THEME ARTICLE: QUANTUM COMPUTING

Universal Graph-Based Scheduling for
Quantum Systems

Leon Riesebos ., Brad Bondurant ., and Kenneth R. Brown, Duke University, Durham, NC, 27708, USA

High fidelity operation of a quantum system requires precise tuning of control
parameters. Calibration of a quantum system is often achieved by running complex
series of dependent experiments and a full system calibration can require tens of
calibration experiments to complete. Optimal control parameters drift over time,
and components of experimental quantum systems are susceptible to failure.
Hence, continuous operation of a quantum system requires automated background
processes such as frequent recalibration and monitoring. In this article, we present
a scheduling toolkit that schedules experiments based on a directed acyclic graph

using a configurable traversal algorithm. Our scheduler can be triggered from any
process, enabling universal feedback between the scheduler and the quantum
control system. To demonstrate the capabilities of our system, we implemented a
complex system calibration algorithm based on our scheduling toolkit.

perations on quantum systems are realized
O by applying analog signals to various compo-
nents of the system containing the quantum
bits (qubits). To perform useful computations with
such systems, it is critical that analog signals are pre-
cisely tuned to ensure high fidelity operations on the
qubits.”® The calibration of all different operations
often consists of running complex series of dependent
experiments in a specific order. Full system calibration
can require over 40 calibration experiments and take
up to tens of hours to complete (see supplementary
information in Arute et al.®), and the complexity of this
time-consuming process will further increase when
scaling the number of qubits in the system. Due to the
analog nature of the operations, optimal control
parameters drift over time, requiring continuous moni-
toring and frequent recalibration of the system. To
keep quantum systems continuously operational, we
need automated background processes that can be
simple periodic tasks such as system monitoring as
well as complex sets of dependent experiments for
system calibration.
In this article, we present an open-source schedul-
ing toolkit that can manage generic background pro-
cesses for quantum systems:

0272-1732 © 2021 IEEE

Digital Object Identifier 10.1109/MM.2021.3094968
Date of publication 7 July 2021; date of current version
14 September 2021.

September/October 2021

Published by the IEEE Computer Society

1) Our scheduling toolkit schedules experiments
based on a directed acyclic graph (DAG) using a
configurable traversal algorithm.

2) We introduce triggers to support universal feed-
back for our scheduler.

3) We implement a complex system calibration
algorithm based on our scheduling infrastructure
to demonstrate the capabilities of our system.

Our article is organized as follows. We first intro-
duce the execution model of our system in the “Exe-
cution Model” section. In “Scheduling Graph,” we
present the scheduling graph and the traversal algo-
rithm that is at the core of our scheduling toolkit. The
implementation of the Optimus scheduling algorithm
for system calibration is outlined in the “Optimus
Scheduling Algorithm” section. The implementation of
our scheduling toolkit is discussed in “Implementa-
tion,” and our simulation results are presented in
“Results.” We conclude our paper in “Conclusion.”

Our goal is to make a practical scheduling toolkit and
therefore we need to understand the execution model
of our quantum system. We envision the quantum sys-
tem to work according to the accelerator model as
described by Riesebos et al.*® In such a model, quan-
tum programs are considered hybrid programs that
consist of a classical host program combined with one
or more quantum kernels that can be mapped to a

IEEE Micro

57

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

QUANTUM COMPUTING

58

TABLE 1. Job specification and state.

TABLE 2. Node action enumeration.

Name Type Description Action Description
Experiment Spec The experiment to submit PASS Pass node
Arguments Spec Experiment arguments RUN Run node
Interval Spec | Submit interval time (optional) FORCE Force to run node
Dependencies Spec Set of nodes (optional)

Last submit time | State The last submit time

quantum coprocessor. Note that experiments or cali-
brations are quantum programs in the context of the
accelerator model and the terms can be used inter-
changeably. An analysis of the accelerator model itself
is outside the scope of this article and will not be fur-
ther discussed.

IN THIS ARTICLE, WE PRESENT AN
OPEN-SOURCE SCHEDULING
TOOLKIT THAT CAN MANAGE GENERIC
BACKGROUND PROCESSES FOR
QUANTUM SYSTEMS.

