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Abstract

ISO 10995 is the international standard for the reliability testing and archival life-
time prediction of optical media. The standard specifies the testing conditions in
terms of the combinations of stress variables—temperature and relative humid-
ity. The periodically collected data from tests are the error rate of the device, and
failure is defined as the error rate exceeding a predetermined level. The standard
assumes that the projected failure time is the actual failure time, and these
projected failure times are then analyzed by using an Eyring or Arrhenius model.
Since true failure times are often not directly observed, the uncertainties in the
failure time must be taken into account. In this paper, we present a hierarchical
model for degradation that can directly infer failure time at the use condition and
compare this model with the International Standard Organization (ISO)
standard through a simulation study. Not accounting for the uncertainty in the
projected failure times leads to unjustified confidence in the estimation for the
median lifetime at both the stress conditions used in the experiments and at

the use condition.

KEYWORDS

1 | INTRODUCTION

Many electronic components possess a very long lifetime
under their normal use conditions. It is often impossible
to make the product fail over a reasonable testing period.
Because the reliability of the product is defined to be its
performance level below some threshold, one can
monitor the degradation process of this performance
index so as to infer the failure time of the product. For
example, the quality of an optical storage device, such
as computer hard drive, is defined by its reading or
writing error rate. The degradation path of this error rate
can be used to predict the product's failure time.
However, even with a degradation test, the degradation
rate could be too small to be noticeable under the
product's normal use condition; therefore, accelerated
degradation tests (ADTs) are commonly used to elevate

degradation test, hierarchical model, median lifetime, random effects

the degradation process by subjecting the product to
more severe environmental stress. Using ADT data to
make a prediction of product lifetime, one needs two
fundamental models—the degradation model and the
acceleration model for certain degradation parameters
or lifetime parameters.

An ADT would then involve the following steps:

« Choose proper testing conditions of temperature and
humidity; typically, they are much higher than their
designed or normal use conditions;

« Conduct ADTs and collect the degradation data under
each testing condition;

« For each test unit, a regression analysis is performed
on its degradation data, and the failure time is calcu-
lated as the time when the degradation path would
be predicted to cross the performance threshold;
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« Use the predicted failure times obtained under each
testing condition to fit a failure distribution model;

« Use the acceleration model to extrapolate the median
failure time from the accelerated testing conditions to
the normal use condition.

ISO 10995! specifies all of these conditions, including
sample sizes at each level of temperature and humidity.

There are several issues associated with the method of
data analysis suggested in ISO 10995. First, the lifetimes
inferred from testing data are treated as the true lifetimes,
when in fact they are obtained by extrapolating the degra-
dation regression line to the performance threshold level.
The uncertainties in regression and extrapolation are
ignored. Second, all test units are viewed as independent
units; therefore, their data are analyzed individually. But,
in reality, the test units that were tested under the same
testing condition are typically put in the same test cham-
ber. Thus, it is reasonable to assume that their degradation
paths are correlated. A random effects model is good at
modeling the chamber-to-chamber variation. However,
the standard method, although straightforward, does not
consider this variance structure. Third, the standard
method uses a simple regression to obtain the median life
at the normal use condition. It ignores the uncertainty in
median life prediction. Note that, because the use condi-
tion can be far away from testing conditions, a small devi-
ation in life prediction at the test stress level can cause a
huge prediction bias at the normal use condition. There-
fore, there is a need for investigating a heterogeneous
acceleration model for lifetime prediction. In this paper,
we propose a hierarchical modeling approach that can
incorporate random effects into the degradation model to
predict the lifetime under normal use condition directly.

The remainder of the paper is organized as follows. In
Section 2, a literature review on accelerated degradation
modeling, random-effects models and their application
to optical storage devices is given. The hierarchical model
is described in Section 3, followed by the formulation of
the log-likelihood function and the parameter estimation
method. In Section 4, the predicted median lifetime
under use condition will be demonstrated. Then, a simu-
lation study is conducted to make a comparison of our
method with the ISO standard. Finally, we summarize
the findings and contributions of this study in Section 6.

