
On the Tractability of SHAP Explanations

Guy Van den Broeck,1 Anton Lykov,1 Maximilian Schleich,2 Dan Suciu2

1 University of California, Los Angeles
2 University of Washington, Seattle

Abstract

SHAP explanations are a popular feature-attribution mecha-
nism for explainable AI. They use game-theoretic notions to
measure the influence of individual features on the prediction
of a machine learning model. Despite a lot of recent inter-
est from both academia and industry, it is not known whether
SHAP explanations of common machine learning models can
be computed efficiently. In this paper, we establish the com-
plexity of computing the SHAP explanation in three impor-
tant settings. First, we consider fully-factorized data distribu-
tions, and show that the complexity of computing the SHAP

explanation is the same as the complexity of computing the
expected value of the model. This fully-factorized setting is
often used to simplify the SHAP computation, yet our results
show that the computation can be intractable for commonly
used models such as logistic regression. Going beyond fully-
factorized distributions, we show that computing SHAP ex-
planations is already intractable for a very simple setting:
computing SHAP explanations of trivial classifiers over naive
Bayes distributions. Finally, we show that even computing
SHAP over the empirical distribution is #P-hard.

1 Introduction

Machine learning is increasingly applied in high stakes de-
cision making. As a consequence, there is growing demand
for the ability to explain the prediction of machine learn-
ing models. One popular explanation technique is to com-
pute feature-attribution scores, in particular using the Shap-
ley values from cooperative game theory (Roth 1988) as a
principled aggregation measure to determine the influence
of individual features on the prediction of the collective
model. Shapley value based explanations have several de-
sirable properties (Datta, Sen, and Zick 2016), which is why
they have attracted a lot of interest in academia as well as
industry in recent years (see e.g., Gade et al. (2019)).

Štrumbelj and Kononenko (2014) show that Shapley val-
ues can be used to explain arbitrary machine learning mod-
els. Datta, Sen, and Zick (2016) use Shapley-value-based ex-
planations as part of a broader framework for algorithmic
transparency. Lundberg and Lee (2017) use Shapley values
in a framework that unifies various explanation techniques,
and they coined the term SHAP explanation. They show that

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the SHAP explanation is effective in explaining predictions
in the medical domain; see Lundberg et al. (2020). More
recently there has been a lot of work on the tradeoffs of vari-
ants of the original SHAP explanations, e.g., Sundararajan
and Najmi (2020), Kumar et al. (2020), Janzing, Minorics,
and Bloebaum (2020), Merrick and Taly (2020), and Aas,
Jullum, and Løland (2019).

Despite all of this interest, there is considerable con-
fusion about the tractability of computing SHAP explana-
tions. The SHAP explanations determine the influence of
a given feature by systematically computing the expected
value of the model given a subsets of the features. As a
consequence, the complexity of computing SHAP explana-
tions depends on the predictive model as well as assump-
tions on the underlying data distribution. Lundberg et al.
(2020) describe a polynomial-time algorithm for computing
the SHAP explanation over decision trees, but online discus-
sions have pointed out that this algorithm is not correct as
stated. We present a concrete example of this shortcoming
in the supplementary material, in Appendix A. In contrast,
for fully-factorized distributions, Bertossi et al. (2020) prove
that there are models for which computing the SHAP ex-
planation is #P-hard. A contemporaneous paper by Arenas
et al. (2020) shows that computing the SHAP explanation for
tractable logical circuits over uniform and fully factorized
binary data distributions is tractable. In general, the com-
plexity of the SHAP explanation is open.

In this paper we consider the original formulation of the
SHAP explanation by Lundberg and Lee (2017) and analyze
its computational complexity under the following data dis-
tributions and model classes:

1. First, we consider fully-factorized distributions, which are
the simplest possible data distribution. Fully-factorized
distributions capture the assumption that the model’s fea-
tures are independent, which is a commonly used assump-
tion to simplify the computation of the SHAP explana-
tions, see for example Lundberg and Lee (2017).

For fully-factorized distributions and any prediction
model, we show that the complexity of computing the
SHAP explanation is the same as the complexity of com-
puting the expected value of the model.

It follows that there are classes of models for which the
computation is tractable (e.g., linear regression, decision

trees, tractable circuits) while for other models, including
commonly used ones such as logistic regression and neu-
ral nets with sigmoid activation functions, it is #P-hard.

2. Going beyond fully-factorized distributions, we show that
computing SHAP explanation becomes intractable already
for the simplest probabilistic model that does not assume
feature independence: naive Bayes. As a consequence, the
complexity of computing SHAP explanations on such data
distributions is also intractable for many classes of mod-
els, including linear and logistic regression.

3. Finally we consider the empirical distribution, and prove
that computing SHAP explanations is #P-hard for this
class of distributions. This result implies that the algo-
rithm by Lundberg et al. (2020) cannot be fixed to com-
pute the exact SHAP explanations over decision trees in
polynomial time.

2 Background and Problem Statement

Suppose our data is described by n indexed features X =
{X1, . . . , Xn}. Each feature variable X takes a value from
a finite domain dom(X). A data instance x = (x1, . . . , xn)
consists of values x ∈ dom(X) for every feature X . This
instance space is denoted x ∈ X = dom(X1) × · · · ×
dom(Xn). We are also given a learned function F : X →
R that computes a prediction F (x) on each instance x.
Throughout this paper we assume that the prediction F (x)
can be computed in polynomial time in n.

For a particular instance of prediction F (x), the goal of
local explanations is to clarify why the function F gave
its prediction on instance x, usually by attributing credit to
the features. We will focus on local explanation that are in-
spired by game-theoretic Shapley values (Datta, Sen, and
Zick 2016; Lundberg and Lee 2017). Specifically, we will
work with the SHAP explanations as defined by Lundberg
and Lee (2017).

2.1 SHAP Explanations

To produce SHAP explanations, one needs an additional in-
gredient: a probability distribution Pr(X) over the features,
which we call the data distribution. We will use this distri-
bution to reason about partial instances. Concretely, for a set
of indices S ⊆ [n] = {1, . . . , n}, we let xS denote the re-
striction of complete instance x to those features XS with
indices in S. Abusing notation, we will also use xS to de-
note the probabilistic event XS = xS .

Under this data distribution, it now becomes possible to
ask for the expected value of the predictive function F .
Clearly, for a complete data instance x we have that
E[F |x] = F (x), as there is no uncertainty about the fea-
tures. However, for a partial instance xS , which does not
assign values to the features outside of XS , we appeal to the
data distribution Pr to compute the expectation of function
F as EPr[F |xS] =

∑

x∈X F (x) Pr(x|xS).
The SHAP explanation framework draws from Shapley

values in cooperative game theory. Given a particular in-
stance x, it considers features X to be players in a coalition
game: the game of making a prediction for x. SHAP expla-
nations are defined in terms of a set function vF,x,Pr : 2

X →

R. Its purpose is to evaluate the “value” of each coalition of
players/features XS ⊆ X in making the prediction F (x)
under data distribution Pr. Concretely, following Lundberg
and Lee (2017), this value function is the conditional expec-
tation of function F :

vF,x,Pr(XS)
def
= EPr[F |xS]. (1)

We will elide F , x, and Pr when they are clear from context.
Our goal, however, is to assign credit to individual fea-

tures. In the context of a coalition XS , the contribution of
an individual feature X /∈ XS is given by

c(X,XS)
def
= v(XS ∪ {X})− v(XS). (2)

where each term is implicitly w.r.t. the same F , x, and Pr.
Finally, the SHAP explanation computes a score for each

feature X ∈ X averaged over all possible contexts, and thus
measures the influence feature X has on the outcome. Let
π be a permutation on the set of features X, i.e., π fixes a
total order on all features. Let π<X be the set of features
that come before X in the order π. The SHAP explanations
are then defined as computing the following scores.

Definition 1 (SHAP Score). Fix an entity x, a predictive
function F , and a data distribution Pr. The SHAP explana-
tion of a feature X is the contribution of X given the features
π<X , averaged over all permutations π:

SHAP(X)
def
=

1

n!

∑

π

c(X,π<X). (3)

We mention two simple properties of the SHAP expla-
nations here; for more discussion see Datta, Sen, and Zick
(2016) and Lundberg et al. (2020). First, for the linear com-
bination of functions G(.) =

∑

k λkFk(.), we have that

SHAPG (X) =
∑

k

λkSHAPFk
(X). (4)

Second, the sum of the SHAP explanation of all features is
related to the expected value of function F :

∑

i

SHAPF (Xi) = F (x)−E[F]. (5)

2.2 Computational Problems

This paper studies the complexity of computing SHAP(X);
a task we formally define next. We write F for a class of
functions. We also write PRn for a class of data distribu-
tions over n features, and let PR =

⋃

n PRn. We assume that
all parameters are rationals. Because SHAP explanations are
for an arbitrary fixed instance x, we will simplify the nota-
tion throughout this paper by assuming it to be the instance
e = (1, 1, . . . , 1), and that each domain contains the value 1,
which is without loss of generality.

Definition 2 (SHAP Computational Problems). For each
function class F and distribution class PR, consider the fol-
lowing computational problems.

– The functional SHAP problem F-SHAP(F,PR): given a
data distribution Pr ∈ PR and a function F ∈ F, compute
SHAP(X1), . . . , SHAP(Xn).

– The decision SHAP problem D-SHAP(F,PR): given a
data distribution Pr ∈ PR, a function F ∈ F, a feature
X ∈ X, and a threshold t ∈ R, decide if SHAP(X) > t.

To establish the complexities of these problems, we use
standard notions of reductions. A polynomial time reduction
from a problem A to a problem B, denoted by A ≤P B, and
also called a Cook reduction, is a polynomial-time algorithm
for the problem A with access to an oracle for the problem B.
We write A ≡P B when both A ≤P B and B ≤P A.

In the remainder of this paper will study the computa-
tional complexity of these problems for natural hypothesis
classes F that are popular in machine learning, as well as
common classes of data distributions PR, including those
most often used to compute SHAP explanations.

3 SHAP over Fully-Factorized Distributions

We start our study of the complexity of SHAP by consider-
ing the simplest probability distribution: a fully-factorized
distribution, where all features are independent.

There are both practical and computational reasons why
it makes sense to assume a fully-factorized data distribu-
tion when computing SHAP explanations. First, functions F
are often the product of a supervised learning algorithm that
does not have access to a generative model of the data –
it is purely discriminative. Hence, it is convenient to make
the practical assumption that the data distribution is fully
factorized, and therefore easy to estimate. Second, fully-
factorized distributions are highly tractable; for example
they make it easy to compute expectations of linear regres-
sion functions (Khosravi et al. 2019b) and other hard infer-
ence tasks (Vergari et al. 2020).

Lundberg and Lee (2017) indeed observe that comput-
ing the SHAP-explanation on an arbitrary data distribution
is challenging and consider using fully-factorized distribu-
tions (Sec. 4, Eq. 11). Other prior work on computing ex-
planations also use fully-factorized distributions of features,

e.g., Datta, Sen, and Zick (2016); Štrumbelj and Kononenko
(2014). As we will show, the SHAP explanation can be com-
puted efficiently for several popular classifiers when the dis-
tribution is fully factorized. Yet, such simple data distribu-
tions are not a guarantee for tractability: computing SHAP

scores will be intractable for some other common classifiers.

