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Multivariate degradation processes have been observed in many engineering systems. Most existing multivariate
degradation modeling techniques, such as multivariate general path models or multivariate Wiener process
models, assume an underlying Gaussian dependence structure. Unfortunately, in reality, the dependencies among
degradation processes are often nonlinear, asymmetric and greatly tail-skewed, and thus limit the usefulness of
the conventional modeling techniques in practice. To overcome these limitations, in this paper, we develop a
copula-based multivariate modeling framework. Three fundamental copula classes are applied to model the
complex dependence structure among correlated degradation processes. Statistical inference and model selection
techniques, including two graphical diagnostic tools, a test of independence and a goodness-of-fit test, are
employed to identify the best model. The advantages of the proposed modeling framework are demonstrated
through simulation studies. And we also discuss the effect of ignoring tail dependence on system failure prob-
ability assessment. Finally, the applications of the copula-based multivariate degradation models on both system
reliability evaluation and remaining useful life prediction are provided. The proposed methodology is illustrated
using a numerical example.

1. Introduction components are often present as well. These dependencies may originate

from possible power load and interconnecting pieces shared by the

1.1. Motivation

A general engineering system, either a single-component product
with multiple failure modes or a complex structure with multiple com-
ponents, usually involves with both uncertain and dependent degrada-
tion processes. For example, the degradation mechanisms of light-
emitting diode (LED) lamps usually contain lumen depreciation,
discoloration, lens cracking, and color shift of the LED light output
(Yazdan Mehr et al., 2020). These indices are affected by not only
chemical reactions happening in the optical components, but both raw
manufacturing defects and surrounding service conditions. All of these
complexities make the LED perform with uncertainty. And the in-
teractions among some mechanisms - including contribution of both
discoloration and lens cracking to color shift — imply the dependence
existing in the degradation processes. Similar phenomena exist in many
other applications, such as polymeric material (Fang, Pan, & Hong,
2020) and lithium-ion batteries (Peng, Ye, & Chen, 2018). For a complex
structure with multiple components, dependencies among the
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components. See Xu, Wei, Elsayed, Chen, and Kang (2017) and Shen,
Zhang, Song, and Song (2019) for some examples. Thus, accounting for
the dependencies existing among the performance characteristics (PCs)
of a degrading system plays an important role in system reliability
assessment.

To evaluate the reliability for such a system, the knowledge about
both the system’s reliability-wise structure and the probabilistic model
of these PCs is needed. The reliability-wise structure describes the
system-component configuration, while the probabilistic model defines
the statistical behavior of the corresponding multiple PCs. Denote the

multiple PCs by a random vector Y = (Y3, Y2, ..., Yd), and let f(y1,y2, ...
,¥a4) be its joint probability density function (pdf). In addition, denote
the structure function by g(-) and let {D : g(y) = 1} represent the domain
of a working system. Then, the system reliability can be evaluated by the
equation indicated in Fig. 1. It is defined by the multivariate integral of
fr1,¥2,...,y4) over the domain D. In this paper, we consider either a
series or parallel structure. Thus, the domain of a working system is

simply  {D:g0) =T[4106<D) =1}  and  {D:gl) =
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Fig. 1. Characterization of System Reliability.

1 7]—[?:11()/1»22)1-) = 1}, respectively. And we assume each PC increases
up to D; until failure without loss of generality and D; is a “soft” failure
threshold for process i.

But defining a multivariate joint distribution for multiple PCs im-
poses a big challenge. As illustrated in Fig. 1, a flexible joint pdf should
possess three features — being able to (1) accommodate various marginal
distribution models, (2) include a large group of dependency types, and
(3) capture possible diverse magnitude of dependency among marginals.
Most existing research works either assume PCs to be mutually inde-
pendent or subject to a specific type of multivariate distribution (Pan &
Fang, 2020, chap. 2). Apparently, the independence assumption is not
appropriate since marginal degradation processes often have in-
teractions with each other due to their shared operational/environ-
mental conditions or common manufacturing defects, etc (Wang & Li,
2018). On the other hand, assigning a symmetric multivariate distri-
bution, usually a multivariate normal distribution or multivariate Stu-
dent’s t distribution, may not fit the actual multivariate degradation
process well. This is because the adopted Gaussian dependence structure
cannot capture the nonlinear dependency or the tail dependency that
may exist among PCs (Wang & Li, 2017). As a result, the system reli-
ability assessment could be biased due to model misspecification. But it
is also difficult to construct a multivariate distribution beyond the
Gaussian-based distribution model, say the multivariate gamma distri-
bution, while maintaining nice statistical properties. Thus, a flexible
multivariate distribution construction method is much desired to help
quantify reliability for systems with dependent degradation processes.
The main goal of this paper is therefore to expand stochastic degradation
process models to the multivariate domain and to improve the appli-
cability of the developed methods in practice.

1.2. Literature review

In literature, there are a lot of research works discussing the distri-
bution models of univariate degradation processes. In general, two types
of modeling framework are available - the general path model and the
stochastic process model (Ye & Xie, 2015). The general path model is a
regression-based model that can easily take the unit-to-unit variability
into account. For instance, Fang, Rigdon, and Pan (2018) proposed a
nonlinear mixed-effects model to analyze the accelerated degradation
testing (ADT) data of optical media. Bae and Kvam (2004) provided a
general form of random-coefficients model to incorporate both within-
individual and between-individual variation. Alternatively, the sto-
chastic process model extends the distribution types by considering the
Wiener process (Ye, Wang, Tsui, & Pecht, 2013; Zhai & Ye, 2017; D. He,
Wang, & Cao, 2018; L. He, Yue, & He, 2018), the gamma process (Castro
& Landesa, 2019; Lawless & Crowder, 2004), and the inverse Gaussian
(IG) process (Peng, 2015; Ye & Chen, 2014).

When dealing with a multivariate degradation process, there are two
major approaches — a direct extension from existing univariate models to
multivariate versions and a copula-based multivariate modeling
approach. For example, Lu, Wang, Hong, and Ye (2020) proposed a
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multivariate general path model to analyze a trivariate polymeric
degradation process. Wang, Balakrishnan, and Guo (2015) utilized a
multivariate Wiener process to analyze three-dimensional degradation
data. Nevertheless, both the multivariate general path model and the
multivariate Wiener process model still belong to the Gaussian-based
distribution, which contains the potential drawbacks as mentioned
before. To resolve the issues, in recent years, the copula-based modeling
framework has gained lots of interests due to its flexibility. But most
existing works about copula-based models mainly focus on bivariate
analysis, e.g. (Fang et al., 2020; Pan & Balakrishnan, 2011; Peng, Li,
Yang, Zhu, & Huang, 2016; Wang, Balakrishnan, Guo, & Jiang, 2015;
Wu, 2014). Until recently, some practical research works of multivariate
copula-based degradation models are available. For instance, Xu et al.
(2017) utilized a vine copula to analyze high-dimensional data produced
by a smart electricity meter. Sun, Fu, Liao, and Xu (2020) utilized the
Wiener process model and a vine copula to analyze the ADT data of a
tuner. However, to our best knowledge, there is a lack of complete
systematic studies on how to apply multivariate copula models on
analyzing dependent degradation processes, nor a comparison among
these models. This paper is to fill these gaps.

1.3. Overview

Three primary contributions are made in this paper. First, we provide
a systematic approach to investigating the multivariate copula modeling
of dependent degradation processes. It includes comparing three
fundamental copula classes in the process of multivariate dependency
modeling, along with a tailored workflow of statistical inference and
model selection, which includes two graphical diagnostic methods, a
test of independence, and a goodness-of-fit (GOF) test. Second, a com-
parison between the tail-dependent Gumbel copula and the widely-used
Gaussian copula is made. It contains a study of the effect of ignoring tail
dependence on system failure probability assessment. Finally, the ap-
plications of the copula-based multivariate degradation models on both
system reliability evaluation and remaining useful life prediction are
provided. The proposed methodology is illustrated using a numerical
example.