2 | LITERATURE REVIEW

As an alternative method to the traditional life testing for
assessing product reliability, degradation testing has
drawn interest from both academia and industry in the
past two decades. Suzuki et al®> demonstrated the

advantage of degradation testing over life testing, espe-
cially when very few failures are expected because of
the high reliability of test units. Meeker and Escobar’
gave a comprehensive discussion of degradation model-
ing. The general path model is one of the classic models
for describing degradation processes. By setting up a
proper regression model, it assumes each individual
observation is the summation of a mean degradation
value and a measurement error, which is given by

Yilty) = Di(ty) + ey, @

where y(t;) is the observation of an individual test unit i
at time point j, while Di(t;;) and ¢; are the corresponding
mean degradation path value and the measurement error.

To explain the effect of environmental stress, Meeker
and Escobar® further discussed ADT modeling in pres-
ence of stress factors, such as temperature, humidity,
and voltage. The knowledge of chemical kinetics of how
these factors affect material properties are incorporated
into the above general path model. The Arrhenius model
is the one that describes the life acceleration by tempera-
ture and the Eyring model models the temperature and
another factor, such as humidity. The Eyring model can
be expressed as

AH c
Acceleration Factor = A T%exp [— + (B + ?) logRH }

kT
2

where AH is the activation energy, k=1.3807x10">*(J/
molecule degree K) is Boltzmann's constant, and temper-
ature T is in degrees Kelvin. The values «, A, B, and C are
the parameters of the acceleration model.

In addition to considering the accelerating effect of
environmental stress, several researchers also take into
account the unit-to-unit variability, which makes some
model parameters become random variables. This type of
mixed-effects model can be applied to analyze many deg-
radation phenomena. For example, Zimmerman et al,’
Robinson et al,® and Lu and Meeker’ used nonlinear para-
metric regression methods to analyze the crack growth
data from Bogdanoff and Kozin.® Hausler® provided a non-
linear mixed-effects model for laser diodes degradation
analysis. Park' studied the organic light-emitting diodes
degradation by a nonlinear random-coefficients model
with the consideration of temperature and electric current
stresses. Pan and Crispin'' proposed a hierarchical model
and treated the power parameter of time as a random coef-
ficient to account for the unit-to-unit variation. Xing et al*?
developed an ensemble model to characterize the capacity
degradation and to predict the remaining useful perfor-
mance of lithium-ion batteries. Bae and Kvam®® developed
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a nonlinear random coefficients model to analyze the
degradation path of vacuum fluorescent displays.

On optical disk media, the mixed-effects ADT model-
ing approach can also be applied to its failure analysis.
Normally, the disk functionality of either “read” or “write”
data is performed by altering the transparency of an
organic dye layer on the device.'"* Because of the organic
nature of the dye, degradation and breakdown of the trans-
parent portion of dye layer will occur over a long period of
time as a natural process. This process, which has its roots
in chemical kinetics, can take several years in a normal
environmental condition,'® but higher temperature or
humidity can accelerate this process tremendously. The
effects of these stress variables can be modeled using vari-
ous models including the Eyring model,'® which is derived
from the study of chemical kinetics.

The end of life of a disc can be defined as the time
when the information recorded on the disc cannot be
retrieved without losses. In practice, the error rate value
is monitored. Its gradual change can serve as an indicator
of the media stability. Among these indicators, block
error rate'’ is used to monitor Compact Discs (CDs),
and the parity inner (PI)'® error rate, as summed over 8
consecutive error correction blocks (PI Sum8),'® is used
to monitor Digital Video Disc (DVDs). In both cases,
these quality characteristics are used to indicate the
extent of media deterioration.'"” Another data storage
media, hard disk drives (HDDs), share similar features
to optical disk media. A rise in temperature, voltage, rel-
ative humidity, duty cycle, or particle induction can
accelerate its degradation process and shorten its lifetime.
William*® designed life testing experiments for removable
HDDs and predicted their archival life. Storm et al*!
showed that the head-disk collision would increase at
an elevated temperature, while spindle motor and bear-
ings may also fail early under a high temperature. The
hierarchical degradation model we develop in this paper
can be applied on all these optical storage devices, includ-
ing CDs, DVDs, and HDDs.