3.1 Equivalence to Computing Expectations

Before studying various function classes, we prove a key re-
sult that connects the complexity of SHAP explanations to
the complexity of computing expectations.

Let INDn be the class of fully-factorized probability dis-
tributions over n discrete and independent random variables
X1, . . . , Xn. That is, for every instance (x1, . . . , xn) ∈ X ,
we have that Pr(X1 = x1, . . . , Xn = xn) =

∏

i Pr(Xi =

xi). Let IND
def
=

⋃

n≥0 INDn. We show that for every func-

tion class F, the complexity of F-SHAP(F,IND) is the same
as that of the fully-factorized expectation problem.

Definition 3 (Fully-Factorized Expectation Problem). Let F
be a class of real-valued functions with discrete inputs. The
fully-factorized expectation problem for F, denoted E(F), is

the following: given a function F ∈ F and a probability
distribution Pr ∈ IND, compute EPr(F).

We know from Equation 5 that for any function F over
n features, E({F}) ≤P F-SHAP({F},INDn), because
E[F] = F (x) −

∑

i=1,n SHAPF (Xi). In this section we

prove that the converse holds too:

Theorem 1. For any function F : X → R, we have that
F-SHAP({F},INDn) ≡

P E({F}).

In other words, for any function F , the complexity of
computing the SHAP scores is the same as the complexity of
computing the expected value E[F] under a fully-factorized
data distribution. One direction of the proof is immediate:
E({F}) ≤P F-SHAP({F},INDn) because, if we are given
an oracle to compute SHAPF (Xi) for every feature Xi, then
we can obtain E[F] from Equation 5 (recall that we as-
sumed that F (x) is computable in polynomial time). The
hard part of the proof is the opposite direction: we will show
in Sec. 3.2 how to compute SHAPF (Xi) given an oracle for
computing E[F]. Theorem 1 immediately extends to classes
of functions F, and to any number of variables, and therefore
implies that F-SHAP(F,IND) ≡P E(F).

Sections 3.3 and 3.4 will discuss the consequences of
this result, by delineating which function classes support
tractable SHAP explanations, and which do not. The next
section is devoted to proving our main technical result.

3.2 Proof of Theorem 1

We start with the special case when all features X are binary:
dom(X) = {0, 1}. We denote by INDBn the class of fully-
factorized distributions over binary domains.

Theorem 2. For any function F : {0, 1}n → R, we have
that F-SHAP({F},INDBn) ≡

P E({F}).

Proof. We prove only F-SHAP(F,INDBn) ≤P E({F});
the opposite direction follows immediately from Equation 5.
We will assume w.l.o.g. that F has n + 1 binary features
X

′ = {X0}∪X and show how to compute SHAPF (X0) us-
ing repeated calls to an oracle for computing E[F], i.e., the
expectation of the same function F , but over fully-factorized
distributions with different probabilities. The probability
distribution Pr is given to us by n + 1 rational numbers,

pi
def
= Pr(Xi=1), i = 0, n; obviously, Pr(Xi=0) = 1− pi.

Recall that the instance whose outcome we want to explain
is e = (1, . . . , 1). Recall that for any set S ⊆ [n] we write
eS for the event

∧

i∈S(Xi = 1). Then, we have that

SHAP(X0) =
∑

k=0,n

k!(n− k)!

(n+ 1)!
Dk, where (6)

Dk
def
=

∑

S⊆[n]:|S|=k

(

E
[

F |eS∪{0}

]

−E[F |eS]
)

.

Let F0
def
= F [X0 := 0] and F1

def
= F [X0 := 1] (both are

functions in n binary features, X = {X1, . . . , Xn}). Then:

E
[

F
∣

∣eS∪{0}

]

= E[F1|eS]

E[F |eS] = E[F0|eS] · (1− p0) +E[F1|eS] · p0

and therefore Dk is given by:

Dk = (1− p0)
∑

S⊆[n]:|S|=k

(E[F1|eS]−E[F0|eS])

For any function G, Equation 1 defines value vG,e,Pr(XS)
as E[G|eS]. Abusing notation, we write vG,k for the sum of
these quantities over all sets S of cardinality k:

vG,k
def
=

∑

S⊆[n],|S|=k

E[G|eS]. (7)

We will prove the following claim.

Claim 1. Let G be a function over n binary variables. Then
the n+1 quantities vG,0 until vG,n can be computed in poly-
nomial time, using n+ 1 calls to an oracle for E({G}).

Note that an oracle for E({F}) is also an oracle for both
E({F0}) and E({F1}), by simply setting Pr(X0 = 1) = 0
or Pr(X0 = 1) = 1 respectively. Therefore, Claim 1 proves
Theorem 2, by applying it once to F0 and once to F1 in or-
der to derive all the quantities vF0,k and vF1,k, thereby com-
puting Dk, and finally computing SHAPF (X0) using Equa-
tion 6. It remains to prove Claim 1.

Fix a function G over n binary variables and let vk =
vG,k. Let pj = Pr(Xj = 1), for j = 1, n, define the distri-
bution over which we need to compute v0, . . . , vn. We will
prove the following additional claim.

Claim 2. Given any real number z > 0, consider the dis-

tribution Prz(Xj) = p′j
def
=

pj+z

1+z
, for j = 1, n. Let Ez[G]

denote E[G] under distribution Prz . We then have that

∑

k=0,n

zk · vk =(1 + z)n ·Ez[G]. (8)

Assuming Claim 2 holds, we prove Claim 1. Choose any
n + 1 distinct values for z, use the oracle to compute the
quantities Ez0 [G], . . . ,Ezn [G], and form a system of n + 1
linear equations (8) with unknowns v0, . . . , vn. Next, ob-
serve that its matrix is a non-singular Vandermonde matrix,
hence the system has a unique solution which can be com-
puted in polynomial time. It remains to prove Claim 2.

Because of independence, the probability of instance x ∈
{0, 1}n is Pr(x) =

∏

i:xi=1 pi ·
∏

i:xi=0(1 − pi), where xi

looks up the value of feature Xi in instance x. Similarly,
Prz(x) =

∏

i:xi=1 p
′
i ·

∏

i:xi=0(1− p′i). Using direct calcu-
lations we derive:

Pr(x)
∏

i:xi=1

(

1 +
z

pi

)

= (1 + z)n · Prz(x) (9)

Separately we also derive the following identity, using the
fact that Pr(eS) =

∏

i∈S pi by independence:

E[G|eS] =
1

∏

i∈S pi

∑

x:xS=eS

G(x) · Pr(x) (10)

We are now in a position to prove Claim 2:

∑

k=0,n

zk · vk =
∑

k=0,n

zk
∑

S⊆[n]:|S|=k

E[G|eS]

=
∑

S⊆[n]

z|S| ·E[G|eS]

=
∑

S⊆[n]

z|S|

∏

i∈S pi

∑

x:xS=eS

G(x) · Pr(x)

The last line follows from Equation 10. Next, we simply ex-
change the summations

∑

S and
∑

x
, after which we apply

the identity
∑

S⊆A

∏

i∈S ui =
∏

i∈A(1 + ui).

(continuing)

=
∑

x∈{0,1}n

G(x) · Pr(x)
∑

S:xS=eS

z|S|

∏

i∈S pi

=
∑

x∈{0,1}n

G(x) · Pr(x)
∏

i:xi=1

(

1 +
z

pi

)

= (1 + z)n
∑

x∈{0,1}n

G(x) · Prz(x) = (1 + z)n ·Ez[G].

The final line uses Equation 9. This completes the proof of
Claim 2 as well as Theorem 2.

Next, we generalize this result from binary features to
arbitrary discrete features. Fix a function with n inputs,

F : X (
def
=

∏

i dom(Xi)) → R, where each domain is an
arbitrary finite set, dom(Xi) = {1, 2, . . . ,mi}; we assume
w.l.o.g. that mi > 1. A fully factorized probability space
Pr ∈ INDn is defined by numbers pij ∈ [0, 1], i = 1, n,
j = 1,mi, such that, for all i,

∑

j pij = 1. Given F and Pr

over the domain
∏

i dom(Xi), we define their projections,
Fπ, Prπ over the binary domain {0, 1}n as follows. For any
instance x ∈ {0, 1}n, let T (x) denote the event asserting
that Xj = 1 iff xj = 1. Formally,

T (x)
def
=

∧

j:xj=1

(Xj=1) ∧
∧

j:xj=0

(Xj 6=1).

Then, the projections are defined as follows: ∀x ∈ {0, 1}n,

Prπ(x)
def
=Pr(T (x)) Fπ(x)

def
=E[F | T (x)] (11)

Notice that Fπ depends both on F and on the probability
distribution Pr. Intuitively, the projections only distinguishes
between Xj = 1 and Xj 6= 1, for example:

Fπ(1, 0, 0) =E[F |(X1 = 1, X2 6= 1, X3 6= 1)]

Prπ(1, 0, 0) =Pr(X1 = 1, X2 6= 1, X3 6= 1)

We prove the following result in Appendix B:

Proposition 3. Let F : X → R be a function with n in-
put features, and Pr ∈ INDn a fully factorized distribu-
tion over X . Then (1) for any feature Xj , SHAPF,Pr(Xj) =
SHAPFπ,Prπ (Xj), and (2) E({Fπ}) ≤

P E({F}).

Item (1) states that the SHAP-score of F computed over
the probability space Pr is the same as that of its projec-
tion Fπ (which depends on Pr) over the projected probabil-
ity space Prπ . Item (2) says that, for any probability space
over {0, 1}n (not necessarily Prπ), we can compute E[Fπ]
in polynomial time given access to an oracle for comput-
ing E[F]. We can now complete the proof of Theorem 1,
by showing that F-SHAP({F},INDn) ≤

P E({F}). Given
a function F and probability space Pr ∈ INDn, in order
to compute SHAPF,Pr(Xj), by item (1) of Proposition 3 it
suffices to show how to compute SHAPFπ,Prπ (Xj). By The-
orem 2, we can compute the latter given access to an oracle
for computing E[Fπ]. Finally, by item (2) of the proposition,
we can compute E[Fπ] given an oracle for computing E[F].

3.3 Tractable Function Classes

Given the polynomial-time equivalence between computing
SHAP explanations and computing expectations under fully-
factorized distributions, a natural next question is: which
real-world hypothesis classes in machine learning support
efficient computation of SHAP scores?

Corollary 4. For the following function classes F, comput-
ing SHAP scores F-SHAP(F,IND) is in polynomial time in
the size of the representations of function F ∈ F and fully-
factorized distribution Pr ∈ IND.

1. Linear regression models

2. Decision and regression trees

3. Random forests or additive tree ensembles

4. Factorization machines, regression circuits

5. Boolean functions in d-DNNF, binary decision diagrams

6. Bounded-treewidth Boolean functions in CNF

These are all consequences of Theorem 1, and the fact that
computing fully-factorized expectations E(F) for these func-
tion classes F is in polynomial time. Concretely, we have the
following observations about fully-factorized expectations:

1. Expectations of linear regression functions are efficiently
computed by mean imputation (Khosravi et al. 2019b).
The tractability of SHAP on linear regression models is

well known. In fact, Štrumbelj and Kononenko (2014)
provide a closed-form formula for this case.

2. Paths from root to leaf in a decision or regression tree are
mutually exclusive. Their expected value is therefore the
sum of expected values of each path, which are tractable
to compute within IND; see Khosravi et al. (2020).