We aim to run the scheduling algorithm as a classi-
cal host-only process that submits experiments asyn-
chronously to a pipeline. Experiments submitted to
the pipeline are sequentially executed by a separate
process, which allows them to have exclusive access
over the quantum coprocessor. The pipeline functions
as a priority queue where higher priority experiments
run first and experiments with equal priority run in the
order in which they were submitted.

The calibration of a quantum system consists of a set
of dependent calibration experiments. Consider a uni-
versal gate set consisting of H, T, and CNOT on n
qubits that are fully connected. There are n? + n gates
that need to be tuned up. Experimental quantum infor-
mation scientists do not first directly tune these gates,
but instead tune the underlying electromagnetic sig-
nals that drive these gates. Additionally, the gates
themselves cannot be fully calibrated in isolation, and
benchmarking experiments are needed to check that
the gates perform well together. A common structure
is to first carefully calibrate the radio frequency sig-
nals, then optimize individual gates, and finally test
with a high-level calibration. Such a set of dependent
jobs, where jobs represent calibration experiments or

IEEE Micro

other periodic tasks, can be represented by a graph
where the jobs are nodes and their dependencies are
directed edges. Based on such a graph, which we will
call a scheduling graph, it is possible to derive an exe-
cution schedule for the jobs. Circular dependencies
are not allowed because they lead to impossible
schedules. Hence, the scheduling graph is a DAG.
DAGs have been used previously to schedule single-
qubit calibrations®>—here we extend that to multi-
qubit and global calibrations as well as any other peri-
odic tasks. A scheduling graph does not need to be
weakly connected and can therefore contain multiple
components. To schedule jobs, we will traverse over
the scheduling graph and submit the experiments rep-
resented by the jobs to the pipeline. In the remainder
of this section, we will lay out the components of the
scheduling graph and the traversal algorithm.

Jobs
A job is a node in the scheduling graph that represents
a specific experiment with a set of fixed arguments.
Additionally, a job specification optionally contains a
submit interval time and a set of dependencies. Every
node in the graph has its persistent state and stores
the last time it was submitted. A list of job specs and
states is shown in Table 1.

It is possible to perform a few functions on jobs. If
a job is submitted, its specified experiment will be sub-
mitted to the pipeline, the last submit time of the job
state will be updated, and the function returns. Our
scheduling process visits a node while traversing the
graph, which will return a node action. A node action
is an enumeration and if a node has expired (i.e., the
current time minus the last submit time is greater
than the submit interval), visiting that node will return
node action RUN. If a node is not expired or has no sub-
mit interval, node action PASS will be returned. At the
start of the graph traversal, it can be useful to force a
run irrespective of the node state. This third node
action FORCE will be discussed in the “Wave Algorithm”
section. All node actions are listed in Table 2.

Wave Algorithm

The wave algorithm is a recursive algorithm used to
traverse over the scheduling graph depth-first. The

September/October 2021

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

TABLE 3. Maps of the scheduling policies. Entries in
parenthesis are not reachable and therefore undefined, but

included for completeness.

Previous, current action LAZY policy GREEDY policy
PASS, PASS PASS PASS
PASS, RUN RUN RUN
(PASS, FORCE) - -

RUN, PASS PASS RUN

RUN, RUN RUN RUN

(RUN, FORCE) - -

FORCE, PASS RUN RUN
FORCE, RUN RUN RUN
(FORCE, FORCE) - -

goal is to have a simple yet highly configurable algo-
rithm that can be used to traverse over parts of the
scheduling graph. Regardless of its configuration, the
wave algorithm will always submit visited nodes, if
any, in an order that satisfies the dependencies of the
scheduling graph.

The wave algorithm uses node actions and a
scheduling policy to determine if nodes need to be
submitted or not. A scheduling policy is a map from
two node actions to a single node action. During the
graph traversal, the scheduling policy determines how
the state of a node influences its dependents. We
define two scheduling policies, LAZY and GREEDY. The LAzZY
scheduling policy will only submit expired and forced
nodes while the GREEDY policy will additionally submit
the dependencies of those nodes. The complete defi-
nitions of the scheduling policies are shown in Table 3.