3 | HIERARCHICAL DEGRADA-
TION MODEL

3.1 | ISO/IEC approach

By the ISO/IEC 10995:2011 standard, the effects of two stress
variables—temperature and relative humidity—on the
lifetime of optical media are to be investigated. Four stress
conditions are specified, and they are listed in Table 1.

For each specimen, a linear regression model of log-
transformed error rate is fitted, and the time-to-failure is
predicted. The obtained failure times are assumed to follow
a lognormal distribution, and only the location parameter of
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TABLE 1 Testing conditions
Relative
Temperature, Humidity, Number of
Test Cell °c %RH Specimens
1 85 85 20
2 85 70 20
3 65 85 20
4 70 75 30

the lognormal distribution will be affected by stress
variables. Then, a reduced Eyring model (from Equation 2)
is used to carry out a least squares fit to the log failure times
across all specimens and stress conditions. Using this fitted
Eyring model, the survival probability and confidence
interval (CI) at the normal use condition can be calculated.

In the example provided by the standard, the speci-
mens tested in test cells 1 and 2 are measured at 0, 250,
500, 750, and 1000 hours of testing; 0, 500, 1000, 1500,
and 2000 hours in test cell 3; and 0, 625, 1250, 1875, and
2500 hours in test cell 4. The raw data table is shown in
the Appendix. Figure 1 presents the degradation path of
measurements in log scale versus time. After fitting a lin-
ear regression model for each specimen’s measurements
and predicting their failure times (ie, the time when the
error rate exceeds the established threshold value that
defines failure), the log median lifetimes under the 4
stress conditions are obtained, and they are used to esti-
mate the parameters of the reduced Eyring model by least
squares. Note that this is a two-step approach. First, the
failure time is predicted for each test specimen, and then,
these predicted failure times are treated as real failure
time observations for establishing the acceleration model.
The prediction error in the first step is clearly ignored in
the model parameter estimation of the second step.

3.2 | Hierarchical model description

We build a hierarchical degradation model to describe the
heterogeneous degradation paths presented in the ISO

Measurement

Test Cell 1
Test Cell 2
Test Cell 3
Test Cell 4
T T T T
0 500 1000 1500 2000 2500
Time(hr)

FIGURE 1 Degradation path [Colour figure can be viewed at
wileyonlinelibrary.com]
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example. This model has a two-level structure. On the
first level, the log scale of response variable for unit i
under condition j at time point k, logy, is defined to
be the sum of degradation level (which is assumed to be
linear in the transformed time variable tg’k and measure-
ment error, ie,

log i = Dy + €ijk 3)
= Boi + Byt + ik
where i ={1, ..., 90}, j={1, ...,4}, and k={1, ..., 5}. The time
scale transformation on t;; is applied to ensure linearity
between the response and the (transformed) predictor.
We assume that the measurement errors are i.i.d. nor-
mally distributed with zero mean, ie, &;~N(0, ).
On the second level, the two parameters in Model (3),
Poi and y;, are treated as random effects, thus accounting
for the unit-to-unit variability. Specifically, the intercept,
Poi» represents the initial error rate (in log scale) that
was measured prior to accelerated aging, and the scale
parameter, y;, varies among units. Moreover, the degrada-
tion rate 3;; is assumed to be a function of 2 environmen-
tal stress variables. Thus, a reduced Eyring function is
used here, where S, 7;, and $3;; are given by

Boi = Mo + €ois 4)
Yi=7o0 T (5)

11605
.—exp|logA+BlogRH; + AH ——— 6
Byj p( gA + BlogRH; + T,-+273.15>’ (6)
where uo, ¥o, log A, B, and AH in Equation 5 are model
parameters to be estimated. The two random terms, &,
and ¢;;, have a bivariate normal distribution with 0
means, that is,

Sl L2 ]

3.3 | Log-likelihood function

The above two-level hierarchical model is a nonlinear
mixed effects model. To infer the embedded parameters
by the maximum likelihood estimation method, the log-
likelihood function for the whole model needs to be
specified. By decomposition, the contribution by individ-
ual observation to the total likelihood, conditioning on
degradation path values, can be written as