The rest of the paper is organized as follows. Section 2 illustrates the
copula theory and the three fundamental classes of copula models.
Section 3 discusses the modeling framework of dependent degradation
processes. Specifically, Section 3.1 introduces the marginal degradation
models and Section 3.2 provides a framework of incorporating the
marginal models into the aforementioned multivariate copula models.
Section 4 illustrates the applications of both reliability evaluation and
online RUL prediction. Then, Section 5 provides a method of statistical
inference and a workflow of model selection. In Section 6, simulation
studies are given to demonstrate model characteristics and study the
effect of model misspecification. Finally, a numerical example is pro-
vided in Section 7. Section 8 concludes this paper.

2. Multivariate copula models

In this section, we introduce the copula theory as well as the three
fundamental classes of copula model.

2.1. Copula theory

A copula, C(-), is a multivariate cumulative distribution function
(cdf) with standard univariate uniform margins. Mathematically, it is
defined as (Nelsen, 2007)

Clu) = Cluy,uz, ..., ug) = P(U<uy, Up<utz, ..., Ug<ug),
where u = (ul,uz,...,ud)’ €R? and U = (Uy, Uy, ...,Ud)’ is a d-dimen-
sional random vector with U; ~ Unif(0,1),Vi = 1,2, ...,d. As a multi-

variate distribution function, its properties including the joint, marginal,
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and conditional functions along with survival copula are available as
summarized by the part of Copula Scale: u in Table 3 that is presented in
Appendix.

Since a copula function is with respect to uniformly distributed
margins, we may treat an individual margin as the cdf of any continuous
marginal distribution so as to represent a general continuous multivar-
iate distribution. This well-known Sklar’s theorem is stated as below:

Sklar’s Theorem (Nelsen, 2007): Let X = (X1,X2, ...,Xd)’ be a
random vector with marginal cdfs, Fy (x1),F2(x2),...,Fa(x4), and let F(x1,
X2, ...,Xq) be their joint cdf. Define u; = F;(x;) = P(X;<x;),Vi = 1,2,...,d.
Then, there exists a copula function C(-) such that
= C(Fi(x1), F2(x2), ..., Fa(x4))

= P(Xi<x1, X000, .., Xy<xy)
=F(x1,%2, ..., X4)-

Clur, g, ..., uq)

Note that in some literature, F(x;,Xz, ..., Xq) is denoted by H(x1,xz, ...,
X4). With the cdf of a joint distribution, it is easy to derive the joint pdf as

f(x11x21'~~7xd>
0F (x1, %2, ..., %4)
0x10x2++0xy

d‘/C(Fl (x1) F2(x2), ..., Fa(xa)) OF (x1) OF2(x2) OFa(x4) (€9)]
OF | (x1)0F>(x2)+-0F 4(x4) ox, 0x, ' oxy

d

= C(Fl (xl)7 Fz(Xz), "'7Fd(xd)) Hf'(xt)7
i=1

where f;(x;) is the marginal pdf of X; and c(F; (x1), F2(x2),...,F4(xq)) is
the copula density, which can be obtained by taking partial derivatives
of the copula. Notice that if all marginals are mutually independent,
c(Fy(x1),Fa(x2), ..., F4(xq)) = 1 since taking partial derivatives of inde-
pendence copula (i.e. C(us,uz,...,uq) = Hleui) results in 1. In such case,
flx1,x2,...,%q) = Hf;l fi(xi), which matches the conclusion by the in-
dependence assumption of random variables. In addition, the condi-
tional pdf and the conditional cdf are given by

f(xxf) e (F(abe) P (o) ) (o) @

ey e, (FO) Flol’)
(") = T ,

3

where x” is a (d —1)-dimensional vector of random variables without x.
X; is one arbitrary element of x" and xij denotes the vector excluding this
element. Note that in a bivariate case, the joint pdf, conditional pdf and
conditional cdf are sequentially given by

F@x1,x2) = c(Fi(x1), F2 (x2) )y (61 )fa (32), 4
_f—(xl,xz) =c(F,(x X, X
Sfip(x ) = o) (Fi(x1), Fa(x2))fi (x1), ()

Fip(xi]x) = C(Fi (x1)|F2(x2)) = oF, (52)

(6)

These properties for the original variables (on the scale of x) are also
presented in Table 3.

Thus far, it is noted that the copula theory provides a way to
construct a joint distribution function. It is done by defining all marginal
distributions first and then combining these margins by a copula func-
tion. As implied by Eq. (1), the joint density consists of two separate
parts — marginal densities and a copula density that characterizes the
dependence among the margins. The feature of separation is different
from the traditional multivariate distribution specification. Next, we
introduce the three fundamental classes of copula functions, which are
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elliptical copulas (ECs), exchangeable Archimedean copulas (EACs), and
vine copulas (VCs).

2.2. Elliptical copulas

ECs are the copulas of elliptically contoured (or elliptical) distribu-
tions. The most commonly-used ones are the Gaussian copula and Stu-
dent’s t copula. Let ®! denote the inverse of the cdf of a standard
univariate normal distribution ® and ®y is the d-dimensional standard
normal distribution with correlation matrix X. Then, the Gaussian
copula is given by

C(u;X) = 0 (@' (1), @7 (12), ..., 27" (ua))-

And with I being an identity matrix, its density is

| o] & ()
c(u;Z) = —exp ) : z'-1n : .
Iz} O (uy) @' (u,)

The Student’s t copula is constructed similarly. Let T;! denote the in-
verse of the cdf of the standard univariate Student’s t distribution T,
with degrees of freedom v > 2 and Ty, is the d-dimensional standard-
ized Student’s t distribution with correlation matrix X. Then, the Stu-
dent’s t copula is given by

Clu;Z,v) = Te, (T, (1), T, (w2), ... T, (ua)),

and its density is
, —(u+d)/2
[l(v+d)/2] N .

c(u;Z,v) =
C(v/2) v nd2 |2

<

2.3. Exchangeable Archimedean copulas

Archimedean copulas are constructed via a completely different
route without referring to a known distribution function or random
variable (Yan, 2006). They are produced by a continuous strictly
decreasing function ¢(-) mapping from [0, 1] to [0, co] with ¢(0) = oo and
¢@(1) = 0. The function is called generator function and denote its in-
verse by ¢~ !(-). A d-dimensional Archimedean copula is

C:;8) = o7 (p(w) + @ (i2) + - + 9 (ug); ),

where § is the association parameter controlling the degree of depen-
dence. For instance, ¢(t) = (—In(t))’ and ¢(t) = (t° —1)/6 are generator
functions for the Gumbel copula and Clayton copula, respectively.

Table 4 in Appendix lists the commonly-used copula functions,
including the two ECs described before and three EACs, i.e. the Frank
copula, Clayton copula, and Gumbel copula. These copulas hold various
types of tail dependence: the Gumbel copula has upper-tail dependence
(4v), the Clayton copula has lower-tail dependence (4;), and the Frank
copula is symmetric with no tail dependence.

2.4. Vine copulas

Finally, VCs utilize the expression of full conditional distribution for
a general multivariate distribution. For instance, for a 3-dimensional
case, the joint pdf can be expressed by

f(x, X2, %3) :fl(Xl)fzu(X2|x1)fB\1.2(X3|Xl7X2)-

Since the conditional pdf can be represented by the product of a copula
density and a marginal using Egs. (1) and (2), the joint pdf above further
becomes
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f,x2,x3) = filxy)fo(x2) f5(x3)-
C].z(Fl (Xl),Fz(Xz) )'Cz.s(Fz(X2)7F3(x3) ) @)
crap (Fip(xi[x2), Fya(xslx2) ).