3. Additive mixtures of trees, as obtained through bagging
or boosting, are tractable, by the linearity of expectation.

4. Factorization machines extend linear regression models
with feature interaction terms and factorize the parame-
ters of the higher-order terms (Rendle 2010). Their expec-
tations remain easy to compute. Regression circuits are
a graph-based generalization of linear regression. Khos-
ravi et al. (2019a) provide an algorithm to efficiently take
their expectation w.r.t. a probabilistic circuit distribution,
which is trivial to construct for the fully-factorized case.

The remaining tractable cases are Boolean functions.
Computing fully-factorized expectations of Boolean func-
tions is widely known as the weighted model counting task
(WMC) (Sang, Beame, and Kautz 2005; Chavira and Dar-
wiche 2008). WMC has been extensively studied both in
the theory and the AI communities, and the precise com-
plexity of E(F) is known for many families of Boolean
functions F. These results immediately carry over to the
F-SHAP(F,IND) problem through Theorem 1:

5. Expectations can be computed in time linear in the size
of various circuit representations, called d-DNNF, which
includes binary decision diagrams (OBDD, FBDD) and
SDDs (Bryant 1986; Darwiche and Marquis 2002).1

6. Bounded-treewidth CNFs are efficiently compiled into
OBDD circuits (Ferrara, Pan, and Vardi 2005), and thus
enjoy tractable expectations.

To conclude this section, the reader may wonder about
the algorithmic complexity of solving F-SHAP(F,IND)
with an oracle for E(F) under the reduction in Section 3.2.
Briefly, we require a linear number of calls to the oracle, as
well as time in O(n3) for solving a system of linear equa-
tions. Hence, for those classes, such as d-DNNF circuits,
where expectations are linear in the size of the (circuit) rep-
resentation of F , computing F-SHAP(F,IND) is also linear
in the representation size and polynomial in n.

3.4 Intractable Function Classes

The polynomial-time equivalence of Theorem 1 also implies
that computing SHAP scores must be intractable whenever
computing fully-factorized expectations is intractable. This
section reviews some of those function classes F, including
some for which the computational hardness of E(F) is well
known. We begin, however, with a more surprising result.

Logistic regression is one of the simplest and most widely
used machine learning models, yet it is conspicuously absent
from Corollary 4. We prove that computing the expectation
of a logistic regression model is #P-hard, even under a uni-
form data distribution, which is of independent interest.

A logistic regression model is a parameterized function

F (x)
def
= σ(w ·x), where w = (w0, w1, . . . , wn) is a vector

of weights, σ(z) = 1/(1+e−z) is the logistic function, x
def
=

(1, x1, x2, . . . , xn), and w · x
def
=

∑

i=0,n wixi is the dot

product. Note that we define the logistic regression function
to output probabilities, not data labels. Let LOGITn denote
the class of logistic regression functions with n variables,
and LOGIT =

⋃

n LOGITn. We prove the following:

Theorem 5. Computing the expectation of a logistic regres-
sion model w.r.t. a uniform data distribution is #P-hard.

The full proof in Appendix C is by reduction from count-
ing solutions to the number partitioning problem.

Because the uniform distribution is contained in IND, and
following Theorem 1, we immediately obtain:

1In contemporaneous work, Arenas et al. (2020) also show that
the SHAP explanation is tractable for d-DNNFs, but for the more
restricted class of uniform data distributions.

Corollary 6. The computational problems E(LOGIT) and
F-SHAP(LOGIT,IND) are both #P-hard.

We are now ready to list general function classes for
which computing the SHAP explanation is #P-hard.

Corollary 7. For the following function classes F, comput-
ing SHAP scores F-SHAP(F,IND) is #P-hard in the size of
the representations of function F ∈ F and fully-factorized
distribution Pr ∈ IND.

1. Logistic regression models (Corollary 6)

2. Neural networks with sigmoid activation functions

3. Naive Bayes classifiers, logistic circuits

4. Boolean functions in CNF or DNF

Our intractability results stem from these observations:

2. Each neuron is a logistic regression model, and therefore
this class subsumes LOGIT.

3. The conditional distribution used by a naive Bayes clas-
sifier is known to be equivalent to a logistic regres-
sion model (Ng and Jordan 2002). Logistic circuits are
a graph-based classification model that subsumes logistic
regression (Liang and Van den Broeck 2019).

4. For general CNFs and DNFs, weighted model counting,
and therefore E(F) is #P-hard. This is true even for very
restricted classes, such as monotone 2CNF and 2DNF
functions, and Horn clause logic (Wei and Selman 2005).

4 Beyond Fully-Factorized Distributions

Features in real-world data distributions are not indepen-
dent. In order to capture more realistic assumptions about
the data when computing SHAP scores, one needs a more in-
tricate probabilistic model. In this section we prove that the
complexity of computing the SHAP-explanation quickly be-
comes intractable, even over the simplest probabilistic mod-
els, namely naive Bayes models. To make computing the
SHAP-explanation as easy as possible, we will assume that
the function F simply outputs the value of one feature. We
show that even in this case, even for function classes that
are tractable under fully-factorized distributions, computing
SHAP explanations becomes computationally hard.

Let NBNn denote the family of naive Bayes networks over
n + 1 variables X = {X0, X1, . . . , Xn}, with binary do-
mains, where X0 is a parent of all features:

Pr(X) = Pr(X0) ·
∏

i=1,n

Pr(Xi|X0).

As usual, the class NBN
def
=

⋃

n≥0 NBNn. We write X0 for

the function F that returns the value of feature X0; that is,
F (x) = x0. We prove the following.

Theorem 8. The decision problem D-SHAP({X0},NBN) is
NP-hard.

The proof in Appendix D is by reduction from the number
partitioning problem, similar to the proof of Corollary 6. We
note that the subset sum problem was also used to prove
related hardness results, e.g., for proving hardness of the
Shapely value in network games (Elkind et al. 2008).

This result is in sharp contrast with the complexity of the
SHAP score over fully-factorized distributions in Section 3.
There, the complexity was dictated by the choice of func-
tion class F. Here, the function is as simple as possible, yet
computing SHAP is hard. This ruins any hope of achiev-
ing tractability by restricting the function, and this motivates
us to restrict the probability distribution in the next section.
This result is also surprising because it is efficient to com-
pute marginal probabilities (such as the expectation of X0)
and conditional probabilities in naive Bayes distributions.

Theorem 8 immediately extends to a large class of prob-
ability distributions and functions. We say that F depends
only on Xi if there exist two constants c0 6= c1 such that
F (x) = c0 when xi = 0 and F (x) = c1 when xi = 1. In
other words, F ignores all variables other than Xi, and does
depend on Xi. We then have the following.

Corollary 9. The problem D-SHAP(F,PR) is NP-hard,
when PR is any of the following classes of distributions:

1. Naive Bayes, bounded-treewidth Bayesian networks

2. Bayesian networks Markov networks, Factor graphs

3. Decomposable probabilistic circuits

and when F is any class that contains some function F that
depends only on X0, including the class of linear regression
models and all the classes listed in Corollaries 4 and 7.

This corollary follows from two simple observations.
First, each of the classes of probability distributions listed in
the corollary can represent a naive Bayes network over bi-
nary variables X. For example, a Markov network will con-
sists of n factors f1(X0, X1), f2(X0, X2), . . . , fn(X0, Xn);
similar simple arguments prove that all the other classes can
represent naive Bayes, including tractable probabilistic cir-
cuits such as sum-product networks (Vergari et al. 2020).

Second, for each function that depends only on X0, there
exist two distinct constants c0 6= c1 ∈ R such that F (x) =
c0 when x0 = 0 and F (x) = c1 when x0 = 1. For ex-
ample, if we consider the class of logistic regression func-
tions F (x) = σ(

∑

i wixi), then we choose the weights
w0 = 1, w1 = . . . = wn = 0 and we obtain F (x) = 1/2
when x0 = 0 and F (x) = 1/(1 + e−1) when x0 = 1.
Then, over the binary domain {0, 1} the function is equiv-
alent to F (x) = (c1 − c0)x0 + c0, and, therefore, by the
linearity of the SHAP explanation (Equation 4) we have
SHAPF (X0) = (c1 − c0) · SHAPX0(X0) (because the SHAP

explanation of a constant function c0 is 0) for which, by The-
orem 8, the decision problem is NP-hard.

We end this section by proving that Theorem 8 continues
to hold even if the prediction function F is the value of some
leaf node of a (bounded treewidth) Bayesian Network. In
other words, the hardness of the SHAP explanation is not
tied to the function returning the root of the network, and
applies to more general functions.

Corollary 10. The SHAP decision problem for Bayesian
networks with latent variables is NP-hard, even if the func-
tion F returns a single leaf variable of the network.

The full proof is given in Appendix E.

5 SHAP on Empirical Distributions

In supervised learning one does not require a generative
model of the data, instead, the model is trained on some
concrete data set: the training data. When some probabilis-
tic model is needed, then the training data itself is con-
veniently used as a probability model, called the empiri-
cal distribution. This distribution captures dependencies be-
tween features, while its set of possible worlds is limited
to those in the data set. For example, the intent of the Ker-
nelSHAP algorithm by Lundberg and Lee (2017) is to com-
pute the SHAP explanation on the empirical distribution. In
another example, Aas, Jullum, and Løland (2019) extend
KernelSHAP to work with dependent features, by estimating
the conditional probabilities from the empirical distribution.

Compared to the data distributions considered in the pre-
vious sections, the empirical distribution has one key advan-
tage: it has many fewer possible worlds with positive proba-
bility – this suggests increased tractability. Unfortunately, in
this section, we prove that computing the SHAP explanation
over the empirical distribution is #P-hard in general.

To simplify the presentation, this section assumes that all
features are binary: dom(Xj) = {0, 1}. The probability
distribution is given by a 0/1-matrix d = (xij)i∈[m],j∈[n],

where each row (xi1, . . . , xin) is an outcome with proba-
bility 1/m. One can think of d as a dataset with n features
and m data instances, where each row (xi1, . . . , xin) is one
data instance. Repeated rows are possible: if a row occurs
k times, then its probability is k/m. We denote by X the
class of empirical distributions. The predictive function can
be any function F : {0, 1}n → R. As our data distribution is
no longer strictly positive, we adopt the standard convention
that E[F |XS = 1] = 0 when Pr(XS = 1) = 0.

Recall from Section 2.2 that, by convention, we com-
pute the SHAP-explanation w.r.t. instance e = (1, 1, . . . , 1),
which is without loss of generality. Somewhat surprisingly,
the complexity of computing the SHAP-explanation of a
function F over the empirical distribution given by a ma-
trix d is related to the problem of computing the expectation
of a certain CNF formula associated to d.

Definition 4. The positive, partitioned 2CNF formula,
PP2CNF, associated to a matrix d ∈ {0, 1}m×n is:

Φd

def
=

∧

(i,j):xij=0

(Ui ∨ Vj).

