o Taylor & Francis
Taylor & Francis Group

JOURNAL

OF QUALITY i
ooy Journal of Quality Technology

A Quarterly Journal of Methods, Applications and Related Topics

ISSN: 0022-4065 (Print) 2575-6230 (Online) Journal homepage: https://www.tandfonline.com/loi/ujqt20

An adaptive two-stage Bayesian model averaging
approach to planning and analyzing accelerated
life tests under model uncertainty

Xiujie Zhao, Rong Pan, Enrique del Castillo & Min Xie

To cite this article: Xiujie Zhao, Rong Pan, Enrique del Castillo & Min Xie (2019) An adaptive
two-stage Bayesian model averaging approach to planning and analyzing accelerated

life tests under model uncertainty, Journal of Quality Technology, 51:2, 181-197, DOI:
10.1080/00224065.2019.1571333

To link to this article: https://doi.org/10.1080/00224065.2019.1571333

@ Published online: 03 Apr 2019.

\]
C»/ Submit your article to this journal

® View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ujqt20


https://www.tandfonline.com/action/journalInformation?journalCode=ujqt20
https://www.tandfonline.com/loi/ujqt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00224065.2019.1571333
https://doi.org/10.1080/00224065.2019.1571333
https://www.tandfonline.com/action/authorSubmission?journalCode=ujqt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ujqt20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00224065.2019.1571333&domain=pdf&date_stamp=2019-04-03
http://crossmark.crossref.org/dialog/?doi=10.1080/00224065.2019.1571333&domain=pdf&date_stamp=2019-04-03

JOURNAL OF QUALITY TECHNOLOGY
2019, VOL. 51, NO. 2, 181-197
https://doi.org/10.1080/00224065.2019.1571333

Q)

ASQ

The Global Voice of Quality’

RESEARCH ARTICLE

W) Check for updates

An adaptive two-stage Bayesian model averaging approach to planning and

analyzing accelerated life tests under model uncertainty

Xiujie Zhao® (), Rong Pan®, Enrique del Castillo, and Min Xie*d

3City University of Hong Kong, Kowloon, Hong Kong; PArizona State University, Tempe, Arizona; “The Pennsylvania State University,
University Park, Pennsylvania; °City University of Hong Kong Shenzhen Research Institute, Kowloon, Hong Kong

ABSTRACT

Accelerated life testing (ALT) is commonly used to predict the lifetime of a product at its
use stress by subjecting test units to elevated stress conditions that accelerate the occur-
rence of failures. For new products, the selection of an acceleration model for planning opti-
mal ALT plans is challenging due to the absence of historical lifetime data. The
misspecification of an ALT model can lead to considerable errors when it is used to predict
the product’s life quantiles. This article proposes a two-stage Bayesian approach to con-
structing ALT plans and predicting lifetime quantiles. At the first stage, the ALT plan is opti-
mized based on the prior information of candidate models under a modified V-optimality
criterion that incorporates both asymptotic prediction variance and squared bias. A Bayesian
model averaging (BMA) framework is used to derive the posterior model and the posterior
distribution for the life quantile of interest under use stress. If the obtained test data cannot
provide satisfactory model selection results, an adaptive second-stage test is conducted
based on the posterior information from the first stage. A revisited numerical example dem-
onstrates the efficiency and robustness of the resulting Bayesian ALT plans by comparing

KEYWORDS
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with the plans derived from previous methods.

1. Introduction

Reliability assessment for highly reliable products has
drawn great attention in engineering design and plays
a significant role in quality and maintenance manage-
ment. In reliability studies, the life span of many
products is extremely long, making it very difficult to
conduct life tests under use conditions. Engineers usu-
ally resort to accelerated reliability tests to make infer-
ences of field reliability. Accelerated life testing (ALT)
is the experimental process of testing a product by
subjecting test units to higher levels of stresses (tem-
perature, voltage, vibration rate, pressure, etc.) than
with its use stress, to produce more failures within a
limited test duration (Chen, Xu, and Ye 2016).
Belonging to the log-location-scale lifetime distri-
bution families, Weibull and lognormal distributions
are widely adopted to model lifetime data. In earlier
research of ALT planning, the lifetime prediction for
certain products was investigated when either a nor-
mal or lognormal lifetime is assumed; see Kielpinski
and Nelson (1975) and Nelson and Kielpinski (1976),

respectively. Afterward, Weibull and extreme value
distributed lifetimes were studied in Nelson and
Meeker (1978). In a follow-up work by Meeker
(1984), models based on Weibull and lognormal life-
time were compared.

In most previous ALT planning studies, certain
acceleration regression models with known parameters
were assumed and the optimization of the ALT plan
was carried out through minimizing or maximizing a
function that involves the Fisher information derived
from a given model. There was also some literature
that addressed energy or cost-efficient plans (Zhang
and Liao 2016). Escobar and Meeker (1986, 1994)
gave algorithms to numerically compute the Fisher
information of unknown parameters for common log-
location-scale lifetime distributions. Recent literature
also considered several other aspects of optimization.
Monroe et al. (2011) proposed a generalized linear
model approach to planning ALTs. Pan and Yang
(2014) minimized the variance of life quantile pre-
dictor over the entire region of possible use stress and
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studied the balance of parameter estimation and life
quantile prediction. Freels et al. (2015) compared the
quantitative and qualitative ALT and proposed a modi-
fied accelerated reliability growth test. More relevant
research and the pitfalls of ALTs were summarized in
Elsayed (2012) and Meeker and Escobar (1993).

For new products, the pre-assumed values of ALT
model parameters can be considerably different from
their true values. To deal with parameter uncertainty,
Bayesian methods can be employed to plan ALTs with
prior information. Polson (1993) evaluated the effects
of prior information of the acceleration model on
ALT planning. Bayesian approaches to ALT modeling
and planning were studied in Miiller and Parmigiani
(1995) and Erkanli and Soyer (2000). An asymptotic
optimal ALT planning method based on the pre-pos-
terior information was formulated in Zhang and
Meeker (2006). The Bayesian approach to accelerated
destructive degradation test planning was introduced
in Shi and Meeker (2012). Furthermore, the Bayesian
inference approach to step-stress accelerated life tests
was studied in Lee and Pan (2012) by assuming expo-
nential lifetime. Sha and Pan (2014) presented a
Bayesian analysis for PH model in step-stress ALT
under Weibull lifetime assumption.

Even though there existed numerous non-Bayesian
or Bayesian approaches to planning reliability tests,
very few of them have studied the robustness of these
plans to the assumed acceleration model and the
assumed lifetime distribution simultaneously. In the
literature, Pascual and Montepiedra (2005) compared
the ALT plans that minimized asymptotic bias or
standard error of the predicted life quantile with
Weibull and lognormal candidate models. Sensitivity
analysis of the ALT optimal designs with use condi-
tion (UC) optimality criterion was carried out in
Monroe et al. (2010), based on a generalized linear
modeling framework. Yu and Chang (2012) investi-
gated the Bayesian model averaging for different mod-
els with the aim of increasing the robustness of ALT
plans to model selection. Pascual and Montepiedra
(2003) studied model-robust ALT plans based on the
weighted asymptotic sample ratio criterion. A simula-
tion-based Bayesian ALT planning method was pro-
posed in Nasir and Pan (2015) for model
discrimination. Pan et al. (2015) proposed D and D;
optimal criteria to select the best acceleration model
among candidates by employing a generalized linear
model. Chen, Tang, and Ye (2016) proposed a robust
quantile regression method to analyze heavily cen-
sored ALT data. Some older literature that addressed
the experimental design problem with respect to

model selection and discrimination include Agboto
et al. (2010), Atkinson and Fedorov (1975), Dette and
Titoff (2009), and Hill (1978). As mentioned in
Nelson (2005), the research of robust ALT planning is
relatively lacking and needs to be addressed.

