , yk
j , x̄k

j , p̄k
j from agent j, ∀j ∈ N k

i ;
(3) update x̄k

i , pk
i according to

pk
i =

 ∑
j∈Nk

i

πk
j p̄k

j

−1

+
∑

j∈Nk
i

skj

−1

x̂k
i =

 ∑
j∈Nk

i

πk
j � x̄k

j

 �

pk
i

∑
j∈Nk

i

yk
j


The time-varying weight πk

j subject to πk
j ∈ [0, 1]

is selected to minimize Tr{pk
i }.

A. State Vector and Models

As vision algorithms can yield many features on the target,
like [29] we represent the 3-D rigid body target as the point
cloud constructed by the tracked corner features. One of
these features is chosen as the representative feature where
the target’s state is defined while all the other features are
the non-representative features that can provide additional
observations. These non-representative features’ positions are
also unknown. We include the non-representative features’
relative position in the target’s body frame in our estimation
state to provide reobservation constraints. Therefore, the
target state (2) is extended to

x =

[
T
Gq̄
xv

]
=
[
T
Gq̄

T GpT
T GvT

T Tpf
T
]T
,

Tpf =
[
Tpf1 · · · Tpfn

]T
,

(11)

where Tpf contains n non-representative features’ relative
positions in T .

At timestep k, suppose that the target moves according to
the following dynamics [17]

Tk

G
˙̄q =

1

2
ωk ⊗ Tk

G q̄, GṗTk
= GvTk

,

Gv̇Tk
= Tk

G RTak,
(12)

where ω and a are the actual local angular velocity and linear
acceleration. The corresponding noisy angular velocity and
linear acceleration are given as ωm = ω+nω and am = a+
na, where nω and na are zero-mean white Gaussian noise.
ωm and am are known to each agent. After linearizing (12),
the corresponding error state obtained by camera i evolves

Fig. 1: 3-D moving object tracking over camera networks.
G and T are respectively, the global frame and the target’s
body frame. The Blue camera denotes the camera currently
sensing the target directly while the red ones are the blind
cameras. The 3-D trajectory followed by the target is the
black line.

0 10 20 30 40 50 60

Time (sec)

camera 1

camera 2

camera 3

camera 4

camera 5

camera 6

camera 7

camera 8

camera 9

camera 10

Fig. 2: Status of cameras directly sensing the target. The bold
blue lines indicate the time intervals when the cameras can
directly sense the target.

according toG ˙δθTi,k

G ˙δpTi,k

G ˙δvTi,k

 = Fki

GδθTi,k
GδpTi,k
GδvTi,k

+ Lki n
k (13)

where n =
[
nT
ω nT

a

]T
with the covariance O,

Fi =

 −bωm×c 03 03

03 03 I3

−bTi

G R̄Tam×c 03 03

 , Li =

−I3 03

03 03

03 −Ti

G R̄T

 .
Then, we discretize (13) and obtain the first-order approx-
imation. By noting that Tpf does not evolve over time as
we assume a rigid-body target, we obtain the discrete-time
transition matrix and the noise covariance

Φi =

[
Fiδt+ I9 09×3n

03n×9 I3n

]
, Qi =

[
LiOLT

i δt 09×3n

03n×9 03n

]
,

where δt is the sampling time. With Φi and Qi, we can
perform the propagation step in Algorithm I.

2421



As the target explores the environment, the target features
are captured by the cameras. Each camera i is assumed to be
static with the global pose (Ci

G q̄,
GpCi). At timestep k, the

measurements of the representative features take the form

zkTi
= Π(CipTk

) + wk
i , (14)

CipTk
= Ci

G R
(
GpTk

− GpCi

)
, (15)

where CipT denotes the target’s position in the ith camera
frame; wi is the zero-mean white Gaussian noise with
covariance Ri. By linearization of (14) and (15), we obtain
the state Jacobian

Hi = Hp(
Ci p̄T )Ci

G R
[
03 I3 03×3(n+1)

]
.

For a non-representative feature Tpf1 (for notation simplic-
ity, consider the first feature in Tpf ), then (15) is replaced
with

CipTk
= Ci

G R
(
Tk

G RTTpf1 + GpTk
− GpCi

)
. (16)

Note that (16) puts constraints not only on the target’s
position GpTk

as (15) does, but also on the relative position
Tpf1 and the rotation matrix Tk

G R associated with the target’s
orientation. By linearization of (14) and (16), we obtain the
state Jacobian

Hi = Hp(
Ci p̄T )Ci

G R[−bTi

G R̄TT p̄f1×c I3 03

Tk

G R̄T 03×3(n−1)].