Thus, a PP2CNF formula is over m + n variables
U1, . . . , Um, V1, . . . , Vn, and has only positive clauses. The
matrix d dictates which clauses are present. A quasy-
symmetric probability distribution is a fully factorized dis-
tribution over the m + n variables for which there exists
two numbers p, q ∈ [0, 1] such that for every i = 1,m,
Pr(Ui = 1) = p or Pr(Ui = 1) = 1, and for every j = 1, n,
Pr(Vj = 1) = q or Pr(Vj = 1). In other words, all vari-
ables U1, . . . , Um have the same probability p, or have prob-
ability 1, and similarly for the variables V1, . . . , Vn. We de-
note by EQS(PP2CNF) the expectation computation prob-
lem for PP2CNF over quasi-symmetric probability distribu-
tions. EQS(PP2CNF) is #P-hard, because computing E[Φd]
under the uniform distribution (i.e. Pr(U1 = 1) = · · · =

Pr(Vn = 1) = 1/2) is #P-hard (Provan and Ball 1983). We
prove:

Theorem 11. Let X be the class of empirical distributions,
and F be any class of function such that, for each i, it in-
cludes some function that depends only on Xi. Then, we
have that F-SHAP(F,X) ≡P EQS(PP2CNF).

As a consequence, the problem F-SHAP(F,X) is #P-hard
in the size of the empirical distribution.

The theorem is surprising, because the set of possible out-
comes of an empirical distribution is small. This is unlike all
the distributions discussed earlier, for example those men-
tioned in Corollary 9, which have 2n possible outcomes,
where n is the number of features. In particular, given an
empirical distribution d, one can compute the expectation
E[F] in polynomial time for any function F , by doing just
one iteration over the data. Yet, computing the SHAP expla-
nation of F is #P-hard.

Theorem 11 implies hardness of SHAP explanations on
the empirical distribution for a large class of functions.

Corollary 12. The problem F-SHAP(F,X) is #P-hard,
when X is the class of empirical distributions, and F is any
class such that for each feature Xi, the class contains some
function that depends only on Xi. This includes all the func-
tion classes listed in Corollaries 4 and 7.

For instance, any class of Boolean function that contains

the n single-variable functions F
def
= Xi, for i = 1, n, fall

under this corollary. Section 4 showed an example of how
the class of logistic regression functions fall under this corol-
lary as well.

The proof of Theorem 11 follows from the following tech-
nical lemma, which is of independent interest:

Lemma 13. We have that:

1. For every matrix d, F-SHAP(F,d) ≤P EQS({Φd}).

2. EQS(PP2CNF) ≤P F-SHAP(F,X).

The proof of the Lemma is given in Appendix F and G.
The first item says that we can compute the SHAP-
explanation in polynomial time using an oracle for com-
puting E[Φd] over quasi-symmetric distributions. The ora-
cle is called only on the PP2CNF Φd associated to the data
d, but may perform repeated calls, with different probabil-
ities of the Boolean variables. This is somewhat surprising
because the SHAP explanation is over an empirical distri-
bution, while E[Φd] is taken over a fully-factorized distri-
bution; there is no connection between these two distribu-
tions. This item immediately implies F-SHAP(F,X) ≤P

EQS(PP2CNF), where X is the class of empirical distribu-
tions d, since the formula Φd is in the class PP2CNF.

The second item says that a weak form of converse also
holds. It states that we can compute in polynomial time the
expectation E[Φ] over a quasi-symmetric probability distri-
butions by using an oracle for computing SHAP explana-
tions, over several matrices d, but not necessarily restricted
to the matrix associated to Φ. Together, the two items of the
lemma prove Theorem 11.

We end this section with a comment on the TreeSHAP al-
gorithm in Lundberg et al. (2020), which is computed over

a distribution defined by a tree-based model. Our result im-
plies that the problem that TreeSHAP tries to solve is #P-
hard. This follows immediately by observing that every em-
pirical distribution d can be represented by a binary tree
of size polynomial in the size of d. The tree examines the
attributes in the order X1, X2, . . . , Xn, and each decision
node for Xi has two branches: Xi = 0 and Xi = 1. A
branch that does not exists in the matrix d will end in a leaf
with label 0. A complete branch that corresponds to a row
xi1, xi2, . . . , xin in d ends in a leaf with label 1/m (or k/m
if that row occurs k times in d). The size of this tree is no
larger than twice the size of the matrix (because of the ex-
tra dead end branches). This concludes our study of SHAP

explanations on the empirical distribution.

6 Perspectives and Conclusions

We establish the complexity of computing the SHAP expla-
nation in three important settings. First, we consider fully-
factorized data distributions and show that for any prediction
model, the complexity of computing the SHAP explanation
is the same as the complexity of computing the expected
value of the model. It follows that there are commonly
used models, such as logistic regression, for which comput-
ing SHAP explanations is intractable. Going beyond fully-
factorized distributions, we show that computing SHAP ex-
planations is also intractable for simple functions and simple
distributions – naive Bayes and empirical distributions.

The recent literature on SHAP explanations predomi-
nantly studies tradeoffs of variants of the original SHAP

formulation, and relies on approximation algorithms to
compute the explanations. These approximation algorithms,
however, tend to make simplifying assumptions which can
lead to counter-intuitive explanations, see e.g., Slack et al.
(2020). We believe that more focus should be given to the
computational complexity of SHAP explanations. In partic-
ular, which classes of machine learning models can be ex-
plained efficiently using the SHAP scores? Our results show
that, under the assumption of fully-factorized data distribu-
tions, there are classes of models for which the SHAP ex-
planations can be computed in polynomial time. In future
work, we plan to explore if there are classes of models for
which the complexity of the SHAP explanations is tractable
under more complex data distributions, such as the ones de-
fined by tractable probabilistic circuits (Vergari et al. 2020)
or tractable symmetric probability spaces (Van den Broeck,
Meert, and Darwiche 2014; Beame et al. 2015).

Acknowledgements

This work is partially supported by NSF grants IIS-
1907997, IIS-1954222 IIS-1943641, IIS-1956441, CCF-
1837129, DARPA grant N66001-17-2-4032, a Sloan Fel-
lowship, and gifts by Intel and Facebook research. Schle-
ich is supported by a RelationalAI fellowship. The authors
would like to thank YooJung Choi for valuable discussions
on the proof of Theorem 5.

References

Aas, K.; Jullum, M.; and Løland, A. 2019. Explaining indi-
vidual predictions when features are dependent: More ac-
curate approximations to Shapley values. arXiv preprint
arXiv:1903.10464 .

Arenas, M.; Barceló, P.; Bertossi, L.; and Monet, M. 2020.
The Tractability of SHAP-Score-Based Explanations over
Deterministic and Decomposable Boolean Circuits. arXiv
preprint arXiv:2007.14045 .

Beame, P.; Van den Broeck, G.; Gribkoff, E.; and Suciu, D.
2015. Symmetric Weighted First-Order Model Counting. In
Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015, 313–328.

Bertossi, L.; Li, J.; Schleich, M.; Suciu, D.; and Vagena, Z.
2020. Causality-Based Explanation of Classification Out-
comes. In Proceedings of the Fourth International Work-
shop on Data Management for End-to-End Machine Learn-
ing, DEEM’20. New York, NY, USA: Association for Com-
puting Machinery.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on
100(8): 677–691.

Chavira, M.; and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
172(6-7): 772–799.

Darwiche, A.; and Marquis, P. 2002. A knowledge compi-
lation map. Journal of Artificial Intelligence Research 17:
229–264.

Datta, A.; Sen, S.; and Zick, Y. 2016. Algorithmic Trans-
parency via Quantitative Input Influence: Theory and Ex-
periments with Learning Systems. In IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, May 22-
26, 2016, 598–617.

Elkind, E.; Goldberg, L. A.; Goldberg, P. W.; and
Wooldridge, M. J. 2008. A tractable and expressive class
of marginal contribution nets and its applications. In 7th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal, May
12-16, 2008, Volume 2, 1007–1014.

Ferrara, A.; Pan, G.; and Vardi, M. Y. 2005. Treewidth in
verification: Local vs. global. In International Conference
on Logic for Programming Artificial Intelligence and Rea-
soning, 489–503. Springer.

Gade, K.; Geyik, S. C.; Kenthapadi, K.; Mithal, V.; and Taly,
A. 2019. Explainable AI in Industry. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’19, 3203–3204. New
York, NY, USA: Association for Computing Machinery.

Janzing, D.; Minorics, L.; and Bloebaum, P. 2020. Feature
relevance quantification in explainable AI: A causal prob-
lem. volume 108 of Proceedings of Machine Learning Re-
search, 2907–2916. PMLR.

Khosravi, P.; Choi, Y.; Liang, Y.; Vergari, A.; and Van den
Broeck, G. 2019a. On Tractable Computation of Expected

Predictions. In Advances in Neural Information Processing
Systems 32 (NeurIPS).

Khosravi, P.; Liang, Y.; Choi, Y.; and den Broeck, G. V.
2019b. What to Expect of Classifiers? Reasoning about Lo-
gistic Regression with Missing Features. In Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, 2716–2724.

Khosravi, P.; Vergari, A.; Choi, Y.; Liang, Y.; and Van den
Broeck, G. 2020. Handling Missing Data in Decision Trees:
A Probabilistic Approach. In The Art of Learning with Miss-
ing Values Workshop at ICML (Artemiss).

Kumar, I. E.; Venkatasubramanian, S.; Scheidegger, C.; and
Friedler, S. 2020. Problems with Shapley-value-based ex-
planations as feature importance measures. In Proceedings
of the 37th International Conference on Machine Learning,
Vienna, Austria, PMLR 119, 2020.

Liang, Y.; and Van den Broeck, G. 2019. Learning Logistic
Circuits. In Proceedings of the 33rd Conference on Artificial
Intelligence (AAAI).

Lundberg, S. M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin,
J. M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; and
Lee, S. 2020. From Local Explanations to Global Under-
standing with Explainable AI for Trees. Nature Machine
Intelligence 2: 56–67.

Lundberg, S. M.; Erion, G. G.; and Lee, S.-I. 2018. Con-
sistent individualized feature attribution for tree ensembles.
arXiv preprint arXiv:1802.03888 .

Lundberg, S. M.; and Lee, S. 2017. A Unified Approach
to Interpreting Model Predictions. In Advances in neural
information processing systems (NIPS), 4765–4774.

Merrick, L.; and Taly, A. 2020. The Explanation Game:
Explaining Machine Learning Models Using Shapley Val-
ues. In International Cross-Domain Conference for Ma-
chine Learning and Knowledge Extraction, 17–38. Springer.

Ng, A. Y.; and Jordan, M. I. 2002. On discriminative vs. gen-
erative classifiers: A comparison of logistic regression and
naive bayes. In Advances in neural information processing
systems, 841–848.

Provan, J. S.; and Ball, M. O. 1983. The Complexity of
Counting Cuts and of Computing the Probability that a
Graph is Connected. SIAM J. Comput. 12(4): 777–788.

Rendle, S. 2010. Factorization machines. In 2010 IEEE
International Conference on Data Mining, 995–1000. IEEE.

Roth, A. e. 1988. The Shapley Value: Essays in Honor of
Lloyd S. Shapley. Cambridge Univ. Press.

Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
Bayesian inference by weighted model counting. In AAAI,
volume 5, 475–481.

Slack, D.; Hilgard, S.; Jia, E.; Singh, S.; and Lakkaraju, H.
2020. Fooling LIME and SHAP: Adversarial Attacks on
Post hoc Explanation Methods. In AAAI/ACM Conference
on AI, Ethics, and Society (AIES).

Štrumbelj, E.; and Kononenko, I. 2014. Explaining predic-
tion models and individual predictions with feature contribu-
tions. Knowledge and information systems 41(3): 647–665.