To obtain an optimal test plan, we need to know
the lifetime distribution and acceleration function.
However, it is usually the case that the exact ALT
model cannot be given as a priori. For example, when
a new product is to be tested, it is very likely that we
have no exact information of its lifetime distribution
or acceleration model. Therefore, it is important that
the selected ALT plan is robust to model uncertainty,
and even to lifetime distribution misspecification. In
addition, the prediction of the quantity of interest
should also address this robustness issue. This moti-
vates us to explore a new way of building a Bayesian
framework that provides both ALT planning and life-
time prediction with the consideration of acceleration
model and lifetime distribution uncertainties.

In this article, we propose a two-stage ALT plan-
ning and life quantile prediction framework from a
Bayesian perspective. At the first stage, the plan is
optimized based on the prior information of various
possible acceleration regression models. The objective
is to minimize the asymptotic pre-posterior squared
error of predicted life quantile of interest. An adaptive
second-stage ALT test is planned under a given
budget if the test at the first stage cannot give satisfac-
tory posterior results on model selection. To deal with
the data from ALT experiments, we use the Bayesian
model averaging (BMA) technique to predict the life
quantile of interest. Therefore, the robustness of our
proposed approach is enhanced at both test planning
and data analysis phases.

The remainder of the article is organized as follows.
Section 2 gives the model assumptions in the ALT
planning problem. The two-stage Bayesian ALT plan-
ning and prediction methodology is presented in
Section 3. In Section 4, a numerical example is revis-
ited to illustrate the proposed approach and compare
the results with those from previous studies through
simulation. Section 5 gives sensitivity analysis with
respect to prior model probabilities, sample size and
adaptive test budget. Section 6 concludes the article
and discusses areas for future research.

2. ALT models and assumptions

For a better exposition, we consider an ALT model
with only one stress variable z in standardized scale,
ie, z€[0,1]. It is straightforward to extend our
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Figure 1. The Bayesian two-stage ALT planning and prediction framework.

proposed framework to multiple stress variables. Let
t,(2') denote the 100pth percentile of the lifetime dis-
tribution when the stress level is at z = 2.

2.1. Candidate models under Weibull and
lognormal distribution

Log-location-scale distributions, such as Weibull, log-
normal, and loglogistic distributions, are widely used
to model lifetime data in reliability analysis. Without
loss of generality, we consider as candidates two log-
linear acceleration regression models based on log-
location-scale distributions: one assumes that the life-
time follows a Weibull distribution while the other
assumes a lognormal distribution. Weibull and log-
normal models are denoted by M; and M,, respect-
ively. By assuming a log-linear acceleration regression
model, the p quantile of log lifetime at stress level z is
as follows:

log t,(2)|M; = By +ﬂ1i2+0iq)i_1(P)a i=1lor2, [1]

where ®;! and ®,' are the quantile functions of
standard smallest extreme value (SEV) distribution
and standard normal distribution, respectively, and
tp(z) is the life quantile of interest under stress z. In
lifetime analysis, we usually set p at a small value, e.g.,
p =0.1 (i.e,, 0.1 quantile, the 10th percentile). In each
model, the wunknown parameters are denoted

by 0; = (By; O-iaﬂli)l'

2.2. Acceleration function and the standardization
of variables

We standardize the stress levels in the ALT model to
make the stress variable range between 0 and 1, where
0 and 1 represent the levels of use stress and highest
experimental stress, respectively. In this study, it is
assumed that the stress variable is temperature (in
°C). The Arrhenius relationship is used to describe

the transformation from temperature temp °C to the
standardized stress variable z. First, the stress variable
¢ of temperature temp °C is given by

B 11605

~ temp°C +273.15

Let temp, be the field use temperature of the prod-
uct, temp,; as the highest possible temperature in an
ALT. ¢ is standardized to z as follows:

¢—%
<n—&o’
where &y = 11605/ (temp,,°C 4+ 273.15) and &) =
11605/ (temp,°C + 273.15). By this transformation,

the thermal stress variable is coded between 0
and 1.

Zz =

3. The Bayesian planning and
prediction framework

A framework of Bayesian ALT planning and predic-
tion is proposed as shown in Figure 1. To start with,
we use the prior information of model selection and
parameter settings to plan the ALT experiment by
considering both prediction variance and squared
bias. Afterward, based on the optimal plan D", an
ALT experiment is conducted and the testing data are
used to proceed to the model averaging step. An
adaptive continuous test is planned and carried out if
the posterior cannot provide reasonable predictive
results. The final model is used to compute the pos-
terior distribution of life quantile of interest by BMA.

Other assumptions are common in the ALT litera-
ture and they include:

1. The highest allowed stress level in the test
is fixed.

2. Type I right censoring is assumed for the first-
stage test. The censoring time is denoted by f¢.
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3. The total number of test units N for the first-
stage test is predetermined.

4. An arbitrary ALT plan is denoted by D=
{(mi,z),i=1,...,1}, where I is the number of
stress levels in the plan, 7; is the proportion of
test units allocated at stress z; for i =1,...,1. We
have ZLI mi=1and 0<z <1 for i=1,..1
The elements in D are the decision variables in
the ALT plan optimization.

3.1. Specification of priors

To optimize the ALT plan by Bayesian methods, the
prior distribution of #; and the model probability on
M; need to be specified for each candidate model. It is
noted that the specification of these priors is analo-
gous to the selection of fixed pilot “planning parame-
ters” in frequentist ALT planning methods. For
parameter vector 0;, the prior information may vary
considerably for different products and acceleration
models. Specifically, for each log-linear acceleration
model in Eq. [1], the slope parameter f;; is deter-
mined by the physical or chemical failure mechanism.
Therefore, the information on this parameter is usu-
ally available from experts and relatively general for
products that suffer from similar failures. However,
the intercept f,; depends more on the inherent char-
acteristic of certain products, and it may vary signifi-
cantly among various products although their failure
mechanisms are similar, making the information on
Bo; relatively diffuse.

A test planner needs to specify the priors based on
the properties of test units and the information pro-
vided by experts and engineers. Available prior infor-
mation for 0; can be quantified in terms of a joint
prior distribution of which the density is denoted by
®;(0;). The dependency among the elements in 0;
may be inevitable due to the nature of models. In
addition, the quantification of the dependency is usu-
ally challenging because such information is not
straightforward in engineering senses. Alternatively, a
transformed vector ° can be used to describe several
independent sources of prior information. More dis-
cussion of this technical point will be given in
Section 4.

To describe the prior information on the possible
lifetime distributions, we define Pr(M;) as the prior
probability that model M; is true, where _ Pr(M;) =
1. If Pr(M;) = Pr(M;) for any i # j, the prior indicates
equal preference to each candidate model.