Given a scheduling graph, the wave algorithm can
be configured by providing a root node (or nodes), a
root action, and a scheduling policy. The wave algo-
rithm visits the current (root) node to obtain the cur-
rent node action. Using the provided scheduling
policy, the previous (root) action and current action
are mapped to a new action. The wave algorithm
recursively calls the dependents of the current node
while passing the new action. When all dependents
are visited, the current node will be submitted if the
new action for the node equals RUN. The algorithm
keeps a set of submitted nodes to make sure every
node is not submitted more than once during a tra-
versal. A single run of the wave algorithm is an atomic
operation that will update the state of the nodes and
submits zero or more experiments to the pipeline. The
basic wave algorithm is shown in Listing 1.

September/October 2021

QUANTUM COMPUTING

def wave (node, prev_action,
policy, submitted=None) :
won
:param node: The current node
:param prev_action: Previous node action
:param policy: The scheduling policy
:param submitted: Set of submitted nodes
wnn
if submitted is None:
submitted = set ()

Visit node to obtain current action

curr_action = node.visit ()

Compute new action based on policy

new_action = policy(prev_action,
curr_action)

Recursion
for n in node.dependents() :
submitted = wave(n, new_action,
policy, submitted)

if new_action is NodeAction.RUN:
if node not in submitted:
Submit node
node.submit ()
submitted.add (node)

return submitted

LISTING 1. The basic wave algorithm.

For a given scheduling graph, different wave con-
figurations lead to different results based on the cur-
rent state of the nodes. Figure 1 shows a simple
scheduling graph with four nodes. Assuming job C is
expired, the submitted jobs for various wave configu-
rations are shown in Table 4. We can see that node
action FORCE can be used as a root action to force one
or more nodes to be submitted.

Configuration options for the wave algorithm not
shown in Listing 1 are depth, start depth, and priority.
The depth parameter is an integer that can limit the
recursion depth of the wave algorithm. With the start
depth parameter, it is possible to only visit and submit
nodes beyond a given recursion depth. By default, nodes
are visited and submitted starting from depth zero and
the recursion depth is not limited. The priority parameter
is passed to the pipeline as the experiment priority when

@%’-@

FIGURE 1. A simple scheduling graph with four jobs. For our

example, we assume that job C is expired.

IEEE Micro

59

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

QUANTUM COMPUTING

60

TABLE 4. Submitted jobs for different wave configurations for
the scheduling graph shown in Figure 1 with job C expired.

Root node Root action Policy Submitted jobs
Job A PASS / RUN LAZY C

Job A FORCE LAZY C, A

Job A PASS GREEDY D, C

Job A RUN / FORCE GREEDY D,C,B,A

submitting a job. A default priority can be configured in
the scheduler, and if a trigger is submitted without the
specification of a priority, the default will be used.

Scheduler Process

As mentioned in the “Execution Model” section, we
envision running our scheduler as a host process. At
startup, the scheduler is given a scheduling graph and
a trigger queue will be created. Any process on the
host can submit triggers to this queue through the
scheduler process where a trigger is defined as a tuple
containing a list of root nodes, a root action, and a
scheduling policy. The scheduler process waits for a
trigger to be submitted after which it will read the
request and run the wave algorithm using the parame-
ters given by the trigger. Note that a running experi-
ment is also a host process that can trigger the
scheduler and an experiment could for example
request a full system calibration on demand by trigger-
ing the scheduler.

When time passes, nodes will expire, and to detect
such events, the scheduler will periodically submit pre-
configured triggers to its queue. The desired system
for background tasks is realized by these periodic
triggers.