This demonstrates that this joint pdf can be constructed by the product
of its marginals, two unconditional bivariate copula densities and a
conditional bivariate copula density. Aas, Czado, Frigessi, and Bakken
(2009) refer to this operation as Pair-Copula Construction (PCC).
Formally, PCC in d-dimensional is given by

f(Xqu, m,xd)

:fl(xl)fz\l(xz|xl)“'ﬁi\1 ..... d—l(-xd‘-xly--

d—1yd—i d
=11 HiZICi,(i+/’)\(i+l),...,(i+j—l) szlfk (Xk) s
————

marginal densities

»73&171)

pair—copula densities

where i i = Cijlinnic Fiivioie Flivioie)  and  Fygg 5 =
Fyiy iy, (%[0, Xiy o) for  ijin,ia,....i  with i<j and
i1 <ip < -+ < ix. Obviously, the way of decomposition is not unique. To
organize the representation, Bedford and Cooke (2001) introduce a

Fe,X0,x3,x4) = fi (1) o2 (302) o3 (x3) fa (04)-
C12°C13°Cr 4"

C23)1°C2,41°C34/1,2

F(x1,%2,x3,%4) = Fy (x0) Fapy (2 |x1) Fapr 2 (Xa 21,0 ) Fa1 2.4 (203 |x1, X2, X4)
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dimensional vine is a sequence of d—1 trees that has the following
properties: (1) Tree j has d +1 —j nodes and d —j edges; (2) Edges in tree j
becomes nodes in tree j + 1; and (3) Proximity condition: Two nodes in
treej+1 are joined by an edge if the corresponding edges in tree j share a
node.

According to this definition, the joint density represented by a vine
consists of pair-copula (bivariate copula) densities over the @ edges
of the entire graph and the marginal densities of the d nodes in the first-
level tree. Among many different PCC methods, there are two special
types of organized vines — the canonical vine (C-vine) and drawable vine
(D-vine). For a C-vine, each tree has a unique node that is connected to
all other nodes. For a D-vine, each tree is a path. Fig. 2 demonstrates
both the C-vine and the D-vine representations for four dependent var-
iables, respectively. If constructed by a C-vine or D-vine, the joint pdfs
and cdfs are given as below. In these equations, the conditional cdfs can
be calculated using Eq. (3) and the partial derivatives of some
commonly-used bivariate copulas are provided in Table 5 that is pre-
sented in Appendix. Note that the first partial derivative of a copula
function is also called h-function in some literature.

C—vine:
_ \0C1,2(F1 (x1),F2(x2)) 0C2,4\1(qu(xz‘xl)7F4\1(X4|X1))
= F (xl/
OF (x)) OFy; (x2]x1)
acs,zt\l,z (FSU,Z (X3‘x1-,x2)-,F4\1,2 (XA}XMXZ))
OF 412 (xa]x1,%2) .
fxnx,x3,08) = fi(x) f(02) fa(x3) fa ()
C12:C23°C34"
C1,3)2°C2,4/3°C1.4)2,3
D — vine : F(xy,X2,x3,%4) = Fy(x1)Fap (%2]01 ) Faj12(X3|x1, %2) Fapi 2.3 (Xax1, X2, x3)
— vine :

9C12 (Fy(x1),F2(x2)) 0Co31 (Fayu (x2]x1), Fapr (x3]x1))

- R )

0C1 423 (Fipa (%1]%2,%3) , Faps (xa]x2, %3))
OF 03 (x1]x2,33)

graphical structure called regular vine to visualize the multivariate
distribution construction process.
Definition of Regular Vine (Bedford & Cooke, 2002): A d-

12/ @
Tree 1 @%
S 0
()

Tree 2 Bl @,13‘2@424‘3 @ Tree 2
Tree3  (23)13412(24)1 @‘4‘23 243 Tree 3

Fig. 2. C-vine (left) and D-vine (right).

0Fy, (xz‘xl)

3. Distribution modeling of dependent degradation processes

In this section, the marginal degradation models and copula-based
joint model are presented.

3.1. Marginal degradation models

Consider a system that may degrade over time due to d degradation
processes and each process i,i = 1, 2, ..., d, demonstrates stochastic
change over time. In a period of time ¢, the inspection of a degradation
variable is taken at ordered times {t;1,tp, ..., tj, ..., tim }, Where m is the
total number of inspections on each variable and the subscript j is used
as an index associated with the inspection time t;. Let y;; or y;(tj),i =1,
2,...,dand j = 1,2,...,m, denote the observed degradation value of
process i at time point j. Thus, the measurements {yi1, iz, ..., Yim } are the
resulted observations from the i-th marginal degradation process (MDP)
over time.

To model a MDP, three stochastic process models — the Wiener
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process, gamma process and IG process — are favored due to their sto-
chastic nature of capturing the natural randomness of system degrada-
tion over time (Ye & Xie, 2015). In this paper, we consider these three
stochastic processes as candidate models for a MDP. Under these models,
the degradation process Yj; has independent increments given any non-
overlap pairwise time intervals. Thus, we denote Ay; = y; —y;j-1 the
degradation increment from ;1 to t;. In addition, let wy; =
A(tj;7;) —A(tij-1;7;) be the transformed inspection time interval, where
A(tyj;7;) is a function to transform time scale if nonlinearity in the
degradation process exists. Possible choices of A(-) include the power
law function and the exponential law function (Whitmore & Schenkel-
berg, 1997). Under a Wiener process model, it is assumed that
AYj; ~ N(uwy, 6?wy), where y; € R is the location parameter and 67 > 0
is the scale parameter. Under a gamma process model, the MDP is
modeled as AYj; ~ Ga(aiwij, ﬂi), where @; > 0 is the shape parameter and
fB; > 0 is the rate parameter. Finally, for an IG process model, the
degradation increment is subject to an IG distribution as

AY; ~ IG (yiwij,/liw?j>, where y; > 0 is the mean and 4; > 0 is the shape
parameter. For details about a number of variants of these models,
please refer to (Lawless & Crowder, 2004; Li, Pan, & Chen, 2014; Ye &

Chen, 2014; Ye et al., 2013). The two sets of Egs. (8) and (9) demonstrate
the pdfs and cdfs of the models, respectively.

2
1 Ay — p,0; :
exp{, ( Vi 2” 1) } for Wiener process
\/ 276t w; 2005
. ﬂ?iwd ajw;i—1 .,
“(Ay;) = Ay, exp(—p;Ay; for Gamma process 8
fi(Ayy) F{aay) p(=Fidy) p (®)
*/L'(Ayt'/ - ﬂi("i/')z
> - for IG process.
2p; Ay
Ay — Uw; .
) <M> for Wiener process
Oiy/Wjj
a0, B Ay
r(awy, fiy;) for Gamma process
F(a,‘a),‘j)
Fi(Ayy) = /A
D i < yiiiwg> +
Ayy \ #;
24,w;; A [Ay;
exp <ﬂ>q) — ( y’+a),-j> for IG process.
U Ay \ H;
9)

3.2. Copula-based joint model

Based on the aforementioned MDP and multivariate copula models, a
very natural and flexible way to construct a joint distribution model of
dependent degradation processes is demonstrated as below:

F(AYy;, AYy;, ..., AYy) = C(Fi(Ayy), F2(Ayy), ..., Fa(Ayy);0°7)
AY; ~ MDP(Ay;; 01",
(10)

where 9% is the set of parameters in the copula function and 87" is the
set of parameters in the i-th MDP model. Under this framework, the
copula function, C(-), can be any one of ECs, EACs, and VCs introduced
before. The model of a MDP can be any one of the Wiener process,
gamma process, or IG process described above. This joint model also
covers the special case of independent degradation processes by
assuming an independence copula. As implied by Model (10), the copula
function indeed provides a way to construct a joint distribution function
that makes all marginal models defined with no restriction; and the

Computers & Industrial Engineering 159 (2021) 107450

dependence structure is built into the copula function separately from
those marginals. In addition, it is noted that a lot of traditional multi-
variate model construction methods assume a Gaussian dependence
structure, which is represented by the Gaussian copula or Student’s t
copula inherently. Such an example is the Nataf transformation (Lebrun
& Dutfoy, 2009; Noh, Choi, & Du, 2007). But as explained in the
introduction section, the Gaussian dependence structure cannot capture
the nonlinear dependency or the tail dependency that may exist among
the dependent degradation processes (Wang & Li, 2017). In later sec-
tions, we will evaluate the effect of model misspecification.

