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A B S T R A C T   

Multivariate degradation processes have been observed in many engineering systems. Most existing multivariate 
degradation modeling techniques, such as multivariate general path models or multivariate Wiener process 
models, assume an underlying Gaussian dependence structure. Unfortunately, in reality, the dependencies among 
degradation processes are often nonlinear, asymmetric and greatly tail-skewed, and thus limit the usefulness of 
the conventional modeling techniques in practice. To overcome these limitations, in this paper, we develop a 
copula-based multivariate modeling framework. Three fundamental copula classes are applied to model the 
complex dependence structure among correlated degradation processes. Statistical inference and model selection 
techniques, including two graphical diagnostic tools, a test of independence and a goodness-of-fit test, are 
employed to identify the best model. The advantages of the proposed modeling framework are demonstrated 
through simulation studies. And we also discuss the effect of ignoring tail dependence on system failure prob
ability assessment. Finally, the applications of the copula-based multivariate degradation models on both system 
reliability evaluation and remaining useful life prediction are provided. The proposed methodology is illustrated 
using a numerical example.   

1. Introduction 

1.1. Motivation 

A general engineering system, either a single-component product 
with multiple failure modes or a complex structure with multiple com
ponents, usually involves with both uncertain and dependent degrada
tion processes. For example, the degradation mechanisms of light- 
emitting diode (LED) lamps usually contain lumen depreciation, 
discoloration, lens cracking, and color shift of the LED light output 
(Yazdan Mehr et al., 2020). These indices are affected by not only 
chemical reactions happening in the optical components, but both raw 
manufacturing defects and surrounding service conditions. All of these 
complexities make the LED perform with uncertainty. And the in
teractions among some mechanisms – including contribution of both 
discoloration and lens cracking to color shift – imply the dependence 
existing in the degradation processes. Similar phenomena exist in many 
other applications, such as polymeric material (Fang, Pan, & Hong, 
2020) and lithium-ion batteries (Peng, Ye, & Chen, 2018). For a complex 
structure with multiple components, dependencies among the 

components are often present as well. These dependencies may originate 
from possible power load and interconnecting pieces shared by the 
components. See Xu, Wei, Elsayed, Chen, and Kang (2017) and Shen, 
Zhang, Song, and Song (2019) for some examples. Thus, accounting for 
the dependencies existing among the performance characteristics (PCs) 
of a degrading system plays an important role in system reliability 
assessment. 

To evaluate the reliability for such a system, the knowledge about 
both the system’s reliability-wise structure and the probabilistic model 
of these PCs is needed. The reliability-wise structure describes the 
system-component configuration, while the probabilistic model defines 
the statistical behavior of the corresponding multiple PCs. Denote the 
multiple PCs by a random vector Y = (Y1, Y2, …, Yd)

′

and let f(y1, y2, … 
, yd) be its joint probability density function (pdf). In addition, denote 
the structure function by g(⋅) and let {D : g(y) = 1} represent the domain 
of a working system. Then, the system reliability can be evaluated by the 
equation indicated in Fig. 1. It is defined by the multivariate integral of 
f(y1, y2, …, yd) over the domain D. In this paper, we consider either a 
series or parallel structure. Thus, the domain of a working system is 
simply {D : g(y) =

∏d
i=11(yi < 𝒟i) = 1} and {D : g(y) =
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1 −
∏d

i=11(yi⩾𝒟i) = 1}, respectively. And we assume each PC increases 
up to 𝒟i until failure without loss of generality and 𝒟i is a “soft” failure 
threshold for process i. 

But defining a multivariate joint distribution for multiple PCs im
poses a big challenge. As illustrated in Fig. 1, a flexible joint pdf should 
possess three features – being able to (1) accommodate various marginal 
distribution models, (2) include a large group of dependency types, and 
(3) capture possible diverse magnitude of dependency among marginals. 
Most existing research works either assume PCs to be mutually inde
pendent or subject to a specific type of multivariate distribution (Pan & 
Fang, 2020, chap. 2). Apparently, the independence assumption is not 
appropriate since marginal degradation processes often have in
teractions with each other due to their shared operational/environ
mental conditions or common manufacturing defects, etc (Wang & Li, 
2018). On the other hand, assigning a symmetric multivariate distri
bution, usually a multivariate normal distribution or multivariate Stu
dent’s t distribution, may not fit the actual multivariate degradation 
process well. This is because the adopted Gaussian dependence structure 
cannot capture the nonlinear dependency or the tail dependency that 
may exist among PCs (Wang & Li, 2017). As a result, the system reli
ability assessment could be biased due to model misspecification. But it 
is also difficult to construct a multivariate distribution beyond the 
Gaussian-based distribution model, say the multivariate gamma distri
bution, while maintaining nice statistical properties. Thus, a flexible 
multivariate distribution construction method is much desired to help 
quantify reliability for systems with dependent degradation processes. 
The main goal of this paper is therefore to expand stochastic degradation 
process models to the multivariate domain and to improve the appli
cability of the developed methods in practice. 

1.2. Literature review 

In literature, there are a lot of research works discussing the distri
bution models of univariate degradation processes. In general, two types 
of modeling framework are available – the general path model and the 
stochastic process model (Ye & Xie, 2015). The general path model is a 
regression-based model that can easily take the unit-to-unit variability 
into account. For instance, Fang, Rigdon, and Pan (2018) proposed a 
nonlinear mixed-effects model to analyze the accelerated degradation 
testing (ADT) data of optical media. Bae and Kvam (2004) provided a 
general form of random-coefficients model to incorporate both within- 
individual and between-individual variation. Alternatively, the sto
chastic process model extends the distribution types by considering the 
Wiener process (Ye, Wang, Tsui, & Pecht, 2013; Zhai & Ye, 2017; D. He, 
Wang, & Cao, 2018; L. He, Yue, & He, 2018), the gamma process (Castro 
& Landesa, 2019; Lawless & Crowder, 2004), and the inverse Gaussian 
(IG) process (Peng, 2015; Ye & Chen, 2014). 

When dealing with a multivariate degradation process, there are two 
major approaches – a direct extension from existing univariate models to 
multivariate versions and a copula-based multivariate modeling 
approach. For example, Lu, Wang, Hong, and Ye (2020) proposed a 

multivariate general path model to analyze a trivariate polymeric 
degradation process. Wang, Balakrishnan, and Guo (2015) utilized a 
multivariate Wiener process to analyze three-dimensional degradation 
data. Nevertheless, both the multivariate general path model and the 
multivariate Wiener process model still belong to the Gaussian-based 
distribution, which contains the potential drawbacks as mentioned 
before. To resolve the issues, in recent years, the copula-based modeling 
framework has gained lots of interests due to its flexibility. But most 
existing works about copula-based models mainly focus on bivariate 
analysis, e.g. (Fang et al., 2020; Pan & Balakrishnan, 2011; Peng, Li, 
Yang, Zhu, & Huang, 2016; Wang, Balakrishnan, Guo, & Jiang, 2015; 
Wu, 2014). Until recently, some practical research works of multivariate 
copula-based degradation models are available. For instance, Xu et al. 
(2017) utilized a vine copula to analyze high-dimensional data produced 
by a smart electricity meter. Sun, Fu, Liao, and Xu (2020) utilized the 
Wiener process model and a vine copula to analyze the ADT data of a 
tuner. However, to our best knowledge, there is a lack of complete 
systematic studies on how to apply multivariate copula models on 
analyzing dependent degradation processes, nor a comparison among 
these models. This paper is to fill these gaps. 

1.3. Overview 

Three primary contributions are made in this paper. First, we provide 
a systematic approach to investigating the multivariate copula modeling 
of dependent degradation processes. It includes comparing three 
fundamental copula classes in the process of multivariate dependency 
modeling, along with a tailored workflow of statistical inference and 
model selection, which includes two graphical diagnostic methods, a 
test of independence, and a goodness-of-fit (GOF) test. Second, a com
parison between the tail-dependent Gumbel copula and the widely-used 
Gaussian copula is made. It contains a study of the effect of ignoring tail 
dependence on system failure probability assessment. Finally, the ap
plications of the copula-based multivariate degradation models on both 
system reliability evaluation and remaining useful life prediction are 
provided. The proposed methodology is illustrated using a numerical 
example. 

The rest of the paper is organized as follows. Section 2 illustrates the 
copula theory and the three fundamental classes of copula models. 
Section 3 discusses the modeling framework of dependent degradation 
processes. Specifically, Section 3.1 introduces the marginal degradation 
models and Section 3.2 provides a framework of incorporating the 
marginal models into the aforementioned multivariate copula models. 
Section 4 illustrates the applications of both reliability evaluation and 
online RUL prediction. Then, Section 5 provides a method of statistical 
inference and a workflow of model selection. In Section 6, simulation 
studies are given to demonstrate model characteristics and study the 
effect of model misspecification. Finally, a numerical example is pro
vided in Section 7. Section 8 concludes this paper. 

