
THEME ARTICLE: QUANTUM COMPUTING

Universal Graph-Based Scheduling for
Quantum Systems
Leon Riesebos , Brad Bondurant , and Kenneth R. Brown, Duke University, Durham, NC, 27708, USA

High fidelity operation of a quantum system requires precise tuning of control

parameters. Calibration of a quantum system is often achieved by running complex

series of dependent experiments and a full system calibration can require tens of

calibration experiments to complete. Optimal control parameters drift over time,

and components of experimental quantum systems are susceptible to failure.

Hence, continuous operation of a quantum system requires automated background

processes such as frequent recalibration and monitoring. In this article, we present

a scheduling toolkit that schedules experiments based on a directed acyclic graph

using a configurable traversal algorithm. Our scheduler can be triggered from any

process, enabling universal feedback between the scheduler and the quantum

control system. To demonstrate the capabilities of our system, we implemented a

complex system calibration algorithm based on our scheduling toolkit.

O
perations on quantum systems are realized

by applying analog signals to various compo-

nents of the system containing the quantum

bits (qubits). To perform useful computations with

such systems, it is critical that analog signals are pre-

cisely tuned to ensure high fidelity operations on the

qubits.1–3 The calibration of all different operations

often consists of running complex series of dependent

experiments in a specific order. Full system calibration

can require over 40 calibration experiments and take

up to tens of hours to complete (see supplementary

information in Arute et al.3), and the complexity of this

time-consuming process will further increase when

scaling the number of qubits in the system. Due to the

analog nature of the operations, optimal control

parameters drift over time, requiring continuous moni-

toring and frequent recalibration of the system. To

keep quantum systems continuously operational, we

need automated background processes that can be

simple periodic tasks such as system monitoring as

well as complex sets of dependent experiments for

system calibration.

In this article, we present an open-source schedul-

ing toolkit that can manage generic background pro-

cesses for quantum systems:

1) Our scheduling toolkit schedules experiments

based on a directed acyclic graph (DAG) using a

configurable traversal algorithm.

2) We introduce triggers to support universal feed-

back for our scheduler.

3) We implement a complex system calibration

algorithm based on our scheduling infrastructure

to demonstrate the capabilities of our system.

Our article is organized as follows. We first intro-

duce the execution model of our system in the “Exe-

cution Model” section. In “Scheduling Graph,” we

present the scheduling graph and the traversal algo-

rithm that is at the core of our scheduling toolkit. The

implementation of the Optimus scheduling algorithm

for system calibration is outlined in the “Optimus

Scheduling Algorithm” section. The implementation of

our scheduling toolkit is discussed in “Implementa-

tion,” and our simulation results are presented in

“Results.”We conclude our paper in “Conclusion.”

EXECUTIONMODEL
Our goal is to make a practical scheduling toolkit and

therefore we need to understand the execution model

of our quantum system. We envision the quantum sys-

tem to work according to the accelerator model as

described by Riesebos et al.4–8 In such a model, quan-

tum programs are considered hybrid programs that

consist of a classical host program combined with one

or more quantum kernels that can be mapped to a

0272-1732 � 2021 IEEE

Digital Object Identifier 10.1109/MM.2021.3094968

Date of publication 7 July 2021; date of current version

14 September 2021.

September/October 2021 Published by the IEEE Computer Society IEEE Micro 57

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

quantum coprocessor. Note that experiments or cali-

brations are quantum programs in the context of the

accelerator model and the terms can be used inter-

changeably. An analysis of the accelerator model itself

is outside the scope of this article and will not be fur-

ther discussed.

IN THIS ARTICLE, WE PRESENT AN

OPEN-SOURCE SCHEDULING

TOOLKIT THAT CANMANAGE GENERIC

BACKGROUND PROCESSES FOR

QUANTUM SYSTEMS.