3.2. Prior-based first-stage ALT planning

The first-stage ALT is planned based on the prior
information. To incorporate the uncertainty in the
parameters of the acceleration regression model and
in the lifetime distribution, we propose a modified V-
optimality criterion to optimize the ALT plan from a
Bayesian perspective. Based on the priors of 6; and
given Pr(M;) for i =1, 2, the optimal ALT plan can
be obtained by maximizing the following weighted
utility function representing the pre-posterior squared
error of the predicted life quantile under use stress:

U(D) = - Pr(M;)
,. [2]
{0[C:(D)] + 5 [ABias(log £,(0)) M },

fori=1 or2
Ci(D) = AVary,, (log ,(0)|M;) = c/AVary,, (0,)c,

where ¢; = (I,CDi_l(p),O /. Ci(D) is the pre-posterior
asymptotic variance of "log tp(O) under assumption
that M; is true. To compute AVarg(#,) and
AVarg,(6), a large sample approximation is used as
in Clyde et al. (1995). Zhang and Meeker (2006)
showed that when the sample size was relatively large,
a multivariate normal distribution gave a good
approximation for the posteriors. Thus, for both mod-
els, the following equation holds:

R “ -1
AVarg (8) ~ [0+ 10(D)] L i=1o0r2,  [3]

where S; is the prior variance-covariance matrix of 6,
and i()i(D) is the observed information matrix of 6;
evaluated at its maximum likelihood estimator. By
another large sample approximation, we can show
that C;(D) can be approximated as ¢’ AVarg(0;)c;
(details are provided in Appendix A). The information
matrices Ip,(D) for a given D and 0; are evaluated
numerically as described in Appendix B. Afterward,
the term E,, [C/(D)] is given by

i

g, [Ci(D)] = J Ci(D)wi(oi)doi-

To obtain the squared expected bias term
E*[ABias(logt,(0))], we need to decompose it into all
misspecification cases. Generally, for k =1 and 2, the
squared expected small-sample bias is

[, [Bias (logt,(0))[M;]
= Ezo,» [(log tp(0)| >k Pr(Mk)Mk) — log tp(0)|Mi],
(4]
where ), Pr(My)Mj is the assumed weighted model
from the prior information, and



log 1,(0)] Z Pr(M;) M = Z Pr(Mj) [logt, (0)[My].

k k

It is noted that logt,(0)| >, Pr(My)Mj is a random
variable because the parameters in M) are random with
assigned prior distributions. The observed bias of the
weighted model is expressed as (logt,(0) |>,
Pr(Mi)M;) — logt,(0)|M;, and the expectation is with
respect to both the uncertainty in MLE estimation from
ALT data and the model priors. Based on Pascual and
Montepiedra (2005), the asymptotic bias can be obtained by

g, [ABias( log fP(O)) |M;)
— [og IS Prvs. 01467, 1))
k

— logtp(0)|(M,-, 01)]6(),(0,)610,

5]
where (M;, 0;) is the assumed true model M; with
parameter 0;, and 0;‘ is the expected MLE of 0; by
assuming that M; is mis-specified to be the true
model. The term ), Pr(Mk)Mk,B,-,{OJ’-‘, j#i} is the
asymptotic weighted model with parameters estimated
from data under true model (M;, 6;). In our problem,
by assuming two candidate models M; and M, to be
the Weibull and lognormal linear acceleration regres-
sion  respectively, the  weighted model is
(>_k Pr(My)My, 0,05 ;) for i =1 or 2. The approach
to obtaining 6" is given in Appendix C.

To evaluate the utility function with a given test
plan D, considerable computational effort is needed
because of the integration with respect to 6; is multi-
dimensional in U(D).
numerical integration, Monte Carlo integration method
is employed to compute the utility with a given D. To
take expectation on C;(D) consumes relatively less
computation than on ABias(logt,(0)) because in the
latter one for every evaluation on a particular true 6; a
maximum likelihood estimation is called to compute 0;

As an alternative to direct

for j # i. Therefore, we may have to choose a relatively
smaller sample size to conduct Monte Carlo integration
for ABias (logfp(O)) and a larger sample for Ci(D)

For simplicity, the utility function in Eq. [2] is
rewritten as

U(D) = Uy(D) + U(D),
= Z Pr(M;)Ey,[Ci(D)],

ZPr

where Uy (D) and Us(D) represents the variance and
squared bias part in the utility function. The optimal
ALT plan is given by D* = argmaxU(D).

[6]
Ej, [Bias(log,(0))|M;],
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3.3. Bayesian model averaging procedure

After the optimal test plan D* is found, an ALT
experiment is conducted as planned. The experimental
data are collected as t = (t1,1,,...,ty). For each test
unit i for i =1, 2, ..., N, the observed failure time
is t;, and

e z; denotes the standardized stress level to which
the test unit i is allocated.
e §; denotes the censoring indicator, where

1
!

Note that if §; =0, then t; = tc. Next, we use a
Bayesian model averaging (BMA) method to derive
the model for life quantile prediction at use stress (for
an overview of BMA, see Carlin and Louis 2000).
BMA combines the inferences for prediction from dif-
ferent candidate models. For i = 1 and 2, after observ-
ing data t, BMA gives the posterior distribution of

logTp(0) as
Zp logT,(0)

p(long
where p(logT,(0)|t,M;) is the posterior density of
logT,(0) by assuming that M; is the true model; and
Pr(M;|t) is the posterior probability that M; is true,
which can be computed as follows:

Pr(M;lt) oc Pr(M;)p(t|M;), (8]

where p(t|M;) is density of t under M;. Since
the model parameters are assumed random
from the Bayesian perspective, the density is
obtained by integrating over the prior of the
model parameters:

p(t|M;) = Jwi(ei)ﬁ(oi“a M;)do. (9]

if observation i is not censored
if observation i is right censored

M;)Pr(Milt),  [7]

3.4. Evaluation of the posterior prediction

To evaluate the life quantile predictor from Eq. [7],
one needs to resort to numerical sampling methods
to obtain posteriors as there is no explicit expres-
sion for the equation. We need the posterior distri-
butions of ;s to evaluate or p(logTp(0)|t, M;) in Eq.
[7], and the posterior density for 6; can be com-
puted as

L(0i]t, M;)ci(0;)

TZ(0]t, M;)eo,(0;)0, 10}

p(6ift) =

where £(0;]t, M;) is given by
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N 9
£ M) =[] [ﬁ 7 (—logt"_@l_ﬁnzﬂ
14§ 1

logt; A
{1—(D]<—Og ﬁa"ll ﬁ“zﬂ , i=1or 2,

[11]

where ¢, and ¢, are the density functions of standard
SEV and standard normal distribution, respectively.
We use a Markov chain Monte Carlo (MCMC)
method to generate random samples from the poster-
ior distribution of @;s. Specifically, we use the
Metropolis-Hastings (MH) sampling method. Relative
details are given in Appendix D.

The BMA posterior probabilities Pr(M;|t) in Eq.
[8] can be rewritten from Eq. [9] as

Pl’(Ml|t) X Pr(M,) Jw1(01)£(01|t,M1)d01 [12]

The integration part [ ;(6;)L(0;]t, M;)d0; repre-
sents the expected likelihood of 0; with respect to pri-
ors under M;. A straightforward Monte Carlo
integration method is used to estimate this part as
before. First, generate a large sample of 6; from
;(0;) and let the sample size be ng. Then, the integral
part is computed by (1/n5) > =, L(0;]t, M;).

3.5. The adaptive second-stage planning

The objective of the second-stage planning for the test
is to achieve the maximum utility based on the pos-
terior distribution of parameters for a given test
budget (TB). The reason for considering the testing
cost is that the second-stage experiment is mainly for
verification, and test planners are usually unwilling to
spend an enormous amount of additional time and
money at this stage given that there is already some
information from the previous test results.