2. Multivariate copula models 

In this section, we introduce the copula theory as well as the three 
fundamental classes of copula model. 

2.1. Copula theory 

A copula, C(⋅), is a multivariate cumulative distribution function 
(cdf) with standard univariate uniform margins. Mathematically, it is 
defined as (Nelsen, 2007) 

C(u) = C(u1, u2, …, ud) = P(U1⩽u1, U2⩽u2, …, Ud⩽ud),

where u = (u1, u2, …, ud)
′

∈ Rd and U = (U1, U2, …, Ud)
′

is a d-dimen
sional random vector with Ui ∼ Unif(0, 1), ∀i = 1, 2, …, d. As a multi
variate distribution function, its properties including the joint, marginal, 

Fig. 1. Characterization of System Reliability.  
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and conditional functions along with survival copula are available as 
summarized by the part of Copula Scale: u in Table 3 that is presented in 
Appendix. 

Since a copula function is with respect to uniformly distributed 
margins, we may treat an individual margin as the cdf of any continuous 
marginal distribution so as to represent a general continuous multivar
iate distribution. This well-known Sklar’s theorem is stated as below: 

Sklar’s Theorem (Nelsen, 2007): Let X = (X1, X2, …, Xd)
′

be a 
random vector with marginal cdfs, F1(x1),F2(x2),…,Fd(xd), and let F(x1,

x2, …, xd) be their joint cdf. Define ui = Fi(xi) = P(Xi⩽xi),∀i = 1,2,…,d. 
Then, there exists a copula function C(⋅) such that 

C(u1, u2, …, ud) = C(F1(x1), F2(x2), …, Fd(xd))

= P(X1⩽x1, X2⩽x2, …, Xd⩽xd)

= F(x1, x2, …, xd).

Note that in some literature, F(x1, x2, …, xd) is denoted by H(x1, x2, …,

xd). With the cdf of a joint distribution, it is easy to derive the joint pdf as 

f (x1, x2, …, xd)

=
∂dF

(
x1, x2, …, xd

)

∂x1∂x2⋯∂xd

=
∂dC

(
F1

(
x1

)
, F2

(
x2

)
, …, Fd

(
xd

))

∂F1(x1)∂F2(x2)⋯∂Fd(xd)

∂F1(x1)

∂x1

∂F2(x2)

∂x2
⋯

∂Fd(xd)

∂xd

= c(F1(x1), F2(x2), …, Fd(xd))
∏d

i=1
fi(xi),

(1)  

where fi(xi) is the marginal pdf of Xi and c(F1(x1), F2(x2), …, Fd(xd)) is 
the copula density, which can be obtained by taking partial derivatives 
of the copula. Notice that if all marginals are mutually independent, 
c(F1(x1), F2(x2), …, Fd(xd)) = 1 since taking partial derivatives of inde
pendence copula (i.e. C(u1,u2,…,ud) =

∏d
i=1ui) results in 1. In such case, 

f(x1, x2, …, xd) =
∏d

i=1fi(xi), which matches the conclusion by the in
dependence assumption of random variables. In addition, the condi
tional pdf and the conditional cdf are given by 

f
(

x|x*

)

= cx,xj|x*
−j

(
F

(
x
⃒
⃒
⃒x*

−j

)
, F

(
xj

⃒
⃒
⃒x*

−j

))
f
(

x|x*
−j

)
, (2)  

F(x|x*) =
∂Cx,xj |x*

−j

(
F(x|x*

−j), F(xj|x*
−j)

)

∂F(xj|x*
−j)

, (3)  

where x* is a (d −1)-dimensional vector of random variables without x. 
xj is one arbitrary element of x* and x*

−j denotes the vector excluding this 
element. Note that in a bivariate case, the joint pdf, conditional pdf and 
conditional cdf are sequentially given by 

f (x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2), (4)  

f1|2(x1|x2) =
f (x1, x2)

f2(x2)
= c(F1(x1), F2(x2))f1(x1), (5)  

F1|2(x1|x2) = C(F1(x1)|F2(x2)) =
∂C(F1(x1), F2(x2))

∂F2(x2)
. (6)  

These properties for the original variables (on the scale of x) are also 
presented in Table 3. 

Thus far, it is noted that the copula theory provides a way to 
construct a joint distribution function. It is done by defining all marginal 
distributions first and then combining these margins by a copula func
tion. As implied by Eq. (1), the joint density consists of two separate 
parts – marginal densities and a copula density that characterizes the 
dependence among the margins. The feature of separation is different 
from the traditional multivariate distribution specification. Next, we 
introduce the three fundamental classes of copula functions, which are 

elliptical copulas (ECs), exchangeable Archimedean copulas (EACs), and 
vine copulas (VCs). 

2.2. Elliptical copulas 

ECs are the copulas of elliptically contoured (or elliptical) distribu
tions. The most commonly-used ones are the Gaussian copula and Stu
dent’s t copula. Let Φ−1 denote the inverse of the cdf of a standard 
univariate normal distribution Φ and ΦΣ is the d-dimensional standard 
normal distribution with correlation matrix Σ. Then, the Gaussian 
copula is given by 

C
(
u; Σ

)
= ΦΣ

(
Φ−1(

u1
)
, Φ−1(

u2
)
, …, Φ−1(

ud
))

.

And with I being an identity matrix, its density is 

c(u; Σ) =
1

|Σ|
1
2
exp

⎧
⎨

⎩
−

1
2

⎡

⎣
Φ−1(u1)

⋮
Φ−1(ud)

⎤

⎦

′

(Σ−1 − I)

⎡

⎣
Φ−1(u1)

⋮
Φ−1(ud)

⎫
⎬

⎭
.

The Student’s t copula is constructed similarly. Let T−1
ν denote the in

verse of the cdf of the standard univariate Student’s t distribution Tν 
with degrees of freedom ν > 2 and TΣ,ν is the d-dimensional standard
ized Student’s t distribution with correlation matrix Σ. Then, the Stu
dent’s t copula is given by 

C
(
u; Σ, ν

)
= TΣ,ν

(
T−1

ν
(
u1

)
, T−1

ν
(
u2

)
, …, T−1

ν
(
ud

))
,

and its density is 

c(u; Σ, ν) =
Γ[(ν + d)/2]

Γ(ν/2)νd/2πd/2|Σ|
1
2

⎧
⎪⎪⎨

⎪⎪⎩

1 +
1
ν

⎡

⎢
⎢
⎣

T−1
ν (u1)

⋮
T−1

ν (ud)

⎤

⎥
⎥
⎦

′

Σ−1

⎡

⎢
⎢
⎣

T−1
ν (u1)

⋮
T−1

ν (ud)

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

−(ν+d)/2

.

2.3. Exchangeable Archimedean copulas 

Archimedean copulas are constructed via a completely different 
route without referring to a known distribution function or random 
variable (Yan, 2006). They are produced by a continuous strictly 
decreasing function φ(⋅) mapping from [0, 1] to [0, ∞] with φ(0) = ∞ and 
φ(1) = 0. The function is called generator function and denote its in
verse by φ−1(⋅). A d-dimensional Archimedean copula is 

C
(
u; δ

)
= φ−1(

φ
(
u1

)
+ φ

(
u2

)
+ ⋯ + φ

(
ud

)
; δ

)
,

where δ is the association parameter controlling the degree of depen
dence. For instance, φ(t) = (−ln(t))

δ and φ(t) = (t−δ −1)/δ are generator 
functions for the Gumbel copula and Clayton copula, respectively. 

Table 4 in Appendix lists the commonly-used copula functions, 
including the two ECs described before and three EACs, i.e. the Frank 
copula, Clayton copula, and Gumbel copula. These copulas hold various 
types of tail dependence: the Gumbel copula has upper-tail dependence 
(λU), the Clayton copula has lower-tail dependence (λL), and the Frank 
copula is symmetric with no tail dependence. 

2.4. Vine copulas 

Finally, VCs utilize the expression of full conditional distribution for 
a general multivariate distribution. For instance, for a 3-dimensional 
case, the joint pdf can be expressed by 

f (x1, x2, x3) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2).

Since the conditional pdf can be represented by the product of a copula 
density and a marginal using Eqs. (1) and (2), the joint pdf above further 
becomes 
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f (x1, x2, x3) = f1(x1)⋅f2(x2)⋅f3(x3)⋅
c1,2(F1(x1), F2(x2) )⋅c2,3(F2(x2), F3(x3) )⋅
c1,3|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
.