WILEY— 2

1 (log y;e—Dyic)?
Lijk|Dyjie = ﬁ exp (‘ # . 7

The degradation path, Dy, can be further developed as
a function of random coefficients, 8y; and y;, so we have

B <log Yijk _ﬁOi_ﬁut;k) ’

202

®)

exp

1
Lijk |160i7 7/1' = \/EO'

By integrating out the random effects 5y; and y;, the
marginal likelihood is found to be

1 1 )’
on ] [ ol lcina)) o

fBoi» i) dBo i

Here, flBy, 7)) is the Probability Density Function
(PDF) of the bivariate normal distribution such that

1 1 T
) = e (5 A0 B 6w ) a0

where

and

z_ | o
Oo1 07
Therefore, the total log-likelihood function is given by

logL(lumy0710gAaB7AHaO-7O'Oa017001)
= Y>> log L. (1)
i jk

3.4 | Parameter estimation

The integrals in the above log-likelihood function cannot
be evaluated analytically so some approximation methods
are needed. Based on the Newton-Raphson method,
Lindstrom and Bates*® provided a two-step algorithm,
which iterates between a penalized nonlinear least squares
(PNLS) step and a linear mixed effects (LME) step. In the
PNLS step, the estimate of variance-covariance matrix of
random effects is fixed, and the conditional modes of the
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variance components and the conditional estimates of
fixed effects are obtained by minimizing a PNLS objective
function. The LME step updates the estimate of the vari-
ance-covariance matrix based on a first-order Taylor
expansion of the model function around the current
modes and estimates. In short, this algorithm is called
the LME approximation since the second step creates an
approximation to the log likelihood. In our case, the PNLS
step is initiated by starting values obtained by fitting the
model with only fixed effects. Next, successive iterations
will be carried out until the convergence criterion is met.
The computation is implemented in R, and our code is
shown in the Appendix.

The estimation results are presented in Table 2. From
their P values, one can see that all parameters are statis-
tically significant. A normal probability plot of residuals
and a plot of residuals versus predicted values, shown in
Figure 2, indicate that the normality assumption of mea-
surement error is valid.

4 | MEDIAN LIFETIME
PREDICTION

Because of the hierarchical nature of the model, estimat-
ing the median lifetime is a challenging problem even if
all of the parameters are known. It is important to be able
to estimate the median lifetime because our criterion for
comparing the hierarchical model with the ISO method
involves the median lifetime.

For DVD-R/-RW,+R/+RW, failure time is defined as
the time when the total number of errors, PI Sum 8,
reaches 280. To construct a CI for the median lifetime,
we design an algorithm based on Monte Carlo simula-
tion, which is described as follows:

1. Tables of specimen degradation paths under multiple
high stress conditions using Model (1) given the

TABLE 2 Parameter estimation

Parameter Estimation Standard Error P Value
Mo 2.846681 0.0521206 <.0001
log A 4.101767 0.9697551 <.0001
B 2.722749 0.1975449 <.0001
AH -0.628511 0.0225797 <.0001
Yo 0.805419 0.0212988 <.0001
(o] 0.23614788 0.004818 <.0001
0o 0.43406174 0.03324 <.0001
o1 0.02709766 0.000170 <.0001
Oo1 —0.0086 0.002077 <.0001

Normal Probability Plot of Standardized Residuals
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FIGURE 2 Residuals plot [Colour figure can be viewed at
wileyonlinelibrary.com]

parameter values in Table 2 are generated N=1,000
times so as to simulate N experiments.

2. For each data table, the hierarchical method is per-
formed to achieve N new sets of estimated parameters
(ie, N new fitted models).

3. For each new fitted model, M =2,000 degradation
paths under use condition are simulated until the
failure threshold is reached. As a result, M pseudo
units are tested under the normal use condition,
and their failure times are recorded. The R code to
produce degradation path is shown in the Appendix.

4. Then, the median of M failure times can be found so
that there are N median lifetimes being recorded. The
95% CI can be approximated by calculating the lower
2.5% quantile value and the upper 2.5% value.

To briefly summarize the simulation algorithm,
Figure 3 shown below gives a graphical explanation.