If the test data from the first-stage test yield a pre-
determined minimum posterior weight for the pre-
ferred model, denoted by a4y, that is,

_max {Pr(Mi|t)} > o [13]

where ay > 0.5, the adaptive second-stage test is
exempted. Otherwise, we need to plan the adaptive
test under a given budget. In other words, the adap-
tive test is not necessary if the maximum of the two
posterior probabilities is greater than a given thresh-
old aw, which is chosen by the decision maker based
on the subjective tolerance of model uncertainty. In
this situation, the test planner can specify another
threshold o}, which should in general be larger than

oy . If one of the two candidate models has a poster-
ior weight that is greater than o), there is strong evi-
dence to support the model. In the following analysis,
it is reasonable to only use the preferred model with
posterior weight greater than o), to predict the log
life quantile. This also applies to the result analysis
after the adaptive second-stage test.

Generally, test planners tend to specify a higher
aw if the estimated life quantiles under the two
models are believed to differ drastically. For the
adaptive ALT plan, the utility function U'(D’) can be
expressed as:

U'(D') = U, (D) + Uy(D)
UL(D) = ZPr M;t) Eg‘,[ (D))

ZPr M IOE; ot [ABlas(log tp( ))|Mz]

(14]

U,(D) =

To facilitate the testing, the optimal stress levels
remain the same as in the prior-based ALT plan, thus
the setting of a test chamber does not need to be
re-adjusted. At this stage, the decision variables
include the censoring time f, the total number of
units N’ and the optimal test unit allocation to each
stress level.

The total test cost is determined by the duration
and number of test units in the second-stage test. Let
C; and Cr be the cost per test unit and the cost for
running the test for a unit time, respectively. The

total cost, denoted by TC(N',t;), is given by
TC(N',t;) = CIN' + Crt¢’. The constrained opti-
mization problem is
Minimize U'(D)
subject to TC(N',t.) <TB
te>0 [15]
N eN*

D ={(n],z),i=1,...1}

The following algorithm is used to determine the
optimal adaptive plan:

Algorithm to obtain the optimal adaptive second-stage plan

Step 1: let N, = |TB/C;] be the upper bound of N'.
Step 2: for N' = 1: N,

1. set tz = (TB—GN')/Cr.
2. numerically search for D’ that maximizes U'(D') and calcu-

late U'(D™).
3.if N =1, let max U’ = U (D), opt D' = D'*, otherwise do the fol-
lowing:
if U'(D*) > max U, let max U = U'(D).
end Step 2

opt D' is the optimal adaptive plan and the corresponding utility is max U'.




The adaptive second-stage ALT test is carried out
based on D*. If we let t' be the test data from the
adaptive test, then the second-stage posterior of the
model parameters can be updated by the same
approach as in Section 3.4, thus the test data from
both stages are utilized to obtain the posterior predic-
tion. Afterward, the following prediction model is
used to make inferences of the log life quantile of the

test products,
p(log T,(0)]t, ¢ Zp logT,(0)[t, ', M;)Pr(M;|t,t)

[16]

With the above model, the posterior samples of
logT,(0) can be obtained through MCMC and we can
use the samples to build point and interval estimates
for logT,(0) and therefore T,(0). As mentioned
above, if the test planner find that one model is
strongly preferred, i.e., the posterior model weight
exceeds o), the other model can be eliminated from
the prediction model. By the framework in Figure 1,
if the posterior model weights are still unsatisfactory,
we can continue to plan more stages of adaptive tests
if there is an extra test budget.

From a more general perspective, there could be
more than two possible models when planning a reli-
ability test. In the presence of multiple candidate
models, it is more difficult to identify the most appro-
priate one from a test with small sample sizes. In
practice, when several models all provide adequate fits
to the data, test planners tend to choose the most
conservative model in practice, i.e., the one which
yields the lowest mean of estimated fy1(0), to conduct
further analysis.

4, Numerical example

The adhesive bond test example from Meeker and
Hahn (1985) is revisited to illustrate the proposed
method in the article. The objective of the study
was to assess the reliability of a type of adhesive
bond. The engineers desired to predict the 0.1 life
quantile at use temperature 50 °C. The failure pro-
cess of the adhesive bond was believed to be a sim-
ple chemical degradation process, which was well
modeled by the Arrhenius relationship. The 0.1 life
quantile was expected to be more than several
years; therefore, an accelerated life test was needed
to predict the quantile. The acceleration regression
model is assumed is to be log-linear. After stand-
ardization, it is believed that if the lifetime follows
a Weibull distribution as in Meeker and Escobar
(1998), i.e., M;, and the pilot fixed parameters for
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model M, are 0, =

(9.36, 0.6, —4.65), that is
logt,(2)|M; = 9.36 — 4.65z + 0.6D, (p) [17]

approximately

The previous studies only considered M; with fixed
0, as a given model and planned the ALT based on
this pilot model. To illustrate our approach, suppose
lifetimes are actually lognormal distributed but this is
unknown to test planners prior to the test, who there-
fore consider both a Weibull and a lognormal lifetime
as possible models. To keep the variability of log life
consistent, for the lognormal distribution, the scale
parameter is set at o, = 0.77, because the standard
deviation of log life is o, under the lognormal model
and 7g,//6 under the Weibull model, as shown in
Pascual and Montepiedra (2005). It is assumed that
there are 300 units available in the test, and the cen-
soring time is six months (183 days). The highest
operation temperature in the test is 120 °C.

4.1. Prior specification and first-stage planning

Prior distributions need to be assigned to parameters
to quantify the prior knowledge and credibility in 6,
and 60,. In addition, the prior model probabilities
Pr(M;) and Pr(M,) should be specified as well. As dis-
cussed in Zhang and Meeker (2006) it is desirable to
use the positive parameters 07 = (t0.001(0), 0 [31)
instead of 0, to specify the prior information, because
t0.001(0), which is the 0.001 life quantile at the use
stress level, is approximately independent of ¢. Based
on the prior information for the product, engineers
believed that about 0.1 percent of the items would fail
after 6 months at use temperature 50°C, i.e., £y0(0) ~
183 days, but there is much uncertainty in this value.
Because log|fo.001(0)] is on the same scale of g; and
—By;, we set the prior mean of log[t:(0)] equal to
5.2, making exp(5.2) = 183 days. Moreover, we put a
large prior standard deviation on #;0;(0). Therefore,
the transformed parameters 07 = (£ (0), a;, ,85)
follow independent lognormal distributions as in
Zhang and Meeker (2006), and the prior information is
summarized in Table 1.

According to the prior information, the mean value
for the prior estimation of logty;(0) under M; and

Table 1. Prior specification for 65" and 65 .

M, M,
thow (0 o —Bu__ 5 o) B>
Koo 5.2038 —0.5635 1.5311 5.2038 —0.2940 1.5311
oy 1.4995 03246 01072 14995 02555  0.1072
Mean 560 0.60 4,65 560 0.77 4,65
) 1630 0.20 050 1630 0.20 050
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Table 2. Non-Bayesian optimal plans under M; and M,.