(7)  

This demonstrates that this joint pdf can be constructed by the product 
of its marginals, two unconditional bivariate copula densities and a 
conditional bivariate copula density. Aas, Czado, Frigessi, and Bakken 
(2009) refer to this operation as Pair-Copula Construction (PCC). 
Formally, PCC in d-dimensional is given by 

f (x1, x2, …, xd)

= f1(x1)f2|1(x2|x1)⋯fd|1,…,d−1(xd|x1, …, xd−1)

=
∏d−1

j=1

∏d−j

i=1
ci,(i+j)|(i+1),…,(i+j−1)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
pair−copula densities

∏d

k=1
fk(xk)

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟
marginal densities

,

where ci,j|i1 ,…,ik = ci,j|i1 ,…,ik
(
Fi|i1 ,i2 ,…,ik , Fj|i1 ,i2 ,…,ik

)
and Fi|i1 ,i2 ,…,ik =

Fi|i1 ,i2 ,…,ik
(
xi

⃒
⃒xi1 , xi2 , …, xik

)
for i, j, i1, i2, …, ik with i < j and 

i1 < i2 < ⋯ < ik. Obviously, the way of decomposition is not unique. To 
organize the representation, Bedford and Cooke (2001) introduce a 

graphical structure called regular vine to visualize the multivariate 
distribution construction process. 

Definition of Regular Vine (Bedford & Cooke, 2002): A d- 

dimensional vine is a sequence of d −1 trees that has the following 
properties: (1) Tree j has d +1 −j nodes and d −j edges; (2) Edges in tree j 
becomes nodes in tree j + 1; and (3) Proximity condition: Two nodes in 
tree j +1 are joined by an edge if the corresponding edges in tree j share a 
node. 

According to this definition, the joint density represented by a vine 
consists of pair-copula (bivariate copula) densities over the d(d−1)

2 edges 
of the entire graph and the marginal densities of the d nodes in the first- 
level tree. Among many different PCC methods, there are two special 
types of organized vines – the canonical vine (C-vine) and drawable vine 
(D-vine). For a C-vine, each tree has a unique node that is connected to 
all other nodes. For a D-vine, each tree is a path. Fig. 2 demonstrates 
both the C-vine and the D-vine representations for four dependent var
iables, respectively. If constructed by a C-vine or D-vine, the joint pdfs 
and cdfs are given as below. In these equations, the conditional cdfs can 
be calculated using Eq. (3) and the partial derivatives of some 
commonly-used bivariate copulas are provided in Table 5 that is pre
sented in Appendix. Note that the first partial derivative of a copula 
function is also called h-function in some literature.  

3. Distribution modeling of dependent degradation processes 

In this section, the marginal degradation models and copula-based 
joint model are presented. 

3.1. Marginal degradation models 

Consider a system that may degrade over time due to d degradation 
processes and each process i, i = 1, 2, …, d, demonstrates stochastic 
change over time. In a period of time tm, the inspection of a degradation 
variable is taken at ordered times {ti1, ti2, …, tij, …, tim}, where m is the 
total number of inspections on each variable and the subscript j is used 
as an index associated with the inspection time tij. Let yij or yi(tj), i = 1,

2, …, d and j = 1, 2, …, m, denote the observed degradation value of 
process i at time point j. Thus, the measurements {yi1, yi2, …, yim} are the 
resulted observations from the i-th marginal degradation process (MDP) 
over time. 

To model a MDP, three stochastic process models – the Wiener 
Fig. 2. C-vine (left) and D-vine (right).  

C−vine :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x1,x2,x3,x4) = f1(x1)⋅f2(x2)⋅f3(x3)⋅f4(x4)⋅

c1,2⋅c1,3⋅c1,4⋅

c2,3|1⋅c2,4|1⋅c3,4|1,2

F(x1,x2,x3,x4) = F1(x1)F2|1(x2|x1)F4|1,2(x4|x1,x2)F3|1,2,4(x3|x1,x2,x4)

= F1(x1)
∂C1,2

(
F1

(
x1

)
,F2

(
x2

))

∂F1(x1)

∂C2,4|1
(
F2|1

(
x2

⃒
⃒x1

)
,F4|1

(
x4

⃒
⃒x1

))

∂F2|1
(
x2

⃒
⃒x1

) ⋅

∂C3,4|1,2
(
F3|1,2

(
x3

⃒
⃒x1,x2

)
,F4|1,2

(
x4

⃒
⃒x1,x2

))

∂F4|1,2
(
x4

⃒
⃒x1,x2

) .

D − vine :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x1, x2, x3, x4) = f1(x1)⋅f2(x2)⋅f3(x3)⋅f4(x4)⋅

c1,2⋅c2,3⋅c3,4⋅

c1,3|2⋅c2,4|3⋅c1,4|2,3

F(x1, x2, x3, x4) = F1(x1)F2|1(x2|x1)F3|1,2(x3|x1, x2)F4|1,2,3(x4|x1, x2, x3)

= F1(x1)
∂C1,2

(
F1

(
x1

)
, F2

(
x2

))

∂F1(x1)

∂C2,3|1
(
F2|1

(
x2

⃒
⃒x1

)
, F3|1

(
x3

⃒
⃒x1

))

∂F2|1
(
x2

⃒
⃒x1

) ⋅

∂C1,4|2,3
(
F1|2,3

(
x1

⃒
⃒x2, x3

)
, F4|2,3

(
x4

⃒
⃒x2, x3

))

∂F1|2,3
(
x1

⃒
⃒x2, x3

) .
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process, gamma process and IG process – are favored due to their sto
chastic nature of capturing the natural randomness of system degrada
tion over time (Ye & Xie, 2015). In this paper, we consider these three 
stochastic processes as candidate models for a MDP. Under these models, 
the degradation process Yij has independent increments given any non- 
overlap pairwise time intervals. Thus, we denote Δyij = yij −yi,j−1 the 
degradation increment from ti,j−1 to tij. In addition, let ωij =

Λ(tij; γi) −Λ(ti,j−1; γi) be the transformed inspection time interval, where 
Λ(tij; γi) is a function to transform time scale if nonlinearity in the 
degradation process exists. Possible choices of Λ(⋅) include the power 
law function and the exponential law function (Whitmore & Schenkel
berg, 1997). Under a Wiener process model, it is assumed that 
ΔYij ∼ N

(
μiωij, σ2

i ωij
)
, where μi ∈ R is the location parameter and σ2

i > 0 
is the scale parameter. Under a gamma process model, the MDP is 
modeled as ΔYij ∼ Ga

(
αiωij, βi

)
, where αi > 0 is the shape parameter and 

βi > 0 is the rate parameter. Finally, for an IG process model, the 
degradation increment is subject to an IG distribution as 

ΔYij ∼ IG
(

μiωij, λiω2
ij

)
, where μi > 0 is the mean and λi > 0 is the shape 

parameter. For details about a number of variants of these models, 
please refer to (Lawless & Crowder, 2004; Li, Pan, & Chen, 2014; Ye & 
Chen, 2014; Ye et al., 2013). The two sets of Eqs. (8) and (9) demonstrate 
the pdfs and cdfs of the models, respectively. 

fi(Δyij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πσ2
i ωij

√ exp
[

−

(
Δyij − μiωij

)2

2σ2
i ωij

]

for Wiener process

βαiωij
i

Γ
(
αiωij

) Δyαiωij−1
ij exp(−βiΔyij) for Gamma process

̅̅̅̅̅̅̅̅̅̅̅̅̅

λiω2
ij

2πΔy3
ij

√
√
√
√ exp

[
−λi

(
Δyij − μiωij

)2

2μ2
i Δyij

]

for IG process.

(8)  

Fi(Δyij) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ

(
Δyij − μiωij

σi
̅̅̅̅̅̅ωij

√

)

for Wiener process

γ
(
αiωij,βiΔyij

)

Γ
(
αiωij

) for Gamma process

Φ

[ ̅̅̅̅̅̅̅̅
λi

Δyij

√ (
Δyij

μi
− ωij

)]

+

exp
(

2λiωij

μi

)

Φ

[

−

̅̅̅̅̅̅̅̅
λi

Δyij

√ (
Δyij

μi
+ ωij

)]

for IG process.

(9)  

3.2. Copula-based joint model 

Based on the aforementioned MDP and multivariate copula models, a 
very natural and flexible way to construct a joint distribution model of 
dependent degradation processes is demonstrated as below: 
{

F
(
ΔY1j, ΔY2j, …, ΔYdj

)
= C

(
F1

(
Δy1j

)
, F2

(
Δy2j

)
, …, Fd

(
Δydj

)
; θCop)

ΔYij ∼ MDP
(
Δyij; θMar

i

)
,

(10)  

where θCop is the set of parameters in the copula function and θMar
i is the 

set of parameters in the i-th MDP model. Under this framework, the 
copula function, C(⋅), can be any one of ECs, EACs, and VCs introduced 
before. The model of a MDP can be any one of the Wiener process, 
gamma process, or IG process described above. This joint model also 
covers the special case of independent degradation processes by 
assuming an independence copula. As implied by Model (10), the copula 
function indeed provides a way to construct a joint distribution function 
that makes all marginal models defined with no restriction; and the 

dependence structure is built into the copula function separately from 
those marginals. In addition, it is noted that a lot of traditional multi
variate model construction methods assume a Gaussian dependence 
structure, which is represented by the Gaussian copula or Student’s t 
copula inherently. Such an example is the Nataf transformation (Lebrun 
& Dutfoy, 2009; Noh, Choi, & Du, 2007). But as explained in the 
introduction section, the Gaussian dependence structure cannot capture 
the nonlinear dependency or the tail dependency that may exist among 
the dependent degradation processes (Wang & Li, 2017). In later sec
tions, we will evaluate the effect of model misspecification. 