We aim to run the scheduling algorithm as a classi-

cal host-only process that submits experiments asyn-

chronously to a pipeline. Experiments submitted to

the pipeline are sequentially executed by a separate

process, which allows them to have exclusive access

over the quantum coprocessor. The pipeline functions

as a priority queue where higher priority experiments

run first and experiments with equal priority run in the

order in which they were submitted.

SCHEDULING GRAPH
The calibration of a quantum system consists of a set

of dependent calibration experiments. Consider a uni-

versal gate set consisting of H, T, and CNOT on n

qubits that are fully connected. There are n2 þ n gates

that need to be tuned up. Experimental quantum infor-

mation scientists do not first directly tune these gates,

but instead tune the underlying electromagnetic sig-

nals that drive these gates. Additionally, the gates

themselves cannot be fully calibrated in isolation, and

benchmarking experiments are needed to check that

the gates perform well together. A common structure

is to first carefully calibrate the radio frequency sig-

nals, then optimize individual gates, and finally test

with a high-level calibration. Such a set of dependent

jobs, where jobs represent calibration experiments or

other periodic tasks, can be represented by a graph

where the jobs are nodes and their dependencies are

directed edges. Based on such a graph, which we will

call a scheduling graph, it is possible to derive an exe-

cution schedule for the jobs. Circular dependencies

are not allowed because they lead to impossible

schedules. Hence, the scheduling graph is a DAG.

DAGs have been used previously to schedule single-

qubit calibrations9—here we extend that to multi-

qubit and global calibrations as well as any other peri-

odic tasks. A scheduling graph does not need to be

weakly connected and can therefore contain multiple

components. To schedule jobs, we will traverse over

the scheduling graph and submit the experiments rep-

resented by the jobs to the pipeline. In the remainder

of this section, we will lay out the components of the

scheduling graph and the traversal algorithm.

Jobs
A job is a node in the scheduling graph that represents

a specific experiment with a set of fixed arguments.

Additionally, a job specification optionally contains a

submit interval time and a set of dependencies. Every

node in the graph has its persistent state and stores

the last time it was submitted. A list of job specs and

states is shown in Table 1.

It is possible to perform a few functions on jobs. If

a job is submitted, its specified experiment will be sub-

mitted to the pipeline, the last submit time of the job

state will be updated, and the function returns. Our

scheduling process visits a node while traversing the

graph, which will return a node action. A node action

is an enumeration and if a node has expired (i.e., the

current time minus the last submit time is greater

than the submit interval), visiting that node will return

node action RUN. If a node is not expired or has no sub-

mit interval, node action PASS will be returned. At the

start of the graph traversal, it can be useful to force a

run irrespective of the node state. This third node

action FORCE will be discussed in the “Wave Algorithm”

section. All node actions are listed in Table 2.

Wave Algorithm
The wave algorithm is a recursive algorithm used to

traverse over the scheduling graph depth-first. The

TABLE 1. Job specification and state.

Name Type Description

Experiment Spec The experiment to submit

Arguments Spec Experiment arguments

Interval Spec Submit interval time (optional)

Dependencies Spec Set of nodes (optional)

Last submit time State The last submit time

TABLE 2. Node action enumeration.

Action Description

PASS Pass node

RUN Run node

FORCE Force to run node

58 IEEE Micro September/October 2021

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

goal is to have a simple yet highly configurable algo-

rithm that can be used to traverse over parts of the

scheduling graph. Regardless of its configuration, the

wave algorithm will always submit visited nodes, if

any, in an order that satisfies the dependencies of the

scheduling graph.

The wave algorithm uses node actions and a

scheduling policy to determine if nodes need to be

submitted or not. A scheduling policy is a map from

two node actions to a single node action. During the

graph traversal, the scheduling policy determines how

the state of a node influences its dependents. We

define two scheduling policies, LAZY and GREEDY. The LAZY

scheduling policy will only submit expired and forced

nodes while the GREEDY policy will additionally submit

the dependencies of those nodes. The complete defi-

nitions of the scheduling policies are shown in Table 3.

