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Abstract

Motivation: We compiled a global database of long-term riverine fish surveys from 46
regional and national monitoring programmes and from individual academic research
efforts, with which numerous basic and applied questions in ecology and global
change research can be explored. Such spatially and temporally extensive datasets
have been lacking for freshwater systems in comparison to terrestrial ones.

Main types of variables contained: The database includes 11,386 time-series of
riverine fish community catch data, including 646,270 species-specific abundance
records, together with metadata related to the geographical location and sampling
methodology of each time-series.

Spatial location and grain: The database contains 11,072 unique sampling locations
(stream reach), spanning 19 countries, five biogeographical realms and 402 hydro-
graphical basins world-wide.

Time period and grain: The database encompasses the period 1951-2019. Each time-
series is composed of a minimum of two yearly surveys (mean = 8 years) and repre-
sents a minimum time span of 10 years (mean = 19 years).

Major taxa and level of measurement: The database includes 944 species of ray-
finned fishes (Class Actinopterygii).

Software format: csv.

Main conclusion: Our collective effort provides the most comprehensive long-term
community database of riverine fishes to date. This unique database should interest
ecologists who seek to understand the impacts of human activities on riverine fish
biodiversity and to model and predict how fish communities will respond to future
environmental change. Together, we hope it will promote advances in macroecologi-

cal research in the freshwater realm.

KEYWORDS
Actinopterygii, biodiversity, conservation, freshwater rivers, freshwater streams, species
abundance, temporal trends, world-wide
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1 | INTRODUCTION

Increasing awareness of the ongoing biodiversity crisis has motivated
global initiatives to compile large-scale datasets of population and
community abundance records that have been sampled consistently
through recent times (Pereira & Cooper, 2006). Included among
these are the Global Population Dynamics Database (Inchausti &
Halley, 2001), the Living Planet Index database (Loh et al., 2005)
and, more recently, the BioTIME database (Dornelas et al., 2018).
These databases have proved extremely useful and allowed major
advancements in ecological research (e.g., Butchart et al., 2010;
Dornelas et al., 2014; Kendall et al., 1998; Sibly et al., 2005); how-
ever, they remain highly biased towards terrestrial and marine as-
semblages (e.g., only 0.50% of the records concern riverine fishes in
BioTIME, the most recent of these initiatives). This is unfortunate be-
cause effective strategic plans for conserving water resources that
support human well-being and ecosystem integrity rely on access
to comprehensive, pertinent, quantitative information regarding the
status and trends of riverine biodiversity over regional to continental
scales (Tickner et al., 2020).

Long-term studies of riverine species are limited because they
require highly specialized and time-consuming sampling meth-
ods. Furthermore, rivers in remote areas are often difficult to ac-
cess (Olden et al., 2010; Radinger et al., 2019). Nevertheless, over
the past few decades, large-scale policies have been enacted in
response to the rapid degradation of freshwater resources, such
as the Water Framework Directive in the EU (Hering et al., 2004)
and the Clean Water Act in the USA (Paulsen et al., 2008), which
require countries to monitor and evaluate the biological integrity of
surface waters through time to adopt quality standards that restore
and maintain ecological integrity (Kuehne et al., 2017). Beyond these
official national and regional monitoring programmes, the temporal
dynamics of riverine systems and their fish communities have also
been assessed through various independent, although often local in
extent, academic research programmes (e.g., Gido, 2017; Matthews
& Marsh-Matthews, 2017). All these institutional and academic
monitoring efforts have produced considerable freshwater fish tem-
poral data that remain largely inaccessible to the broader scientific
community owing to the inherent difficulty in gathering and harmo-
nizing field data from disparate institutions and sampling protocols
(Buss et al., 2015).