4. Reliability evaluation and RUL prediction

In this section, we provide the applications of the proposed meth-
odology, including system reliability evaluation and RUL prediction.

4.1. Reliability evaluation

For an individual degradation process, {Y;(t), t>0}, the associated
reliability is defined by the probability that the degradation value first
passes a “soft” failure threshold D; within time t. Without loss of gen-
erality, we assume Y;(0) = 0 and each PC increases up to D; until failure.
Also, since most degradation processes are monotone, the marginal
reliability can be defined by R;(t) = P(Y;(t) < D;), which is simply the
corresponding cdf F;(D;) for MDP i in Eq. (9). Thus, the system reliability
for a series system is

Rl\w(t) = PY\(t) <Dy, Y2(t) <Dy, ..., Ya(t) < Dy)

C(R, (1), Ry(1), ..., R4(2)),

which is the copula function with entries R;(t),i =1,2,...,d, in Eq. (10).
For a parallel system, the system reliability is

R:yx (t) = 1- E(Yl (t)ZDly YZ(I)>D27 ceey Yd(I)ZDd)

1= C(1 =Ry (£),1 = Ro(1), ..., 1 — Ry(1)),

where C(-) is the survival copula provided in Table 3.

Remark:. If a degradation process is not monotone, the Wiener pro-
cess is often utilized as a MDP model. In such case, the marginal reli-
ability equals to the cdf of a derived IG distribution (Whitmore &
Seshadri, 1987).

4.2. RUL prediction

For online monitoring purpose, the RUL prediction is often carried
out. When a system with d dependent competing degradation processes
is monitored up to time t and no failure is observed, the RUL is defined
by

Yi(t+17)2D; yi(r) <Dy
or and
RUL =inf{ 7: :
or and
Yd(t + T)?Dd yd(t) <Dy

for which it is difficult to find the analytical solution. Instead, we utilize
a simulation-based method to make RUL prediction. Suppose the
degradation observations up to time point j is denoted by {y;41, .-,

Y14}, where yi4; = (v, Y2 -, ydj)’ is the vector of observations at time

~Cop

point j. With all the available data, the estimated parameters — § =~ and

911‘/{? for both the copula function and the marginal models — can be
easily obtained. Then, a group of random samples, (i, ..., uy4), are

~Cop
[

generated from the copula function, C(uy, ..., ug; ). By utilizing the

. . ~Mar L
inverse cdf technique, F; g 0, ), the degradation increment for a

specified time interval At is acquired for each MDP. Finally, the
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predicted degradation level is obtained by adding the corresponding
increment to the current degradation level. This process is continued
until any MDP passes its failure threshold. In summary, the simualtion-
based RUL prediction is given by Algorithm 1. By repeating the algo-
rithm for a large amount of repetitions, say B = 1,000, a group of RULs
are obtained and a statistical summary can be carried out.

Algorithm 1. RUL Prediction for Series Systems

~Cop ~Mar
Data: {y,.4;}, {0 ? 9?; b, and At

Result: RUL

RUL=0 and 9.4 = Y1.q,;;

while §; < D1 &+ & 94 < Dy do
RUL=RUL+A(;

~Co;
Generate (uq,...,uq) from C(uy,...,uq; 0 p);
fori=1:ddo

9 = 9i + F, N (ui; 0117,

end

end

Algorithm 2. Sampling Algorithm For VCs (Czado, 2019)

iid.
Input: Sample w; ~ Unif(0,1),i =1,2,...,d.
Output: u; :=w;

Up = Cz"ll (wz‘ul)

Note that in Algorithm 1 a sampling process to generate random
samples from the copula function is involved. This procedure is
straightforward for ECs and EACs due to the feature that all marginals
are integrated in a single joint cdf. However, for VCs, this is not the case.
To draw a sample from a d-dimensional VC, the general algorithm based
on the following stepwise inverse transformation method is needed
(Algorithm 2). In Algorithm 2, the existing results on Table 5 together
with the relation about the variables implied by the vine structure are
useful to calculate the conditional cdfs. We will use examples to illus-
trate how to apply this algorithm in Section 6.1.

Remark:. For parallel systems, the RUL becomes
Yi(t+1)2D1 yi() <D
and or
RUL =inf{ 7: :
and or
Yd(t + T))Dd yd(t) <Dy

and the condition in the while loop in Algorithm 1 becomes
1 <Dy || Ja < Da

5. Statistical inference and model selection

In this section, we provide a statistical inference method and a
tailored workflow of model selection, including two graphical diag-
nostic tools, a test of independence and a GOF test.

5.1. Statistical inference

As implied by Eq. (1), the joint pdf of observed degradation in-
crements at time point j is given by
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Fig. 3. Flowchart of Copula-based Degradation Data Analysis.

d
F(Ayij, Ayys .o Ayg) = c(Fi(Byyy), F2(Byy), ..., Fa(Ayg)) Hfi(Ayij)-

i=1

Suppose the degradation increments for all processes up to termination
time are denoted by Ay;4 = {Ay;, Ay,, ..., Ayg}, where Ay; =

(Ayi1, AYiz, -, Ayim)’. Thus, the log-likelihood function is given by

lnL(oaw ) 0?727 |AY 1)

Il
g

d m
Inc(Fy (Ayyy), Fa(Ayy), .., Fa(Ayg)|0°7) + > Infi(Ay; |0)).
i

J i=1 j=

an

Obviously, it is potentially difficult and also computationally expensive
to infer the unknown parameters by performing maximum likelihood
estimation (MLE) on the whole log-likelihood function directly. Instead,
a popular two-stage inference method, inference function for margins
(IFM) (Joe, 2005), is available to reduce the computational burden. As
illustrated by Peng et al. (2016) Sun et al. (2020),ang et al. (2020)
already, this method also has satisfactory asymptotic efficiency for both
estimating the parameters of copula-based degradation models and
making RUL predictions. Thus, we employ the IFM, which has the
following two steps:

1. Perform MLE for individual marginal models:

~Mar “l
0, = argmaxgu Z Infi(Ay; |0) Vi=1,2,...,d,

i
Jj=1

2. Perform MLE for the copula model:

~Cop u ~ ~
6 = argmaxycn E Inc(F(Ayy;), F2(Ayy), ..
=1

Jj=

- ﬁd(Aydj) 0C0p)-

In the second step, F;(Ayy),i = 1,2,...,d, is the estimated marginal
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~M
cdf, of which the estimated parameters 6, “ comes from step 1. Intui-

tively, one can view ﬁi(Ayij) as the pseudo-observation from the copula
model. And the density for various copula functions is available in
Table 5.

5.2. Model selection

Based on the method of parameters estimation introduced above,
two graphical diagnostic methods, a test of independence, and a GOF
test are used to help search the best model among candidate models.

Suppose after step 1 in the IFM, given all candidate marginal models
with estimated parameters for MDPs, we select the best fitted model
based on both the quantile-quantile (QQ) plot and the Akaike Infor-
mation Criterion (AIC). The AIC value is defined by AIC = 2(p —InL),
where p is the total number of parameters and L is the value of the
likelihood function for the fitted model. Given two candidate models,
the preferred model is the one with lower AIC value. For the three
marginal degradation models, we utilize the corresponding QQ plots
shown as below:

1. Wiener process: Standard Normal QQ plot
Theorem: If X ~ N(s,0?), then **# ~ N(0,1).
Result: For the Wiener process, AYj; ~ N(ywijﬁzwij),j = 1,2,....m,
Vi =1,2,...,d, the resulted statistics A%L\/;;“UIHN(O, 1).