4. Reliability evaluation and RUL prediction 

In this section, we provide the applications of the proposed meth
odology, including system reliability evaluation and RUL prediction. 

4.1. Reliability evaluation 

For an individual degradation process, {Yi(t), t⩾0}, the associated 
reliability is defined by the probability that the degradation value first 
passes a “soft” failure threshold 𝒟i within time t. Without loss of gen
erality, we assume Yi(0) = 0 and each PC increases up to 𝒟i until failure. 
Also, since most degradation processes are monotone, the marginal 
reliability can be defined by Ri(t) = P(Yi(t) < 𝒟i), which is simply the 
corresponding cdf Fi(𝒟i) for MDP i in Eq. (9). Thus, the system reliability 
for a series system is 

Rsys
(
t
)

= P(Y1(t) < 𝒟1, Y2(t) < 𝒟2, …, Yd(t) < 𝒟d)

= C(R1(t), R2(t), …, Rd(t)),

which is the copula function with entries Ri(t), i = 1,2,…,d, in Eq. (10). 
For a parallel system, the system reliability is 

Rsys
(
t
)

= 1 − P(Y1(t)⩾𝒟1, Y2(t)⩾𝒟2, …, Yd(t)⩾𝒟d)

= 1 − C(1 − R1(t), 1 − R2(t), …, 1 − Rd(t)),

where C(⋅) is the survival copula provided in Table 3. 

Remark:. If a degradation process is not monotone, the Wiener pro
cess is often utilized as a MDP model. In such case, the marginal reli
ability equals to the cdf of a derived IG distribution (Whitmore & 
Seshadri, 1987). 

4.2. RUL prediction 

For online monitoring purpose, the RUL prediction is often carried 
out. When a system with d dependent competing degradation processes 
is monitored up to time t and no failure is observed, the RUL is defined 
by 

RUL = inf

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ :

Y1(t + τ)⩾𝒟1 y1(t) < 𝒟1
or and
⋮ ⋮
or and

Yd(t + τ)⩾𝒟d yd(t) < 𝒟d

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

for which it is difficult to find the analytical solution. Instead, we utilize 
a simulation-based method to make RUL prediction. Suppose the 
degradation observations up to time point j is denoted by {y1:d,1, …,

y1:d,j}, where y1:d,j = (y1j, y2j, …, ydj)
′

is the vector of observations at time 

point j. With all the available data, the estimated parameters – θ̂
Cop 

and 

θ̂
Mar
1:d for both the copula function and the marginal models – can be 

easily obtained. Then, a group of random samples, (u1, …, ud), are 

generated from the copula function, C(u1, …, ud; θ̂
Cop

). By utilizing the 

inverse cdf technique, F−1
i (ui; θ̂

Mar
i ), the degradation increment for a 

specified time interval Δt is acquired for each MDP. Finally, the 
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predicted degradation level is obtained by adding the corresponding 
increment to the current degradation level. This process is continued 
until any MDP passes its failure threshold. In summary, the simualtion- 
based RUL prediction is given by Algorithm 1. By repeating the algo
rithm for a large amount of repetitions, say B = 1,000, a group of RULs 
are obtained and a statistical summary can be carried out. 

Algorithm 1. RUL Prediction for Series Systems   

Algorithm 2. Sampling Algorithm For VCs (Czado, 2019)   

Input: Sample wi ̃
i.i.d.

Unif(0,1), i = 1, 2, …,d.  
Output: u1 := w1  

u2 := C−1
2|1(w2

⃒
⃒
⃒u1)

⋮  

ud := C−1
d|d−1,…,1(wd

⃒
⃒
⃒ud−1, …,u1)

Note that in Algorithm 1 a sampling process to generate random 
samples from the copula function is involved. This procedure is 
straightforward for ECs and EACs due to the feature that all marginals 
are integrated in a single joint cdf. However, for VCs, this is not the case. 
To draw a sample from a d-dimensional VC, the general algorithm based 
on the following stepwise inverse transformation method is needed 
(Algorithm 2). In Algorithm 2, the existing results on Table 5 together 
with the relation about the variables implied by the vine structure are 
useful to calculate the conditional cdfs. We will use examples to illus
trate how to apply this algorithm in Section 6.1. 

Remark:. For parallel systems, the RUL becomes 

RUL = inf

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ :

Y1(t + τ)⩾𝒟1 y1(t) < 𝒟1
and or
⋮ ⋮

and or
Yd(t + τ)⩾𝒟d yd(t) < 𝒟d

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and the condition in the while loop in Algorithm 1 becomes 
ŷ1 < 𝒟1

⃒
⃒⋯

⃒
⃒ ŷd < 𝒟d. 

5. Statistical inference and model selection 

In this section, we provide a statistical inference method and a 
tailored workflow of model selection, including two graphical diag
nostic tools, a test of independence and a GOF test. 

5.1. Statistical inference 

As implied by Eq. (1), the joint pdf of observed degradation in
crements at time point j is given by 

f (Δy1j, Δy2j, …, Δydj) = c(F1(Δy1j), F2(Δy2j), …, Fd(Δydj))
∏d

i=1
fi(Δyij).

Suppose the degradation increments for all processes up to termination 
time are denoted by Δy1:d = {Δy1, Δy2, …, Δyd}, where Δyi =

(Δyi1, Δyi2, …, Δyim)
′

. Thus, the log-likelihood function is given by 

lnL(θCop, θMar
1:d |Δy1:d)

=
∑m

j=1
lnc(F1(Δy1j), F2(Δy2j), …, Fd(Δydj)|θCop) +

∑d

i=1

∑m

j=1
lnfi(Δyij|θMar

i ).

(11)  

Obviously, it is potentially difficult and also computationally expensive 
to infer the unknown parameters by performing maximum likelihood 
estimation (MLE) on the whole log-likelihood function directly. Instead, 
a popular two-stage inference method, inference function for margins 
(IFM) (Joe, 2005), is available to reduce the computational burden. As 
illustrated by Peng et al. (2016) Sun et al. (2020),ang et al. (2020) 
already, this method also has satisfactory asymptotic efficiency for both 
estimating the parameters of copula-based degradation models and 
making RUL predictions. Thus, we employ the IFM, which has the 
following two steps:  

1. Perform MLE for individual marginal models: 

θ̂
Mar
i = argmaxθMar

i

∑m

j=1
lnfi(Δyij

⃒
⃒
⃒
⃒
⃒
θMar

i ) ∀i = 1, 2, …, d;    

2. Perform MLE for the copula model: 

θ̂
Cop

= argmaxθCop

∑m

j=1
lnc(F̂1(Δy1j), F̂2(Δy2j), …, F̂d(Δydj)

⃒
⃒
⃒
⃒
⃒
θCop).

In the second step, F̂ i(Δyij), i = 1, 2, …, d, is the estimated marginal 

Fig. 3. Flowchart of Copula-based Degradation Data Analysis.  
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cdf, of which the estimated parameters θ̂
Mar
i comes from step 1. Intui

tively, one can view F̂ i(Δyij) as the pseudo-observation from the copula 
model. And the density for various copula functions is available in 
Table 5. 

5.2. Model selection 

Based on the method of parameters estimation introduced above, 
two graphical diagnostic methods, a test of independence, and a GOF 
test are used to help search the best model among candidate models. 

Suppose after step 1 in the IFM, given all candidate marginal models 
with estimated parameters for MDPs, we select the best fitted model 
based on both the quantile-quantile (QQ) plot and the Akaike Infor
mation Criterion (AIC). The AIC value is defined by AIC = 2(p −lnL̂), 
where p is the total number of parameters and L̂ is the value of the 
likelihood function for the fitted model. Given two candidate models, 
the preferred model is the one with lower AIC value. For the three 
marginal degradation models, we utilize the corresponding QQ plots 
shown as below:  

1. Wiener process: Standard Normal QQ plot 

Theorem: If X ∼ N(μ, σ2), then X−μ
σ ∼ N(0,1). 