To fill this important gap, we present RivFishTIME, a compiled
and curated database of long-term (210 years) surveys of riverine
fish communities at a fine spatial (stream reach) and taxonomic (spe-

cies) resolution, using data-mining approaches to harmonize existing

but currently fragmented biomonitoring datasets. Riverine fish are
extremely diverse, despite the small surface they inhabit on Earth:
they represent c. 40% of all known fish species while occupying <1%
of available aquatic habitat (“the freshwater fish paradox”, sensu
Lévéque et al., 2008; Tedesco et al., 2017). However, they are also
among the most threatened taxonomic groups on Earth because of
the convergence between the high concentration of biodiversity
and the many pressures resulting from human uses of freshwater
resources and habitat change (Reid et al., 2019; Tickner et al., 2020).
The RivFishTIME database provides a unique opportunity to un-
derstand the rate, magnitude and geography of biodiversity trends
and to identify opportunities to mitigate human impacts on riverine
systems (Anderson, 2018; Pereira & Cooper, 2006). Owing to the
paucity of spatially and temporally extensive datasets in freshwa-
ter compared with terrestrial systems (Heino, 2011), RivFishTIME
should also help ecologists to close the gap between these two sys-
tems and to address a wider range of taxa in unravelling large-scale
spatio-temporal biodiversity patterns.

2 | METHODS
2.1 | Data acquisition

We gathered time-series of fish community abundance data for riv-
erine (lotic) ecosystems, broadly defined as freshwater bodies that
are continually or intermittently flowing. We tried, to the extent
possible, to exclude wetlands and brackish habitats (salinity >0.5%o).
Note, however, that owing to the complex nature of the datasets,
we do not guarantee that sites are located on free-flowing river seg-
ments (i.e., natural conditions without impoundment, diversion or
other modification of the waterway). We used the following crite-
ria for data inclusion: (a) the location of the sampling sites is known
and consistent through time; (b) the sampling protocol is known and
consistent through time; (c) the sampling survey sought to quantify
all species in the fish community according to well-established pro-
tocols; (d) species-specific abundances are available for each survey;
(e) surveys at a given site were conducted over a period of 210 years;
and (f) at least two yearly surveys with non-null abundance are avail-
able. We considered abundance measures derived from direct fish
counts, catch-effort indexes such as relative abundances (percent-
ages) and catch per unit effort (CPUE), abundance classes and statis-
tically estimated abundances (e.g., Leslie method; Ricker, 1975).

To identify potential datasets, we used Google Search, Google

Scholar and Dataset Search with different combinations of the
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community”, “temporal” and “monitoring” or “monitoring
program”. We screened the scientific and the grey literature to iden-
tify studies involving temporal datasets of fish communities and con-
ducted similar searches in data repositories such as Dryad (https://
datadryad.org/stash) and FigShare (https://figshare.com/). We also
conducted targeted searches for national and regional monitoring
programmes by adding country names to the previous keywords.
For the European Union, we also used the EuMon database as a
reference to identify fish monitoring databases (available at http://
eumon.ckff.si/about_daeumon.php).

We contacted all the authors and monitoring programme coordi-
nators to request and obtain permission to publish the data, unless
the reusability of data was clearly stated in the online repositories
where the data were released (e.g., Open Government License, CCO
1.0 Universal). We excluded the datasets for which we did not re-

ceive the permission.

2.2 | Quality Control
2.2.1 | Taxonomy

We validated species scientific names using the online database
FishBase (Froese & Pauly, 2019). We used the R package rfish-
base (as of December 2019; Boettiger et al., 2012) and confirmed
names with no match manually using the Catalog of Fishes (Fricke
et al., 2018). We then selected only records involving ray-finned
fishes (Class Actinopterygii), excluding rays and lampreys and uni-

dentified species.

2.2.2 | Coordinates

We harmonized the coordinate system by projecting (if necessary)
the coordinates of the individual datasets using the World Geodetic
System (WGS84) as the reference geographical coordinate system.
We inspected the spatial distribution of the sites visually with re-
spect to their respective country, region or state borders as given
in the original data sources and discarded sites with dubious co-
ordinates (e.g., sites located in the ocean). We also removed sites
whose coordinates were located outside of any hydrographical basin
using the global major river basin GIS layer in HyproSHeDs (Lehner
etal., 2008).

2.2.3 | Consistent sampling methods

We excluded surveys lacking information on sampling methods and
selected only time-series collected using a consistent sampling pro-
tocol through time. The latter evaluation was dataset specific, as
dictated by the complexity of the monitoring scheme and the avail-

able metadata. For instance, surveys were deemed consistent if they
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did not experience any major deviation in sampling protocol, and we
disregarded minor variations (e.g., number of anodes or traps, area
sampled) owing to survey-specific constraints (e.g., water depth,
habitat complexity). In contrast, several monitoring programmes im-
plemented alternate sampling protocols to compare the efficiency of
different gears (e.g., seining versus electrofishing) or sampling meth-
ods (e.g., continuous versus point electrofishing); these time-series,
conducted at the same sites but using different sampling protocols,

were kept separate in the database.

