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Abstract: Many quantum algorithms for machine learning require access to classical data in superpo-

sition. However, for many natural data sets and algorithms, the overhead required to load the data

set in superposition can erase any potential quantum speedup over classical algorithms. Recent work

by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue,

relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated

using this paradigm to perform k-means clustering on near-term quantum computers, by casting it

as a QAOA optimization instance over a small coreset. We used numerical simulations to compare

the performance of this approach to classical k-means clustering. We were able to find data sets

with which coresets work well relative to random sampling and where QAOA could potentially

outperform standard k-means on a coreset. However, finding data sets where both coresets and

QAOA work well—which is necessary for a quantum advantage over k-means on the entire data

set—appears to be challenging.

Keywords: quantum computing; machine learning; QAOA

1. Introduction

Machine learning algorithms for analyzing and manipulating large data sets have
become an integral part of today’s world. Much of the rapid progress made in this area over
the past decade can be attributed to the availability of large data sets for machine learning
algorithms to train on, and advances in hardware, such as the graphics processing unit,
which accelerate the training process. The last decade has also witnessed the emergence
of prototype quantum computers which have been implemented using various qubit
technologies, including superconducting circuits, trapped ions, neutral atoms, and solid
state devices [1–4]. The intersection between the emergent machine learning and quantum
computing fields has produced many new algorithms which promise further advances in
data processing capabilities.

Quantum algorithms such as HHL for solving linear systems [5] and Grover’s algo-
rithm for database search [6] are known to achieve exponential and quadratic speedups
over their classical counterparts, respectively. However, many quantum algorithms for
machine learning, including HHL and Grover search, also assume the use of an input data
model (e.g., quantum RAM [7]) which allows them to easily load classical data onto the
quantum processor. This model is currently unrealistic [8]. Without access to quantum
RAM, which presents the state |ψ〉 on demand, we resort to using a quantum circuit to
generate the desired state |ψ〉. Unfortunately, as the size of classical data sets grows to
millions or billions of data points, the time and space requirements necessary to load the
data may erase any potential quantum speedup.

Recent work by Harrow [9] introduced a new paradigm of hybrid quantum-classical
computing to address this issue. The main idea is to take a large classical data set X and
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use a classical computer, potentially aided by a small quantum processor, to construct
a coreset: a smaller data set X ′ combined with a weight function w : X ′ → R≥0 which
sufficiently summarizes the original data. If the coreset is small enough (but still a faithful
representation of X), one could hope to optimize under the coreset with a small quantum
computer. Prior work has focused on finding coreset construction algorithms that allow
machine learning models to train on the coreset while remaining competitive with models
that are trained on the entire data set [10–12].

In [9], Harrow proposes three new hybrid algorithms which cover a range of machine
learning tasks including maximum a posteriori estimation, inference, and optimization. We
evaluate the first of Harrow’s new algorithms and adapt it to noisy quantum computers.
The general version of this algorithm takes a data set X and cost function f as input, uses a
classical computer to construct a coreset (X ′, w), and then uses a quantum optimization
algorithm to perform maximum a posteriori estimation ([9], Algorithm 1). A specific
instance of the algorithm is also outlined which solves the k-means clustering problem ([9],
Algorithm 1.1). The specific case of k-means is the focus of this paper. At a high level, this
algorithm solves k-means clustering on a data set X by first constructing a coreset (X ′, w),
and then optimally clustering (X ′, w) with Grover search.

However, Grover search is unlikely to be tenable on noisy, near-term devices [13]. As
proposed in [9], we reformulated the coreset clustering problem as a quantum approximate
optimization algorithm (QAOA) [14] instance. QAOA is variationally optimized and is
able to tolerate some noise when coupled with a robust classical optimizer. For simplicity,
we restricted our study to 2-means clustering problems, and Algorithm 1 summarizes
our approach.

Algorithm 1: 2-means clustering via coresets+QAOA.

Input : A data set x1, ..., xn ∈ R
d

Output : Cluster centers µ−1 and µ+1 which approximately minimize

∑
i∈[n]

min
j∈{−1,+1}

∥∥xi − µj

∥∥2

Algorithm :
1. Construct a coreset (X ′, w) of size m.
2. Construct a jth order m-qubit Hamiltonian for the coreset.
3. Use QAOA to variationally approximate an energy-maximizing eigenstate of

the Hamiltonian.
4. Treat the 0/1 assignment of the eigenstate as the k = 2 clustering.