Given a scheduling graph, the wave algorithm can

be configured by providing a root node (or nodes), a

root action, and a scheduling policy. The wave algo-

rithm visits the current (root) node to obtain the cur-

rent node action. Using the provided scheduling

policy, the previous (root) action and current action

are mapped to a new action. The wave algorithm

recursively calls the dependents of the current node

while passing the new action. When all dependents

are visited, the current node will be submitted if the

new action for the node equals RUN. The algorithm

keeps a set of submitted nodes to make sure every

node is not submitted more than once during a tra-

versal. A single run of the wave algorithm is an atomic

operation that will update the state of the nodes and

submits zero or more experiments to the pipeline. The

basic wave algorithm is shown in Listing 1.

For a given scheduling graph, different wave con-

figurations lead to different results based on the cur-

rent state of the nodes. Figure 1 shows a simple

scheduling graph with four nodes. Assuming job C is

expired, the submitted jobs for various wave configu-

rations are shown in Table 4. We can see that node

action FORCE can be used as a root action to force one

or more nodes to be submitted.

Configuration options for the wave algorithm not

shown in Listing 1 are depth, start depth, and priority.

The depth parameter is an integer that can limit the

recursion depth of the wave algorithm. With the start

depth parameter, it is possible to only visit and submit

nodes beyond a given recursion depth. By default, nodes

are visited and submitted starting from depth zero and

the recursion depth is not limited. The priority parameter

is passed to the pipeline as the experiment priority when

TABLE 3. Maps of the scheduling policies. Entries in

parenthesis are not reachable and therefore undefined, but

included for completeness.

Previous, current action LAZY policy GREEDY policy

PASS, PASS PASS PASS

PASS, RUN RUN RUN

(PASS, FORCE) - -

RUN, PASS PASS RUN

RUN, RUN RUN RUN

(RUN, FORCE) - -

FORCE, PASS RUN RUN

FORCE, RUN RUN RUN

(FORCE, FORCE) - -

LISTING 1. The basic wave algorithm.

FIGURE 1. A simple scheduling graph with four jobs. For our

example, we assume that job C is expired.

September/October 2021 IEEE Micro 59

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

submitting a job. A default priority can be configured in

the scheduler, and if a trigger is submitted without the

specification of a priority, the default will be used.

Scheduler Process
As mentioned in the “Execution Model” section, we

envision running our scheduler as a host process. At

startup, the scheduler is given a scheduling graph and

a trigger queue will be created. Any process on the

host can submit triggers to this queue through the

scheduler process where a trigger is defined as a tuple

containing a list of root nodes, a root action, and a

scheduling policy. The scheduler process waits for a

trigger to be submitted after which it will read the

request and run the wave algorithm using the parame-

ters given by the trigger. Note that a running experi-

ment is also a host process that can trigger the

scheduler and an experiment could for example

request a full system calibration on demand by trigger-

ing the scheduler.

When time passes, nodes will expire, and to detect

such events, the scheduler will periodically submit pre-

configured triggers to its queue. The desired system

for background tasks is realized by these periodic

triggers.

Universal Feedback
Some scheduling scenarios cannot be conveniently

expressed by a dependence graph and require univer-

sal classical logic to determine how the scheduler

should proceed. For example, based on the results of

job J , subgraph GA or GB needs to be evaluated by

the scheduler. Such scenarios can still be part of our

scheduling infrastructure by using the schedulers’ trig-

ger feature to feedback a decision to the scheduler.

We can create an experiment for job J , which decides

based on its results what subgraph needs to be evalu-

ated next. Once the decision is made, the experiment

submits a trigger to the scheduler with the root nodes

of the subgraph that needs to be evaluated. When the

scheduler runs job J it will receive feedback from the

experiment through a trigger and the scheduler will

proceed by evaluating the appropriate subgraph.