Universal Feedback

Some scheduling scenarios cannot be conveniently
expressed by a dependence graph and require univer-
sal classical logic to determine how the scheduler
should proceed. For example, based on the results of
job J, subgraph G4 or G needs to be evaluated by
the scheduler. Such scenarios can still be part of our
scheduling infrastructure by using the schedulers'’ trig-
ger feature to feedback a decision to the scheduler.
We can create an experiment for job J, which decides
based on its results what subgraph needs to be evalu-
ated next. Once the decision is made, the experiment
submits a trigger to the scheduler with the root nodes
of the subgraph that needs to be evaluated. When the
scheduler runs job J it will receive feedback from the

IEEE Micro

experiment through a trigger and the scheduler will
proceed by evaluating the appropriate subgraph.

As mentioned earlier, a use case of particular interest
for the scheduler is that of automated system calibra-
tion. Kelly et al.® proposed the “Optimus” algorithm for
the intelligent calibration of qubit systems. Much like
the approach we have outlined so far, they use a DAG
to represent the calibration experiments and their
dependencies. In this section, we will explain how the
Optimus algorithm can be implemented using our
scheduling infrastructure.

Algorithm Summary

The goal of the Optimus algorithm is to maintain accu-
rate system control parameters while spending as lit-
tle time as possible on calibrations. They achieve this
goal by introducing three levels of interaction with
each calibration in the graph: check_state, check_data, and
calibrate. check_state relies solely on the specification of
a timeout period (roughly corresponding to the drift
timescale of the parameter in question) and previous
system knowledge—namely the last time the parame-
ter in question was calibrated or verified by check_data
and the last time any dependencies were calibrated.
Based on that knowledge, check_state will either report
a pass or a failure. check_data is intended to be a mini-
mal experiment to determine whether a parameter
value is still valid—referred to as in-spec or out-of-
spec. If check_state reports a failure, the check_data exper-
iment will run and report either in-spec, out-of-spec, or
bad-data (explained in further detail below).

Each level of interaction is increasingly time-con-
suming and is designed to execute only if the previous
level fails. If check_data reports out-of-spec, then cali-
brate will run the full calibration and update the value
of the parameter in question. The primary graph tra-
versal routine used by Optimus (dubbed maintain by the
authors) is a simple greedy, depth-first traversal. While
the calibration interactions are executed lazily, to main-
tain traversal is greedy in the sense that each calibra-
tion job must be submitted in order for check_state to
run. There is also a secondary traversal routine called
diagnose, which only runs in the special case that check_-
data reports bad data. In that case, the assumption is
that some part of our knowledge of the system is inac-
curate. Thus, diagnose triggers a traversal of the sub-
graph containing the immediate dependencies of the
calibration in question, in which check_state is skipped
and each calibration is forced to run (at least)

September/October 2021

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

. . \
| maintain | \ diagnose |
AY J AY 4

~ - ~ -

- -

QUANTUM COMPUTING

Calibration Job

fail

\ A 2

check_state check_data

out-of-spec failure

T
pass

in-spec 1 bad-data

> calibrate

T
success

diagnose

return update last
check, return dependencies

update last
cal, return

FIGURE 2. A state machine representation of the behavior of a single calibration in our implementation of the Optimus algo-

rithm. The dashed lines represent entry and exit points for the different triggers. Returning from a calibration continues the cur-

rent wave.

check_data. If any of the dependencies in question also
report bad data, then another diagnose subgraph tra-
versal will be recursively triggered on that node. The
execution model for a single calibration is illustrated
in Figure 2.

Algorithm Implementation

To integrate the Optimus algorithm into our schedul-
ing toolkit, we introduce a new type of job called a cal-
ibration job. The implementation of the calibration job
builds upon the scheduling infrastructure presented in
the “Scheduling Graph” section and adds the traversal
logic specific to the Optimus algorithm. While a job
represents a single experiment to be run, a calibration
job represents two experiments—one for check_data
and one for calibrate. The check_state logic is incorpo-
rated into the calibration job definition via the specifi-
cation of a timeout. The full list of calibration job
specs and states is shown in Table 5.

TABLE 5. Calibration job specification and state.