M] MZ
Condition Level in [0,1] Level °C Proportion Number Level in [0,1] Level °C Proportion Number
i Zj TEMPC i n; Zj TEMPC T n;
Use 0 50 0 0 0 50 0 0
Low 0.68 94.51 0.707 212 0.36 7213 0.800 240
High 1 120 0.293 88 1 120 0.200 60
Table 3. Optimal plan D* to maximize U(D).
Condition  Level in [0,1] Level °C  Proportion Number Expected
i Z; TEMPC T n; Failures
Use 0 50 0 0 0
Low 0.54 84.37 0.553 166 95
High 1 120 0.447 134 130

U(D*) = —0.1095

M, is 7.99 and 6.60 respectively, which is significantly
different under the log scale. If the scale is in years,
these correspond to around 8 and 2 years, respect-
ively. This implies that even under the same prior
information, the two models yield significantly differ-
ent prior estimation for the 0.1 lifetime quantile.

For the prior model probabilities, we assume that
the test planner has no evidence to prefer either of
the models, thus we set Pr(M;) = Pr(M,) = 0.5. It is
assumed that the test planner desires a posterior prob-
ability of 0.7 or larger on the preferred model from
the test data. Otherwise, an adaptive second-stage test
is considered necessary.

In the example, we consider a two-level ALT plan,
denoted by D = (z,2;,m1,7;), where z; and z, are
the standardized lower and higher stress levels and
m; and 7, are the proportions of test units that are
allocated to z; and z, respectively. Note that the opti-
mal ALT plan is two-level if and only if the log-linear
acceleration regression model is correct.

Prior to planning the ALT tests, non-Bayesian opti-
mal plans to minimize the asymptotic variance of the
predicted 0.1 life quantile for M; and M, are derived;
they will be compared with the results in the follow-
ing analysis. We set the pilot parameters as the mean
of the respective priors for M; and M,. The optimal
plans for M; and M, are shown in Table 2. The
results show that the non-Bayesian optimal plan
under M; has a significantly higher z; and less alloca-
tion on z; compared with the optimal plan under M,.

Next, the ALT plan is optimized based on the pro-
posed criterion in the article. By maximizing the util-
ity function in Eq. [2], the Bayesian optimal plan is
obtained by numerical search, as presented in Table 3.
The surface plot of utility is shown in Figure 2.

From the results, the optimal ALT plan is D* =
(0.54, 1, 0. 553, 0.447). Compared to the optimal

Figure 2. Surface plot of U(D).

plans in non-Bayesian cases in Table 2, one significant
difference of the Bayesian optimal plan is that it allo-
cates more test units on the higher stress level and the
lower stress z; is in between of the two plans in
Table 2. The reason behind this allocation scheme is
that the available prior information can make the
optimal plan extrapolate further from the use condi-
tion. One can find more discussions on this in
Section 5.1 of Zhang and Meeker (2006). In Figure 3,
the contour plots for the integrated utility function
U(D) in Eq. [2] as well as the negative weighed pre-
posterior variance Uy (D) and squared mean bias
Ug(D) are given. From the figure, one can see that
Ug(D) are much smaller than Uy (D); that is, in this
problem, Uy (D) provides the major contribution to
the utility function. The figure also shows that U(D)
is less sensitive with respect to 7; because Ug(D) part
varies very little with m;. The change in sample size
directly influences the relative importance of Uy (D)
and Ug(D), which we will address in a later section.

4.2. Example: Prediction based on the first-
stage test

Based on the optimal plan D* = (0.54, 1, 0.563,
0.436) with N = 300, an accelerated life test is to be
conducted. For illustration, Monte Carlo simulation is
used to generate the experimental data based on a
model that we assume to be true (either M; or M;)
with true parameters 6, or 0,.
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Figure 3. The contour plot for: (a). Integrated utility function U(D) (b). Negative weighted pre-posterior variance Uy (D). (c).

Negative weighted squared mean bias Ug(D).
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Figure 4. The probability plots for simulated data from D* under M; and.M,.

We assume that model M, with parameters
0, = (7.58, 0.77, —4.65)" is the true model and
simulate the ALT data from the model. Note that the
true model should be unknown to the test planners,
even after observing the experiment data t. In other
words, we are assuming the true model and parame-
ters that are in a black box that test planners are try-
ing to reveal statistically.

We simulate failure data t for one time, illustrated as
the probability plots in Figure 4. The maximum likeli-
hood estimators under M; and M, assumptions
are given by 0, = (7.945, 0.719, —4.639) and 0, =
(7.821, 0.803, —4.961)".

Next, a BMA framework is used to predict the life
quantile from the ALT data, i.e., we compute the
BMA weights as well as the parameter posteriors of
both models. Computing the posterior model proba-
bilities by Eq. [8], we obtain

Pr(M,|t) = 0.2693, Pr(M,|t) = 0.7307

The posterior probability of 0.7307 on M, satisfies the
test planner’s requirement. Thus, the second-stage test is
skipped. By MH sampling with a sample size of 20,000,
we calculate the posterior means and variance covariance
matrices of 0; and 0, for each model as follows,

E(0,]t) = (7.9614, 0.7158, — 4.6526)
E(0,]t) = (7.7895, 0.8017, — 4.9163)

0.0262  0.0014 —0.0296]
Cov(6|t) = | 0.0014  0.0013 —0.0021
| —0.0296 —0.0021  0.0365 |
[ 0.0223  0.0017 —0.0254 |
Cov(6yJt) = | 0.0017  0.0016 —0.0018
| —0.0254 —0.0018  0.0330 |

In Figure 5, the density-scaled histograms of the
simulated posterior samples drawn by MCMC are



190 @ X. ZHAO ET AL.

(0 o —p
02 0.001(0) 30 1 8 11
2
‘@
c 6
2 20
2 0.1 4
=
© 10
-5 2
o
0 0 0 '
0 500 1000 0 0.5 1 3 4 5 6
tl(lﬁ)nn(o) [ep) — B2
0.03 30 6
2
‘@
c
8 0.02 20 4
=
2 001 10 2
a
Q
= T .
0 0 i i 0
0 500 1000 0 0.5 1 3 4 5 6

Figure 5. Comparison of posteriors (histograms) and priors (darker density lines) of the transformed parameters in models 1

and 2.

Table 4. Basic statistics of logTy1(0)|t and Ty (0)]t.

logTo1 (0)]t To.a(0)[t
Average 6.6489 776.7731
Median 6.6476 770.9213
Standard deviation 0.1122 87.4197
Coefficient of variation 0.0169 0.1125
95 percent confidence interval (6.4166, 6.8581) (612, 952)

compared with prior densities of each transformed
parameters under M; and M,. Note that we use the
transformed parameters here for comparison because
they are assumed to be independent in the prior
information. Generally speaking, the posteriors have
lower variability than the priors. For t(()%m, ie, the
0.001 life quantile under use stress for each model,
the prior is of very large variability, and by compari-
son the posterior is much more informative. We can
notice a significant difference in the posterior té%m
under M; and M,. This is due to the difference in the
shape of left tails (lower quantiles) of Weibull and
lognormal distribution. For both models, the prior
information is the mean of 0.001 life quantile under
use stress is about 0.5years (183days). However,
under the same prior information and the same
standard deviation of log life, the 0.1 life quantile
t0.1(0) for each model differs significantly. The MLEs
give 20,1(1)(0) =559 days and 20,1(2)(0) =890 days
under M; and M, respectively, and the ML estimators
show a significant difference up to 331 days, which is
close to 1year.