Result: For the Wiener process, ΔYij ∼ N(μωij,σ2ωij), j = 1,2,…,m,

∀i = 1,2, …,d, the resulted statistics Δyij−μ̂ωij

σ̂ ̅̅̅̅ωij
√ ̃

i.i.d.

N(0, 1 ).  

2. Gamma process: Standard Normal QQ plot 

Theorem: If X ∼ Ga(α, β), then 
̅̅̅̅
βX
α

3
√

̃
approx.

N
(
1 − 1

9α, 1
9α

)
. Thus, 

3
̅̅̅
α

√
[

̅̅̅̅
βX
α

3
√

− 1 + 1
9α

]

∼ N(0,1). 

Result: For the gamma process, ΔYij ∼Ga
(
αωij,β

)
, j= 1, 2, …, m, ∀

i = 1, 2, …, d, the resulted statistics 3 ̅̅̅̅̅̅̅̅̅αωij
√

[
̅̅̅̅̅̅̅̅
βΔyij
αωij

3
√

−1+ 1
9αωij

]

̃
i.i.d.

N(0,

1 ).  

3. IG process: Chi-square QQ plot 

Theorem: If X ∼ IG(μ, λ), then λ(X−μ)
2

μ2X ∼ χ2
1. 

Result: For the IG process, ΔYij ∼ IG
(

μωij, λω2
ij

)
, j = 1, 2, …, m, ∀

i = 1,2, …, d, the resulted statistics λ̂(Δyij−μ̂ωij)
2

μ̂
2
Δyij

̃
i.i.d.

χ2
1. 

After finding the best fitted models for MDPs, a scatter plot of all 
bivariate margins, i.e. pseudo-observations, can be generated to visu
alize dependence patterns. A rough appearance of potential correlation 
and/or tail-dependence if existing would be suggested by this graphical 
diagnostic plot. Then, to formally test the dependence among the MDPs, 
we make use of a test of independence that is explained by Genest and 
Rémillard (2004) and Genest, Quessy, and Rémillard (2007). If the test 
result shows statistically independence, the degradation processes can 
be treated independently. Otherwise, we proceed to the step of joint 
model fitting, where ECs, EACs, and VCs are considered. To carry out the 
GOF test, we utilize a “blanket test” that is based on the empirical copula 
(Genest, Rémillard, & Beaudoin, 2009). After this step, acceptable 
parametric copula models are narrowed down and the AIC values can be 
compared to finally select the best joint degradation model. Specifically, 
the test of independence and the GOF test are given as follows:  

1. The test of independence 
Hypothesis: ℋ0 : C = Π versus ℋ1 : C ∕= Π, 
Test statistic: 

SΠ
m =

∫

[0,1]d
m(Cn(u) − Π(u))

2du

=
∑m

j=1

(
Cn

(
Uj,m

)
− Π

(
Uj,m

) )2
,

Approximate p-value: 1
N+1

(
∑N

k=11
(

SΠ,(k)
m ≥ SΠ

m

)
+ 1

2

)

2. The GOF test 
Hypothesis: ℋ0 : C ∈ 𝒞 versus ℋ1 : C ∕∈ 𝒞, 
Test statistic: 

Sgof
m =

∫

[0,1]d
m(Cn(u) − Cθm (u))

2dCn(u)

=
∑m

j=1

(
Cn

(
Uj,m

)
− Cθm

(
Uj,m

) )2
,

Approximate p-value: 1
N+1

(
∑N

k=11
(

Sgof,(k)
m ≥ Sgof

m

)
+ 1

2

)

Remark:. (1) The construction of the QQ plot for the Wiener process is 
straightforward, while the methods to build QQ plots for both the 
gamma process and the IG process are adopted from Wang and Xu 
(2010)’s work (Wang & Xu, 2010). (2) The test of independence is to 
assess whether the copula model C is different from the independence 
copula Π. The GOF test is to assess whether the copula model C belongs 
to a copula family 𝒞. (3) Cθm (⋅) is the parametric copula of interest. And 
Cn(u) is the nonparametric copula defined by 

Cn(u) =
1
m

∑m

j=1
1
(
Uj,m⩽u

)
=

1
m

∑m

j=1

∏d

i=1
1

(
F̂ i(Δyij)⩽ui

)
, u ∈ [0, 1]

d
,

where Uj,m = (F̂1(Δy1j), F̂2(Δy2j), …, F̂d(Δydj)), j = 1, 2, …, m, are the 
pseudo-observations and Uj,m⩽u, j = 1, 2, …, m, is a component-wise 
inequality. The use of the nonparametric copula is based on the 
conclusion that it is a consistent estimator of the parametric copula 
(Segers, 2012). Both test statistics are based on the Cramer-von Mises 
statistic. (4) The approximate p-value is computed using a bootstrap 
algorithm, where N is the total number of simulations. See (Genest & 
Rémillard, 2004; Genest & Rémillard, 2008) for more details about the 
algorithm. (5) These two tests are adopted in two R packages – copula 
and VineCopula (a continuing version of the package CDVine) 
(Brechmann & Schepsmeier, 2013; Yan, 2007). 

In order to briefly summarize the methodology introduced above, 
Fig. 3 presents a flowchart of copula-based degradation data analysis. 

6. Simulation study 

In this section, we carry out three Monte Carlo simulation experi
ments to illustrate the characteristics of the introduced multivariate 
copula models and the characteristics of the proposed multivariate 
degradation models, and to provide a discussion on model 
misspecification. 

6.1. Characteristics of multivariate copula models 

In Section 2, three fundamental classes of copula models – ECs, EACs, 
and VCs – are introduced. To demonstrate their characteristics, we 
simulate data from three trivariate models with a Gaussian copula, an 
exchangeable Gumbel copula, and a D-vine, respectively. For the 
Gaussian copula, we assume the pairwise Pearson correlations are ρ12 =

0.2,ρ23 = 0.5, and ρ13 = 0.8. For the exchangeable Gumbel copula, we 
use the association parameter δ = 3. For the D-vine, we assume the joint 
pdf is defined by Eq. (7), which covers C1,2 – the Student’s t copula with 
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ν = 3 and ρ12 = 0.7, C2,3 – the Frank copula with δ = 10, and C1,3|2 – the 
Clayton copula with δ = 4. For each model, 1, 000 random vectors (i.e. 
(u1, u2, u3)

′

) are generated. Following Algorithm 2, the specific steps to 
simulate data from a 3-dimensional D-vine are given as follows:  

1. Sample wi ̃
i.i.d.

Unif(0,1), i = 1,2,3;  
2. u1 := w1;  
3. u2 := C−1

2|1(w2|u1), where C−1
2|1(w2|u1) is the inverse function of 

C2|1(w2|u1) =
∂C1,2(u1 ,w2)

∂u1
. 

This is equivalent to u2 := h−1
2|1(w2|u1; θ12), where θ12 is the pa

rameters embedded in C1,2;  

4. u3 := C−1
3|1,2(w3|u1,u2), where C−1

3|1,2(w3|u1, u2) is the inverse function 

of C3|1,2(w3|u1, u2) =
∂C1,3|2(F3|2(w3 |u2),F1|2(u1 |u2))

∂F1|2(u1 |u2)
with F3|2(w3|u2) =

∂C2,3(u2 ,w3)

∂u2 
and F1|2(u1|u2) =

∂C1,2(u1 ,u2)

∂u2
. 

This is equivalent to 

u3 := h−1
3|2

(
h−1

3|1,2

(
w3

⃒
⃒h1|2

(
u1

⃒
⃒u2, θ12

)
, θ13|2

)⃒
⃒
⃒u2, θ23

)
,

where θ13 and θ13|2 are the parameters embedded in C1,3 and C1,3|2, 
respectively. 

Fig. 4 illustrates relevant plots generated from the simulation 
models. These plots include histograms and scatter plots of simulated 
data with uniform margins, along with contour & density plots of the 

Fig. 4. Histograms, Scatter Plots, and Contour & Density Plots of Simulation Models.  
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simulation models with standard normal margins. It can be seen that the 
Gaussian copula, originated from the multivariate normal distribution, 
presents the symmetric feature with no tail dependence. And the 
magnitude of dependence among margins is controlled by the value of 
the Pearson correlation. On the other hand, the exchangeable Gumbel 
copula demonstrates asymmetric feature with strong upper-tail depen
dence, but the degree of dependence is the same across all pairs of 
variables. This is because EACs use a single association parameter to 
specify pairwise dependence, which actually indicates the exchange
ability. Thus, ECs and EACs, to some extent, are restrictive models. In 
contrast, Plot Fig. 4c shows that both symmetric and asymmetric feature 
are available in the D-vine and the degree of dependence varies pair by 
pair. Thus, VCs are very flexible since each pairwise relationship can be 

described by any freely-chosen bivariate copula. 