OPTIMUS SCHEDULING
ALGORITHM

As mentioned earlier, a use case of particular interest

for the scheduler is that of automated system calibra-

tion. Kelly et al.9 proposed the “Optimus” algorithm for

the intelligent calibration of qubit systems. Much like

the approach we have outlined so far, they use a DAG

to represent the calibration experiments and their

dependencies. In this section, we will explain how the

Optimus algorithm can be implemented using our

scheduling infrastructure.

Algorithm Summary
The goal of the Optimus algorithm is to maintain accu-

rate system control parameters while spending as lit-

tle time as possible on calibrations. They achieve this

goal by introducing three levels of interaction with

each calibration in the graph: check_state, check_data, and

calibrate. check_state relies solely on the specification of

a timeout period (roughly corresponding to the drift

timescale of the parameter in question) and previous

system knowledge—namely the last time the parame-

ter in question was calibrated or verified by check_data

and the last time any dependencies were calibrated.

Based on that knowledge, check_state will either report

a pass or a failure. check_data is intended to be a mini-

mal experiment to determine whether a parameter

value is still valid—referred to as in-spec or out-of-

spec. If check_state reports a failure, the check_data exper-

iment will run and report either in-spec, out-of-spec, or

bad-data (explained in further detail below).

Each level of interaction is increasingly time-con-

suming and is designed to execute only if the previous

level fails. If check_data reports out-of-spec, then cali-

brate will run the full calibration and update the value

of the parameter in question. The primary graph tra-

versal routine used by Optimus (dubbed maintain by the

authors) is a simple greedy, depth-first traversal. While

the calibration interactions are executed lazily, to main-

tain traversal is greedy in the sense that each calibra-

tion job must be submitted in order for check_state to

run. There is also a secondary traversal routine called

diagnose, which only runs in the special case that check_-

data reports bad data. In that case, the assumption is

that some part of our knowledge of the system is inac-

curate. Thus, diagnose triggers a traversal of the sub-

graph containing the immediate dependencies of the

calibration in question, in which check_state is skipped

and each calibration is forced to run (at least)

TABLE 4. Submitted jobs for different wave configurations for

the scheduling graph shown in Figure 1 with job C expired.

Root node Root action Policy Submitted jobs

Job A PASS / RUN LAZY C

Job A FORCE LAZY C, A

Job A PASS GREEDY D, C

Job A RUN / FORCE GREEDY D, C, B, A

60 IEEE Micro September/October 2021

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

check_data. If any of the dependencies in question also

report bad data, then another diagnose subgraph tra-

versal will be recursively triggered on that node. The

execution model for a single calibration is illustrated

in Figure 2.

Algorithm Implementation
To integrate the Optimus algorithm into our schedul-

ing toolkit, we introduce a new type of job called a cal-

ibration job. The implementation of the calibration job

builds upon the scheduling infrastructure presented in

the “Scheduling Graph” section and adds the traversal

logic specific to the Optimus algorithm. While a job

represents a single experiment to be run, a calibration

job represents two experiments—one for check_data

and one for calibrate. The check_state logic is incorpo-

rated into the calibration job definition via the specifi-

cation of a timeout. The full list of calibration job

specs and states is shown in Table 5.

In our framework, the maintain traversal is initi-

ated by a periodic trigger and the diagnose traversals

are initiated by triggers submitted by any calibration

jobs that report bad data from the check_data experi-

ment. The root nodes of the maintain trigger are all

calibrations with no incoming dependencies, and

the trigger has a GREEDY scheduling policy with root

action FORCE to ensure that the check_state logic is

executed for every calibration. The diagnose triggers

are GREEDY (root action FORCE), with the root node

specified as the calibration job representing the cur-

rent experiment, and a depth and start depth of one

so that only the immediate dependents are submit-

ted. Additionally, it has a priority that is one level

higher than the priority of the current experiment to

ensure that the diagnose wave takes precedence

over previously submitted experiments.