Our contributions are as follows:

• We implemented algorithms for coresets and evaluated their performance on real
data sets.

• We cast coreset clustering to a Hamiltonian optimization problem that can be solved
with QAOA, and herein we demonstrate how to break past the assumption of equal
cluster weights.

• We benchmarked the performance of Algorithm 1 across six different data sets, includ-
ing real and synthetic data, comparing the 2-means clusterings found by quantum and
classical means. We found that some data sets are better suited to coreset summariza-
tion than others, which can play a large role in the quality of the clustering solutions.

In our evaluations, the sizes of the coresets constructed in step 1 of Algorithm 1 are
limited by the size of the quantum computer used in step 3. For some data sets, this
restriction on coreset size negatively impacts the performance of clustering on the coresets
when compared to k-means on the entire data set. Nonetheless, we were able to find cases
where QAOA-based clustering on the coresets is competitive with the standard 2-means
algorithms on the same coresets. This suggests that the performance of Algorithm 1 will
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improve as quantum processors add additional high-quality qubits, thereby allowing them
to utilize larger coresets. However, our evaluations also suggest that either large m (i.e.,
many qubits) or a high order QAOA implementation (i.e., many gates) will be needed for a
possible quantum advantage on typical data sets.

The rest of the paper is organized as follows. In Section 2 we give an overview
of the k-means clustering problem. Section 3 discusses coresets for k-means. Section 4
describes the reduction from k-means to QAOA. Finally, we present and discuss our results
in Sections 5 and 6.

2. k-Means Clustering

The k-means clustering problem takes an input data set x1, . . . , xn ∈ R
d and aims

to identify cluster centers µ1, . . . , µk that are near the input data. Typically, k ≪ n; for
simplicity we focus on k = 2. Foreshadowing quantum notation, we will prefer to denote
our cluster centers as µ−1 and µ+1. Then, the objective of this 2-means problem is to find
the partitioning of [n] into two sets S−1 and S+1 that minimizes the squared-distances from
the closest cluster centers:

C(µ±1) = ∑
i∈S−1

‖xi − µ−1‖
2 + ∑

i∈S+1

‖xi − µ+1‖
2. (1)

While the cluster centers µ−1 and µ+1 appear to be free variables, it can be shown [15] that
they are uniquely determined by the S−1 and S+1 partitionings that minimize Equation (1).
In particular, these cluster centers are the centroids:

µ−1 =
∑i∈S−1

xi

|S−1|
and µ+1 =

∑i∈S+1
xi

|S+1|
.

Thus, in principle the objective function in Equation (1) can be minimized by eval-
uating all 2n possible partitionings of [n] into S−1 and S+1. However, this brute force
exponential scaling is impractical, even for modest n. Instead, k-means is typically ap-
proached with heuristics such as Lloyd’s algorithm [16], which does not guarantee optimal
solutions in polynomial time, but performs well in practice. Moreover, relatively simple
improvements to the initialization step in Lloyd’s algorithm leads to performance guaran-
tees. Notably, the k-means++ initialization procedure guarantees (8 ln k + 2)-competitive
solutions in the worst case [17].

For many data sets, Lloyd’s algorithm augmented with k-means++ initialization
rapidly converges to close-to-optimal (often optimal) solutions. However, in general,
finding the optimal cluster centers is a computationally hard problem. Even for k = 2,
the problem is NP-hard [18].

3. Coresets for k-Means

An ǫ-coreset for k-means is a set of m (typically ≪ n) weighted points such that the
optimal k-means clustering on the coreset, C̃∗, is within (1 + ǫ) of the optimal clustering
on the entire data set of n points, C∗. In other words C̃∗ − C∗ ≤ ǫ. A coreset data reduction
is appealing because we would prefer to solve a problem with m ≪ n points. The size m
needed depends on k, the target error ǫ, the data set dimension d, and the probability of
success δ. We implemented two coreset procedures. The first, BLK17 ([10], Algorithm 2),

gives a coreset size of m = O(
dk3 log k+k2 log 1

δ

ǫ2 ). The second, BFL16 ([19], Algorithm 2), gives

a coreset size of m = O(ǫ−2k log k min( k
ǫ , d)).