It turns out that the 95% CI of median lifetime under
the normal use condition is [12.73,13.39](yr) approxi-
mately. On the contrary, the standard provides a CI to
be [12.63,12.69] (yr), which is much tighter than that of
the hierarchical method. This should not come as a sur-
prise since the standard ignores the uncertainty in the
projected lifetimes when treating the pseudo-failure
times as actual observations. Moreover, the step of
obtaining the pseudo-failure times by linear regression
implies the assumption of a linear degradation path.
However, according to the result of parameter estima-
tion, the fact of 7, not being unity indeed indicates the
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FIGURE 3 Graphical explanation of simulation algorithm [Colour figure can be viewed at wileyonlinelibrary.com]

nonlinear degradation path.This makes the CI provided
by the standard skewed from that given by the hierarchi-
cal method.

5 | MODEL COMPARISON

To evaluate the performance of our hierarchical model
over the method provided by ISO 10995 standard, we
conduct a simulation study with the performance criterion
coverage probability (CP), which is defined as the probabil-
ity that a CI will include the true value of the parameter. In
this case, we take the parameter to be the median lifetime
at various conditions. Ideally, the CP should equal the
nominal level for the CI, that is, a 95% CI should have a
CP of about 0.95.

To approximate the CP, we ran simulations and com-
puted the lower and upper bounds (Ly,Uy) of the CI for
simulation k, k=1,2,..., K. We then counted how often
the CI covered the true value, that is,

K
CP = Il{kzll{LkStsosUk}' (12)
Here, K is number of simulation runs, ts, is true
median lifetime (approximated by the Monte Carlo algo-
rithm described in the previous section), and Iy, <. <u,}
is an indicator variable equal to 1 if the k* CI contains
tso and 0 otherwise. The study is summarized as follows:

1. 100000 samples of lifetime data are generated by
using Model (1) and the parameter values in
Table 2. Find the sample median, which is viewed
as the true median life.

2. The Monte Carlo simulation mentioned in Section 4
is conducted K=100 times to produce K CIs. Mean-
while, the standard method is also performed to gen-
erate CIs. For each time, the resulted CIs are checked
to cover the true median life or not.

3. The CP is calculated using Equation 12.

Table 3 shows the coverage rates from the Monte
Carlo study for each stress condition and for the use con-
dition. The CP of the hierarchical method is much larger
and closer to the nominal level of 95% than that provided
by the standard method. As described in Section 1, by the
standard method, measurements of optical media error
rates are taken periodically on each disk under different
stress conditions. Then, by fitting a simple linear regres-
sion model, the projected lifetime of each unit is
obtained. Under the test condition 1, the highest environ-
mental stress level results into the optical media error
rates that can exceed the failure threshold in the testing
period, so the estimation of lifetime is within the range
of the original data. This CP is low but is a reasonably
satisfactory CP of the median lifetime in the highest stress

TABLE 3 Coverage probability comparison

Condition Hierarchical Method Standard Method
1 86% 75%
2 90% 37%
3 92% 26%
4 100% 35%
Use 96% 0%
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condition. However, as the stress level goes down, this
estimation must be extrapolated to a future time, which
causes poor accuracy. In other words, when these
projected lifetimes are treated as real failure times, the
uncertainty in the failure time prediction is ignored.
Moreover, when extrapolating the median lifetime to
the use condition, the standard again performs a simple
regression to obtain the normal use median lifetime and
ignores the uncertainties in the ADT median lifetime
estimations. Combining these two issues, the large devia-
tion of the predicted normal-use median lifetime from its
true value is not surprising for the standard method. By
contrast, our method accounts for both the measurement
variability and unit-to-unit variability completely in a
hierarchical form. This feature allows one to break a com-
plex task into a series of manageable pieces without los-
ing accuracy on lifetime prediction.

6 | SUMMARY

Degradation processes can be modeled by hierarchical
models that involve a random intercept for each unit,
and a slope that depends on the level of the environmen-
tal stress variables. Care must be taken to select a model
that fits the observed data. For the case of data in the
ISO10995 standard, a linear degradation path was insuffi-
cient. Instead, we had to select the power model to fit the
data.