Name Type Description

Check Spec check_data experiment

experiment

Cal. experiment Spec calibrate experiment

Check arguments | Spec Check experiment
arguments

Cal. arguments Spec | Cal. experiment arguments

Cal. timeout Spec | Calibration interval (optional)

Dependencies Spec Set of nodes (optional)

Last cal. time State The last successful cal.

Last check time State The last successful check

September/October 2021

In our framework, the maintain traversal is initi-
ated by a periodic trigger and the diagnose traversals
are initiated by triggers submitted by any calibration
jobs that report bad data from the check_data experi-
ment. The root nodes of the maintain trigger are all
calibrations with no incoming dependencies, and
the trigger has a GREEDY scheduling policy with root
action FORCE to ensure that the check_state logic is
executed for every calibration. The diagnose triggers
are GREEDY (root action FORCE), with the root node
specified as the calibration job representing the cur-
rent experiment, and a depth and start depth of one
so that only the immediate dependents are submit-
ted. Additionally, it has a priority that is one level
higher than the priority of the current experiment to
ensure that the diagnose wave takes precedence
over previously submitted experiments.

In implementing the Optimus algorithm, we also
had to address a question that was only partially
addressed by Kelly et al.%: What do we want to do if
the algorithm fails to successfully calibrate a parame-
ter? Kelly et al.® mention that they raise a “DiagnoseEr-
ror” in the case that a diagnose wave is triggered
without resolution. We take a slightly different
approach and introduce a generic FailedCalibrationError,
which is to be raised whenever a calibration runs but
fails to achieve the desired accuracy. Then, we exe-
cute the diagnose waves blindly, without checking
whether or not any dependencies were recalibrated as
a result. After the diagnose wave, we simply run the cali-
bration and allow it to pass or fail independently of
the result of diagnose. If a calibration does fail for any
reason, we assume that external intervention is
required and halt all execution indefinitely until it is
manually resumed.

IEEE Micro

61

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

QUANTUM COMPUTING

62

Our scheduling toolkit is implemented in Python as
part of our open-source library Duke ARTIQ extensions
(DAX),’® which is tightly integrated with the advanced
real-time infrastructure for quantum physics (ARTIQ)
open-source software and hardware ecosystem.'
The ARTIQ control infrastructure provides real-time
control of our quantum systems and is used by dozens
of research groups with over 200 systems deployed
worldwide. Our software can schedule any ARTIQ
experiment and is therefore fully compatible with
existing systems that use ARTIQ.

The DAX scheduling toolkit allows users to define
jobs and calibration jobs as classes that inherit the
DAX Job and CalibrationJob base classes, respectively.
The job specifications shown in Tables 1 and 5 are pro-
vided as class variables. The Optimus algorithm is
implemented as part of the CalibrationJob class and the
implementation builds upon the implementation of the
Job class. Users can define a scheduler by creating a
class that inherits the DaxScheduler base class, which is
the class that contains the implementation of the
wave algorithm as defined in the "Wave Algorithm" sec-
tion. The set of nodes in the scheduling graph and the
specifications for the periodic triggers as described in
the “Scheduler Process” section are provided as class
variables of the user-defined scheduler class. Addition-
ally, a user-defined scheduler class inherits the ARTIQ
Experiment class, which marks it as an executable experi-
ment for the ARTIQ runtime. Once the user-defined
scheduler is started, the scheduling graph will be con-
structed based on the specified nodes, a timer will be
set for periodic triggers, and the process will start a
Python asyncio TCP server to receive incoming trigger
requests. When the running scheduler receives a trig-
ger, the scheduler will run the wave algorithm using
the parameters given by the trigger.

ARTIQ includes a management system, the ARTIQ
master, that queues experiments, handles data stor-
age, and supervises the quantum coprocessor. The
pipeline for experiments, as described in the “Execu-
tion Model” section, is already implemented by the
ARTIQ master, and experiments submitted to the
pipeline by a scheduler will be executed by the ARTIQ
master process. The ARTIQ master manages a central-
ized database, which we use to store the state of the
nodes. The same database also stores system configu-
ration and calibration results that need to be commu-
nicated from one experiment to the next. The part of
our DAX library dedicated to system organization,
real-time data processing, and data organization will
be covered in an upcoming paper.