Sundararajan, M.; and Najmi, A. 2020. The many Shapley
values for model explanation. In Proceedings of the 37th In-
ternational Conference on Machine Learning, Vienna, Aus-
tria, PMLR 119, 2020.

Van den Broeck, G.; Meert, W.; and Darwiche, A. 2014.
Skolemization for Weighted First-Order Model Counting.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR
2014, Vienna, Austria, July 20-24, 2014.

Vergari, A.; Choi, Y.; Peharz, R.; and Van den Broeck, G.
2020. Probabilistic Circuits: Representations, Inference,
Learning and Applications. AAAI Tutorial.

Wei, W.; and Selman, B. 2005. A new approach to model
counting. In International Conference on Theory and Appli-
cations of Satisfiability Testing, 324–339. Springer.

Algorithm 1 Algorithm to compute value function v from
(Lundberg, Erion, and Lee 2018)

procedure EXPVALUE(x, S, tree = {v, a, b, t, r, d})

procedure G(j)
if vj 6= internal then

return vj
else

if dj ⊆ S then
return G(aj) if xdj

≤ tj else G(bj)
else

return (G(aj) · raj
+G(bj) · rbj)/rj

return G(1)

A Discussion on the TreeSHAP algorithm

Lundberg, Erion, and Lee (2018) propose TreeSHAP, a vari-
ant of SHAP explanations for tree-based machine learning
models such as decision trees, random forests and gradi-
ent boosted trees. The authors claim that, for the case when
both the model and probability distribution are defined by
a tree-based model, the algorithm can compute the exact
SHAP explanations in polynomial time. However, it has
been pointed out in Github discussions (e.g., https://github.
com/christophM/interpretable-ml-book/issues/142) that the
TreeSHAP algorithm does not compute the SHAP explana-
tion as defined in Section 2. In this section, we provide a
concrete example of this shortcoming.

The main shortcoming of the TreeSHAP algorithm is cap-
tured by Algorithm 1. The authors claim that Algorithm 1
computes the conditional expectation E[F | xS], for a given
set of features S and tree-based model F . We first describe
the algorithm and then show by example that this algorithm
does not accurately compute the conditional expectation.

Algorithm 1 takes as input a feature vector x, a set of fea-
tures S, and a binary tree, which represents the tree-based
model. The tree is defined by the following vectors: v is a
vector of node values; internal nodes are assigned the value
internal. The vectors a and b represent the left and right
node indexes for each internal node. The vector t contains
the thresholds for each internal node, and d is a vector of in-
dexes of the features used for splitting in internal nodes. The
vector r represents the cover of each node (i.e., how many
data samples fall in that sub-tree).

The algorithm proceeds recursively in a top-down traver-
sal of the tree. For inner nodes, the algorithm follows the
decision path for x if the split feature is in S, and takes the
weighted average of both branches if the split feature is not
in S. For leaf nodes, it returns the value of the node, which
corresponds to the prediction of the model.

The algorithm does not accurately compute the condi-
tional expectation E[F | xS], because it does not normalize
expectation by the probability of the condition. The follow-
ing simple example shows that the value returned by Algo-
rithm 1 does not represent the conditional expectation.

Example 14. We consider the following dataset and de-
cision tree model. The dataset has two binary variables
X1 and X2, and each instance (x1, x2) is weighted by the

occurrence count (i.e., the instance (0,0) occurs twice in
the dataset). We want to compute E[F (X1, X2)|X2 = 0],
where F (X1, X2) is the outcome of the decision tree.

X1 X2 #

0 0 2
0 1 1
1 0 1
1 1 2

X1

X2 X2

0 1

F (0, 0) F (0, 1) F (1, 0) F (1, 1)

0 1 0 1

The correct value is:

E[F (X1, X2) | X2 = 0] = 2/3 · F (0, 0) + 1/3 · F (1, 0)

This is because there are three items with X2 = 0, and their
probabilities are 2/3 and 1/3.

Algorithm 1, however, returns:

G(1) = 1/2 · F (0, 0) + 1/2 · F (1, 0),

and thus does not compute E[F (X1, X2) | X2 = 0].

B Proof of Proposition 3

We start with item (1). Recall that dom(Xi) =
{1, 2, 3, . . . ,mi}. We denote by pi1, pi2, . . . , pimi

their
probabilities, thus

∑

j=1,mi
pij = 1. By definition, the pro-

jected distribution is: Prπ(Xi = 1)
def
= pi1, and Prπ(Xi =

0) = 1 − pi1. We denote by Eπ be the correspond-
ing expectation. Our goal is to prove SHAPF,Pr(Xj) =
SHAPFπ,Prπ (Xj).

Let eS again denote the event
∧

i∈S(Xi = 1). Note that,

by construction, for any set S, Pr(eS) = Prπ(eS). Recall
that for any instance x ∈ {0, 1}n, we let T (x) denote the
event asserting that Xj = 1 iff xj = 1; formally,

T (x)
def
=

∧

j:xj=1

(Xj=1) ∧
∧

j:xj=0

(Xj 6=1).

Then, for any instance x ∈ {0, 1}n,

Pr(T (x)) =
∏

i:xi=1

pi1 ·
∏

i:xi=0

(pi2 + pi3 + · · ·) = Prπ(x).

Thus, there are 2n disjoint events T (x), which partition the
space X . Therefore, for every set S:

E[F ∧ eS] =
∑

x:∀i∈S,xi=1

E[F |T (x)] Pr(T (x))

=
∑

x:∀i∈S,xi=1

Fπ(x) Prπ(x)

= Eπ[Fπ ∧ eS]

This implies that E[F |eS] = Eπ[Fπ|eS] for any set S, and
SHAPF,Pr(Xj) = SHAPFπ,Prπ (Xj) for all j follows from
Equation 6.

We now prove item (2): we show how to compute E[Fπ]
given an oracle for computing E[F]. Recall that we want
to compute E[Fπ] on some arbitrary distribution Pr′π on
{0, 1}n; this should not be confused with the probability Prπ
defined in Eq.11, and used to define the function Fπ . Denote

qi
def
= Pr′π(Xi = 1), thus Prπ(Xi = 0) = 1 − qi. To com-

pute E[Fπ] we will use the oracle for computing E[F], on
the probability space defined by the numbers p′ij , i = 1, n,
j = 1,mi defined as follows:

wi
def
=

1− qi
qi

and Z
def
=

∏

i=1,n

qi

W
def
=

∏

i=1,n

1 +
∑

j=2,mi

pijwi

1− pi1

p′i1
def
=

1

W
i =1, n

p′ij
def
=

pijwi

W (1− pi1)
i =1, n; j = 2,mi

One can check that the numbers p′ij indeed define a prob-

ability space on X , in other words p′ij ∈ [0, 1] and, for all

i = 1, n:
∑

j=1,mj
p′ij = 1. We denote by Pr′ the probability

space that they define, and denote by E
′[F] the expectation

of F in this space. We prove:

Claim 3. Eπ[Fπ] = Z ·W ·E′[F]

The claim immediately proves item (2) of Proposition 3:
we simply invoke the oracle to compute E′[F], then multiply
with the quantities Z and W , both of which are computable
in polynomial time. It remains to prove the claim.

We start with some observations and notations. Recall that
the projection Fπ depends on both F and on Pr, see Equa-
tion 11. We express it here in terms of the probabilities pij :

Fπ[x] = E[F |T (x)] =
E[F · T (x)]

Pr(T (x))

=

∑

τ∈X :x−1(1)=τ−1(1) F (τ) ·
∏

i piτi
∏

i:xi=1 pi1 ·
∏

i:xi 6=1(1− pi1)

=
∑

τ∈X :x−1(1)=τ−1(1)

F (τ) ·
∏

i:τi 6=1

piτi
1− pi1

.

We used the fact that, for every instance x ∈ X , Pr(x) =
∏

i pixi
, and denoted by x

−1(1) the set of feature indices
for which example x has value 1. We now prove the claim
by applying directly the definition of Eπ[Fπ]:

Eπ[Fπ] =
∑

θ∈{0,1}n

Fπ(θ)
∏

i:θi=1

qi
∏

i:θi=0

(1− qi)

=Z ·
∑

θ∈{0,1}n

Fπ(θ)
∏

i:θi=0

wi

=Z ·
∑

θ ∈ {0, 1}n

τ ∈ X

θ−1(1) = τ−1(1)

F (τ)
∏

i:τi 6=1

piτi
1− pi1

∏

i:θi=0

wi

=Z ·
∑

τ∈X

F (τ)
∏

i:τi 6=1

piτiwi

1− pi1

=Z ·W ·
∑

τ∈X

F (τ)
∏

i

p′iτi

=Z ·W ·E′[F]

In line 4 we noticed that the conditions τi 6= 1 and θi = 0
are equivalent, because θ−1(1) = τ−1(1), and that the as-
signment τ ∈ X uniquely defines θ, hence θ can be dropped
from the summation. This completes the proof of the claim,
and of Proposition 3.

C Proof of Theorem 5

The number partitioning problem, NUMPAR, is the follow-
ing: given n natural numbers k1, . . . , kn, decide whether
there exists a subset S ⊆ [n] that partitions the numbers into
two sets with equal sums:

∑

i∈S ki =
∑

i 6∈S ki. NUMPAR
is known to be NP-complete. The corresponding counting
problem, in notation #NUMPAR, asks for the number of sets
S such that

∑

i∈S ki =
∑

i 6∈S ki, and is #P-hard.

We show that we can solve the #NUMPAR problem us-
ing an oracle for EU[F], where F is a logistic regression
function and U is the uniform probability distribution. This
implies that computing the expectation of a logistic regres-
sion function is #P-hard.

Fix an instance of NUMPAR, k1, . . . , kn, and assume
w.l.o.g. that the sum of the numbers ki is even,

∑

i ki = 2c
for some natural number c. Let

P
def
= {S | S ⊆ [n],

∑

i∈S

ki = c} (12)

For each set S ⊆ [n], denote by S̄ its complement. Obvi-
ously, S ∈ P iff S̄ ∈ P , therefore |P | is an even number.

We next describe an algorithm that computes |P | using an
oracle for EU[F], where F is a logistic regression function
and U is the uniform probability distribution. Let m be a
natural number large enough, to be chosen later, and define
the following weights:

w0
def
= −

m

2
−mc wi

def
=mki ∀i = 1, n

Let w = (w1, . . . , wn), then F (x1, . . . , xn)
def
= σ(w0 +

w · x) is the logistic regression function defined by the
weights w0, . . . , wn.