Remark:. For C1,3|2(u1, u3
⃒
⃒u2), we make the so-called simplifying 

assumption (Killiches, Kraus, & Czado, 2017), i.e. C1,3|2(u1, u3
⃒
⃒u2

)

=

C1,3|2(u1,u3), to enable visualizing the contour & density plot between x1 

and x3. 

6.2. Characteristics of multivariate degradation models 

Next, we study characteristics of the proposed copula-based multi
variate degradation models. To do that, three simulation models – 
SM#1, SM#2, and SM#3 – are presented as below: 

Fig. 5. Degradation Paths and Contour & Density Plots of Simulation Models.  
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SM#2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F
(
Δy1j, Δy2j, Δy3j

)
= CGumbel

(
F1

(
Δy1j

)
, F2

(
Δy2j

)
, F3

(
Δy3j

)
; 3

)

ΔY1j ∼ N
(

1.5ω1j, 0.52ω1j

)
, ω1j = t0.6

j − t0.6
j−1

ΔY2j ∼ Ga
(

3ω2j, 2
)

, ω2j = t0.5
j − t0.5

j−1

ΔY3j ∼ IG
(

1.5ω3j, 6ω2
3j

)
, ω3j = t0.7

j − t0.7
j−1.

SM#3 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
Δy1j, Δy2j, Δy3j

)
= f1

(
Δy1j

)
⋅f2

(
Δy2j

)
⋅f3

(
Δy3j

)
⋅

c1,2
(
F1

(
Δy1j

)
, F2

(
Δy2j

))
⋅c2,3

(
F2

(
Δy2j

)
, F3

(
Δy3j

))
⋅

c1,3|2
(
F1|2

(
Δy1j

⃒
⃒Δy2j

)
, F3|2

(
Δy3j

⃒
⃒Δy2j

))

ΔY1j ∼ N
(

1.5ω1j, 0.52ω1j

)
, ω1j = t1.2

j − t1.2
j−1

ΔY2j ∼ Ga
(

3ω2j, 2
)

, ω2j = t1.4
j − t1.4

j−1

ΔY3j ∼ IG
(

1.5ω3j, 6ω2
3j

)
, ω3j = t1.3

j − t1.3
j−1.

In each model, three streams of degradation data are simulated. Among 
them, SM#1 assumes a Gaussian copula on modeling the joint distri
bution with the Pearson correlations – ρ12 = 0.2, ρ23 = 0.5, and ρ13 =

0.8. SM#2 covers an exchangeable Gumbel copula with δ = 3, while 
SM#3 is characterized by a D-vine. For the pair copulas in SM#3, we 
assume C1,2,C2,3, and C1,3|2 are all a bivariate Gumbel copula with δ12 =

2, δ23 = 2.5, and δ13|2 = 3, respectively. The reason of choosing the 
Gumbel copula is that upper-tail dependence is commonly seen in 
dependent degradation processes. We will explain more about this point 
later. 

For all models, the three MDPs are separately characterized by the 
Wiener process, gamma process, and IG process, where the associated 
parameters are given in numbers on the model equations. And we as

sume the degradation evolves in units of days. To reduce the bias caused 
by simulation, a total of 30 observations with Δt = 1 are generated and 
we repeat this process for 10 times for each model. Note that to simulate 
degradation increments, it is only needed to apply the inverse cdf 
method by F−1

i (ui), where Fi(⋅) is the cdf of the corresponding MDP 
model. Moreover, for SM#2 and SM#3, instead of the actual 
exchangeable Gumbel copula and D-vine, a Gaussian copula as an 
approximation is selected to model the multivariate joint distribution. 
Fig. 5 presents the simulation result of each model on separate plots. In 
each plot, we illustrate the degradation paths of each MDP and the 
contour & density plots in two different time phases. Particularly, on 
Plots Figs. 5b and c, we also draw the contour lines of the Gaussian 
copula using orange dashed lines. From these studies the following 
conclusions can be drawn. 

First of all, as reasoned in Section 6.1, SM#3 is the most flexible 
model. Comparing with SM#1, there exists upper-tail dependence for 
each pair of MDPs. Comparing with SM#2, it reflects diverse magnitude 
of dependence. Thus, the VC is a good tool to model dependent degra
dation processes. 

Secondly, it is easy to see that the copula-based multivariate degra
dation models are capable to incorporate any type of marginal degra
dation models. This is an advantage comparing with the aforementioned 
two traditional multivariate degradation models – the multivariate 
general path model (Si, Yang, Wu, & Chen, 2018) and multivariate 
Wiener process model (Wang et al., 2015); because these two models are 
essentially based on the multivariate normal distribution, of which 
marginal models are normal distribution. 

Thirdly, the copula-based multivariate degradation models com
bined with the stochastic process models as marginals are able to present 
the dynamics of the degradation process. That is, when the parameter of 
the time scale transformation γ = 1, the contour & density plot remains 
identical in the two phases. This is because the degradation rate doesn’t 
change over time. However, if γ ∕= 1, the contour & density plot varies 

Fig. 6. Failure Probability Curves at Early Stage.  

SM#1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F
(
Δy1j, Δy2j, Δy3j

)
= ΦΣ

(
Φ−1(

F1
(
Δy1j

))
, Φ−1(

F2
(
Δy2j

))
, Φ−1(

F3
(
Δy3j

)))

ΔY1j ∼ N
(
1.5ω1j, 0.52ω1j

)
, ω1j = tj − tj−1

ΔY2j ∼ Ga
(
3ω2j, 2

)
, ω2j = tj − tj−1

ΔY3j ∼ IG
(

1.5ω3j, 6ω2
3j

)
, ω3j = tj − tj−1.
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phase by phase due to either the concavity or convexity of the mean 
degradation function. These phenomena have been explored by Fang 
et al. (2020). 

Lastly, and most importantly, it is noticed that if the Gaussian copula 
is chosen as priori, the resulted joint density will be inconsistent with the 
true density. As shown by Plots Figs. 5b and c, it can be seen that the 
Gaussian copula attempts to approximate the true model, but the con
tour plots resulted doesn’t fully match the real ones and usually there is 
a non-overlapping area in the upper-tail part. This is due to the 
discrepancy in tail dependence between the Gaussian copula and the 
Gumbel copula. To evaluate the effect of ignoring the tail dependence, in 
the next part, we will carry out another simulation study. 

6.3. Effect of model misspecification 

In this part, we conduct the third simulation study to examine the 
effect of ignoring tail dependence on system failure probability assess
ment. For convenience, we assume a set of 2-, 4-, and 6-dimensional 
multivariate degradation processes are available with each MDP being 
subject to an identical Wiener process (μ = 1.5,σ = 0.1, and γ = 1) and 
having the same failure threshold – 𝒟 = 10. The exchangeable Gumbel 
copula is supposed to be the true model that governs each multivariate 
degradation process; and we set three levels of dependence – τ = 0.2 
(mild dependence), τ = 0.5 (moderate dependence), and τ = 0.8 (strong 
dependence). Thus, a total of 9 multivariate degradation processes with 
various dimensions (i.e. number of MDPs) and diverse magnitude of 
dependence are investigated. Meanwhile, we assume the Gaussian 
copula is assigned to model these processes too. Under such setting, both 
the true model and the misspecified model are fitted with the same MDP 
models and identical degree of dependence, where the Kendall’s τ is 
converted to either the association parameter in the exchangeable 
Gumbel copula or the Pearson correlation in the Gaussian copula 
through the relationship between these measures provided in Table 4. 

Considering the fact that the lower-tail failure time is of much in
terest in end use, we demonstrate the failure probability curves at early 
stage, during which the true failure probability PTrue

f ⩽0.5, to indicate the 
effect of model misspecification. Fig. 6 presents the results for both se
ries systems and parallel systems, where failure probability is calculated 
according to the conclusions in Section 4.1 and evaluated at intervals of 
0.004 time units. To assess the performance of the approximation to the 
true failure probability by the misspecified model, on each plot of Fig. 6, 
we also report a metric – error ratio at t̂0.1 (i.e. the estimated 10-th 
quantile failure time), which is defined by 

ER̂
t0.1

=

⃒
⃒
⃒PMisspecified

f − PTrue
f

⃒
⃒
⃒

PTrue
f

× 100%,

where PTrue
f and PMisspecified

f are failure probability at t̂0.1 for the true 
model and the misspecified model, respectively. 

It is found that for all cases, the misspecified model overestimates 
failure probability for series systems at early stage, where the opposite is 
true for parallel systems. By looking at ER̂

t0.1
, the approximation error is 

relatively bigger for parallel systems. It is also noticed that under each 
setting of the Kendall’s τ, the approximation error increases as the 
dimension becomes higher. On the other hand, under each setting of 
dimension, the approximation error is the biggest under moderate 
dependence. In order to explain these interesting findings, contour plots 
for both a bivariate Gumbel copula and a Gaussian copula are presented 
in Fig. 7. These contour plots indicate various equal-density lines under 
three levels of dependence at two different elapsed moments – t = 6.4 
and t = 6.6 days. On each plot, contours for both the true model and the 
misspecified model are depicted in black solid lines and orange dashed 
lines, respectively. 