The ISO10995 standard uses a projection method to
predict the time that the degradation path will exceed
the threshold for the error rate. It then treats these projec-
tions as if they were the known true failure times. Such
an approach is bound to produce confidence intervals
that are too narrow; in other words, the parameter esti-
mates have a smaller standard error than they should. A
hierarchical model fit with the R package nlme can be
used to find point and interval estimates of the model
parameters, which can then be used to project the median
lifetime. A simulation study shows that the coverage
probabilities for the ISO10995 standard are much lower
than the nominal 95%. The hierarchical method we sug-
gest has coverage probabilities that are around the nomi-
nal and performs well even for use condition.

Two types of model-based extrapolation are involved
in the algorithm for predicting the use-stress-level prod-
uct reliability by ADTs—predicting the degradation
behavior of the product under its use stress level and esti-
mating its mean or median lifetime by extending the deg-
radation path to failure threshold. As shown by the
simulation study, using a regression method to project
lifetimes at test stress levels would cause poor lifetime
prediction, particularly at the lower test stress level, and

consequently, it causes the use-stress-level reliability pre-
diction to be unreliable. In contrast, the hierarchical
model that includes both types of extrapolation into the
model can mitigate this effect. A higher test stress level
may be able to produce failure times directly, but one
should be aware that the product failure mode at a very
high stress level may deviate from the failure mode
observed at the use stress level. Thus, lower testing stress
levels are recommended. In such case, the hierarchical
model will perform much better than the simple failure
time extrapolation model suggested by the ISO standard.

REFERENCES

1. Organization International Standards. Information technology
—digitally recorded media for information interchange and
storage—test method for the estimation of the archival lifetime
of optical media; 2011.

2. Suzuki K, Maki K, Yokogawa S. An analysis of degradation data
of a carbon film and the properties of the estimators. Stat Sci
Data Anal. 1993:501-511.

. Meeker WQ, Escobar LA. Statistical Methods for Reliability Data.
New York: Wiley; 1998.

4. Meeker WQ, Escobar LA, Lu CJ. Accelerated degradation tests:
modeling and analysis. Technometrics. 1998;40(2):89-99.

w

w

. Zimmerman DL, Nufiez-Anton V, Gregoire TG, et al. Paramet-
ric modelling of growth curve data: an overview. Test.
2001;10(1):1-73.

6. Robinson ME, Crowder MJ. Bayesian methods for a growth-

curve degradation model with repeated measures. Lifetime Data
Anal. 2000;6(4):357-374.

7. Lu CJ, Meeker WQ. Using degradation measures to estimate a
time-to-failure distribution. Technometrics. 1993;35(2):161-174.

8. Bogdanoff JL, Kozin F. Probabilistic Models of Cumulative
Damage. New York: Wiley; 1985.

9. Hausler K, Zeimer U, Sumpf B, Erbert G, Tridnkle G. Degrada-
tion model analysis of laser diodes. J Mater Sci: Mater Electron.
2008;19(1):160-164.

10. Park JI, Bae SJ. Direct prediction methods on lifetime distribu-
tion of organic light-emitting diodes from accelerated
degradation tests. IEEE Trans Reliab. 2010;59(1):74-90.

11. Pan R, Crispin T. A hierarchical modeling approach to acceler-
ated degradation testing data analysis: a case study. Qual
Reliab Eng Int. 2011;27(2):229-237.

12. Xing Y, Ma Eden WM, Tsui K-L, Pecht M. An ensemble model
for predicting the remaining useful performance of lithium-ion
batteries. Microelectron Reliab. 2013;53(6):811-820.

13. Bae SJ, Kvam PH. A nonlinear random-coefficients model for
degradation testing. Technometrics. 2004;46(4):460-469.

14. Bennett H. Understanding cd-r and cd-rw; 2003.

15. Nikles DE, Wiest JM. Accelerated aging studies and the predic-
tion of the archival lifetime of optical disk media; 1999.

16. Kahan PT. A study of the Eyring model and its application to
component degradation; 1970.



FANG ET AL.

WILEY— 2

17.

18.

19.

20.

21.

22.

Svensson A. CD-CATS SA3 Users Manual. West Des Moines,
Idaho, USA; 2000.