Claim 4. Let ε
def
= 1/2n+3. If m satisfies both 2σ(−m/2) ≤

ε and 1− σ(m/2) ≤ ε, then:

|P | =

⌈

2n −
2n+1

E[F]

1− ε

⌉

The claim immediately proves the theorem: in order to
solve the #NUMPAR problem, compute E[F] and then use
the formula above to derive |P |. To prove the claim, for each
set S ⊆ [n] denote by:

weight(S)
def
= −

m

2
−mc+m(

∑

i∈S

ki)

Let U denote the uniform probability distribution over the
domain {0, 1}n. Then,

EU[F] =
1

2n

∑

x

σ(w0 +w · x)

=
1

2n

∑

x

σ(−
m

2
−mc+m(

∑

i∈[n]

kixi))

=
1

2n

∑

x

σ(−
m

2
−mc+m(

∑

i:xi=1

ki))

=
1

2n

∑

S⊆[n]

σ(weight(S))

=
1

2n+1

∑

S⊆[n]

(σ(weight(S)) + σ(weight(S̄)))

If S is a solution to the number partitioning problem (S ∈
P), then:

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2)

Otherwise, one of weight(S), weight(S̄) is ≥ m/2 and the
other is ≤ −3m/2 and therefore:

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2)

Since ε = 1/2n+3, and m satisfies both 2σ(−m/2) ≤ ε and
1− σ(m/2) ≤ ε, we have:

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε

S 6∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε

This implies:

2n − |P |

2n+1
(1− ε) ≤ E[F] ≤

|P |

2n+1
ε+

2n − |P |

2n+1
(1 + ε)

|P | ≥2n −
2n+1

E[F]

1− ε

|P | ≤2n(1 + ε)− 2n+1
E[F]

Thus, we have a lower and an upper bound for |P |. Since
E[F] ≤ 1, the difference between the two bounds is < 1
and there exists at most one integer number between them,
hence |P | is equal to the ceiling of the lower bound (and also
to the floor of the upper bound), proving the claim.

D Proof of Theorem 8
We use a reduction from the decision version of number
partitioning problem, NUMPAR, which is NP-complete, see
Sec. C.

As before we assume w.l.o.g. that the sum of the num-
bers ki is even,

∑

i ki = 2c for some natural number c.
Let m be a large natural number to be defined later. We
reduce the NUMPAR problem to the D-SHAP({X0},NBN)
problem. The Naive Bayes network NBN consists of n + 1
binary random variables X0, . . . , Xn. Let Xi, X̄i denote the
events Xi = 1 and respectively Xi = 0. We define the fol-
lowing probabilities of the NBN:

Pr(X0)

Pr(X̄0)
=e−

m
2 −mc Pr(Xi|X0)

Pr(Xi|X̄0)
=emki

The probabilities Pr(X̄0) and Pr(Xi|X̄0) can be chosen ar-
bitrarily (with the obvious constraints Pr(X̄0) ≤ e

m
2 +mc

and Pr(Xi|X̄0) ≤ e−mki). As required, our classifier is

F (X0, . . . , Xn)
def
= X0. Let ak

def
= k!(n−k)!

(n+1)! and let ε > 0

be any number such that ε ≤ ak for all k = 0, 1, . . . , n. We
prove:

Claim 5. Let ε be the value defined above. If m satisfies
both 2σ(−m/2) ≤ ε and 1 − σ(m/2) ≤ ε, then NUMPAR
has a solution iff SHAPF (X0) ≥ 1/2(1 + ε).

The claim implies Theorem 8. To prove the claim, we ex-
press the SHAP explanation using Eq. (6). Let XS denote
the event

∧

i∈S(Xi = 1). Then, we can write the SHAP ex-
planation as:

SHAPF (X0) =
∑

S⊆[n]

a|S|

(

E[F | XS∪{0}]−E[F | XS]
)

Obviously, E[X0 | XS∪{0}] = 1. In addition, we have
∑

S⊆[n] a|S| = 1, because there are
(

n
k

)

sets of size k,

hence
∑

S⊆[n] a|S| =
∑

k=0,n

(

n
k

)

· k!(n−k)!
(n+1)! = 1. There-

fore SHAPF (X0) = 1−D, where:

D
def
=

∑

S⊆[n]

a|S| ·E[X0 | XS] (13)

To compute D, we expand:

E[X0|XS] = Pr(X0|XS) =
Pr(X0,XS)

Pr(XS)

=

∏

i∈S Pr(Xi|X0)Pr(X0)
∏

i∈S Pr(Xi|X0)Pr(X0) +
∏

i∈S Pr(Xi|X̄0)Pr(X̄0)

=
1

1 + Pr(X̄0)/Pr(X0) ·
∏

i∈S(Pr(Xi|X̄0)/Pr(Xi|X0))

= σ(weight(S))

where:

σ(x)
def
=

1

1 + e−x
weight(S)

def
= −

m

2
−mc+m(

∑

i∈S

ki)

We compute D in Eq. (13) by grouping each set S with its

complement S̄
def
= [n]− S:

D =
1

2

∑

S⊆[n]

a|S|

(

σ(weight(S)) + σ(weight(S̄))
)

(14)

If S is a solution to the number partitioning problem, then:

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2)

Otherwise, one of weight(S), weight(S̄) is ≥ m/2 and the
other is ≤ −3m/2 and therefore:

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2)

As in Sec. C, we obtain:

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε

S 6∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε

Therefore, using the fact that
∑

S⊆[n] a|S| = 1, we derive

these bounds for the expression (14) for D:

• If the number partitioning problem has no solution, then
D ≥ 1/2(1− ε), and SHAPF (X0) ≤ 1/2(1 + ε).

• Otherwise, let S be any solution to the NUMPAR problem,
and k = |S|, then:

D ≤

(

1

2
(1 + ε)− ak(1 + ε)

)

+ akε

≤
1

2
−
(

ak −
ε

2

)

<
1

2
−

ε

2
and therefore SHAPF (X0) > 1/2(1 + ε).

E Proof of Corollary 10

Proof. (Sketch) We use a reduction from the NUMPAR prob-
lem, as in the proof of Theorem 8. We start by construct-
ing the NBN with variables X0, X1, . . . , Xn (as for Theo-
rem 8), then add two more variables Xn+1, Xn+2, and edges
X0 → Xn+1 → Xn+2, and define the random variables
Xn+1, Xn+2 to be identical to X0, i.e. X0 = Xn+1 =
Xn+2. The prediction function is F = Xn+2, i.e. it returns
the feature Xn+2, and the variables X0, Xn+1 are latent.
Thus, the new BN is identical to the NBN, and, since both
models have exactly the same number of non-latent vari-
ables, the SHAP-explanation is the same.

F Proof of Lemma 13 (1)

Fix a PP2CNF Φ =
∧

(Ui ∨ Vj). A symmetric probability
space is defined by two numbers p, q ∈ [0, 1] and consists of
the fully-factorized distribution where Pr(U1) = Pr(U2) =
· · · = p and Pr(V1) = Pr(V2) = · · · = q. A quasi-symmetric
probability space consists of two sets of indices I, J and two
numbers p, q such that:

Pr(Ui) =

{

p when i 6∈ I

1 when i ∈ I
Pr(Vj) =

{

q when j 6∈ J

1 when j ∈ J

In this and the following section we prove Lemma 13: com-
puting the SHAP-explanation over an empirical distribution
is polynomial time equivalent to computing the expectation
of PP2CNF formulas over a (quasi)-symmetric distribution.
Provan and Ball (1983) proved that computing the expecta-
tion of a PP2CNF over uniform distributions is #P-hard in
general. Since uniform distribution are symmetric (namely
p = q = 1/2) it follows that computing SHAP-explanations
is #P-hard in general.

In this section we prove item (1) of Lemma 13. Fix a
0/1-matrix x defining an empirical distribution, and let F
be a real-valued prediction function over these features. Let
Φx be the PP2CNF associated to x (see Definition 4). Will
assume w.l.o.g. that x has n+1 features (columns), denoted
X0, X1, . . . , Xn. The prediction function F is any function
F : {0, 1}n+1 → R. We prove:

Proposition 15. One can compute SHAPF (X0) in polyno-
mial time using an oracle for computing E[Φx] over quasi-
symmetric distributions.

Denote by yi
def
= F (xi0, xi1, . . . , xin), i = 1,m the value

of F on the i’th row of the matrix x. Since the only possi-
ble outcomes of the probability space are the m rows of the
matrix, the quantity SHAPF (X0) depends only on the vec-

tor y
def
= (y1, . . . , ym). Furthermore, by the linearity of the

SHAP explanation (Eq. (4)), it suffices to compute the SHAP

explanation in the case when y has a single value = 1 and all
others are = 0. By permuting the rows of the matrix, we will
assume w.l.o.g. that y1 = 1, and y2 = y3 = · · · = ym = 0.
In summary, denoting F1 the function that is 1 on the first
row of the matrix x and is 0 on all other rows, our task is to
compute SHAPF1(X0).

For that we use the following expression for SHAP (see

also Sec. 3):

SHAPF1(X0) =
∑

k=0,n

k!(n− k)!

(n+ 1)!

(

∑

S⊆[n]:|S|=k

(

E[F1|XS∪{0} = 1]−E[F1|XS = 1]
)

)

(15)

We will only show how to compute the quantity

vF1,k =
∑

S⊆[n]:|S|=k

E[F1|XS = 1] (16)

using an oracle to E[Φx], because the quantity
∑

S:|S|=k E[F1|XS∪{0} = 1] is computed similarly,

by restricting the matrix x to the rows i where xi0 = 1. The
PP2CNF Φ associated to this restricted matrix is obtained

from Φx as follows. Let I
def
= {i | xi0 = 1} be the set of

rows of the matrix where the feature X0 is 1. Then, we need
to remove all clauses of the form (Ui ∨ Vj) for i ∈ I . This
is equivalent to setting Ui := 1 in Φx. Therefore, we can
compute the expectation of the restricted Φ by using our
oracle for E[Φx], and running it over the probability space

where we define Pr(Ui)
def
= 1 for all i ∈ I . Hence, it suffices

to show only how to compute the expression (16). Notice
that the quantity vF1,k is the same as what we defined earlier
in Eq. (7).

Column X0 of the matrix is not used in expression (16),
because the set S ranges over subsets of [n]. Hence w.l.o.g.
we can drop feature X0 and denote by x (with some abuse)
the matrix that only has the features X1, . . . , Xn. In other
words, x ∈ {0, 1}m×n. The PP2CNF formula for the modi-
fied matrix is obtained from Φx by setting V0 := 1, hence we
can compute its expectation by using our oracle for E[Φx].

We introduce the following quantities associated to the
matrix x ∈ {0, 1}m×n:

• For all S ⊆ [n], ` ≤ m, k ≤ n, we define:

g(S)
def
= {i | ∀j ∈ S, xij = 1} (17)

a`k
def
= |{S | |S| = k, |g(S)| = `}| (18)

• We define the sequence vk, k = 0, 1, . . . , n:

vk
def
=

∑

l=1,m

a`k
`

(19)

• We define the value V :

V
def
=

∑

k=0,n

k!(n− k)!

(n+ 1)!
vk (20)

We prove that, under a certain condition, the value vk in
Eq. (19) is equal to Eq. (16); this justifies the notation vk,
since it turns out to be the same as vF1,k from Eq. (7).

Definition 5. Call the matrix x “good” if ∀i, j, x1j ≥ xij .

In other words, the matrix is “good” if the first row domi-
nates all others. In general the matrix x need not be “good”,

however we can make it “good” by removing all columns

where row 1 has a value 0. More precisely, let J (1) def
=

{j | x1j = 1} denote the non-zero positions of the first row,

and let x(1) denote the sub-matrix of x consisting of the

columns J (1). Obviously, x(1) is “good”, because its first
row is (1, 1, . . . , 1). The following hold:

If S ⊆ J (1) : Ex[F1|XS = 1] =Ex(1) [F1|XS = 1]

If S 6⊆ J (1) : Ex[F1|XS = 1] =0

(When S 6⊆ J (1) then the quantity Ex(1) [F1|XS = 1] is
undefined). Therefore:

∑

S⊆[n]:|S|=k

Ex[F1|XS = 1] =
∑

S⊆J(1):|S|=k

Ex(1) [F1|XS = 1]

It follows that, in order to compute the values in Eq. (16),

we can consider the matrix x(1) instead of x; its associated
PP2CNF is obtained from Φx by setting Vj := 1 for all

j ∈ [m] − J (1), hence we can compute its expectation over
a quasi-symmetric space by using our oracle for computing
E[Φx] over quasi-symmetric spaces. To simplify the nota-
tion, we will still use the name x for the matrix instead of
x(1), and assume w.l.o.g. that the first row of the matrix x is
(1, 1, . . . , 1).