First, as represented on each plot in Fig. 7, there exists a partially 
transparent grey area C, which is the projected area of the density sur
face cut by the two failure thresholds. And the volume under the joint 
pdf surface in this area is P(Y1(t)⩽10, Y2(t)⩽10). Thus, for parallel sys
tems, the failure probability, P(Y1(t) > 10, Y2(t) > 10), corresponds to 
the volume under the joint pdf surface in area A. And for series systems, 
the failure probability, 1 −P(Y1(t) < 10,Y2(t) < 10), corresponds to the 
volume in the combined projected area A + B + D. Second, it is further 
noticed that the density of the Gumbel copula is concentrated in area A. 
On the contrary, the density surface of the Gaussian copula covers more 
in areas B and D. Due to this discrepancy in upper-tail dependence be
tween the Gumbel copula and the Gaussian copula, it results in the 
phenomenon that the Gaussian copula underestimates failure proba
bility for parallel systems. But for series systems, overestimation is ex
pected because of extra volume provided by the Gaussian copula in areas 
B and D; and together with the addition of volume in area A, the 
approximation error is relatively smaller. With time elapsing, the 
magnitude of overestimation/underestimation develops as the coverage 
of the areas varies. In terms of the effect of the magnitude of depen
dence, one can see that the difference between the two models in con
tours is the most significant under moderate dependence. This is because 
the shape of the contours of the Gumbel copula is closer to ellipse under 
either mild or strong dependence, which makes the Gaussian copula an 
acceptable approximate. Last, it is easy to see that the approximation 
error would definitely increase as dimension becomes higher due to the 
accumulated error by more pairs of marginals. Thus, in summary, major 
concern should be given when applying the Gaussian copula arbitrarily 
in analyzing an upper-tail dependent high-dimensional multivariate 
degradation process with moderate dependence. And it is more serious 
for parallel systems. 

Fig. 7. Contour Plots for Study of Model Misspecification.  Fig. 8. Degradation Paths of Polymeric Materials.  
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Remark:. For convenience, the study above is developed for the 
exchangeable Gumbel copula as the true model. It can be readily 
modified for the study for the flexible VC as the true model. To imple
ment that, a R package – vinecopulib (Nagler & Vatter, 2019) – is 
needed to evaluate the joint cdf. Nevertheless, the conclusions above 
still hold. 

7. Application 

In this section, we use a numerical example to demonstrate the 
application of the proposed methodology. Motivated by the existing 
work of Lu et al. (2020), we revisit a degradation dataset of a type of 
polymeric material. This dataset presents the material’s 

Table 1 
Results of Parameters Estimation for MDPs.  

Parameter PC1 PC2 PC3 

Wiener process    
μ  1.419 0.467 1.023 
σ  3.274 2.036 2.168 
γ  1.159 1.412 1.130 

AIC 952.033 981.032 821.202  

Gamma process    
α  0.904 0.434 0.970 
β  0.281 0.250 0.505 
γ  0.992 1.144 1.000 

AIC 960.193 981.781 815.166  

IG process    
μ  3.498 1.896 2.024 
λ  3.027 0.796 1.932 
γ  0.975 1.126 0.990 

AIC 978.167 993.900 828.449  

Fig. 9. QQ Plots for Various Marginal Degradation Models.  

Fig. 10. Scatter Plot of Pseudo-observations.  
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photodegradation process due to exposure to certain levels of ultraviolet 
(UV) radiation, temperature, and relative humidity (RH). A bunch of 
ADTs were carried out on multiple test units, on which three different 
PCs (change of chemical structures at the wavelength of 1250 cm−1, 
1510 cm−1, and 2925 cm−1) were measured repeatedly. For illustrative 
purposes, we arbitrarily select a subset of the data that were generated 
under the environmental setting – 100% UV intensity, 35◦C, and 0% RH. 
The degradation paths are shown in Fig. 8, in which PC1, PC2, and PC3 
represent the three PCs at the wavelength of 1250 cm−1, 1510 cm−1, and 
2925 cm−1, respectively. 

In the first step, we carry out parameters estimation for each PC. 
Since the MDPs are monotone, all the three marginal models described 
in Section 3.1 are considered as candidates. Note that since there may 
exist nonlinearity in these MDPs, it is necessary to apply the time scale 
transformation – Λ(t; γ) = tγ. Table 1 provides the results of parameters 
estimation. It demonstrates that in terms of the AIC values the Wiener 
process provides the best fit for PC1 and PC2, while the gamma process 
provides the best fit for PC3. Fig. 9 indicates the corresponding QQ plots 
discussed in Section 5.2. It is obvious that most QQ plots indicate 
reasonable fit except the Wiener process for PC2 and PC3. Therefore, we 
choose the gamma process as the marginal models for PC2 and PC3 and 
the Wiener process as the marginal model for PC1. 

Following the dependence analysis, we calculate pseudo- 
observations using the selected marginal models and generate a scat
ter plot to visualize dependence patterns. Fig. 10 shows the pairwise 
plots along with the estimated Kendall’s τ, the estimated upper-tail 

dependence λU, and the estimated lower-tail dependence λL. It turns 
out all pairwise MDPs present an obvious strong upper-tail dependence, 
while a medium level of lower-tail dependence exists for PC2 v.s. PC3. 
By further conducting the test of independence mentioned in Section 
5.2, rejection of the null hypothesis (i.e. MDPs are independent) is made 
due to extremely small p-value 0.0004995. These results confirm the 
dependency among MDPs, so we should proceed to the copula modeling 
step. 

In the copula modeling step, we consider all the ECs, EACs, and VCs 
introduced before as candidate models. The step 2 of the IFM method is 
carried out to infer the unknown parameters. Particularly, for VCs, we 
include three different models according to three ways of joint pdf 
decomposition. Those are VC#1 (c1,2, c1,3, and c2,3|1), VC#2 (c1,2, c2,3, 
and c1,3|2), and VC#3 (c1,3,c2,3, and c1,2|3). One can see that these three 
models vary in the choice of variable to be conditioned on for the con
ditional copula. In addition, observing that all pairwise MDPs indicate 
upper-tail dependence, we choose the Gumbel copula to model each 
bivariate copula in the VCs. Table 2 provides the results of copula fitting. 
Notice that none of ECs and EACs provides a reasonable fit due to the 
failure to pass the GOF test. Instead, all the VC models pass the GOF test. 
Furthermore, the AIC values are −519.166, −526.3189, and 
−525.0534 for VC#1, VC#2, and VC#3, respectively. Thus, we choose 
VC#2 as the multivariate degradation model due to the lowest AIC 
value. This result is intuitive since Fig. 10 has already shown the existing 
upper-tail dependence among all pairs of margins. Thus, fitting a sym
metric or lower-tailed copula such as a Gaussian copula and an 
exchangeable Clayton copula is not appropriate. Also, due to the diverse 
magnitude of the Kendall’s τ, fitting an exchangeable Gumbel copula 
that defines the same level of dependence for all pairwise margins is not 
proper too. 

Next, following the discussion of reliability evaluation in Section 4.1, 
Fig. 11 provides reliability curves for the system. We assume the three 
PCs are in a series connection and their thresholds are 𝒟1 = −0.580,

𝒟2 = −0.660, and 𝒟3 = −0.380 for PC1, PC2, and PC3, respectively. It 
also shows a deviated curve that results from modeling the data using 
the Gaussian copula. 

Finally, following the RUL prediction discussed in Section 4.2, we 
generate 1, 000 samples of predicted RULs for Unit 1 at intervals of 3 
days. The histogram of these samples is given in Fig. 12. It turns out Unit 
1 is predicted to survive for 50.82 additional days on average. 

8. Discussion and conclusions 

Degradation process, as accumulations of additive and irreversible 
damage, reflects a product’s health status (Ye & Chen, 2014). When 
multiple degradation processes are affecting a system’s performance, 
both uncertainty and dependence among performance measures usually 

Table 2 
Results of Copula Fitting.  

Model Estimated Parameters p-value of GOF 
test  

Gaussian copula ρ̂12 = 0.886, ρ̂13 = 0.886, ρ̂23 =

0.913  
0.007493  

Student’s t copula ρ̂12 = 0.886, ρ̂13 = 0.886, ρ̂23 =

0.913, ν̂ = 21.367  
0.008492  

Exchangeable Frank 
copula 

δ̂ = 13.13  0.01648  

Exchangeable Clayton 
copula 

δ̂ = 2.692  0.0004995  

Exchangeable Gumbel 
copula 

δ̂ = 2.868  0.009491  

VC#1 δ̂12 = 2.790, δ̂13 = 2.800, δ̂23|1 =

1.510  
0.670  

VC#2 δ̂12 = 2.820, δ̂23 = 3.170, δ̂13|2 =

1.280  
0.850  

VC#3 δ̂13 = 2.840, δ̂23 = 3.150, δ̂12|3 =

1.240  
0.535   

Fig. 11. Reliability Curves for Polymeric Materials.  