One might hope to pick a target ǫ and then pick m accordingly. However, the exact
expressions—including constants—for the scaling of m are not readily available. Regardless,
our goal was simply to probe the limits of small current-generation quantum computers,
which have at most a few dozen qubits. Therefore, we approached coreset construction
in the reverse direction by first choosing m and then evaluating the performance of the
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resulting coreset. As discussed in the next section, m will equal the number of qubits we
need. Therefore, we chose m ∈ {5, 10, 15, 20} for our evaluations.

For implementations of the BLK17 and BFL16 coreset algorithms, an (α, β) bicriterion
approximation is required. We used D2 sampling, which is the initialization step for k-
means++ [17], as our bicriterion approximation. We chose β = 2, which corresponds to
picking βk = 4 centroids in the bicriterion approximation. For each data set, we selected
the best (lowest cost) approximation from 10 repeated trials, as is also done by Scikit-learn’s
default implementation of k-means.

During our evaluations, we did not find significant differences between the perfor-
mance of BLK17 and BFL16. In fact, we did not observe a significant improvement over
random sampling either, except for a synthetic data set with a few rare and distant clusters.

4. Coreset k-Means via QAOA

4.1. QAOA

The quantum approximate optimization algorithm (QAOA) [14] is a quantum vari-
ational algorithm inspired by the quantum adiabatic algorithm [20]. The adiabatic the-
orem implies that, for a large enough T, starting in the |+〉⊗m state and performing
time-evolution under the time dependent Hamiltonian:

H(t) =

(
1 −

t

T

) m

∑
i=1

Xi +
t

T
HP

from t = 0 to t = T results in a state with high overlap with the m qubit state |zsol〉, where

|zsol〉 = arg max|z〉〈z|HP|z〉. For concreteness we assume that HP is diagonal such that

|zsol〉 is a computational basis state. One can approximate this adiabatic evolution with a
finite Trotterized evolution

|zsol〉 ≈ |β, γ〉 ≡
p

∏
j=1

e−iβ j HM e−iγj HP |+〉⊗m (2)

for certain β, γ, where HM =
m

∑
i=1

Xi. In the limit p → ∞, the Trotter decomposition and the

adiabatic theorem imply that there exist β and γ such that this approximation is exact; a
priori, however, it is not obvious what one should choose for these parameters, for finite
p, to tighten the approximation in Equation (2). Therefore, QAOA combines the ansatz
of Equation (2) with a classical optimization loop, performing the maximization of the
function F(|β, γ〉) = 〈β, γ|HP|β, γ〉.

By the variational principle, for large enough p the arg max of this optimization will
approximate |zsol〉. In practice, a quantum computer evaluates F(|β, γ〉) (or, e.g., gradients
of F(|β, γ〉)), whilst a classical computer uses the function evaluations to heuristically
optimize the function. In the remainder of this section we describe how one can interpret
the solution of the k-means problem as the highest excited state of a diagonal Hamiltonian,
which can be heuristically found using QAOA. Prior work [21] also proposed and exper-
imentally demonstrated clustering via QAOA; however, our work explicitly derives the
cost functions for the equally and unequally weighted cases of k-means and targets fully
connected Max-Cut instances with the use of coresets.

4.2. Hamiltonians for k-Means Clustering: Equal Cluster Weights

Under the weighted vectors of a coreset of size m, the 2-means objective function is
similar to that of Equation (1), but now each input vector xi has an associated weight wi.
The modified objective function is then

C̃(µ±1) = ∑
i∈S−1

wi‖xi − µ−1‖
2 + ∑

i∈S+1

wi‖xi − µ+1‖
2, (3)
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W−1W+1‖µ−1 − µ+1‖
2 = ∑

i

(
1 +

2

W ∑
l

wlZl if i ∈ S−1, else 1 −
2

W ∑
l

wlZl

)
w2

i ‖xi‖
2

+ 2 ∑
i<j

(
1 +

2

W ∑
l

wlZl if i, j ∈ S−1, 1 −
2

W ∑
l

wlZl if i, j ∈ S+1, else − 1

)
wiwjxi · xj.