CD Associates Inc.. The dvd1000p analyzer manual. Irvine
California, USA; 1998.

Slattery O, Lu R, Zheng J, Byers F, Tang X. Stability comparison
of recordable optical discs—a study of error rates in harsh con-
ditions. J Res Nat Inst Stand Technol. 2004;109(5):517.

Williams P. Predicting archival life of removable hard disk
drives; 2008.

Strom BD, Lee SC, Tyndall GW, Khurshudov A. Hard disk drive
reliability modeling and failure prediction. IEEE Trans Magn.
2007;43(9):3676-3684.

Lindstrom MJ, Bates DM. Nonlinear mixed effects models for
repeated measures data. Biometrics. 1990;46(3):673-687.

Guangi Fang is a PhD student of Industrial Engi-
neering and a Master student of Statistics at Arizona
State University, concurrently. He obtained his bache-
lor and master degree from Hunan University of
China and North Carolina State University, respec-
tively. His interest includes reliability data analysis,
stochastic simulation, and data mining.

Steven E. Rigdon is a Professor in the Department of
Epidemiology and Biostatistics in the College for Pub-

lic Health and Social Justice at Saint Louis University.
His is also Distinguished Research Professor Emeritus
at Southern Illinois University where he served on the
faculty from 1986 to 2012. He is the author of Stafisti-
cal Methods for the Reliability of Repairable Systems,
published by Wiley, and Calculus, Ninth Ed. pub-
lished by Pearson. He is currently the editor in chief
of Journal of Quantitative Analysis in Sports and is a
Fellow of the American Statistical Association.

Rong Pan is an Associate Professor in the School of
Computing, Informatics, and Decision Systems Engi-
neering, Arizona State University, Tempe, AZ, USA.
His research interests include failure time data analy-
sis, design of experiments, multivariate statistical
quality control, time series analysis, and control. He
is a senior member of IEEE, IIE, and ASQ and a mem-
ber of SRE and INFORMS.

How to cite this article: Fang G, Rigdon SE, Pan
R. Predicting lifetime by degradation tests: A case
study of ISO 10995. Qual Reliab Engng Int.
2018;34:1228-1237. https://doi.org/10.1002/
qre.2320



https://doi.org/10.1002/qre.2320
https://doi.org/10.1002/qre.2320

1236 Wl LEY FANG ET AL.

APPENDIX A

The data from ISO 10995 is shown in Table Al.

TABLE Al Original Data Table of Optical Medial Error Rates Provided by ISO 10995
TEMP = 85C RH = 85% TEMP = 85C RH = 70%

Hours Proj. Hours Proj.
Disk 0 250 500 750 1000 Failure Disk 0 250 500 750 1000 Failure
Al 16 78 116 278 445 788 Bl 10 20 67 112 156 1117
A2 25 64 134 342 532 743 B2 8 20 47 84 188 1118
A3 26 94 190 335 642 685 B3 12 26 72 185 421 880
A4 26 111 247 343 718 647 B4 20 43 120 166 219 999
A5 27 89 185 246 466 762 B5 32 45 76 103 267 1126
A6 21 111 207 567 896 607 B6 21 37 104 222 368 870
A7 26 121 274 589 781 588 B7 21 30 89 155 221 1035
A8 31 108 223 315 745 654 B8 22 26 72 125 267 1043
A9 24 118 285 723 754 578 B9 25 46 124 182 224 994
A10 12 85 178 312 988 669 B10 17 38 67 179 378 911
All 28 111 167 312 771 671 Bl11 28 58 88 120 268 1065
Al2 24 136 267 444 719 614 B12 8 15 36 144 189 1059
Al3 35 76 265 567 610 626 B13 10 27 89 175 385 880
Al4 19 53 112 278 534 778 B14 23 54 111 148 221 1037
Al5 28 88 158 308 654 704 B15 28 39 125 172 278 959
Al6 27 68 120 263 432 807 B16 25 53 88 130 188 1149
Al7 18 87 176 302 558 723 B17 20 43 75 166 256 999
Al18 26 109 238 421 641 645 B18 22 26 50 172 229 1058
Al19 26 111 253 378 638 649 B19 13 38 78 124 189 1078
A20 31 91 206 367 728 656 B20 10 19 28 121 268 1046
TEMP = 65C RH = 85% TEMP = 70C RH = 75%
Hours Proj. Hours Proj.