2.2.4 | Duplicates

We removed duplicates within individual datasets based on the co-
ordinates of the sites, date of the survey, and species collected (e.g.,
owing to different name attribution for the same site). We also iden-
tified potential duplicates among datasets (e.g., overlap between
state-level and national databases) based on the coordinates of the
sites rounded to three digits to account for different post-processing
of the individual datasets.

2.3 | Database formatting

Each entry (species abundance record) was assigned a unique (a) site,
(b) survey, and (c) time-series identifier. The site ID corresponds to
a given pair of coordinates, the survey ID to a sampling campaign,
and the time-series ID to a combination of site x sampling proto-
col. We extracted the names of the sampled water bodies (e.g.,
creek, stream, river) from the available metadata associated with
each individual dataset, which we cross-referenced against sev-
eral continental and national geospatial river networks in GIS (e.g.,
Australian Hydrological Geospatial Fabric, Ordnance Survey Open
Rivers). Additionally, each site ID was assigned to a biogeographi-
cal realm following Olson et al. (2001), hydrographical basin fol-
lowing HyproSHeDs (Lehner et al., 2008), and administrative units
(country, region and province) based on its coordinates. For each
sampling ID, we aggregated abundance records if they were given
separately for individuals, size classes or subspecies for each vali-
dated species name or if different sampling passes, hauls or subsam-
pling areas were considered. We also converted time-series species
abundances to densities or CPUE whenever possible. The different
surveys were kept independent when conducted on different occa-
sions within the same calendar year. We provided the year together
with the quarter of the survey (1 = January-March; 2 = April-June;
3 = July-September; 4 = October-December). We also provided the
associated unit (abundance class, count, CPUE, individuals/100 m?,
Leslie index or relative abundance) for each species abundance re-
cord. Finally, we extracted basic information regarding the sampling
protocol, including details on electrofishing (backpack, shore-based
or boat-mounted electrofishers), netting (dip nets, gill nets, beach or
pelagic seines), trapping (minnow traps, fyke nets or hoop nets) and

trawling techniques. Many survey protocols involve a combination
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of sampling approaches, making it difficult to include detailed infor-
mation about the sampling effort in a standardized way. We, there-
fore, encourage the data user to refer to each data source for more
information on the sampling methods.

The database is organized in three tables (.csv format): the
time-series table, the survey table and the information source table.
The tables can be linked using the unique dataset source ID and
time-series ID. The time-series table contains: (a) source ID; (b) site
ID; (c) time-series ID; (d) sampling method; (e) latitude (WGS 84);
(f) longitude (WGS 84); (g) biogeographical realm; (h) hydrographi-
cal basin; (i) country (ISO code); (j) region; (k) province; and () water
body. The survey table contains: (a) time-series ID; (b) survey ID; (c)
sampling year; (d) sampling quarter; (e) species scientific name; (f)
abundance; and (g) abundance unit. The information source table
contains the full citation(s), online link to the raw data when publicly
available, and the name(s) and contact details for the person(s) re-
sponsible for each individual dataset. Data curation was performed
in the R (v.3.6.0) programming environment (R Core Team, 2019).

A list of the data sources is given in the Appendix; for further
information, consult the metadata. A static version of RivFishTIME
is available through the iDiv Biodiversity Portal (Comte et al., 2020),
but we aim to continue interacting with data contributors to update
and add new time-series datasets as they become available (see Data

Availability Statement).