Fig. 12. Histogram of Predicted RULs for Unit 1.  
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exist. From the application analyzed in the previous section and the 
examples mentioned in the introduction section, one can see that the 
interactions among multiple failure mechanisms imply the dependence 
existing in the multivariate degradation process. On the other hand, the 
degradation physics often suggests greater dependence in upper extreme 
direction. That is when a certain degradation process exhibits a worse 
state, it is more likely that other dependent processes would be affected 
to fall into a similarly risky status. For example, Chang, Das, Varde, and 
Pecht (2012) discussed how the LED lumen depreciation can be accel
erated by severe discoloration, due to a reduction in the transparency of 
the encapsulants in LED package. Therefore, this close relation with 
system failure mechanisms provides a solid physical ground for the 
Gumbel copula to be chosen as a dependent degradation model. Similar 
logic applies to the Clayton copula as a dependent lifetime model (Hsu, 
Emura, & Fan, 2016; Bai, Shi, Liu, & Liu, 2018). In fact, the Gumbel 
copula is the only copula that is simultaneously Archimedean and max 
extreme-value (Genest & Rivest, 1989), which also rationalizes itself as a 
good model for describing the dependence structure between 

exceptional events, i.e. degradation processes (Zhang, 2021). 
Unlike the traditional Gaussian dependence-based models, including 

the multivariate general path model and the multivariate Wiener pro
cess model, the multivariate copula-based degradation models explored 
in this paper can tackle a wider range of applications. The flexibility in 
handling asymmetry, tail dependence and nonlinearity makes the 
copula-based modeling framework even more attractive in practice. 

Beyond the scope of current study, there are several other issues 
worth of a further investigation.  

(1) Both unit-to-unit variations and explanatory variables may exist 
in the dependent degradation processes. Thus, incorporating 
random effects or covariates to both marginal and joint models is 
a future study direction. 

(2) Due to the complexity of degradation physics, both the depen
dence structure and magnitude may change over time. Thus, it is 
of much interest to further investigate a time-varying copula 
approach. 

Table 3 
Basic Properties of Copula Theory.   

Bivariate Multivariate  

cdf pdf cdf pdf 

Copula Scale: 
u      

Joint C(u1,u2)
c
(

u1, u2

)

=
∂2C(u1, u2)

∂u1∂u2  

C(u1,u2, …,ud)
c(u1 ,u2, …,ud) =

∂dC(u1, u2, …, ud)

∂u1∂u2⋯∂ud  
Marginal Ui ∼ Unif(0,1) f(ui) = 1 ∀ui ∈ [0,1] Ui ∼ Unif(0,1) f(ui) = 1 ∀ui ∈ [0,1]

Conditional 
C(u1|u2) =

∂C(u1, u2)

∂u2  

c(u1, u2)
C(u1|u2, …,ud) =

∂C(u1, u2|u3, …, ud)

∂u2  

c(u1, u2, …,ud)

Survival C(u1, u2) = u1 + u2 +

C(1 −u1,1 −u2) −1  
c(1 −u1, 1 −u2) C(u1, u2, …,ud) =

∑
J⊆{1,…,d}(−1)

|J|C
(

(1 − u1)
1(1∈J)

, …,

(1 − ud)
1(d∈J)

)

c(1 −u1,1 −u2, …,1 −ud)

Original 
Scale: x      
Joint F(x1 ,x2) = C(F1(x1), F2(x2)) f(x1, x2) = c(F1(x1),

F2(x2))f1(x1)f2(x2)

F(x1,x2, …,xd) = C(F1(x1),F2(x2), …,Fd(xd)) f(x1, x2, …,xd) = c(F1(x1), F2(x2), …,

Fd(xd))
∏d

i=1fi(xi)

Marginal Fi(xi) fi(xi) Fi(xi) fi(xi)

Conditional 
F1|2(x1|x2) =

∂C(F1(x1), F2(x2))

∂F2(x2)

f1|2(x1

⃒
⃒
⃒x2

)

= c(F1(x1),

F2(x2))f1(x1)

F(x|x*) =
∂Cx,xj |x*

−j

(
F(x|x*

−j), F(xj|x*
−j)

)

∂F(xj|x*
−j)

f(x|x*) = cx,xj |x*
−j

(
F(x|x*

−j), F(xj|x*
−j)

)
f(x|

x*
−j)

Survival F(x1, x2) =

1 −F1(x1) −F2(x2) +

C(F1(x1), F2(x2))

c(F1(x1), F2(x2))f1(x1)

f2(x2)
F(x1,x2, …,xd) =

∑
J⊆{1,…,d}(−1)

|J|C
(
F1(x1)

1(1∈J)
, …,

Fd(xd)
1(d∈J)

)
c(F1(x1), F2(x2), …,Fd(xd))

∏d
i=1fi(xi)

1 For the cdf of survival copula, the sum extends over all 2d subsets J of {1, …, d}, |J| denotes the number of elements of J. 
2 F(x1,x2, …,xd) = P(X1 > x1,X2 > x2, …, Xd > xd). 

Table 4 
Commonly-used ECs and EACs.  

Copula C(u) Parameter(s) Tail Dependence Kendall’s τ  

Gaussian ΦΣ
(
Φ−1(u1), Φ−1(u2), …, Φ−1(ud)

)
Σ > 0  λU = λL = 0  τ =

2
π arcsinρ  

Student’s t TΣ,ν
(
T−1

ν (u1), T−1
ν (u2), …, T−1

ν (ud)
)

Σ > 0, ν > 2  
λU = λL = 2Tν+1

(

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ν + 1)(1 − ρ)

√

̅̅̅̅̅̅̅̅̅̅̅
1 + ρ

√

)

τ =
2
π arcsinρ  

Frank 
−

1
δ

ln
{

1 +
[exp(−δu1) − 1][exp(−δu2) − 1]⋯[exp(−δud) − 1]

(exp(−δ) − 1)
d−1

}
δ ∈ ( −∞,0)

⋃
(0, ∞) λU = λL = 0  τ = 1 + 4

D1(δ) − 1
δ  

Clayton 
(u−δ

1 + u−δ
2 + ⋯ + u−δ

d − d + 1)
−
1
δ  

δ ∈ [ −1, ∞)/{0} λU = 0, λL = 2−1/δ  
τ =

δ
2 + δ  

Gumbel 
exp

⎧
⎨

⎩
− [(−lnu1)

δ
+ (−lnu2)

δ
+ ⋯ + (−lnud)

δ
]

1
δ

⎫
⎬

⎭

δ ∈ [1, ∞) λU = 2 −21/δ, λL = 0  τ = 1 −1/δ          

1 Σ > 0 means Σ is a positive definite matrix and ρ is the correlation between two certain random variables. 
2 λU and λL are measures of upper-tail dependence and lower-tail dependence, respectively. 

3 D1
(
δ
)

=
1
δ

∫ δ

0

t
et − 1

dt. 
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(3) It is noticed that for VCs, its flexibility originates from three el
ements – graphical structure (i.e. trees), copula families for each 
edge, and copula parameters. In the numerical example, we 
enumerated all three possible structures and predetermined 
Gumbel copula for each edge. However, when dealing with a 
higher dimension and more complex degrading systems, it is not 
realistic to go through all possibilities. Thus, it is of interest to 
further develop a methodology to cover the general scenario.  

(4) In engineering practice, other than the degradation process, 
products may also be threatened by random shocks caused by 
sudden emergencies. Thus, to incorporate the effect of the shocks 
is necessary in the modeling framework. Some relevant works 
include (Cao, Liu, Fang, & Dong, 2020; Hao & Yang, 2018; Wang, 
Bai, & Zhang, 2020).  

(5) It is also noted that the simple series or parallel reliability-wise 
structure cannot cover many real examples, such as series- 
parallel and parallel-series systems. In such cases, the domain 
of a working system indicated in Fig. 1 would become much more 
complicated resulting in the difficulty in evaluating the multi
variate integral for characterizing system reliability. To deal with 
the problem, it is worthwhile to develop relevant methodologies 
or computing methods to overcome the challenge. Some relevant 
works include (Eryilmaz, 2011; Navarro, Ruiz, & Sandoval, 2007; 
Xu & Zhou, 2017). 
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Appendix A 

Table 3 provides a summary of basic properties of copula theory. 
Table 4 provides a summary of commonly-used ECs and EACs. Table 5 
provides a summary of the first and second derivatives of commonly- 
used bivariate copulas. 
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