The indicator functions can also be rewritten as Pauli expressions, resulting in the
final problem Hamiltonian:

∑
i

(
1 −

2Zi

W ∑
l

wlZl

)
w2

i ‖xi‖
2 + 2 ∑

i<j

(
ZiZj −

Zi + Zj

W ∑
l

wlZl

)
wiwjxi · xj. (10)

Interestingly, accounting for unequal cluster weights produces a problem Hamiltonian
(Equaton (10)) containing only quadratic terms. Therefore, implementing this Hamilto-
nian on a quantum computer as part of QAOA would require only single and two-body
interactions, i.e., no more difficult to implement than the zeroth order case that assumes
equal cluster weights. However, for higher-order Taylor expansions, the degree of the
Hamiltonian will increase. A second order Taylor expansion will have cubic terms, a third
order Taylor expansion will have quartic terms, and so forth. These higher order terms are
implemented via multi-qubit operations whose decomposition into single and two-qubit
gates can quickly exhaust available quantum resources.

5. Results

5.1. Data Sets

Table 1 describes the six data sets used in our evaluations. The Epilepsy, Pulsars,
and Yeast data sets are parts of the UCI Machine Learning Repository [22]. For Common
Objects in Context (COCO), the image pixels were preprocessed with the img2vec [23]
library. This library translates the pixels of each image into a 512-dimensional feature
vector using a Resnet-18 model [24] pretrained on the ImageNet data set [25].

5.2. Evaluation Methodology

We evaluated 2-means on each of these data sets using four different approaches.
The first three evaluation modes use classical k-means to find a clustering over the entire
data set, a random coreset, and a coreset generated with BFL16. The final evaluation mode
finds a clustering via QAOA (Algorithm 1) over the same BFL16 coreset. For classical
clustering, we used Scikit-learn’s [26] default implementation of k-means, which initializes
clusters with the best of 10 k-means++ [17] and terminates either after 300 iterations or upon
stabilizing within 10−4 relative tolerance. This default implementation is an aspirational,
though realistic, target against which to compare QAOA. The cost function we compute is
the “sum of squared distances to nearest cluster” objective function in Equation (3), also
referred to as inertia [27].

In all of our evaluations the lowest clustering cost was found by evaluating k-means
over the entire data set. We used this fact to rescale the coreset clustering costs, dividing
their scores by the lower bound achieved with k-means over the full data set. This rescaling
lets us better visualize the differences in performance between the different coresets and
clustering methods.

On each data set, we computed m = 5, 10, 15, and 20 uniformly random samples, and
m-coresets using BFL16. Then, we ran the 2-means clustering implementation on each
coreset, and evaluated the cost of the output solution against the entire data set. For each
data set, we ran this process 10 times. For five of the six data sets, we report the best of 10
results, since in practice one would indeed choose the best result. For the synthetic data
set, we report average, best, and worst costs, to emphasize that the coreset algorithm is
consistently better than random sampling.
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Table 1. Data sets evaluated.

Data Set Description

CIFAR-10 10,000 images (32 × 32 pixels) from CIFAR-10 data set [28]. 1000 images
per category.

COCO 5000 images from Common Objects in Context validation data set [29].
Images translated into feature vectors of dimension 512.

Epilepsy Epileptic seizure recognition data set from [30]. 11,500 vectors of
dimension 179.

Pulsars Pulsar candidates from HTRU2 data set [31]. 1600/17,900 of
9-dimensional feature vectors are pulsars.

Yeast Localization sites of proteins [32]. 1500 8-dimensional vectors.

Synthetic 40,000 512-dimensional points drawn from 11 random Gaussian clusters.
Ten clusters contribute 5 points each, last cluster has majority.

In addition to these classical results, we took the best m = 5 and m = 10 BFL16
coresets and constructed Hamiltonians for them, as described in Section 4. For m = 10, we
constructed Hamiltonians with zeroth, first, second, and infinite order Taylor expansions.
For m = 5, we only constructed the zeroth order Hamiltonian (i.e., assuming equal cluster
weights as in Section 4.2), because this is a realistic experimental target for current devices
(see the evaluation in Section 5.4).