3 | RESULTS AND DISCUSSION

Our database includes 11,386 time-series of riverine fish compiled
from 46 individual source datasets, representing a total of 106,785
surveys and 646,270 individual species abundance records at 11,072
unique sites. Survey-specific species richness across all time-series
ranges from one to 50 species and covers 944 ray-finned fish spe-
cies. The surveyed sites display a wide distribution along longitudinal
and latitudinal gradients, spanning 19 countries, 402 hydrographi-
cal basins and five biogeographical realms (Figure 1a). Despite broad
geographical coverage, we note a clear spatial bias towards the
Palaearctic (European Union) and, to a lesser extent, Nearctic (North
America) and Australasian realms. The abundance time-series are
largely represented by individual counts, followed by densities (in-
dividuals/100 m?) and CPUE (Figure 1b). Abundance classes, Leslie
index and relative abundance represent <1% of the time-series.
Electrofishing is by far the main sampling technique used to record
the time-series, although variations are noticeable among biogeo-
graphical realms (Figure 1c). For instance, dipnetting sampling tech-
niques are represented only in the Neotropics, whereas gillnetting is
the most common gear in the Afrotropics.

The time-series cover a time period from 1951 to 2019 and
are mainly concentrated over the last two decades (average first
year = 1996; Figure 2a). Surveys have been conducted primar-
ily in the third (July-September) and fourth (October-December)
quarters of the year, especially in the Palaearctic and Nearctic

realms (corresponding to periods of low flows), but all quarters are

represented in the different biogeographical realms (Figure 2b). The
mean time span of the time-series is of 19 years and ranges from 10
to 68 years, with the longest time-series located in the Palaearctic
(Figure 2c). The sites were sampled from (non-necessarily consec-
utive) 2 to 52 years, with an average number of yearly surveys of
8 years (Figure 2d). Again, the highest number of yearly surveys was
found in the Palaearctic. The completeness of the time-series (i.e.,
ratio of number of yearly surveys to the overall time span) ranges
from 4 to 100%, with a mean value of 45% (Figure 2e). Importantly,
the degree of completeness is largely uncorrelated to the time span

of the time-series (r = .05).

3.1 | Conclusions

Our collective effort provides the most comprehensive long-term
community database of riverine fishes to date, spanning large bio-
geographical, climatic and hydrographical gradients. Almost all bio-
geographical realms are represented, but it is important to note that
our database is not exempt from spatial bias. For instance, <1% of
the time-series belong to the Afrotropical or Neotropical realms,
whereas 84% belong to the Palaearctic realm. These spatial gaps,
often present in biodiversity-rich regions (tropical areas, Southeast
Asia), are likely to mirror the current networks of freshwater moni-
toring programmes (Buss et al., 2015; Radinger et al., 2019) and
biodiversity research efforts (Martin et al., 2012); hence, they
will be prioritized in future updates of RivFishTIME. We also warn
data users that species abundance might not be directly compa-
rable across sites without a full understanding of the specifics of
the sampling approach and effort, with respect to their selectivity
and efficiency (Benejam et al., 2012; Goffaux et al., 2005; Oliveira
et al,, 2014; Portt et al., 2006), and refer to the original data sources
for more information about the sampling protocols.

Despite these unavoidable limitations associated with sec-
ondary datasets collected for multiple purposes, we are confi-
dent that RivFishTIME will stimulate new research in the fields of
global change ecology and macroecology. Primarily, it will provide
the needed baseline information for conservation and restoration
efforts to bend the curve of freshwater biodiversity loss (Tickner
et al., 2020). For instance, the fish abundance time-series could be
used to assess population or community trends in different rivers
of the world, broadening the taxonomic and spatial representation
of existing indicators of the status of global biodiversity (e.g., Living
Planet Index). Coupled with high-resolution environmental time-
series, this unique database could also help to decipher the underly-
ing drivers of biodiversity changes in riverine systems, including (but
not limited to) habitat fragmentation and destruction, invasive spe-
cies, pollution, hydrological alteration and climate change (e.g., Chen
& Olden, 2020; Erés et al., 2020). In turn, this knowledge could be
integrated into ecological models used to forecast how fish commu-
nities will respond to future environmental change, paving the way
to mitigate those impacts. RivFishTIME could also offer new macro-

ecological insights into the implications of river network complexity
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FIGURE 1