2. Gamma process: Standard Normal QQ plot

Prox.
Theorem: If X ~ Ga(a, f3), then f/% T N(1-4, &). Thus,

X
Bﬁ{\s/’%—lﬂu%

Result: For the gamma process, AY;~Ga(aw,f),j= 1,2,...,m, ¥V

~N(0,1).

iid.

Yawij

. - Ay
i=1,2, ..., d, the resulted statistics 3,/awy {,3/%—1—&- 1

1).

3. IG process: Chi-square QQ plot
Theorem: If X ~ IG(u, ), then w’fz;)’(‘)z ~ 3.
Result: For the IG process, AYj ~ IG(ywiijg)J =1,2,...m V

Ay aiid,
i =1,2,....d, the resulted statistics 2% 7.
NG

After finding the best fitted models for MDPs, a scatter plot of all
bivariate margins, i.e. pseudo-observations, can be generated to visu-
alize dependence patterns. A rough appearance of potential correlation
and/or tail-dependence if existing would be suggested by this graphical
diagnostic plot. Then, to formally test the dependence among the MDPs,
we make use of a test of independence that is explained by Genest and
Rémillard (2004) and Genest, Quessy, and Rémillard (2007). If the test
result shows statistically independence, the degradation processes can
be treated independently. Otherwise, we proceed to the step of joint
model fitting, where ECs, EACs, and VCs are considered. To carry out the
GOF test, we utilize a “blanket test” that is based on the empirical copula
(Genest, Rémillard, & Beaudoin, 2009). After this step, acceptable
parametric copula models are narrowed down and the AIC values can be
compared to finally select the best joint degradation model. Specifically,
the test of independence and the GOF test are given as follows:

1. The test of independence
Hypothesis: Ho : C = I1 versus H; : C # I,
Test statistic:
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m(C,(u) — T(u)) du

2
Il
—

0,1

n

- S W),

3

~.
Il

NI

m

Approximate p-value: 5 (Zszll (Sn‘(k) > Sﬂ) + )

2. The GOF test
Hypothesis: Hy : C € Cversus H; : C ¢ C,
Test statistic:

§por — / m(C,(u) — Co, (w)"dC, (u)
.11

- > (Co(Uy) — Co, (U) ),

1

Approximate p-value: 3¢ (Zﬁ':ll <S§ff’(k) > Sﬁ:’f) + %)

Remark:. (1) The construction of the QQ plot for the Wiener process is
straightforward, while the methods to build QQ plots for both the
gamma process and the IG process are adopted from Wang and Xu
(2010)’s work (Wang & Xu, 2010). (2) The test of independence is to
assess whether the copula model C is different from the independence
copula IT. The GOF test is to assess whether the copula model C belongs
to a copula family C. (3) Cy,, (-) is the parametric copula of interest. And
Cn(u) is the nonparametric copula defined by

1< m

Colu) =~ ]:ZI (U, <u) = % ; H 1(F,-(Ay,-,)<u,) uel0,1°,
where Uj;, = (?1(Ay1j),132(Ay2j), A..,f«'d(Aydj)),j =1,2,...,m, are the
pseudo-observations and Uj,<u,j = 1,2, ..., m, is a component-wise
inequality. The use of the nonparametric copula is based on the
conclusion that it is a consistent estimator of the parametric copula
(Segers, 2012). Both test statistics are based on the Cramer-von Mises
statistic. (4) The approximate p-value is computed using a bootstrap
algorithm, where N is the total number of simulations. See (Genest &
Rémillard, 2004; Genest & Rémillard, 2008) for more details about the
algorithm. (5) These two tests are adopted in two R packages — copula
and VineCopula (a continuing version of the package CDVine)
(Brechmann & Schepsmeier, 2013; Yan, 2007).

In order to briefly summarize the methodology introduced above,
Fig. 3 presents a flowchart of copula-based degradation data analysis.

6. Simulation study

In this section, we carry out three Monte Carlo simulation experi-
ments to illustrate the characteristics of the introduced multivariate
copula models and the characteristics of the proposed multivariate
degradation models, and to provide a discussion on model
misspecification.

6.1. Characteristics of multivariate copula models

In Section 2, three fundamental classes of copula models — ECs, EACs,
and VCs - are introduced. To demonstrate their characteristics, we
simulate data from three trivariate models with a Gaussian copula, an
exchangeable Gumbel copula, and a D-vine, respectively. For the
Gaussian copula, we assume the pairwise Pearson correlations are p;, =
0.2,p,3 = 0.5, and p;3 = 0.8. For the exchangeable Gumbel copula, we
use the association parameter § = 3. For the D-vine, we assume the joint
pdf is defined by Eq. (7), which covers C; » — the Student’s t copula with
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Fig. 4. Histograms, Scatter Plots, and Contour & Density Plots of Simulation Models.
v =3and p;5, = 0.7,Cz 3 — the Frank copula with § =10, and C, 3> - the 4. us := Cgﬁz (ws|uy,uy), where Cgﬁﬁz(we,\ul, u,) is the inverse function
Clayton copula with § = 4. For each model, 1,000 random vectors (i.e. 0C1 312 (F: F, .
Yy ,p ' ,. s ' ( of C3‘1_2 (Wsup, uz) = 132 3\5;‘:23(\312‘)1121)\2(111\&)) with F3|2(W3|ll2) _
(u1,uz2,us3) ) are generated. Following Algorithm 2, the specific steps to Cas(tiaws) 3Cra (s 12)
. . . . . 2.3 (U2, W3 _ 9Cia(uUp
simulate data from a 3-dimensional D-vine are given as follows: au, - and Fip(uup) = =252,
This is equivalent to
td . Vo
1. Sample w; ~ Unif(0,1),i = 1,2,3; Uz = hg‘z (hil_z (WS}hl\Z (ul |M27012)7913|2) ‘M27923 )7
2. Uy :=wy;
—1 —1 . . . .
3. up = C2|1(W2|u1), where Czu(Wz\ul) is the inverse function of where 613 and 6,3); are the parameters embedded in C; 3 and C; 32,
0C1 2 (ug w: i
Cop(walu1) = 71'2@(1411 2), respectively.

This is equivalent to us := h;ﬁ (wa|ug; 012), where 61, is the pa-

. Fig. 4 illustrates relevant plots generated from the simulation
rameters embedded in Cj ;

models. These plots include histograms and scatter plots of simulated
data with uniform margins, along with contour & density plots of the
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Fig. 5. Degradation Paths and Contour & Density Plots of Simulation Models.

simulation models with standard normal margins. It can be seen that the
Gaussian copula, originated from the multivariate normal distribution,
presents the symmetric feature with no tail dependence. And the
magnitude of dependence among margins is controlled by the value of
the Pearson correlation. On the other hand, the exchangeable Gumbel
copula demonstrates asymmetric feature with strong upper-tail depen-
dence, but the degree of dependence is the same across all pairs of
variables. This is because EACs use a single association parameter to
specify pairwise dependence, which actually indicates the exchange-
ability. Thus, ECs and EACs, to some extent, are restrictive models. In
contrast, Plot Fig. 4c shows that both symmetric and asymmetric feature
are available in the D-vine and the degree of dependence varies pair by
pair. Thus, VCs are very flexible since each pairwise relationship can be

described by any freely-chosen bivariate copula.
Remark:. For Cjp(u, u3|u2), we make the so-called simplifying
assumption (Killiches, Kraus, & Czado, 2017), i.e. Cl_’g‘g(u],ug‘UQ) =

C132(u1,us3), to enable visualizing the contour & density plot between x;
and xs.