IEEE Micro

All our scheduling code is tested thoroughly using
static test cases as well as random testing. We tested
our implementation of the Optimus algorithm by gen-
erating random DAGs containing calibration jobs
whose interaction methods return random results.
The DAGs are generated by randomly populating the
upper triangle of an n by n adjacency matrix (where n
is the number of nodes in the graph) with ones with
some probability p, resulting in a random partial order
over the set of nodes from which a DAG can be
derived. We run our implementation over a single call
to maintain (including any subcalls to diagnose), and verify
that our traversal matches the specification by Kelly
et al.® Due to the existence of multiple valid traversals
for a single call to maintain, we developed a recursive
matching algorithm to determine if a traversal is valid
given the graph structure and the calibration states/
results.

To benchmark the efficiency of the Optimus algorithm
compared to a naive full calibration, we chose to simu-
late our implementation over a variety of conditions.
For our simulations, we choose a fixed number of
nodes and run our implementation of the maintain tra-
versal (and any diagnose sub-traversals) over randomly
generated DAGs. To reflect realistic conditions, there
must be a cause—effect relationship for a check_data
experiment to return bad data. The purpose of the
bad-data condition is to indicate that there are depen-
dencies that are out-of-spec but did not time out. In
other words, bad-data indicates an unresolved out-of-
spec dependence. Hence, in the initial graph construc-
tion, we completely randomize the results of check_state
(whether or not a node has timed out), but we only
randomize the results of check_data to select between
in-spec and out-of-spec. At runtime, if a node reaches
the check_data stage and any of its dependencies (or
subdependencies) remain out-of-spec, the node will
return bad data. Additionally, in order to create a fair
comparison between the Optimus algorithm and a
naive full calibration of the system, we must guarantee
that the system is fully calibrated by the end of the
maintain wave. To achieve that, we force any root nodes
to always time out, so that any unresolved out-of-spec
nodes will be properly diagnosed and calibrated via
the above bad-data logic.
The parameters for our simulation are as follows:

1) the probability that a node is out-of-spec in our
initial graph construction;

September/October 2021

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

-
Q
-~

1.0

1.0

0.8
>0.8
%
0.6
£06
o
304 0.4
()
£
Fo0.2
0.2
0.0
0.0
(b)

1o 1.0
208 0.8
%

S 0.6 0.6
o
504
S 0.4
£
F 0.2
0.2
0.0
0.0

00 02 04 06 08 1.0
Out-of-spec Probability

FIGURE 3. (a) Proportion of calibrations performed and
(b) proportion of check experiments performed versus time-
out and out-of-spec probability.

2) the probability that a node has timed out
(excluding the forced timeouts on the root
nodes).

We sweep each of these probabilities from 0 to 1in
intervals of 0.2, conducting 20 iterations at each point,
each over a different random DAG. We choose the
number of nodes to be n =20 as a middle ground
between the number calibrations required for ion-trap
systems in our lab (n ~ 10) and current superconduct-
ing systems (n ~ 40).> The DAG is generated via the
method described in the “Implementation” section,
with p = 0.5, resulting in a moderately connected
graph.

The results of our simulation can be found in
Figure 3. Figure 3(a) shows the total number of cali-
brations performed normalized to the number of
nodes versus the timeout and out-of-spec probabil-
ity. We normalize the number of nodes in the graph
to represent the relative efficiency of the Optimus
algorithm compared to a full calibration. We can
see that for out-of-spec probability 0 and 1 the

September/October 2021

QUANTUM COMPUTING

proportion of calibrations performed is 0 and 1,
respectively, as expected. For other out-of-spec
probabilities, we see that the number of performed
calibrations reduces when the timeout probability
increases. This result is explained by the behavior
resulting from a bad-data return value in the check_-
data stage. A higher likelihood of timeouts makes it
more likely that any out-of-spec nodes are detected
at or near the source. Conversely, a lower timeout
probability means out-of-spec nodes are more likely
to go unresolved, increasing the likelihood of bad-
data results (and subsequent calibrations) in the
parent nodes. In the worst case scenario, the out-
of-spec node goes undetected until the root nodes
of the graph are reached, triggering a cascade of
bad-data results and calibrations until the out-of-
spec node is reached and resolved.