(a) Map showing the distribution of the time-series, where each time-series is represented by a dot, with colours indicating

the biogeographical realm and size representing fish species richness (averaged across surveys). Inset histograms display the distribution of
the time-series according to latitude and longitude. (b,c) Bar plots show the distribution of the time-series with respect to: (b) the type of
abundance; and (c) the primary sampling method. Note the log,,(x + 1) y axes in (b,c) [Colour figure can be viewed at wileyonlinelibrary.com]

on community structure and assembly processes across extensive
environmental gradients (e.g., community composition, population
persistence, spatial synchrony in community dynamics); questions
that have long fascinated ecologists but have so far been explored
primarily through theoretical approaches.
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grants to J.O.Z. (processes nos 2012/20280-5 and 2015/04366-
5) and L.C. (processes nos 2001/13340-7 and 2012/05983-0) and
Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico
(CNPq) through the research grant provided to L.C. (process
no. 301877/2017-3). Data collection for the SourcelD #3 was
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supported by Convenio CT-2017-001714 between University of
Antioquia and Empresas Publicas de Medellin. Part of the data
collection for the SourcelD #4 was supported by the GINOP-
2.3.2.-15-2016-00004 project. Data for the SourcelD #6 were
collected by the Queensland Department of Environment and
Science in collaboration with Healthy Land and Water Limited.
Data collection for the SourcelD #10 was supported by the New
Mexico Department of Game and Fish. We acknowledge CNPq for
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research grants provided to J.R.S.V. (processes nos 302367/2018-7
and 303776/2015-3) (SourcelD #13), and the Japan Society for
the Promotion of Science KAKENHI grant 18K06404 to A.T.
(SourcelD #14). We also acknowledge the assistance of Dr Stefano
Porcellotti, Dr Simona Piccini (UTR Grosseto) and Dr Lorena Di
lulio Chiacchia (UTR Prato), who kindly helped with original data
retrieval for the SourcelD #16. Data collection for the SourcelD
#17 (Ivory Coast) was supported by the World Health Organization
(WHO), Onchocerciasis Control Programme (OCP). Data collec-
tion for the SourcelD #18 was supported by the United States
Fish and Wildlife Service and Oklahoma Department of Wildlife
Conservation through Endangered Species Act funding (Project
E-12). Data collection for the SourcelD #19 (Kings Creek water-
shed) was supported by the NSF Long-Term Ecological Research
Program at Konza Prairie Biological Station. Data collection for
the SourcelD #20 (Upper Little Tennessee River Watershed) was
supported by Brad Stanback, Janirve Foundation, Macon County
Community Foundation, Merck Family Fund, National Fish and
Wildlife Foundation, National Forest Foundation, NC Division
of Water Quality, NC Wildlife Resources Commission, Norcross
Foundation, River Network, Southern Appalachian Man and the
Biosphere Foundation, Tennessee Valley Authority, World Wildlife
Fund, and Z. Smith Reynolds Foundation. Data collection for the
SourcelD #29 was supported by the Companhia Energética de
Minas Gerais (P&D ANEEL/CEMIG GT-487 and GT-599), Fundagéo
de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG),
Coordenacido de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES) and CNPq. Data collection for the SourcelD #35 (Upper
Parana River) was supported by the Long-Term Research Program/
CNPqg-Sitio 6, carried out by Nupélia/UEM (Nucleo de Pesquisas
em Limnologia, Ictiologia e Aquicultura/Universidade Estadual de
Maringa). R.B.D.C. received a scholarship from CAPES, and F.G.B.
received a student scholarship from CNPq and financial support
from the Worldwide Fund for Nature (WWF; Programa Natureza
e Sociedade) for sampling done in 1999 (SourcelD #37). Data col-
lection for the SourcelD #40 was supported by the New Mexico
Department of Game and Fish. Data collection for the SourcelD
#43 was supported by various town councils and the Catalan
Water Agency through the “Observatori de la Tordera” project (led
by Dr Marti Boada).

DATA AVAILABILITY STATEMENT

RivFishTIME is publicly available through the iDiv Biodiversity
Portal: https://doi.org/10.25829/idiv.1873-10-4000. We kindly ask
the users to cite the present paper in addition to the source of each
primary dataset in any published material produced using these data.
We encourage any potential data contributor to contact L.C. with
possible datasets to expand the database. Updates of RivFishTIME
will be curated through the iDiv Biodiversity Portal and also released
through the more specialized Freshwater Biodiversity Data Portal
(https://data.freshwaterbiodiversity.eu/).
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