We prove that, when x is “good”, then vk is indeed the
quantity Eq. (16) that we want to compute. This holds for
any “good” matrix, not just matrices with (1, 1, . . . , 1) in
the first row, and we need this more general result later in
Sec. G.

Claim 6. If the matrix x is “good”, then, for any k = 0, n:

vk =
∑

S:|S|=k

E[F1|XS = 1]

Proof. Recall that J (1) def
= {j | x1j = 1}. Let S ⊆ [n] be

any set of columns. We consider two cases, depending on

whether S is a subset of J (1) or not:

S ⊆J (1) : |g(S)| >0 E[F1|XS = 1] =
1

|g(S)|

S 6⊆J (1) : |g(S)| =0 E[F1|XS = 1] =0

Therefore:
∑

S⊆[n]:|S|=k

E[F1|XS = 1] =
∑

S⊆J(1):|S|=k

E[F1|XS = 1]

=
∑

S⊆J(1):|S|=k

1

|g(S)|
=

∑

S:|S|=k,|g(S)|>0

1

|g(S)|
=

∑

`>0

a`k
`

At this point we introduce two polynomials, P and Q.

Definition 6. Fix an m × n matrix x with 0, 1-entries. The
polynomials P (u, v) and Q(u, v) in real variables u, v asso-
ciated to the matrix x are the following:

P (u, v)
def
=

∑

S⊆[n]

u|g(S)|v|S|

Q(u, v)
def
=

∑

T ⊆ [m], S ⊆ [n] :

∀(i, j) ∈ T × S : xij = 1

u|T |v|S|

The polynomials are defined by summing over exponen-
tially many sets S ⊆ [n], or pairs of sets S ⊆ [n], T ⊆ [m].
In the definition of P , we use the function g(S) associated
to the matrix x, see Eq. (17). In the definition of Q(u, v) we
sum only those pairs T, S where ∀i ∈ T , ∀j ∈ S, xij = 1.
While their definition involves exponentially many terms,
these polynomials have only (m+1)(n+1) terms, because
the degrees of the variables u, v are m and n respectively.
We claim that these terms are as follows:

Claim 7. The following identities hold:

P (u, v) =
∑

`=0,m;k=0,n

a`ku
`vk

Q(u, v) =P (1 + u, v)

Proof. The identity for P (u, v) follows immediately from
the definition of a`k. We prove the identity for Q. From the
definition of g(S) in Eq. (17) we derive the following equiv-
alence:

(∀i ∈ T, ∀j ∈ S : xij = 1) ⇔ T ⊆ g(S)

Which implies:

Q(u, v) =
∑

S⊆[n],T⊆g(S)

u|T |v|S|

and the claim follows from
∑

T⊆g(S) u
|T | = (1 + u)|g(S)|.

Thus, in order to compute the quantities vk for k =
0, 1, . . . , n it suffices to compute the coefficients a`k of the
polynomial P (u, v), and, for that, it suffices to compute the
coefficients of the polynomial Q(u, v). For that, we estab-
lish the following important connection between E[Φx] and
the polynomial Q(u, v). Fix u, v > 0 any two positive real

values, and let p
def
= 1/(1 + u), q

def
= 1/(1 + v); notice

that p, q ∈ (0, 1). Consider the probability space over in-
dependent Boolean variables U1, . . . , Um, V1, . . . , Vn where
∀i ∈ [m], Pr(Ui) = p, and ∀j ∈ [n], Pr(Vj) = q. Then:

Claim 8. Given the notations above, the following identity
holds:

E[Φx] =
1

(1 + u)m(1 + v)n
Q(u, v) (21)

Proof. A truth assignment for Φx consists of two assign-
ments, θ ∈ {0, 1}m for the variables Ui, and τ ∈ {0, 1}n

for the variables Vj . Defining T
def
= {i | θ(Ui) = 0} and

S
def
= {j | τ(Vj) = 0}, we observe that Φx[θ, τ] = true iff

∀i ∈ T, ∀j ∈ S, xij = 1, and therefore:

Pr(Φx) =
∑

θ,τ :Φ[θ,τ]=1

Pr(θ)Pr(τ)

=
∑

T ⊆ [m], S ⊆ [n]

∀(i, j) ∈ T × S : xij = 1

pm−|T |(1− p)|T |qn−|S|(1− q)|S|

= pmqnQ((1− p)/p, (1− q)/q)

Finally, to prove Lemma 13 (1), it suffices to show how
to use an oracle for E[Φx] to compute the coefficients of the
polynomial Q(u, v). We denote by b`k these coefficients, in
other words:

Q(u, v) =
∑

`=0,m;k=0,n

b`ku
`vk (22)

To compute the coefficients b`k, we proceed as follows.
Choose m + 1 distinct values u0, u1, . . . , um > 0, and
choose n + 1 distinct values v0, v1, . . . , vn > 0, and for
all i = 0,m and j = 0, n, use the oracle for E[Φx] to
compute Q(ui, vj) as per identity (21). This leads to a sys-
tem of (m + 1)(n + 1) equations whose unknowns are
the coefficients b`k (see Eq. (22)) and whose coefficients
are u`

iv
k
j . The matrix A of this system of equations is an

[(m + 1)(n + 1)] × [(m + 1)(n + 1)] matrix, whose rows
are indexed by pairs (i, j), and whose columns are indexed
by pairs (`, k):

A(ij),(`k) =u`
iv

k
j

We prove that this matrix is non-singular, and for that we
observe that it is the Kronecker product of two Vandermonde
matrices. Recall that the t × t Vandermonde matrix defined
by t numbers z1, . . . , zt is:

V (z1, . . . , zt) =

1 1 . . . 1
z1 z2 . . . zt
z21 z22 . . . z2t

. . .
zt−1
1 zt−1

2 . . . zt−1
t

It is known that det(V (z1, . . . , zt)) =
∏

1≤i<j≤t(zj − zi)
and this is 6= 0 iff the values z1, . . . , zt are distinct. We ob-
serve that the matrix A is the Kronecker product of two Van-
dermonde matrices:

A =V (u0, u1, . . . , um)⊗ V (v0, v1, . . . , vn)

Since we have chosen u0, . . . , um to be distinct, and sim-
ilarly for v0, . . . , vn, it follows that both Vandermonde
matrices are non-singular, hence det(A) 6= 0. Thus,
we can solve this linear system of equations in time

O
(

((m+ 1)(n+ 1))
3
)

, and compute all coefficients b`k.

Putting It Together We prove now Proposition 15. We
are given a 0/1 matrix x with n+1 features X0, . . . , Xn and
m rows. To compute SHAPF (X0) we proceed as follows:

1. For each i = 1,m, compute SHAPFi
(X0), where Fi

is the function defined as = 1 on row i of the ma-
trix, and = 0 on all other rows of the matrix. Return

SHAPF (X0) =
∑

i=1,m yiSHAPFi
(X0), where yi

def
=

F (xi0, xi1, . . . , xin) is the value of F on the i’th row of
the matrix.

2. To compute SHAPFi
(X0), switch rows 1 and i of the ma-

trix, and compute SHAPF1
(X0) on the modified matrix.

3. To compute SHAPF1(X0), compute both sums in Eq. (15).

4. To compute
∑

S⊆[n]:|S|=k E[F1|XS = 1], perform steps

(5) to (8) below.

5. Let J (1) = {j | j ∈ [n], x1j = 1}; notice that 0 6∈ J (1).

Let n(1) = |J (1)|. Let Φ′ denote the PP2CNF obtained

from Φx by setting Vj := 1 for all j 6∈ J (1). Thus, Φ′ has

m+ n(1) variables: Ui for i ∈ [m], and Vj for j ∈ J (1).

6. Choose distinct values u0, u1, . . . , um ∈ (0, 1) and dis-
tinct values v0, v1, . . . , vn(1) ∈ (0, 1). For each fixed com-
bination uα, vβ , compute Q(uα, vβ) = (1 + uα)

m(1 +

vβ)
n(1)

E[Φ′] (see Claim 8). The value E[Φ′] over the
probability space where, for all i, j: Pr(Ui) = uα,
Pr(Vj) = vβ : this can be done by computing E[Φx] over
a quasi-symmetric space.

7. Using the (m+1)(n(1)+1) results from the previous step,
form a system of Equations where the unknowns are the

coefficients b`k, ` = 0,m, k = 0, n(1), of the polynomial
Q(u, v), see (22). Solve for the coefficients b`k.

8. Compute the coefficients a`k of the polynomial P (u, v) =
Q(u − 1, v), see Claim 7, then compute vk =

∑

` a`k/`.
By Claim 6, vk =

∑

S:|S|=k E[F1|XS = 1], completing

Step (4).

9. To compute
∑

S⊆[n]:|S|=k E[F1|XS∪{0} = 1], first set

Ui := 0 for all rows i where xi0 = 0, then repeat steps (5)
to (8).

10. This completes Step (3), and we obtain SHAPF1
(X0).

G Proof of Lemma 13 (2)

Here we prove item (2) of Lemma 13: one can compute
E[Φ] over a quasi-symmetric probability space in polyno-
mial time, given an oracle for SHAP on empirical distribu-
tions. If the probability space sets Pr(Ui) = 1 for some vari-
able, then we can simply replace Φ with Φ[Ui := 1], and
similarly if Pr(Vj) = 1. Hence, w.l.o.g., we can assume that
the probability space is symmetric.

More precisely, we fix a PP2CNF formula Φ =
∧

(Ui ∨
Vj), and let p = Pr(U1) = · · · = Pr(Um) and q =
Pr(V1) = · · · = Pr(Vn) define a symmetric probability
space. Our task is to compute E[Φ] over this space, given an
oracle for computing SHAP-explanations on empirical dis-
tributions. Throughout this section we will use the notations
introduced in Sec. F.

Let x the matrix associated to Φ: xij = 0 iff Φ contains
a clause Ui ∨ Vj . We describe our algorithm for computing
E(Φ) in three steps.

Step 1: E[Φ] ≤P (v0, v1, . . . , vk). More precisely:, we
claim that we can compute Pr(Φ) using an oracle for com-
puting the quantities v0, v1, . . . , vn defined in Eq. (19). We
have seen in Eq. (21) that E[Φ] = 1

(1+u)m(1+v)nQ(u, v)

where u = (1 − p)/p and v = (1 − q)/q. From Claim 7
we know that Q(u, v) = P (1 + u, v), and the coefficients
of P (u, v) are the quantities a`k defined in Eq. (18). To
complete Step 1, we will describe a polynomial time algo-
rithm that computes the quantities a`k associated to our ma-

trix x, with access to an oracle for computing the quantities
v0, . . . , vk associated to any matrix x′.