In implementing the Optimus algorithm, we also

had to address a question that was only partially

addressed by Kelly et al.9: What do we want to do if

the algorithm fails to successfully calibrate a parame-

ter? Kelly et al.9 mention that they raise a “DiagnoseEr-

ror” in the case that a diagnose wave is triggered

without resolution. We take a slightly different

approach and introduce a generic FailedCalibrationError,

which is to be raised whenever a calibration runs but

fails to achieve the desired accuracy. Then, we exe-

cute the diagnose waves blindly, without checking

whether or not any dependencies were recalibrated as

a result. After the diagnose wave, we simply run the cali-

bration and allow it to pass or fail independently of

the result of diagnose. If a calibration does fail for any

reason, we assume that external intervention is

required and halt all execution indefinitely until it is

manually resumed.

FIGURE 2. A state machine representation of the behavior of a single calibration in our implementation of the Optimus algo-

rithm. The dashed lines represent entry and exit points for the different triggers. Returning from a calibration continues the cur-

rent wave.

TABLE 5. Calibration job specification and state.

Name Type Description

Check

experiment

Spec check_data experiment

Cal. experiment Spec calibrate experiment

Check arguments Spec Check experiment

arguments

Cal. arguments Spec Cal. experiment arguments

Cal. timeout Spec Calibration interval (optional)

Dependencies Spec Set of nodes (optional)

Last cal. time State The last successful cal.

Last check time State The last successful check

September/October 2021 IEEE Micro 61

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

IMPLEMENTATION
Our scheduling toolkit is implemented in Python as

part of our open-source library Duke ARTIQ extensions

(DAX),10 which is tightly integrated with the advanced

real-time infrastructure for quantum physics (ARTIQ)

open-source software and hardware ecosystem.11,12

The ARTIQ control infrastructure provides real-time

control of our quantum systems and is used by dozens

of research groups with over 200 systems deployed

worldwide. Our software can schedule any ARTIQ

experiment and is therefore fully compatible with

existing systems that use ARTIQ.

The DAX scheduling toolkit allows users to define

jobs and calibration jobs as classes that inherit the

DAX Job and CalibrationJob base classes, respectively.

The job specifications shown in Tables 1 and 5 are pro-

vided as class variables. The Optimus algorithm is

implemented as part of the CalibrationJob class and the

implementation builds upon the implementation of the

Job class. Users can define a scheduler by creating a

class that inherits the DaxScheduler base class, which is

the class that contains the implementation of the

wave algorithm as defined in the “Wave Algorithm” sec-

tion. The set of nodes in the scheduling graph and the

specifications for the periodic triggers as described in

the “Scheduler Process” section are provided as class

variables of the user-defined scheduler class. Addition-

ally, a user-defined scheduler class inherits the ARTIQ

Experiment class, which marks it as an executable experi-

ment for the ARTIQ runtime. Once the user-defined

scheduler is started, the scheduling graph will be con-

structed based on the specified nodes, a timer will be

set for periodic triggers, and the process will start a

Python asyncio TCP server to receive incoming trigger

requests. When the running scheduler receives a trig-

ger, the scheduler will run the wave algorithm using

the parameters given by the trigger.

ARTIQ includes a management system, the ARTIQ

master, that queues experiments, handles data stor-

age, and supervises the quantum coprocessor. The

pipeline for experiments, as described in the “Execu-

tion Model” section, is already implemented by the

ARTIQ master, and experiments submitted to the

pipeline by a scheduler will be executed by the ARTIQ

master process. The ARTIQ master manages a central-

ized database, which we use to store the state of the

nodes. The same database also stores system configu-

ration and calibration results that need to be commu-

nicated from one experiment to the next. The part of

our DAX library dedicated to system organization,

real-time data processing, and data organization will

be covered in an upcoming paper.