Afterward, we use Eq. [7] to obtain the posterior
log 0.1 life quantile at use stress, i.e.,

logTy1(0)|t, by plugging in the posterior BMA
weights and parameter samples. Under a sample size
of 20,000, some basic statistics of logT,;(0)|t and

To1(0)[t are listed in Table 4. The histograms are
shown in Figure 6.

From Table 4 and Figure 6, under a relatively large
sample, the posterior distributions of the logTp(0)[t
and T;,(0)|t seem to be bell-shaped and unimodal.
We can see that the mean and median are very close.
The standard deviation is relatively small. For
To1(0)|t, the value is 87.4, which is less than
3months. To compare the predicted results of the
weighted model with M; and M,, we give the statistics
for logTp(0)|t,M;, i =1, 2 in Table 5.

Compared to the true log 0.1 life quantile under
use stress, logty;(0) = 6.5932, i.e., £,(0) = 730.1174,
the weighted model gives the least biased mean and
median under the particular dataset. The true value
lies in the 95 percent confidence interval for
logTy1(0) under all three cases Note that the ALT
data should be random for a given ALT plan D, thus
to evaluate a plan we need to carry out a simulation
study with a large set of ALT data.

4.3. Comparing a Bayesian plan with a plan that
does not consider model uncertainty

To evaluate the optimal plan in Table 3, especially the
robustness to lifetime distribution and model parame-
ters, the ALT optimal plans for M; and M, are
obtained individually by the method introduced by
Zhang and Meeker (2006), where the utility function
for M; is

U/(D) = - J Ci(D)e;i(0:)d0;

This method has considered the parameter uncer-
tainty of the ALT model, but does not consider the
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Figure 6. Histograms of logT1(0)|t and Ty (0)]t.

Table 5. Basic statistics of IogT0,1(0)|t under M; or

M, assumption.

logTp(0)|t, M, logTp(0)|t, M,
Average 6.3507 6.7621
Median 6.3534 6.7705
Standard deviation 0.1627 0.1436
Coefficient of variation 0.0256 0.0212

95 percent confidence interval (6.0468, 6.6491) (6.4769, 7.0203)

model selection uncertainty. The same prior informa-
tion is used for each optimal ALT plan. The optimal
plans are denoted by D), and D), respectively, and
are shown in Table 6.

It is assumed that the posterior prediction of
logty.;1(0) for plan Dy, and D), is based on M, and
M, respectively. For each simulated ALT data, we use
the posterior mode to represent the posterior
logty1(0) point estimator by assuming the posterior
distribution of logT,(0) is unimodal and symmetric,
as in Figure 6. The posterior mode is obtained by
maximizing £(0;|t,M;)w(0;) for each model. We
simulate the ALT data for 2000 times for each optimal
plan under the three scenarios. Figure 7 gives the
resulting histograms of the predicted logTy1(0) under
D", Dy, and D, indicating their average and stand-
ard deviation.

In comparison to the true value logt;(0) = 6.5932,
the optimal plan D, and the predictions based on M,
provide the most accurate mode average (6.60). This is
as expected since we selected the true model by using
Dj,,- By comparison, the optimal plan D" and predic-
tion by our method gives a mode average of 6.52 and
standard deviation of 0.144. The mode average has an
error rate of 1.06 percent. If the model is mis-specified,
i.e., M is used to plan and predict the lifetime quan-
tile, the mode average results in 6.16 and the error rate
is 6.58 percent. For the proposed method, the histo-
gram posterior probability on the pre-assumed true
model M,, ie., Pr(M,|t), is given in Figure 8. The

Frequency
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figure shows that the model averaging framework
introduced in Section 3.3 for the simulated data has
shown significant preference for the true model M,
and the proportion that Pr(M,|t) < 0.5 is very small.

For a clearer illustration, we calculate the predicted
posteriors of T;;(0) from the three scenarios. The
error rates with respect to the true value are 6.75 per-
cent, 35.2 percent and 0.5 percent. This indicates that
model mis-specification with a single model is very
risky, while the proposed robust planning and predic-
tion framework has a reasonable error rate that is
only about 6 percent. It is emphasized that these
results are based on diffuse prior information of
model selection, i.e., Pr(M;) = Pr(M,). Furthermore,
the standard deviation (SD) of the posterior mode is
0.144 under D". This is very close to SD=0.133 in
the true case. D), gives a value of 0.211, which is
considerably larger than those from D" and D, .

The results show that the incorrect selection of life-
time distribution may lead to a drastic prediction
error. The proposed model yields the posterior life
quantile weighed by the posterior model probabilities,
providing the prediction with reasonable robustness
when the lifetime distribution information is diffuse.
If more reliable prior information on model selection
is given, the weighted model is expected to provide
better results. Related discussions are given
Section 5.

in

4.4. An example of adaptive second-
stage planning

In the example described previously, the adaptive
second-stage test is skipped. To illustrate the planning
of adaptive test, we modify the user-selected desired
posterior probability of the preferred model to 0.8. In
this situation, the adaptive test is now necessary based
on the test data from Section 4.2. It is assumed that a
total budget of $2,000 is given for the adaptive
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Table 6. Optimal ALTs under M; or M, regardless of weights and bias.

Dy, Dy,
Condition Level in [0,1] Level °C Proportion Number Level in [0,1] Level °C Proportion Number
i Zj TEMPC T n; Zj TEMPC Y n;
Use 0 50 0 0 0 50 0 0
Low 0.67 94 0.50 150 0.51 82.27 0.70 210
High 1 120 0.50 150 1 120 0.30 90
U (D) —0.1501 —0.0550
(1) () ()
04 Average=6.52, SD=0.144 012 Average=6.16, SD=0.211 Average=6.60, SD=0.133
0.16 |
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Figure 7. Histograms for posterior mode under plans (1) D%, (2) D), , and (3).Dy,, .
6 Table 7. Optimal plan D'x to maximize U (D).
Condition Level in [0,1] Level °C Proportion Number Expected
5 i Z; TEMPC b} n; Failures
Use 0 50 0 0 0
Low 0.54 84.37 0.489 128 16
4r High 1 120 0.511 134 127
t. = 69 days U(D") = —0.0187
3h
2+ Through a single-time simulation of test data, we
obtain the result Pr(M;|t,t' ) = 0.053, which makes
T Pr(M;|t,t' ) = 0.947. By the model in Eq. [16], the
-lI predicted log 0.1 life quantile is 6.617 with standard
00 02 04 06 08 1 deviation 0.1015. The predicted life quantile is closer

Pr(M, [t

Figure 8. Histogram of.Pr(M;|t).

second-stage planning. Each test unit costs $5 and
test-running cost per day is $10, i.e., C; = 5, Cr = 10.

Under the budgetary constraint, the optimal adap-
tive plan indicates using 262 test units in total
(Table 7) and suggests a censoring time of 69 days,
which is considerably shorter than 183 days for the
first stage. In contrast with the utility of —0.1095 for
the previous plan, the adaptive plan gives a much
greater utility of —0.0187.

to the true value with a smaller standard deviation.
We can see that the results from both stages of test
has shown much stronger preference to M,. The test
planner may wish to eliminate M; for the following
the analysis.

5. Sensitivity analysis

This section discusses the sensitivity of the test plans
and life quantile predictions given by our proposed
framework with respect to the prior probability of
candidate models, the sample size, and the available
budget for an adaptive second-stage test.



Table 8. Summary of results under different prior probabilities
of candidate models.