In Figure 3(b), we see a graph with the number
of check experiments performed relative to the
number of nodes. The relative number of executed
check experiments increases when the timeout
probability or the out-of-spec probability increases.
More timed-out experiments result in more check
experiments to run while an increased number of
out-of-spec nodes will cause more bad-data condi-
tions, triggering more check experiments to run. It
is possible for a calibration to be checked more
than once throughout a traversal, in the case that
it times out, gets checked, and then a parent cali-
bration triggers a diagnose traversal due to an unre-
solved out-of-spec on another node. The result is
that in some cases—particularly when the out-of-
spec probability is high and the timeout probability
is low—the total number of checks can exceed the
number of nodes in the graph.

OUR SCHEDULER IS DRIVEN BY A
CONFIGURABLE WAVE ALGORITHM
AND IS CAPABLE OF RUNNING
SIMPLE PERIODIC TASKS AS WELL AS
COMPLEX SYSTEM CALIBRATION
ROUTINES AS BACKGROUND
PROCESSES.

To understand the overall efficiency of the Opti-
mus algorithm, we need to take into account both
the number of calibrations as well as the number
of check experiments that are executed. As
described in the “Algorithm Summary” section, the
check experiment is a quick experiment to check if

IEEE Micro

63

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

QUANTUM COMPUTING

64

Check weight = 0.25

Timeout Probability
©c o o o »
N R o o O

o
=)

0.0 0.2 0.4 06 0.8 1.0
Out-of-spec Probability

Check weight = 0.5

0.0 0.2 04 0.6 0.8 1.0
Out-of-spec Probability

Check weight =1

0.0 02 0.4 06 08 1.0
Out-of-spec Probability

FIGURE 4. Relative efficiency of the full Optimus algorithm (checks and calibrations) with the cost of the check experiments

weighted relative to the calibrations.

a parameter is still calibrated, which normally takes
significantly less time compared to a full calibration
of the same parameter. We have estimated the
overall efficiency of the Optimus algorithm for dif-
ferent weights of the check experiments compared
to the calibration experiments and the results are
shown in Figure 4. The weights represent how long
the check experiment takes relative to the calibra-
tion itself. While lower cost check experiments are
ideal, we can see in Figure 4 that the Optimus algo-
rithm can be beneficial even for more costly
checks, depending on the out-of-spec probability.
Specifically, the Optimus algorithm is more efficient
than a naive full calibration for out-of-spec proba-
bilities < 0.4 and < 0.6 with check weights 0.5 and
0.25, respectively. In the case that the check exper-
iment takes the same amount of time as the cali-
bration (i.e., check weight 1), Figure 4 shows that
the Optimus algorithm is essentially always detri-
mental to performance, as expected.

WE HAVE PRESENTED AN OPEN-
SOURCE SCHEDULING TOOL-KIT THAT
SCHEDULES JOBS BASED ON A
DIRECTED ACYCLIC GRAPH. OUR
SCHEDULER IS DRIVEN BY A
CONFIGURABLE WAVE ALGORITHM
AND IS CAPABLE OF RUNNING
SIMPLE PERIODIC TASKS AS WELL AS
COMPLEX SYSTEM CALIBRATION
ROUTINES AS BACKGROUND
PROCESSES.

IEEE Micro

In terms of the limitations of our simulations, Figure 4
likely represents a lower bound of the efficiency of the
Optimus algorithm. In a more realistic scenario, the
timeouts would reflect the relative stability of the cali-
brations (i.e., how often a calibration goes out-of-spec),
rather than the two results being drawn from indepen-
dent probability distributions. Careful selection of time-
outs would result in fewer bad-data results, and thus
fewer unnecessary calibrations. Hence, we expect the
Optimus algorithm to perform better in scenarios where
timeouts are chosen carefully.