Starting from the matrix x, construct m + 1 new ma-

trices, denoted by x(1),x(2), . . . ,x(m+1), where, for each

Γ = 1,m+1, x(Γ) consists of the matrix x extended with Γ
rows consisting of (1, 1, . . . , 1). That is, the matrix x(Γ) has
Γ +m rows, the first Γ rows are (1, . . . , 1), and the remain-
ing m rows are those in x. We run our oracle to compute the

quantities vk on each matrix x(Γ). We continue to use the
notations g(S), a`k, vk introduced in Equations (17), (18),
(19) for the matrix x, and add the superscript (Γ) for the

same quantities associated to the matrix x(Γ). We observe:

g(Γ) =g(S) ∪ {the Γ new rows}

a
(Γ)
`+Γ,k =a`k

and therefore:

v
(1)
k =

1

1
a0k +

1

2
a1k + · · ·+

1

m+ 1
amk

v
(2)
k =

1

2
a0k +

1

3
a1k + · · ·+

1

m+ 2
amk

· · ·

v
(m+1)
k =

1

m+ 2
a0k +

1

m+ 3
a1k + · · ·+

1

2m+ 2
amk

By solving this system of equations, we compute the quan-
tities a`k for ` = 0,m. The matrix of this system is a special
case of Cauchy’s double alternant determinant:

det

[

1

xi + yj

]

=

∏

1≤i<j≤n(xi − xj)(yi − yj)
∏

i,j(xi + yj)

where xi = i and yj = j−1, and therefore the matrix of the
system is non-singular.

We observe that all matrices x(1), . . . ,x(m+1) are “good”
(see Definition 5), because their first row is (1, . . . , 1).

Step 2: Let x be a “good” matrix (Definition 5). Then:
(v0, v1, . . . , vn) ≤P V (V defined in Eq. (20)). In other
words, given a matrix x, we claim that we can compute the
quantities v0, v1, . . . , vn associated to x by Eq. (19) in poly-
nomial time, given access to an oracle for computing the
quantity V associated to any matrix x′. The algorithm pro-
ceeds as follows. For each ∆ = 0, 1, . . . , n, construct a new
m× (2n) matrix x(∆) by extending x with ∆ new columns

set to 1 and n−∆ new columns set to 0. Thus, x(∆) is:

x11 x12 . . . x1n 1 1 . . . 1 0 . . . 0
x21 x22 . . . x2n 1 1 . . . 1 0 . . . 0

. . .
xm1 xm2 . . . xmn 1 1 . . . 1 0 . . . 0

Notice that x(∆) is “good”, for any ∆. We run the oracle on

each matrix x(∆) to compute the quantity V (∆). We start by
observing the following relationships between the parame-

ters of the matrix x and those of the matrix x(∆):

g(∆)(S) =g(∆ ∩ [n])

a
(∆)
`p =

∑

k=0,min(p,n)

(

∆

p− k

)

a`k

v(∆)
p =

∑

k=0,min(p,n)

(

∆

p− k

)

vk

Notice that, when p > n + ∆, then v
(∆)
p = 0. We use the

oracle to compute the quantity V (∆), which is:

V (∆) =
∑

p=0,2n

p!(2n− p)!

(2n+ 1)!
v(∆)
p

=
1

2n+ 1

∑

p=0,n+∆

1
(

2n
p

)v∆p

=
1

2n+ 1

∑

p=0,n+∆

∑

k=0,min(p,n)

(

∆
p−k

)

(

2n
p

) vk

=
1

2n+ 1

∑

k=0,n

∑

p=k,k+∆

(

∆
p−k

)

(

2n
p

) vk

=
1

2n+ 1

∑

k=0,n

∑

q=0,∆

(

∆
q

)

(

2n
k+q

)

 vk

def
=

1

2n+ 1

∑

k=0,n

A∆,k · vk

Thus, after running the oracle on all matrices x(0), . . . ,x(n),
we obtain a system of n + 1 equations with n + 1 un-
knowns v0, v1, . . . , vn. It remains to prove that system’s ma-
trix, A∆,k, is non-singular matrix. Let us denote following
matrices by:

A∆,k
def
=

∑

q=0,∆

(

∆
q

)

(

2n
k+q

) ∆ = 0, n; k = 0, n;

B∆,q
def
=

(

∆

q

)

∆ = 0, n; q = 0, n;

Cq,k
def
=

1
(

2n
k+q

) q = 0, n; k = 0, n;

It is immediate to verify that A = B · C, so it suf-
fices to prove det(B) 6= 0, det(C) 6= 0. We start with

B, and for that consider the Vandermonde matrix X
def
=

V (x0, x1, . . . , xn), Xqt
def
= xq

t . Denoting Y
def
= B ·X , we

have that

Y∆t =
∑

q=0,n

B∆,qXq,t =
∑

q=0,n

(

∆

q

)

xq
t = (1 + xt)

∆

is also a Vandermonde matrix Y = V (1+x0, 1+x1, . . . , 1+
xn). We have det(Y) 6= 0 when x0, x1, . . . , xn are distinct,
proving that det(B) 6= 0.

Finally, we prove det(C) 6= 0. For that, we prove a
slightly more general result. For any N ≥ 2n, denote by

C(n,N) the following (n+ 1)× (n+ 1) matrix:

C(n,N) def
=

1

(N0)
1

(N1)
. . . 1

(Nn)
1

(N1)
1

(N2)
. . . 1

(N

n+1)
. . .

1

(Nn)
1

(N

n+1)
. . . 1

(N

2n)

We will prove that det(C(n,N)) 6= 0; our claim follows
from the special case N = 2n. For the base case, n = 0,

det(C(0,N)) = 1 because C(0,N) is a 1× 1 matrix equal to

1/
(

N
0

)

, hence det(C(0,N)) = 1. To show the induction step,
we will perform elementary column operations (which pre-
serve the determinant) to make the last row of the resulting
matrix consist of zeros, except for the last entry.

Consider an arbitrary row i, and two adjacent columns
j, j + 1 in that row:

. . . 1

(N

i+j)
1

(N

i+j+1)
. . .

We use the fact that
(

N
i+j

)

=
(

N
i+j+1

)

i+j+1
N−i−j

and rewrite the

two adjacent elements as:

. . .

(

1

(N

i+j+1)
× N−i−j

i+j+1

)

1

(N

i+j+1)
. . .

Now, for each j = 0, 1, 2, ..., n − 1, we subtract column

j + 1, multiplied by
N−(n+j)
(n+j)+1 , from column j. The last row

becomes 0, 0, . . . , 0, 1

(N

2n)
, which means that det(C(n,N)) is

equal to 1

(N

2n)
times the upper left (n× n) minor.

Now, we check what happens with element at (i, j). After
subtraction, it becomes

1
(

N
i+j+1

) ×

(

N − (i+ j)

(i+ j) + 1
−

N − (n+ j)

(n+ j) + 1

)

This expression can be rewritten as:

1
(

N
(i+j)+1

) ×

(

N − (i+ j)

(i+ j) + 1
−

N − (n+ j)

(n+ j) + 1

)

=
(N − i− j − 1)!(i+ j + 1)!

N !

(N + 1)(n− i)

(i+ j + 1)(n+ j + 1)

=
(N − i− j − 1)!(i+ j)!

(N − 1)!N

(N + 1)(n− i)

(n+ j + 1)

=
1

(

N−1
(i+j)

)

(N + 1)(n− i)

N(n+ j + 1)

Note that this expression holds with the whole (n ×
n) upper-left minor of C(n,N): the element in the lower-

right corner of the matrix remains 1/
(

N
2n

)

. Observe that

the (i, j)-th entry of this minor is precisely the (i, j)-entry

of C(n−1,N−1), multiplied by
(N+1)(n−i)
N(n+j+1) . Here N+1

N
is a

global constant, n− i is the same constant in the entire row
i, and 1

n+j+1 is the same constant in the entire column j.

We factor out the global constant N+1
N

, factor out n− i from

each row i, and factor out 1
n+j+1 from each column j, and

obtain the following recurrence:

det(C(n,N)) =
1

(

N
2n

)

(

N + 1

N

)n

×

∏n−1
i=0 (n− i)

∏n−1
j=0 (n+ j + 1)

× det(C(n−1,N−1))

It follows by induction on n that det(C(n,N)) 6= 0.
Step 3: Let x be a “good” matrix (Definition 5). Then

V ≤P SHAP. More precisely, we claim that we can com-
pute the quantity V associated to a matrix x as defined in
Eq. (20) in polynomial time, by using an oracle for comput-
ing SHAPF1(Xj) over any matrix x′.

We modify the matrix x as follows. We add a new at-
tribute X0 whose value is 1 only in the first row, and let
F1 = X0 denote the function that returns the value of fea-
ture X0. We show here the new matrix x′, augmented with
the values of the function F1:

X0 X1 X2 . . . Xn F1

1 x11 x12 . . . x1n 1
0 x21 x22 . . . x2n 0

.
0 xm1 xm2 . . . xmn 0

We run our oracle to compute SHAPF1
(X0) over the matrix

x′. The value SHAPF1
(X0) is given by Eq. (15), but no-

tice that the matrix x′ has n + 1 columns, while Eq. (15)
is given for a matrix with n columns. Therefore, since
E[F1|XS∪{0}] = 1 for any set S, we have:

SHAPF1
(X0) =1−

∑

k=0,n

k!(n− k)!

(n+ 1)!
E[F1|XS = 1]

Since x is “good”, so is the new matrix x′ and, by Claim 6,
for any k = 0, n

∑

S:|S|=k

E[F1|XS = 1] =vk

This implies that we can use the value SHAPF1
(X0) returned

by the oracle to compute the quantity:

∑

k=0,n

k!(n− k)!

(n+ 1)!
E[F1|XS = 1] =

∑

k=0,n

k!(n− k)!

(n+ 1)!
vk = V

which completes Step 3
Putting It Together Given a PP2CNF formula Φ =

∧

(Ui∨Vj), and two probability values p = Pr(U1) = · · · =
Pr(Um) and q = Pr(V1) = · · · = Pr(Vn), to compute E[Φ]
we proceed as follows:

• Construct the 0,1-matrix associated to Φ, denote it x.

• Construct m+ 1 matrices x(Γ), Γ = 1,m+ 1, by adding
Γ rows (1, 1, . . . , 1) at the beginning of the matrix.

• For each matrix x(Γ), construct n + 1 matrices x(Γ,∆),
∆ = 0, n, by adding n columns, of which the first ∆
columns are 1, the others are 0.

• For each x(Γ,∆), construct one new matrix (x(Γ,∆))′ by
adding a column (1, 0, 0, . . . , 0). Call this new column
X0.

• Use the oracle to compute SHAPF1(X0). From here, com-

pute the value V (Γ,∆) associated with the matrix x(Γ,∆).

• Using the values V (Γ,0), V (Γ,1), . . . , V (Γ,n), compute the

values v
(Γ)
0 , v

(Γ)
1 , . . . , v

(Γ)
n associated to the matrix x(Γ).

• For each k = 0, n, use the values v
(1)
k , v

(2)
k , . . . , v

(m+1)
k

to compute the coefficients a0k, a1k, . . . , amk associated
to the matrix x.

• At this point we have all coefficients a`k of the polyno-
mial P (u, v).

• Compute the coefficients b`k of the polynomial Q(u, v) =
P (1 + u, v).

• Finally, return E[Φ] = pmqn

(1−p)m(1−q)nQ(1−p
p

, 1−q
q

).

This concludes the entire proof of Lemma 13.