Optimal ALT plan D* Mean
PT(M1) m (fh) V4 (TEMP1OC) U(D* ) (PY(M1 |t))
0 0.71 (213) 0.51 (82.27) —0.0550 0.000
0.1 0.68 (204) 0.54 (84.37) —0.0669 0.034
0.2 0.65 (196) 0.54 (84.37) —0.0781 0.054
0.3 0.63 (189) 0.54 (84.37) —0.0890 0.080
0.4 0.61 (184) 0.54 (84.37) —0.0995 0.101
0.5 0.55 (166) 0.54 (84.37) —0.1095 0.108
0.6 0.54 (162) 0.54 (84.37) —0.1190 0.126
0.7 0.53 (159) 0.53 (84.37) —0.1283 0.175
0.8 0.51 (154) 0.54 (84.37) —0.1372 0.185
0.9 0.49 (148) 0.55 (85.08) —0.1456 0.189
1.0 0.48 (143) 0.55 (85.08) —0.1535 1.000

5.1. Influence of prior probability of candidate
models on the prior-based ALT planning

The prior probability of M;, ie., Pr(M;), describes
how the test planners prefer each model prior to con-
ducting an ALT. Based on the utility function, the
change in value of Pr(M;) has an influence on the
optimal plan D" and the following prediction of life-
time quantiles. To investigate the influence in this
example, we set Pr(M;) from 0 to 1 with increase step
0.1, making Pr(M,) vary from 1 to 0, and obtain the
optimal plan, the corresponding optimal utility value,
and the average value of Pr(M,|t) by simulating the
ALT data 2000 times for each case. The results are
summarized in Table 8.

As Pr(M;|t) increases, the proportion of units allo-
cated to lower stress decreases, while the level of lower
stress does not vary much with only less than 4 °C
increase when Pr(M;|t) varies from 0 to 1. The reason
for this behavior is that if the test planner believes
that M, is much more plausible than M; by setting a
small prior probability to Pr(M;), the optimal plan
would be nearer to plan D), , which calls for a higher
m; and a lower z;. As Pr(M;) increases, the plan
becomes closer to D), . Note that the utility function
is not a linear combination of asymptotic posterior vari-
ance and squared bias weighted by Pr(M;) because the
bias function is dependent on Pr(M;). However, in this
example, under the sample size of 300, the utility value
seems to be dominated by the Uy (D) part, thus the opti-
mal plans under different Pr(M;) are close to the linear
combination of Dy, and D}, weighted by Pr(M;).

We are also interested in the posterior model prob-
ability Pr(M;|t) under different Pr(M;). If we set
Pr(M;) as 0.5 or smaller, the average Pr(M,|t) is
smaller than 0.108, making Pr(M,|t) greater than 0.8.
The data simulated in Section 4.2 yields Pr(M;|t) >
0.26 if Pr(M;) = 0.5, which is much larger than the
average value 0.108 shown in Table 8, but the results
are still satisfactory. Therefore, the Bayesian model
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Table 9. Summary of results under different sample size N.
Optimal ALT plan D*

Average
A ( ) P4 (TEMP]OC) U(D* ) (PI’(M1 |t))
30 0.44 (13) 0.52 (80.2) —0.2612 0.313
100 0.52 (52) 0.52 (83.0) —0.1659 0.228
200 0.54 (108) 0.53 (83.7) —0.1275 0.157
300 0.55 (166) 0.54 (84.4) —0.1095 0.108
400 0.56 (222) 0.54 (84.4) —0.0985 0.062
500 0.56 (282) 0.54 (84.4) —0.0908 0.048
1,000 0.62 (580) 0.54 (85.1) —0.0707 0.000

averaging procedure works well to give reasonable
prediction by providing posterior model probabilities
that combing the prior information with data.

Under extreme cases where Pr(M;) =0 or 1, the
BMA framework will result in the same model as in
the prior. This will only occur, however, in the
unlikely case where the test planner has extremely
strong confidence that one of the models is true,
which is not common in practice because tested prod-
ucts are usually new and the prior probability for a
certain Pr(M;) should not be set to 1. To indicate
high preference, one can make Pr(M;) close to 1, for
instance, as in Table 8 we can set Pr(M;) = 0.9. The
model selection is still of high efficiency when seeking
for a better model that is close to the true one by tak-
ing advantage of the BMA framework.

5.2. Influence of sample size on the prior-based
ALT test

In non-Bayesian ALT planning problems, the sample
size does not affect the planning of ALT, but the sam-
ple size should be relatively large to assume the esti-
mated parameters are asymptotically normally
distributed. However, the total number of test units
N, relative to the amount of prior information, has an
influence on both the optimization of Bayesian ALT
planning and on inference. A larger sample size
results in a decrease of influence of prior information
on the prediction. Another consideration is that the
expected squared bias part Ug(D) term is not affected
by sample size, while the variance part Uy (D)
decreases as N increases under the same D. By fixing
Pr(M;) = Pr(M,) = 0.5, the optimal ALT plans with
corresponding utility values and the model selection
results under varied N are given in Table 9. The results
are based on 2,000 times simulation of ALT data.

The optimal =} increases as the sample size
becomes larger, while z] does not change much. A
larger sample size decreases the relative information
of priors; thus, the optimal plan gives more allocation
at lower stress to make the data less extrapolated. We
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notice that the utility value increases fast when N
changes from very small (30) to relatively large (300),
and the increasing rate becomes very low when N is
larger than 300. The reason is that, with a small sam-
ple size, the variance term dominates the utility func-
tion, in which the increase of sample size will reduce
the pre-posterior variance fast. However, as N becomes
even larger, the squared bias term in the utility does
not change and the variance term is already very low,
thus the improvement of utility will diminish. In add-
ition, the squared bias Ug(D) will reach its highest
value when all test units are allocated to the low stress
level. This is another reason that =} is higher with
large sample size.

For the model averaging, a larger N is expected to
provide a better result. When the sample size is
extremely large, e.g., N = 1,000, the model selection
procedure almost eliminates the wrong model every
time in 2000 simulation runs. In real engineering cases,
the sample size is usually limited by the available num-
ber of products or cost. Under the proposed analysis
for this example, the sample size 300 seems reasonable
in the tradeoff as the utility has improved substantially
from N =200 to N =300. However, the test is
planned before it is conducted, thus the only criterion
is the utility value for each optimal plan, which is influ-
enced by prior information. Nevertheless, test planners
can resort to simulation techniques to analyze the
influence of changing sample size and prior informa-
tion under several anticipated scenarios.

5.3. Influence of test budget on the adaptive test

To explore the planning of the adaptive second-stage
test, we modify the total budget for the test from
$500 to $10,000 and obtain the optimal plans by the
algorithm described in Section 3.5, and the results
are summarized in Table 10. Under very limited
budgets, e.g., $500, the optimal sample size is very
small to ensure the censoring time to be reasonably
adequate. Meanwhile, most test units are allocated to
higher stress to decrease the chance of censoring. If
the budget is moderate, e.g., $1,000-$5,000, the opti-
mal censoring time does not vary much, and the
improvement in utility mainly benefits from the
increase of sample size. On the contrary, when the
budget is even larger, e.g., $10,000, the optimal cen-
soring time becomes much longer and, therefore, the
proportion of test units allocated to the lower stress is
high because the test duration is long enough to pro-
duce enough failures. Generally, the planning of the
adaptive test with a given budget faces the tradeoff

Table 10. Optimal adaptive ALT plan D'x under different
total budgets.