6.2. Characteristics of multivariate degradation models

Next, we study characteristics of the proposed copula-based multi-
variate degradation models. To do that, three simulation models —
SM#1, SM#2, and SM#3 — are presented as below:
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Fig. 6. Failure Probability Curves at Early Stage.
F(Ayyj, Ayy, Ayy) = @5 (@7 (Fi (Ayy)), @' (F2(Ayy)), @' (F3(Ayy)))
SM41 AY],‘ NN(I.S(I)]#O‘SZCUU),(UU =1t — 1t
#Li9 AYy ~ Ga(30y,2), 05 = 1 — 114
AY3j ~ IG(l.Sa)gj,6a)§j),w3j =1l =1
sume the degradation evolves in units of days. To reduce the bias caused
by simulation, a total of 30 observations with At = 1 are generated and
FlAve. Avr A c F M) Fo(Avs) Fr(Ave): 3 we repeat this process for 10 times for each model. Note that to simulate
(Ay1js Avzjs Av) = Coumer (F1 (A1), F2 (A7), F3 (Ay5):3) degradation increments, it is only needed to apply the inverse cdf
AYy; ~ N(l.Swl_,-,O.Szwlj>,w1j = t}m - t;)'_(’l method by F;!(w;), where Fi(-) is the cdf of the corresponding MDP
SM#2 : AY Gal3am.2 05 05 model. Moreover, for SM#2 and SM#3, instead of the actual
¥ a( e )’wzj =56 exchangeable Gumbel copula and D-vine, a Gaussian copula as an
AYy ~ IG(I.SaJ;j, 6a)§,),w3j =07 -7, approximation is selected to model the multivariate joint distribution.
! ! ! Fig. 5 presents the simulation result of each model on separate plots. In
each plot, we illustrate the degradation paths of each MDP and the
F(Ayiy, Ayy, Ayy) = fi (Ayy) £ (Byy) s (Ayy)- contour & density plots in two different time phases. Particularly, on
c1a(Fi (Byy), Fa (Byy)) -cas (Fa (Ayy), Fs (Ays))- Plots Figs. 5b and c, we also draw the contour lines of the Gaussian
B ’ ) 2 ) . . . .
(Fua (Ayy|Ays), Fan (Ayy|Ay)) copula using orange dashed lines. From these studies the following
¢ 1Ay, 1Ay, .
LRI A [AY2 ) Fap LAY | AV conclusions can be drawn.
SM#3 : AY); ~ N<1.5w1j,0.52a11j>,w]j =% -7 First of all, as reasoned in Section 6.1, SM#3 is the most flexible
4 a4 model. Comparing with SM#1, there exists upper-tail dependence for
AYyj ~ Ga (3w2f ) 2) 1@y =47 L each pair of MDPs. Comparing with SM#2, it reflects diverse magnitude
AYy ~ IG( 1.5ws;,6 wz) Wy =13 — 113 of dependence. Thus, the VC is a good tool to model dependent degra-
j DWsj, OW3; ), W3; = 1; i1+

In each model, three streams of degradation data are simulated. Among
them, SM#1 assumes a Gaussian copula on modeling the joint distri-
bution with the Pearson correlations — p;, = 0.2,p,3 = 0.5, and p;3 =
0.8. SM#2 covers an exchangeable Gumbel copula with § = 3, while
SM#3 is characterized by a D-vine. For the pair copulas in SM#3, we
assume Cj 2,C> 3, and Cy 32 are all a bivariate Gumbel copula with 615 =
2,823 = 2.5, and 8132 = 3, respectively. The reason of choosing the
Gumbel copula is that upper-tail dependence is commonly seen in
dependent degradation processes. We will explain more about this point
later.

For all models, the three MDPs are separately characterized by the
Wiener process, gamma process, and IG process, where the associated
parameters are given in numbers on the model equations. And we as-

10

dation processes.

Secondly, it is easy to see that the copula-based multivariate degra-
dation models are capable to incorporate any type of marginal degra-
dation models. This is an advantage comparing with the aforementioned
two traditional multivariate degradation models — the multivariate
general path model (Si, Yang, Wu, & Chen, 2018) and multivariate
Wiener process model (Wang et al., 2015); because these two models are
essentially based on the multivariate normal distribution, of which
marginal models are normal distribution.

Thirdly, the copula-based multivariate degradation models com-
bined with the stochastic process models as marginals are able to present
the dynamics of the degradation process. That is, when the parameter of
the time scale transformation y = 1, the contour & density plot remains
identical in the two phases. This is because the degradation rate doesn’t
change over time. However, if y # 1, the contour & density plot varies
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Fig. 7. Contour Plots for Study of Model Misspecification.

phase by phase due to either the concavity or convexity of the mean
degradation function. These phenomena have been explored by Fang
et al. (2020).

Lastly, and most importantly, it is noticed that if the Gaussian copula
is chosen as priori, the resulted joint density will be inconsistent with the
true density. As shown by Plots Figs. 5b and c, it can be seen that the
Gaussian copula attempts to approximate the true model, but the con-
tour plots resulted doesn’t fully match the real ones and usually there is
a non-overlapping area in the upper-tail part. This is due to the
discrepancy in tail dependence between the Gaussian copula and the
Gumbel copula. To evaluate the effect of ignoring the tail dependence, in
the next part, we will carry out another simulation study.

6.3. Effect of model misspecification

In this part, we conduct the third simulation study to examine the
effect of ignoring tail dependence on system failure probability assess-
ment. For convenience, we assume a set of 2-, 4-, and 6-dimensional
multivariate degradation processes are available with each MDP being
subject to an identical Wiener process (4 =1.5,6 =0.1,andy = 1) and
having the same failure threshold - D = 10. The exchangeable Gumbel
copula is supposed to be the true model that governs each multivariate
degradation process; and we set three levels of dependence — 7 = 0.2
(mild dependence), 7 = 0.5 (moderate dependence), and 7 = 0.8 (strong
dependence). Thus, a total of 9 multivariate degradation processes with
various dimensions (i.e. number of MDPs) and diverse magnitude of
dependence are investigated. Meanwhile, we assume the Gaussian
copula is assigned to model these processes too. Under such setting, both
the true model and the misspecified model are fitted with the same MDP
models and identical degree of dependence, where the Kendall’s 7 is
converted to either the association parameter in the exchangeable
Gumbel copula or the Pearson correlation in the Gaussian copula
through the relationship between these measures provided in Table 4.

Considering the fact that the lower-tail failure time is of much in-
terest in end use, we demonstrate the failure probability curves at early
stage, during which the true failure probability PfT’"esO.S, to indicate the

effect of model misspecification. Fig. 6 presents the results for both se-
ries systems and parallel systems, where failure probability is calculated
according to the conclusions in Section 4.1 and evaluated at intervals of
0.004 time units. To assess the performance of the approximation to the
true failure probability by the misspecified model, on each plot of Fig. 6,
we also report a metric — error ratio at tos (i.e. the estimated 10-th
quantile failure time), which is defined by

pMisspecified _ Pfrme
ER~ = - x 100%,

fo.1

True
Pf
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Fig. 8. Degradation Paths of Polymeric Materials.
where PfT”‘e and P}"“Sp“‘ﬁe‘i are failure probability at to; for the true

model and the misspecified model, respectively.

It is found that for all cases, the misspecified model overestimates
failure probability for series systems at early stage, where the opposite is
true for parallel systems. By looking at ER?01 , the approximation error is

relatively bigger for parallel systems. It is also noticed that under each
setting of the Kendall’s 7, the approximation error increases as the
dimension becomes higher. On the other hand, under each setting of
dimension, the approximation error is the biggest under moderate
dependence. In order to explain these interesting findings, contour plots
for both a bivariate Gumbel copula and a Gaussian copula are presented
in Fig. 7. These contour plots indicate various equal-density lines under
three levels of dependence at two different elapsed moments - t = 6.4
and t = 6.6 days. On each plot, contours for both the true model and the
misspecified model are depicted in black solid lines and orange dashed
lines, respectively.