With Hi, we can perform the update step in Algorithm I.

B. Simulations Results

The target is moving following a pre-designed 3-D trajec-
tory. Further, the non-representative features are generated
around the target’s body frame. Each camera has the res-
olution of [752, 480] and its maximum sensing distance is
purposely set to 5 m. The linear acceleration and angular
velocity noise are 0.4 m/s2 and 0.03 rad/s, while the
camera measurements are corrupted by 1 pixel noise. Then
we perform 50 Monte-Carlo simulations and the results are
quantified by the root mean squared error (RMSE).

To show the benefits of cooperative tracking, we assume
that each camera can communicate with the other cameras
with certain percentages. For example, 40% means that
each camera can communicate with another camera with the
probability of 40%. Hence, each camera’s communicating
neighbors are randomly chosen at every timestep and the
communication graph is time varying. We compare the
results of the proposed distributed algorithm (3-D DKF)
against the one obtained by the benchmark (CKF) where
all the cameras can communicate with the fusion center per-
fectly. Fig. 3 shows the averaged position RMSE (PRMSE)
and the orientation RMSE (ORMSE) results for the CKF
and the 3-D DKF over all trials and all cameras. It becomes
clear that as the communication percentage increases, the
estimation errors of the 3-D DKF reduce in both the positions
and orientations. In particular, the performance of the 3-D
DKF with 60% communication percentage is comparable to
the CKF’s performance.

0 10 20 30 40 50 60

Time (sec)

0

0.2

0.4

0.6

0.8

1

P
R

M
S

E
 (

m
)

3-D DKF (20%)

3-D DKF (40%)

3-D DKF (60%)

CKF

0 10 20 30 40 50 60

Time (sec)

0

5

10

15

20

25

30

O
R

M
S

E
 (

d
e

g
)

Fig. 3: Averaged RMSE for the estimated target pose over
50 Monte-Carlo runs and ten cameras.

Further, to show the performance of individual cameras,
Table I provides the averaged RMSE results with different
communication percentages for the first four cameras (cams
1, 2, 3 and 4) over all trials and all timesteps. Obviously,
none of the cameras can successfully track the target with 0%
communication (no collaboration between cameras). While
as the communication percentage increases, all the estimators
maintained by each camera become more accurate. When the
communication percentage is 40%, the estimated trajectories
obtained by the first four cameras are plotted against the
groundtruth in Fig. 4, which shows that our approach can
well track the 3-D trajectory of the target.

TABLE I: Averaged RMSE for the estimated target pose over
50 Monte-Carlo runs and all timesteps.

communication (3-D DKF) 0 % 20 % 40% 60%

Cam 1 PRMSE (m) 22.654 0.239 0.119 0.041
ORMSE (deg) 22.246 9.902 6.992 4.320

Cam 2 PRMSE (m) 65.005 0.265 0.123 0.040
ORMSE (deg) 36.935 10.306 6.917 4.285

Cam 3 PRMSE (m) 72.067 0.217 0.117 0.042
ORMSE (deg) 26.246 9.970 6.900 4.337

Cam 4 PRMSE (m) 56.871 0.281 0.124 0.043
ORMSE (deg) 38.271 10.245 6.925 4.314

CKF PRMSE (m) 0.022
ORMSE (deg) 4.128

V. CONCLUSION

In this paper, we have introduced a new DKF that is
applicable for tacking the 6-DoF motion of a target moving
in 3-D environments over sensor networks. The proposed
algorithm enjoys the property of being fully distributed as
it only uses its own and one-hop neighbors’ information.
Moreover, it only requires a single communication iteration
in the update step and is robust to the time-varying changes
in the network such as the communication topology, the blind

2422



Fig. 4: Estimated 3-D trajectories of the first four cameras.
‘+’ denotes the start position while ‘x’ denotes the end point.
The start and end areas are enlarged in the built-in figures.

agents, and the network size. It also deals with the generic
target and measurement models. These properties ensure that
our approach is applicable in a wide range of cooperative
target tacking scenarios. The performance is tested with the
application to camera networks via Monte-Carlo simulations.

REFERENCES

[1] E. Kaplan and C. Hegarty, Understanding GPS: principles and appli-
cations. Artech House, 2005.

[2] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-based linear and nonlinear filtering,” IEEE Transactions
on Automatic Control, vol. 60, no. 5, pp. 1410–1415, 2014.

[3] G. Battistelli and L. Chisci, “Kullback–leibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability,” Automatica, vol. 50, no. 3, pp. 707–718, 2014.