We have presented an open-source scheduling toolkit that
schedules jobs based on a directed acyclic graph. Our
scheduler is driven by a configurable wave algorithm and is
capable of running simple periodic tasks as well as complex
system calibration routines as background processes. We
enable universal feedback between the scheduler and any
running experiment or process by using triggers that will
start new traversals on the scheduling graph. To demon-
strate the capabilities of our toolkit, we have implemented
the Optimus system calibration algorithm using our sched-
uling infrastructure and used our implementation to
benchmark the efficiency of the algorithm.

This work was supported by EPiQC, a National Science
Foundation (NSF) Expeditions in Computing (1832377),
the Office of the Director of National Intelligence—Intel-
ligence Advanced Research Projects Activity through
an Army Research Office contract (W911NF-16-1-0082),
the NSF STAQ project (1818914), and the U.S. Depart-
ment of Energy, Office of Advanced Scientific Comput-
ing Research QSCOUT Program.

September/October 2021

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

1. V.Schafer et al., “Fast quantum logic gates with trapped-
ion qubits,” Nature, vol. 555, no. 7694, pp. 75-78, 2018.

2. N.Wittler et al., "An integrated tool-set for control,
calibration and characterization of quantum devices
applied to superconducting qubits,” 2020. [Online].
Available: https://journals.aps.org/prapplied/abstract/
10.1103/PhysRevApplied.15.034080

3. F.Arute et al. “Quantum supremacy using a
programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

4. L.Riesebos et al., “Quantum accelerated computer
architectures,” in Proc. IEEE Int. Symp. Circuits Syst.,
2019, pp. 1-4.

5. X.Fuet al “eqasm: An executable quantum instruction
set architecture,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2019, pp. 224-237.

6. K. M. Svore et al., “Q#: Enabling scalable quantum
computing and development with a high-level domain-
specific language,” 2018, doi: 10.1145/3183895.3183901.

7. R.S.Smith, M. J. Curtis, and W. J. Zeng, “A practical
quantum instruction set architecture,” 2016,
arXiv:1608.03355v2.

8. F.T.Chong, D. Franklin, and M. Martonosi, “Programming
languages and compiler design for realistic quantum
hardware,” Nature, vol. 549, no. 7671, pp. 180-187, 2017.

9. J.Kelly, P. O'Malley, M. Neeley, H. Neven, and J. M.
Martinis, “Physical qubit calibration on a directed
acyclic graph,” 2018, arXiv:1803.03226.

10. L.Riesebos, B. Bondurant, and K. R. Brown, “Duke artiq
extensions (Dax).” 2021. [Online]. Available: https://
gitlab.com/duke-artiq/dax, 2021.

September/October 2021

QUANTUM COMPUTING

11. S. Bourdeauducq et al., “Artiq 1.0,” May 2016. [Online].
Available: https://github.com/m-labs/ARTIQ

12. G. Kasprowicz et al., “Artiq and Sinara: Open
software and hardware stacks for quantum physics,”
in Proc. OSA Quantum 2.0 Conf.,2020, Paper
QTu8B.14.

LEON RIESEBOS is currently working toward a Ph.D. degree
with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC, USA. His research interests
include quantum computer architectures, control software,
and full-stack system architectures. Riesebos received an
M.Sc. degree in embedded systems from Delft University of
Technology in 2016. Contact him at leon.riesebos@duke.edu.

BRAD BONDURANT is currently working toward a Ph.D.
degree with the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC, USA. His research
interests include the control and calibration of quantum
hardware. Bondurant received a B.S. degree in electrical engi-
neering, computer engineering, and physics from North Caro-
lina State University, Raleigh, NC, USA, in 2018. Contact him
at brad.bondurant@duke.edu.

KENNETH R. BROWN is a Professor of electrical and com-
puter engineering with Duke University, Durham, NC, USA and
the Director of the NSF Software Enabled Architectures for
Quantum codesign project developing applications, software,
and hardware for ion trap quantum computers. He is a Senior
Member of IEEE. Contact him at kenneth.r.brown@duke.edu.

IEEE Micro

65

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