All our scheduling code is tested thoroughly using

static test cases as well as random testing. We tested

our implementation of the Optimus algorithm by gen-

erating random DAGs containing calibration jobs

whose interaction methods return random results.

The DAGs are generated by randomly populating the

upper triangle of an n by n adjacency matrix (where n

is the number of nodes in the graph) with ones with

some probability p, resulting in a random partial order

over the set of nodes from which a DAG can be

derived. We run our implementation over a single call

to maintain (including any subcalls to diagnose), and verify

that our traversal matches the specification by Kelly

et al.9 Due to the existence of multiple valid traversals

for a single call to maintain, we developed a recursive

matching algorithm to determine if a traversal is valid

given the graph structure and the calibration states/

results.

RESULTS
To benchmark the efficiency of the Optimus algorithm

compared to a naive full calibration, we chose to simu-

late our implementation over a variety of conditions.

For our simulations, we choose a fixed number of

nodes and run our implementation of the maintain tra-

versal (and any diagnose sub-traversals) over randomly

generated DAGs. To reflect realistic conditions, there

must be a cause–effect relationship for a check_data

experiment to return bad data. The purpose of the

bad-data condition is to indicate that there are depen-

dencies that are out-of-spec but did not time out. In

other words, bad-data indicates an unresolved out-of-

spec dependence. Hence, in the initial graph construc-

tion, we completely randomize the results of check_state

(whether or not a node has timed out), but we only

randomize the results of check_data to select between

in-spec and out-of-spec. At runtime, if a node reaches

the check_data stage and any of its dependencies (or

subdependencies) remain out-of-spec, the node will

return bad data. Additionally, in order to create a fair

comparison between the Optimus algorithm and a

naive full calibration of the system, we must guarantee

that the system is fully calibrated by the end of the

maintain wave. To achieve that, we force any root nodes

to always time out, so that any unresolved out-of-spec

nodes will be properly diagnosed and calibrated via

the above bad-data logic.

The parameters for our simulation are as follows:

1) the probability that a node is out-of-spec in our

initial graph construction;

62 IEEE Micro September/October 2021

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

2) the probability that a node has timed out

(excluding the forced timeouts on the root

nodes).

We sweep each of these probabilities from 0 to 1 in

intervals of 0.2, conducting 20 iterations at each point,

each over a different random DAG. We choose the

number of nodes to be n ¼ 20 as a middle ground

between the number calibrations required for ion-trap

systems in our lab (n � 10) and current superconduct-

ing systems (n � 40).3 The DAG is generated via the

method described in the “Implementation” section,

with p ¼ 0:5, resulting in a moderately connected

graph.

The results of our simulation can be found in

Figure 3. Figure 3(a) shows the total number of cali-

brations performed normalized to the number of

nodes versus the timeout and out-of-spec probabil-

ity. We normalize the number of nodes in the graph

to represent the relative efficiency of the Optimus

algorithm compared to a full calibration. We can

see that for out-of-spec probability 0 and 1 the

proportion of calibrations performed is 0 and 1,

respectively, as expected. For other out-of-spec

probabilities, we see that the number of performed

calibrations reduces when the timeout probability

increases. This result is explained by the behavior

resulting from a bad-data return value in the check_-

data stage. A higher likelihood of timeouts makes it

more likely that any out-of-spec nodes are detected

at or near the source. Conversely, a lower timeout

probability means out-of-spec nodes are more likely

to go unresolved, increasing the likelihood of bad-

data results (and subsequent calibrations) in the

parent nodes. In the worst case scenario, the out-

of-spec node goes undetected until the root nodes

of the graph are reached, triggering a cascade of

bad-data results and calibrations until the out-of-

spec node is reached and resolved.

In Figure 3(b), we see a graph with the number

of check experiments performed relative to the

number of nodes. The relative number of executed

check experiments increases when the timeout

probability or the out-of-spec probability increases.