Disk 0 500 1000 1500 2000 Failure 0 625 1250 1875 2500 Failure
C1 14 23 58 112 278 2057 D1 25 34 64 92 167 3240
C2 10 17 55 165 263 1948 D2 25 93 134 154 211 2596
C3 11 56 88 138 189 2078 D3 7 23 97 103 178 2615
C4 18 28 78 117 243 2106 D4 10 20 56 89 155 2920
C5 17 45 78 143 189 2167 D5 5 20 78 132 187 2496
C6 10 14 45 154 231 2031 D6 5 15 52 112 167 2644
Cc7 31 53 111 156 211 2151 D7 22 34 67 132 188 2851
C8 29 54 106 154 218 2128 D8 12 17 56 78 108 3318
Cc9 22 32 65 89 126 2799 D9 22 34 67 132 189 2847
C10 29 36 78 145 188 2297 D10 23 27 54 121 152 3129
C11 21 38 89 148 227 2075 D11 11 20 41 87 115 3249
C12 24 45 68 134 211 2236 D12 15 18 43 88 118 3343
C13 28 57 78 132 190 2352 D13 19 21 38 82 135 3435

(Continues)
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TABLE Al (Continued)

TEMP = 65C RH = 85% TEMP = 70C RH = 75%
Hours Proj. Hours Proj.
Disk 0 500 1000 1500 2000 Failure 0 625 1250 1875 2500 Failure
C14 19 47 61 117 150 2486 D14 18 22 86 178 245 2456
C15 25 65 89 184 256 1972 D15 22 26 73 145 252 2582
Cl6 10 18 57 113 178 2189 D16 18 18 29 66 127 3649
C17 21 34 45 98 121 2845 D17 22 26 93 145 178 2761
C18 12 20 34 112 176 2308 D18 18 27 56 88 134 3316
C19 28 56 108 176 243 2001 D19 11 32 44 97 143 3051
C20 29 36 57 143 238 2207 D20 12 56 66 124 249 2550
D21 14 34 54 77 112 3500
D22 20 23 25 50 181 3593
D23 11 16 27 54 160 3275
D24 17 24 25 58 108 4034
D25 11 25 22 62 130 3488
D26 17 24 25 70 123 3707
D27 21 39 63 78 163 3304
D28 20 28 45 111 243 2787
D29 15 21 38 65 134 3453
D30 10 34 54 96 176 2841

The R code to infer parameters is given below.
#Fixed effects only to get initial idea of parameters
library(nlme)
library (minpack.lm)
fm = Measurement ~ betal + exp (A+B*RH+H*11605/Temp) *T ime”~gam
#Starting value from the standard
#Use nlsLM function in minpack.lm package, which is an improved package of nlme
rl =nlslM(fm,data=datat,start=1list (beta0=2.8,A=10,B=0.2,H=-0.726,gam=1))
# betal and gam as random effect
r2 = nlme (fm, data=datat, fixed = betaO+A+B+H+gam ~ 1,
random = (betalO+gam ~ 1),
groups = ~ Disk,
start = coef (rl))
summary (r2)
The R Function to conduct a Monte Carlo experiment to generate degradation path is given below.
drerr = function (t,betal,RH, Temp, A, B, H, gam, sigma) {
err = rnorm (1,0, sigma)
betal = exp (A+B*1log (RH) +H*11605/ (Temp+273.15))
return (exp (betalO+betal*t*gamt+err))
}
cov_var =matrix(c(fitting value[i, 6172, fitting valuel[i, 9], fitting valuel[i, 9],
fitting valuel[i,7]1"2),2,2)
betal0 gam =mvrnorm(n=1,c(fitting value[i, 1], fitting valuel[i,5]),cov_var)
drerr (t_intervall[k],betal0 gam[1l],50,25,fitting valuel[i,2],fitting valueli, 3],
fitting value[i,4],betal0 gam[2],fitting valuel[i,8])