Optimal adaptive ALT plan D'x

vk

B (in $) N t ' (ny) Um )
500 4 48 0.25 (1) —0.0331
1,000 58 71 0.24 (17) —0.0221
2,000 262 69 0.49 (128) -0.0187
5,000 858 71 0.51 (434) —0.0157
10,000 1200 400 0.93 (1120) —0.0124

between sample size and test duration. As the budget
increases, the emphasis of planning activity shifts from
censoring time to sample size determination.

6. Conclusions and areas for future research

This article presents a systematic two-stage planning
and prediction approach to accelerated life tests under
model uncertainty from a Bayesian perspective. A novel
modified V-optimality criterion that simultaneously
considers pre-posterior variance and squared bias is
used to optimize the first-stage ALT plan. Afterward,
we use the Bayesian model averaging technique to
obtain the posterior prediction of life quantile of inter-
est under use stress. An adaptive second-stage test can
be conducted if the first-stage ALT data are not suffi-
cient for model differentiation. The adaptive second-
stage ALT is planned based on the results obtained
from the first-stage test and with a budget constraint.
In most reliability testing applications, the true lifetime
distribution and acceleration model are unknown, no
matter before or after ALT experiments. Our proposed
approach instills robustness to both ALT planning and
reliability prediction to counter model uncertainties.
This holistic approach has not been explored before.

The adhesive bond test example is revisited to illus-
trate the proposed approach and make comparisons
by simulation with plans from previous Bayesian ALT
studies. The comparison shows that our approach
yields a closer result to the true model. Meanwhile, it
compromises very little statistical efficiency in com-
parison to the model misspecification error even when
the prior information on lifetime distribution is rela-
tively diffuse. The sensitivity analysis with respect to
prior probabilities of candidate models and sample
size is addressed for the first-stage planning, and the
sensitivity analysis with respect to test budget is
addressed for the second-stage planning.

The proposed framework can be extended to ALT
planning and reliability prediction problems with mul-
tiple stress factors with more stress levels (Huang and
Wu 2017; Wu and Huang 2017), and it can also be
extended for more general acceleration regression



models and different lifetime distributions (Fan and Yu
2013; Abdel Ghaly et al. 2016). In these future studies,
the efficiency of numerical optimization is challenging
due to the increasing number of decision variables. In
addition, it is noted that the planning methods in the
article is based on large-sample approximation, for
ALT problems with small samples of test units, the
similar idea is of interest for exploration and validation.
As mentioned in Zhao, Xu, and Liu (2017) and Hong
and Ye (2017), for more reliable products, degradation-
based reliability test plans that are robust to model
uncertainty may also be addressed in future research.
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Appendix A
Approximation of U;(D)
Recall Eq. [2], the first part representing the pre-posterior
variance,
Uy(D) = - Z Pr(M;) jci(D)wi (6,)d0;,
where for i =1 or 2
Ci(D) = AVary, (logt,(0)|M;) = chVarg,‘t(él)ci,
By Clyde et. al (1995) ’s large sample approximation,

AVargih(@l) = [Sfl + ioi(D)} B ~ (87 + IOi(D)rI'

(A1]

For w;(0;), the density could be obtained by integrating
the sampling distribution of the conditional variables as

wi(&') = Jwi (&-I&-) @;(0;)d0;.

When the sample size becomes larger the conditional
variables converge to the distribution of 6;, most variability
originates from the prior, therefore, w; (é,) ~ ;(0;), and by
combining the approximations with the those in Eq. [Al],
the Uy (D) is approximated as in Eq. [8].
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Appendix B

Fisher information of unknown parameters under
two models

Taking Iy, (D) as an example, for D = {(m;,z),i=1,...,1},
then

N
Iy, (D) = FZ ik,
p

where F; is the scaled Fisher information matrix (Escobar
and Meeker 1994):

M) Al ful)a
Fi=| full) fb) M@z,
)z fi(8)z )z

where

o log(tc) — o1 — Pus

1 o N

Then the elements f1;({;), fi2((;), £2({;) can be calculated
as

(&) =Yol&i) +n(lo),
f2(8) =1 (8) + Con(Go)s
Fu (&) = Ya(&) + Gn(Go),
where (o = (—fy; — P112i)/0, and

w() :J [+ xH(x)'H(x)> g(x)dx, i=0, 1, 2,

) TT- G
RO {(C))
1) = 1= (]G0

Here, g(x) and G(x) are the PDF and CDF of SEV dis-
tribution, g(x) = exp(x—exp(x)), G(x) = 1 — exp(—exp(x)).
To derive Iy, (D), simply replace 6, with 6, and set that
g(x) and G(x) is the PDF and CDF of standard normal dis-
tribution, respectively.

Appendix C
Approach to obtaining 0;

Based on the result in Pascual and Montepiedra (2005), 0}
can be obtained by minimizing the expected value with
respect to M; of the negative M;_; loglikelihood under test
plan D = { (miyzi), i =1, l} If M, with 0; is assumed to
be true, then 65 can be obtalned by minimizing the follow-
ing equation:

N [— log £5(0,, D))

= log (v/27ma,) Znﬂ{log{l — @, [(5(za)]}
+log (\/ﬁoz)} exp {—exp [{;(z,)]}

1 ! ‘-I(Zn)
a2

[C1]

y — Ai(2)]” exply—exp (7)]dy,
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where Az (z4) = [Boy + Braza—Bor—Buzal /02 and (i(z,) =
[tc—Poi—P1i2n]/0i for i =1 and 2. If instead M, with 0, is
assumed to be true, 67 is obtained by minimizing

1
NEMZ [— lOg £1 (01, D)]
I
= Znn{logol + Aiz(2n) — exp [Cl(zn)”
Zﬂnﬁbz é’Z Zn [Cz]

A12 (Zn):|

52 Zn
+Znn{ exp

@, {cz(zn) - Z—j + exp [(1(zn)] }

where Ay (z,) =

[ﬂm + ﬁnzn—ﬂoz_ﬁlzzn]/ﬂ-

Appendix D

MCMC methods to get a posterior sample of 0,
and 02

Because the joint posterior in Eq. [10] is not a regular
known distribution, the Metropolis-Hastings algorithm is
employed to generate the posterior samples of 6, and 0,.
Taking 0, as the example, the sampling approach is
as follows.

1. First, an initial sample of 6;, denoted by 0(10) is
sampled from the joint proposal distribution ¢(0,),
which is different from the posterior distribution of 6,
but is believed to be relatively close to p(0;|t) and easy
to sample from.

2. For iteration i = 1,2, ..., do the following steps,

a. Propose a candidate sample randomly from distri-
bution ¢(#),), denoted by 0.
b. Compute the acceptance probability:

a(eiandagi-1>> = mind 1 q(ggi—l)|0§and>P(0§and|t)

(o080 )p(0i )

(D1]

¢.  Draw a random number u ~ Uniform(0, 1).
d. If u<a, then accept the proposed candidate:
054 = ch’nd'3 otherwise regect the candidate and use
0, as 01 : 01 = 67~
3. Stop if i reaches the desn‘ed sample size.

The independent Metropolis-Hastings algorithm is
used, where the proposal distribution ¢q(6;) does not
depend on 0Z 1, which is efficient when the proposal
distribution is close to the posterior. To obtain a poster-
ior 0, sample, i.e., a sample from 6,]t, the same algo-
rithm is implemented. The prior joint distributions
®;(0;) are used as the proposal distribution for sampling
each 0;.
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