More timed-out experiments result in more check

experiments to run while an increased number of

out-of-spec nodes will cause more bad-data condi-

tions, triggering more check experiments to run. It

is possible for a calibration to be checked more

than once throughout a traversal, in the case that

it times out, gets checked, and then a parent cali-

bration triggers a diagnose traversal due to an unre-

solved out-of-spec on another node. The result is

that in some cases—particularly when the out-of-

spec probability is high and the timeout probability

is low—the total number of checks can exceed the

number of nodes in the graph.

OUR SCHEDULER IS DRIVEN BY A

CONFIGURABLEWAVE ALGORITHM

AND IS CAPABLE OF RUNNING

SIMPLE PERIODIC TASKS ASWELL AS

COMPLEX SYSTEM CALIBRATION

ROUTINES AS BACKGROUND

PROCESSES.

To understand the overall efficiency of the Opti-

mus algorithm, we need to take into account both

the number of calibrations as well as the number

of check experiments that are executed. As

described in the “Algorithm Summary” section, the

check experiment is a quick experiment to check if

FIGURE 3. (a) Proportion of calibrations performed and

(b) proportion of check experiments performed versus time-

out and out-of-spec probability.

September/October 2021 IEEE Micro 63

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

a parameter is still calibrated, which normally takes

significantly less time compared to a full calibration

of the same parameter. We have estimated the

overall efficiency of the Optimus algorithm for dif-

ferent weights of the check experiments compared

to the calibration experiments and the results are

shown in Figure 4. The weights represent how long

the check experiment takes relative to the calibra-

tion itself. While lower cost check experiments are

ideal, we can see in Figure 4 that the Optimus algo-

rithm can be beneficial even for more costly

checks, depending on the out-of-spec probability.

Specifically, the Optimus algorithm is more efficient

than a naive full calibration for out-of-spec proba-

bilities � 0:4 and � 0:6 with check weights 0.5 and

0.25, respectively. In the case that the check exper-

iment takes the same amount of time as the cali-

bration (i.e., check weight 1), Figure 4 shows that

the Optimus algorithm is essentially always detri-

mental to performance, as expected.

WEHAVE PRESENTED AN OPEN-

SOURCE SCHEDULING TOOL-KIT THAT

SCHEDULES JOBS BASED ON A

DIRECTED ACYCLIC GRAPH. OUR

SCHEDULER IS DRIVEN BY A

CONFIGURABLEWAVE ALGORITHM

AND IS CAPABLE OF RUNNING

SIMPLE PERIODIC TASKS ASWELL AS

COMPLEX SYSTEM CALIBRATION

ROUTINES AS BACKGROUND

PROCESSES.

In termsof the limitations of our simulations, Figure 4

likely represents a lower bound of the efficiency of the

Optimus algorithm. In a more realistic scenario, the

timeouts would reflect the relative stability of the cali-

brations (i.e., how often a calibration goes out-of-spec),

rather than the two results being drawn from indepen-

dent probability distributions. Careful selection of time-

outs would result in fewer bad-data results, and thus

fewer unnecessary calibrations. Hence, we expect the

Optimus algorithm to perform better in scenarios where

timeouts are chosen carefully.

CONCLUSION
Wehave presented an open-source scheduling toolkit that

schedules jobs based on a directed acyclic graph. Our

scheduler is driven by a configurablewave algorithmand is

capableof runningsimpleperiodic tasksaswell ascomplex

system calibration routines as background processes. We

enable universal feedback between the scheduler and any

running experiment or process by using triggers that will

start new traversals on the scheduling graph. To demon-

strate the capabilities of our toolkit, we have implemented

theOptimus system calibration algorithmusing our sched-

uling infrastructure and used our implementation to

benchmark the efficiency of the algorithm.