[4] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information
weighted consensus filters and their application in distributed camera
networks,” IEEE Transactions on Automatic Control, vol. 58, no. 12,
pp. 3112–3125, 2013.

[5] G. Wei, W. Li, D. Ding, and Y. Liu, “Stability analysis of covariance
intersection-based Kalman consensus filtering for time-varying sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2018.

[6] G. Battistelli and L. Chisci, “Stability of consensus extended Kalman
filter for distributed state estimation,” Automatica, vol. 68, pp. 169–
178, 2016.

[7] X. He, C. Hu, Y. Hong, L. Shi, and H. Fang, “Distributed Kalman
filters with state equality constraints: Time-based and event-triggered
communications,” IEEE Transactions on Automatic Control, 2019.

[8] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm
in the presence of unknown correlations,” in Proceedings of the
American Control Conference, 1997, pp. 2369–2373.

[9] S. Julier and J. K. Uhlmann, “General decentralized data fusion with
covariance intersection,” in Handbook of multisensor data fusion.
CRC Press, 2017, pp. 339–364.

[10] P. O. Arambel, C. Rago, and R. K. Mehra, “Covariance intersection
algorithm for distributed spacecraft state estimation,” in Proceedings
of the American Control Conference, 2001, pp. 4398–4403.

[11] X. He, W. Xue, and H. Fang, “Consistent distributed state estimation
with global observability over sensor network,” Automatica, vol. 92,
pp. 162–172, 2018.

[12] J. Hu, L. Xie, and C. Zhang, “Diffusion Kalman filtering based on
covariance intersection,” IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 891–902, 2011.

[13] S. Wang and W. Ren, “On the convergence conditions of distributed
dynamic state estimation using sensor networks: A unified framework,”
IEEE Transactions on Control Systems Technology, vol. 26, no. 4, pp.
1300–1316, 2017.

[14] S. Wang, Y. Lyu, and W. Ren, “Unscented-transformation-based dis-
tributed nonlinear state estimation: Algorithm, analysis, and experi-
ments,” IEEE Transactions on Control Systems Technology, vol. 27,
no. 5, pp. 2016–2029, 2018.

[15] G. Battistelli, L. Chisci, and D. Selvi, “A distributed Kalman filter with
event-triggered communication and guaranteed stability,” Automatica,
vol. 93, pp. 75–82, 2018.

[16] S. Wang, W. Ren, and J. Chen, “Fully distributed dynamic state
estimation with uncertain process models,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 4, pp. 1841–1851, 2017.

[17] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3d attitude
estimation,” University of Minnesota, Dept. of Comp. Sci. & Eng.,
Tech. Rep, vol. 2, p. 2005, 2005.

[18] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
Proceedings of the IEEE Conference on Decision and Control, 2007,
pp. 5492–5498.

[19] A. T. Kamal, C. Ding, B. Song, J. A. Farrell, and A. K. Roy-
Chowdhury, “A generalized Kalman consensus filter for wide-area
video networks,” in Proceedings of the IEEE Conference on Decision
and Control, and the European Control Conference. IEEE, 2011, pp.
7863–7869.

[20] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2069–2084, 2010.

[21] J. Sola, “Quaternion kinematics for the error-state kf,” Labora-
toire dAnalyse et dArchitecture des Systemes-Centre national de la
recherche scientifique (LAAS-CNRS), Toulouse, France, Tech. Rep,
2012.

[22] W. Breckenridge, “Quaternions proposed standard conventions,” Jet
Propulsion Laboratory, Pasadena, CA, Interoffice Memorandum IOM,
pp. 343–79, 1999.

[23] M. D. Shuster, “A survey of attitude representations,” Navigation,
vol. 8, no. 9, pp. 439–517, 1993.

[24] E. Leffens, F. L. Markley, and M. D. Shuster, “Kalman filtering for
spacecraft attitude estimation,” Journal of Guidance, Control, and
Dynamics, vol. 5, no. 5, pp. 417–429, 1982.

[25] D. P. Koch, D. O. Wheeler, R. Beard, T. McLain, and
K. M. Brink, “Relative multiplicative extended Kalman fil-
ter for observable gps-denied navigation,” [Online]. Available:
https://scholarsarchive.byu.edu/facpub/1963/, 2017.

[26] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[27] W. Niehsen, “Information fusion based on fast covariance intersection
filtering,” in Proceedings of the IEEE International Conference on
Information Fusion, vol. 2, 2002, pp. 901–904.

[28] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2013, pp. 1280–1286.

[29] K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang, “Tightly-coupled
visual-inertial localization and 3-d rigid-body target tracking,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1541–1548, 2019.

2423