For each Hamiltonian, we found its highest-energy eigenstate by brute force search
over the 2m basis states; for larger instances where brute force searching is impossible,
one would approximately optimize with QAOA. This is the solution one would expect to
find with Grover’s search algorithm, and it can also be interpreted as a bound on the best
possible QAOA performance. The highest eigenstate is the weighted Max-Cut solution, or
equivalently, the best cluster assignment on the coreset. For the infinite order Hamiltonian,
this highest eigenstate is truly the optimal clustering of the coreset. However, note that the
optimal clustering on a coreset does not necessarily correspond to the optimal clustering on
the whole data set. This is because the coreset is only an approximation of the underlying
data set.

5.3. Coreset and QAOA Bound Results

Figure 3 shows the results of using the methodology above on our six data sets.
The green and orange bars, which are entirely classical, correspond to 2-means on the
random and BFL16 coresets, respectively (note that all of the costs are scaled with respect to
k-means over the full data set). Interestingly, for the majority of our benchmarked data sets,
the BFL16 and random coresets show similar performances. The only data set whereon
BFL16 consistently outperformed the random coresets was the synthetic data set, which
has 39,950 points in a localized Gaussian cluster, along with 50 points in ten distant clusters.
On this data set, random sampling did not perform well, because the random samples
were unlikely to capture points outside of the big cluster. This suggests we may see gains
from using coresets on data sets oriented towards anomaly-detection.

The blue bars in Figure 3 correspond to the energy-maximizing eigenstate of each
Hamiltonian, which was constructed from a BFL16 coreset of m elements and a given
Taylor expansion order (indicated by the tick labels). QAOA attempts to find this energy-
maximizing eigenstate, but it is only an approximate solver. Therefore, the blue bars
can be interpreted as a lower bound on the cost of a QAOA-based solution. However,
the approximate nature of QAOA could serve as a benefit to the clustering algorithm
overall. Recall that the final clustering cost is evaluated with respect to the whole data set,
and the coreset is only an approximation of this data set. Therefore, a suboptimal eigenstate
of the Hamiltonian (i.e., a suboptimal clustering of the coreset) can actually outperform the
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and 10 BFL16 coresets for Epilepsy shown in Figure 3. There is a significant amount of
noise present in the hardware executions compared to the noiseless simulation, but when
the swap network was utilized, the 01100 solution state was still the most likely state to
be measured. Without the swap network, the highest probability state would result in a
suboptimal partition.

Figure 5. An experimental evaluation of a QAOA circuit implemented with and without the swap

network [33,34]. Each distribution consists of 8192 individual shots. The noisy execution of the

quantum hardware becomes apparent when comparing the experimental results with the noiseless

simulation. However, by utilizing the swap network, one of the optimal bitstrings (01100) can still be

identified in the output distribution with high probability.

6. Discussion and Conclusions

In this work we investigated the performance of k-means clustering via QAOA, using
offline coresets to effectively reduce the size of the target data sets. Indeed, there do exist
data sets where coresets seem to work well in practice, such as the synthetic data set we
analyzed in Section 5.3. Furthermore, as our Hamiltonian construction of the problem is
all-to-all connected, our QAOA instance circumvents the light cone oriented issues [36]
associated with running constant p-depth QAOA on sparse bounded-degree graphs.

However, in practice, coresets constructed via BFL16 and random sampling had
similar performances on the standard classification data sets we benchmarked. This may
have been due to the small m we restricted our coresets to, with the motivation of fitting
the problem instance to today’s quantum computers. Alternatively, it may have been due
to the fact that these “natural” data sets have near equally sized optimal clusters. Indeed,
the synthetic data set where coresets performed well had artificially rare clusters that naive
random sampling would miss—however, this worked to the detriment of our Hamiltonian
construction of the problem, which involves Taylor expanding the optimization problem
around near equal optimal cluster sizes. As standard k-means already performs remarkably
well, it seems that one would need a high-degree Hamiltonian expansion for a method
such as QAOA to compete, or otherwise a more clever Hamiltonian construction of the
problem. Methods such as Grover’s algorithm, however, would not necessarily have this
limitation. We leave for future work refining this intuition and perhaps finding instances
where both coresets and QAOA work well in conjunction.
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