ACKNOWLEDGMENTS
This work was supported by EPiQC, a National Science

Foundation (NSF) Expeditions in Computing (1832377),

theOffice of theDirector ofNational Intelligence—Intel-

ligence Advanced Research Projects Activity through

an Army Research Office contract (W911NF-16-1-0082),

the NSF STAQ project (1818914), and the U.S. Depart-

ment of Energy, Office of Advanced Scientific Comput-

ing Research QSCOUTProgram.

FIGURE 4. Relative efficiency of the full Optimus algorithm (checks and calibrations) with the cost of the check experiments

weighted relative to the calibrations.

64 IEEE Micro September/October 2021

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
1. V. Sch€afer et al., “Fast quantum logic gateswith trapped-

ion qubits,”Nature, vol. 555, no. 7694, pp. 75–78, 2018.

2. N. Wittler et al., “An integrated tool-set for control,

calibration and characterization of quantum devices

applied to superconducting qubits,” 2020. [Online].

Available: https://journals.aps.org/prapplied/abstract/

10.1103/PhysRevApplied.15.034080

3. F. Arute et al. “Quantum supremacy using a

programmable superconducting processor,” Nature,

vol. 574, no. 7779, pp. 505–510, 2019.

4. L. Riesebos et al., “Quantum accelerated computer

architectures,” in Proc. IEEE Int. Symp. Circuits Syst.,

2019, pp. 1–4.

5. X. Fu et al. “eqasm: An executable quantum instruction

set architecture,” in Proc. IEEE Int. Symp. High Perform.

Comput. Archit., 2019, pp. 224–237.

6. K. M. Svore et al., “Q#: Enabling scalable quantum

computing and development with a high-level domain-

specific language,” 2018, doi: 10.1145/3183895.3183901.

7. R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical

quantum instruction set architecture,” 2016,

arXiv:1608.03355v2.

8. F. T. Chong, D. Franklin, andM.Martonosi, “Programming

languages and compiler design for realistic quantum

hardware,”Nature, vol. 549, no. 7671, pp. 180–187, 2017.

9. J. Kelly, P. O’Malley, M. Neeley, H. Neven, and J. M.

Martinis, “Physical qubit calibration on a directed

acyclic graph,” 2018, arXiv:1803.03226.

10. L. Riesebos, B. Bondurant, and K. R. Brown, “Duke artiq

extensions (Dax).” 2021. [Online]. Available: https://

gitlab.com/duke-artiq/dax, 2021.

11. S. Bourdeauducq et al., “Artiq 1.0,”May 2016. [Online].

Available: https://github.com/m-labs/ARTIQ

12. G. Kasprowicz et al., “Artiq and Sinara: Open

software and hardware stacks for quantum physics,”

in Proc. OSA Quantum 2.0 Conf.,2020, Paper

QTu8B.14.

LEON RIESEBOS is currently working toward a Ph.D. degree

with the Department of Electrical and Computer Engineering,

Duke University, Durham, NC, USA. His research interests

include quantum computer architectures, control software,

and full-stack system architectures. Riesebos received an

M.Sc. degree in embedded systems from Delft University of

Technology in 2016. Contact him at leon.riesebos@duke.edu.

BRAD BONDURANT is currently working toward a Ph.D.

degree with the Department of Electrical and Computer Engi-

neering, Duke University, Durham, NC, USA. His research

interests include the control and calibration of quantum

hardware. Bondurant received a B.S. degree in electrical engi-

neering, computer engineering, and physics from North Caro-

lina State University, Raleigh, NC, USA, in 2018. Contact him

at brad.bondurant@duke.edu.

KENNETH R. BROWN is a Professor of electrical and com-

puter engineering with Duke University, Durham, NC, USA and

the Director of the NSF Software Enabled Architectures for

Quantum codesign project developing applications, software,

and hardware for ion trap quantum computers. He is a Senior

Member of IEEE. Contact him at kenneth.r.brown@duke.edu.

September/October 2021 IEEE Micro 65

QUANTUM COMPUTING

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on October 07,2021 at 17:28:21 UTC from IEEE Xplore. Restrictions apply.