First, as represented on each plot in Fig. 7, there exists a partially
transparent grey area C, which is the projected area of the density sur-
face cut by the two failure thresholds. And the volume under the joint
pdf surface in this area is P(Y;(t)<10, Y5(t)<10). Thus, for parallel sys-
tems, the failure probability, P(Y;(t) > 10, Y(t) > 10), corresponds to
the volume under the joint pdf surface in area A. And for series systems,
the failure probability, 1 —P(Y; (t) < 10,Y>(t) < 10), corresponds to the
volume in the combined projected area A + B + D. Second, it is further
noticed that the density of the Gumbel copula is concentrated in area A.
On the contrary, the density surface of the Gaussian copula covers more
in areas B and D. Due to this discrepancy in upper-tail dependence be-
tween the Gumbel copula and the Gaussian copula, it results in the
phenomenon that the Gaussian copula underestimates failure proba-
bility for parallel systems. But for series systems, overestimation is ex-
pected because of extra volume provided by the Gaussian copula in areas
B and D; and together with the addition of volume in area A, the
approximation error is relatively smaller. With time elapsing, the
magnitude of overestimation/underestimation develops as the coverage
of the areas varies. In terms of the effect of the magnitude of depen-
dence, one can see that the difference between the two models in con-
tours is the most significant under moderate dependence. This is because
the shape of the contours of the Gumbel copula is closer to ellipse under
either mild or strong dependence, which makes the Gaussian copula an
acceptable approximate. Last, it is easy to see that the approximation
error would definitely increase as dimension becomes higher due to the
accumulated error by more pairs of marginals. Thus, in summary, major
concern should be given when applying the Gaussian copula arbitrarily
in analyzing an upper-tail dependent high-dimensional multivariate
degradation process with moderate dependence. And it is more serious
for parallel systems.
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Table 1
Results of Parameters Estimation for MDPs.
Parameter PC1 PC2 PC3
Wiener process
" 1.419 0.467 1.023
o 3.274 2.036 2.168
y 1.159 1.412 1.130
AIC 952.033 981.032 821.202
Gamma process
a 0.904 0.434 0.970
p 0.281 0.250 0.505
y 0.992 1.144 1.000
AIC 960.193 981.781 815.166
IG process
) 3.498 1.896 2.024
A 3.027 0.796 1.932
y 0.975 1.126 0.990
AIC 978.167 993.900 828.449

Remark:. For convenience, the study above is developed for the
exchangeable Gumbel copula as the true model. It can be readily
modified for the study for the flexible VC as the true model. To imple-
ment that, a R package — vinecopulib (Nagler & Vatter, 2019) - is
needed to evaluate the joint cdf. Nevertheless, the conclusions above
still hold.
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7. Application

In this section, we use a numerical example to demonstrate the
application of the proposed methodology. Motivated by the existing
work of Lu et al. (2020), we revisit a degradation dataset of a type of

polymeric material. This dataset presents the material’s
Fi(ay) Faays) Fiays)
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Fig. 10. Scatter Plot of Pseudo-observations.
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Table 2
Results of Copula Fitting.

Model Estimated Parameters p-value of GOF
test
Gaussian copula P12 = 0.886,0,5 = 0.886,7,; = 0.007493
0.913
Student’s t copula P12 = 0.886,p,3 = 0.886,0,3 = 0.008492
0.913,7 = 21.367
Exchangeable Frank 3 =13.13 0.01648
copula
Exchangeable Clayton 3 = 2.692 0.0004995
copula
Exchangeable Gumbel 5 = 2.868 0.009491
copula
VC#1 B12 =2.790,515 =2.800,553; = 0.670
1.510
VC#2 312 =2.820,553 =3.170,5155 = 0.850
1.280
VC#3 313 =2.840,553 =3.150,5,3 = 0.535
1.240
1.00
0.75
Z
8 050
©
o<
0.25
0.00
120 150 180 210 240
Time (Days)
Process PC1 PC2 PC3 System_Vine System_Gaussian

Fig. 11. Reliability Curves for Polymeric Materials.

photodegradation process due to exposure to certain levels of ultraviolet
(UV) radiation, temperature, and relative humidity (RH). A bunch of
ADTs were carried out on multiple test units, on which three different
PCs (change of chemical structures at the wavelength of 1250 cm™?,
1510 cm ™}, and 2925 cm 1) were measured repeatedly. For illustrative
purposes, we arbitrarily select a subset of the data that were generated
under the environmental setting — 100% UV intensity, 35°C, and 0% RH.
The degradation paths are shown in Fig. 8, in which PC1, PC2, and PC3
represent the three PCs at the wavelength of 1250 cm ™}, 1510 cm™?, and
2925 em ™}, respectively.

In the first step, we carry out parameters estimation for each PC.
Since the MDPs are monotone, all the three marginal models described
in Section 3.1 are considered as candidates. Note that since there may
exist nonlinearity in these MDPs, it is necessary to apply the time scale
transformation — A(t;y) = t’. Table 1 provides the results of parameters
estimation. It demonstrates that in terms of the AIC values the Wiener
process provides the best fit for PC1 and PC2, while the gamma process
provides the best fit for PC3. Fig. 9 indicates the corresponding QQ plots
discussed in Section 5.2. It is obvious that most QQ plots indicate
reasonable fit except the Wiener process for PC2 and PC3. Therefore, we
choose the gamma process as the marginal models for PC2 and PC3 and
the Wiener process as the marginal model for PC1.

Following the dependence analysis, we calculate pseudo-
observations using the selected marginal models and generate a scat-
ter plot to visualize dependence patterns. Fig. 10 shows the pairwise
plots along with the estimated Kendall’s 7, the estimated upper-tail
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Fig. 12. Histogram of Predicted RULs for Unit 1.

dependence Ay, and the estimated lower-tail dependence 4;. It turns
out all pairwise MDPs present an obvious strong upper-tail dependence,
while a medium level of lower-tail dependence exists for PC2 v.s. PC3.
By further conducting the test of independence mentioned in Section
5.2, rejection of the null hypothesis (i.e. MDPs are independent) is made
due to extremely small p-value 0.0004995. These results confirm the
dependency among MDPs, so we should proceed to the copula modeling
step.

In the copula modeling step, we consider all the ECs, EACs, and VCs
introduced before as candidate models. The step 2 of the IFM method is
carried out to infer the unknown parameters. Particularly, for VCs, we
include three different models according to three ways of joint pdf
decomposition. Those are VC#1 (c12, ¢13, and ca3;1), VC#2 (c12, 23,
and c; 3p2), and VC#3 (c1,3,¢23, and ¢ o3). One can see that these three
models vary in the choice of variable to be conditioned on for the con-
ditional copula. In addition, observing that all pairwise MDPs indicate
upper-tail dependence, we choose the Gumbel copula to model each
bivariate copula in the VCs. Table 2 provides the results of copula fitting.
Notice that none of ECs and EACs provides a reasonable fit due to the
failure to pass the GOF test. Instead, all the VC models pass the GOF test.
Furthermore, the AIC values are -519.166, —526.3189, and
—525.0534 for VC#1, VC#2, and VC#3, respectively. Thus, we choose
VC#2 as the multivariate degradation model due to the lowest AIC
value. This result is intuitive since Fig. 10 has already shown the existing
upper-tail dependence among all pairs of margins. Thus, fitting a sym-
metric or lower-tailed copula such as a Gaussian copula and an
exchangeable Clayton copula is not appropriate. Also, due to the diverse
magnitude of the Kendall’s 7, fitting an exchangeable Gumbel copula
that defines the same level of dependence for all pairwise margins is not
proper too.

Next, following the discussion of reliability evaluation in Section 4.1,
Fig. 11 provides reliability curves for the system. We assume the three
PCs are in a series connection and their thresholds are D; = —0.580,
Dy = —0.660, and D3 = —0.380 for PC1, PC2, and PC3, respectively. It
also shows a deviated curve that results from modeling the data using
the Gaussian copula.

Finally, following the RUL prediction discussed in Section 4.2, we
generate 1,000 samples of predicted RULs for Unit 1 at intervals of 3
days. The histogram of these samples is given in Fig. 12. It turns out Unit
1 is predicted to survive for 50.82 additional days on average.

8. Discussion and conclusions

Degradation process, as accumulations of additive and irreversible
damage, reflects a product’s health status (Ye & Chen, 2014). When
multiple degradation processes are affecting a system’s performance,
both uncertainty and dependence among performance measures usually
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Table 3
Basic Properties of Copula Theory.
Bivariate Multivariate
cdf pdf cdf pdf
Copula Scale:
u
Joint Clur,uz) _ 0*Clur, u2) C(uy,ug, ..., uq) Cuy,uy, ..., ug)
c|uy,uy —W c(ur,uz,...,uq) —m
Marginal U; ~ Unif(0,1) (u;) =1 Vuy; € 0,1] U; ~ Unif(0,1) fw) =1 vy €[0,1]
Conditional Clur|uz) = 0C(;Lll;uz) c(ur,uz) Clurfuz, .. 1g) = BC(ul,uza\uuzg,““,ud) c(uy,ug, ..., Ug)
Survival Clur,uz) =uy +uz + c(1-up,1—up) Clur, iz, ... uq) = ZJC(l d)(*l)“‘C(O _ ul)l(le./) """ c(l-up,1—uy,...,1—uy)
C(1—u,1—uz) -1 o
1- ud)l[deJ) )
Original
Scale: x
Joint F(x1,x2) = C(F1(x1),F2(x2)) flx1,x2) = c(Fi(x1), F(x1,x2,...,xq) = C(F1(x1),Fa2(x2),....Fa(xq)) flxi,x2,...,xq) = c(F1(x1),F2(x2),...,
Fa(x2))f1 (x1)f2(x2) Fa(xa)) TTL1fi(x)
Marginal Fi(x;) filxi) Fi(x;) filxi)
Conditional FunGeaben) = frat |X2) _ R, ) e, (Fas)), Flg ) Flalx') = e (Flxin”), Floie”) )i
OC(Fy (x1), Fa(x2)) Fa(x2))f1(x1) 9FOgley) )
) ~ 0F3(x2) _
Survival F(x1,%2) = c(F1(x1),F2(x2))f (x1) Flxa,X2,Xa) = Yyeqn,ay (- 1DPIC(FL ()", ¢(F1 (x1), F2 (Xa), ..., Fa(xa)) [T, fi(xi)
1-Fi(x1) —F2(x2) + fa(x2)

2 (X2
C(F1(x1),F2(x2))

)

1 For the cdf of survival copula, the sum extends over all 2¢ subsets J of {1, ...,d}, |J| denotes the number of elements of J.

2F(x1,X2,...,Xg) = P(X1 > x1,X2 > X2,...,Xq > Xq)-

exist. From the application analyzed in the previous section and the
examples mentioned in the introduction section, one can see that the
interactions among multiple failure mechanisms imply the dependence
existing in the multivariate degradation process. On the other hand, the
degradation physics often suggests greater dependence in upper extreme
direction. That is when a certain degradation process exhibits a worse
state, it is more likely that other dependent processes would be affected
to fall into a similarly risky status. For example, Chang, Das, Varde, and
Pecht (2012) discussed how the LED lumen depreciation can be accel-
erated by severe discoloration, due to a reduction in the transparency of
the encapsulants in LED package. Therefore, this close relation with
system failure mechanisms provides a solid physical ground for the
Gumbel copula to be chosen as a dependent degradation model. Similar
logic applies to the Clayton copula as a dependent lifetime model (Hsu,
Emura, & Fan, 2016; Bai, Shi, Liu, & Liu, 2018). In fact, the Gumbel
copula is the only copula that is simultaneously Archimedean and max
extreme-value (Genest & Rivest, 1989), which also rationalizes itself as a

exceptional events, i.e. degradation processes (Zhang, 2021).

Unlike the traditional Gaussian dependence-based models, including
the multivariate general path model and the multivariate Wiener pro-
cess model, the multivariate copula-based degradation models explored
in this paper can tackle a wider range of applications. The flexibility in
handling asymmetry, tail dependence and nonlinearity makes the
copula-based modeling framework even more attractive in practice.

Beyond the scope of current study, there are several other issues
worth of a further investigation.

(1) Both unit-to-unit variations and explanatory variables may exist
in the dependent degradation processes. Thus, incorporating
random effects or covariates to both marginal and joint models is
a future study direction.

(2) Due to the complexity of degradation physics, both the depen-
dence structure and magnitude may change over time. Thus, it is
of much interest to further investigate a time-varying copula

good model for describing the dependence structure between approach.
Table 4
Commonly-used ECs and EACs.
Copula C(u) Parameter(s) Tail Dependence Kendall's
Gaussian Oz (07 (), @7 (u2), ..., @ (ug)) >0 v =2 =0 7= garcsinp
b4
Student’s ¢ Ty (T, ), T, (wa), ... T, (ua)) £>00>2 T DA —p) = 2aresin
Ay =24 =2T 1| ——F——— 7 P
V1+p
Frank 711‘1{1 4 lexp(—duy) — 1][exp(—duz) — 1]--[exp(—dug) — 1]} 5 € (—0,0)J(0,00) Ay =4 =0 f—14 4D1(5) -1
s (exp(~0) — )" g
Clayton 1 §€[~1,00)/{0} hy =04y =271 =20
U +u’ + o ug® —d+1) 6 2+
Gumbel 1 s€[l,00) Ay =2-2Y 3, =0 t=1-1/8
exp{ — [(~Inw )’ + (~Inuz)® + - + (71nud)5]5}

1% > 0 means X is a positive definite matrix and p is the correlation between two certain random variables.
2 jy and 4, are measures of upper-tail dependence and lower-tail dependence, respectively.

1 t
D1 (9) :E/:et_ldt.
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Table 5

The First and Second Derivatives of Commonly-used Bivariate Copulas.
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1 p is the correlation between two certain random variables.

2 dt(-,v) is the probability density of univariate t, distribution.
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(3) It is noticed that for VCs, its flexibility originates from three el-
ements — graphical structure (i.e. trees), copula families for each
edge, and copula parameters. In the numerical example, we
enumerated all three possible structures and predetermined
Gumbel copula for each edge. However, when dealing with a
higher dimension and more complex degrading systems, it is not
realistic to go through all possibilities. Thus, it is of interest to
further develop a methodology to cover the general scenario.

(4) In engineering practice, other than the degradation process,

products may also be threatened by random shocks caused by

sudden emergencies. Thus, to incorporate the effect of the shocks
is necessary in the modeling framework. Some relevant works
include (Cao, Liu, Fang, & Dong, 2020; Hao & Yang, 2018; Wang,

Bai, & Zhang, 2020).

It is also noted that the simple series or parallel reliability-wise

structure cannot cover many real examples, such as series-

parallel and parallel-series systems. In such cases, the domain
of a working system indicated in Fig. 1 would become much more
complicated resulting in the difficulty in evaluating the multi-
variate integral for characterizing system reliability. To deal with
the problem, it is worthwhile to develop relevant methodologies
or computing methods to overcome the challenge. Some relevant
works include (Eryilmaz, 2011; Navarro, Ruiz, & Sandoval, 2007;
Xu & Zhou, 2017).
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Appendix A

Table 3 provides a summary of basic properties of copula theory.
Table 4 provides a summary of commonly-used ECs and EACs. Table 5
provides a summary of the first and second derivatives of commonly-
used bivariate copulas.
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