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SUMMARY & CONCLUSIONS 

Degradation test often involves multivariate Performance 
Characteristics (PCs) to be analyzed to make reliability 
prediction. As a result, the complex dependency structure 
among PCs needs to be addressed. In this paper, we develop a 
flexible copula-based multivariate model for analyzing high-
dimensional degradation process. A two-stage method for 
parameters estimation is developed as an efficient statistical 
inference scheme. Finally, a real LED dataset is analyzed by the 
proposed approach. 

1 INTRODUCTION 

One of the main objectives of a reliability engineer is to 
analyze and predict a product’s lifetime. However, since 
modern products can last for a very long time, it is difficult to 
assess the reliability of these products via the traditional life 
tests or accelerated life tests. Instead, degradation tests or 
accelerated degradation tests, which utilize product 
performance measurements, can provide a useful and efficient 
way. In the last decade, degradation data analysis has become 
more important in reliability assessment than ever before [1]. 

In literature, there are two major frameworks for modeling 
degradation - general path model and stochastic process model. 
By utilizing regression approach, the general path model is to 
fit the degradation path with appropriate parameters and 
random effects to account for unit-to-unit variability [2]. Recent 
developments on general path model include [3, 4, 5]. 
Alternatively, the stochastic process model assumes the data are 
generated from a stochastic process, such as Wiener process [6], 
Gamma process [7], and Inverse Gaussian process [8, 9]. In 
most previous studies, researchers considered only one product 
Performance Characteristic (PC); however, in reality, more than 
one failure mechanisms may contribute to product failure [10]. 
As a result, multiple PCs are required to be monitored in 
practice. Moreover, if there exist interactions between these 
mechanisms, the product’s reliability will differ a lot from the 
case of considering single PC separately, because the product’s 
overall performance is affected by multiple failure modes 
simultaneously. The past related work of multivariate 
degradation analysis either assume these multiple PCs as 
independent factors or they are dependent with a known 
multivariate joint distribution. However, the independent PC 
assumption may not match the engineering reality very well, 
and assigning a multivariate joint distribution to PCs may not 
be a suitable solution too [11], as it is difficult to find an 
appropriate joint distribution in most cases. Thus, a more 

flexible, yet reasonable, multivariate model is desired.  
The goal of this paper is to establish a copula-based 

multivariate degradation model. With the use of copula 
function, we are able to separate the correlations between two 
PCs from their marginal distributions. To infer unknown 
parameters, we develop a two-stage estimation method.  In the 
first stage, we estimate the parameters of possible marginal 
models for each PC. Akaike information criterion (AIC) is 
employed to compare the goodness-of-fit of candidate models. 
In the second stage, the association parameter of copula 
function is estimated. The main advantage of this two-stage 
method is its easy-to-implementation and computational 
efficiency. Based on the estimated model, the product reliability 
can be predicted. To illustrate the proposed approach, a 
numerical example about Light-Emitting Diode (LED) 
degradation data is presented. 

The rest of the paper is organized as follows. In Section 2, 
three common univariate stochastic process models are 
introduced. Then, Section 3 elaborates the multivariate 
modeling with copula function. Section 4 provides the marginal 
reliability as well as joint reliability function under the 
framework of copulas. In Section 5, the method of two-stage 
parameters estimation is described. The numerical example is 
given in Section 6 followed by summary in Section 7. 

2 UNIVARIATE MODELING 

A degradation process is a result of material deterioration 
with inherent randomness. Therefore, it is natural to model a 
degradation process as a stochastic process [12]. As mentioned 
above, there are three typical stochastic process models being 
assumed in the literature and they are Wiener process, Gamma 
process and Inverse Gaussian (IG) process. But before 
discussing their mechanisms, the concept of a more general 
stochastic process- Lévy process needs to be introduced.  

2.1 Lévy Process 

In probability theory, a Lévy process represents the motion 
of a point whose successive displacements are random and 
independent, and statistically identical over different time 
intervals of the same length [13]. Actually, it can be viewed as 
the continuous-time analog of a random walk. If defined using 
mathematical language, it is indicated as below. 

According to [14], a stochastic process 𝑋 = {𝑋𝑡: 𝑡 ≥ 0} is 
said to be a Lévy process if it satisfies the following properties: 

 
 



• 𝑋0 = 0 almost surely. 
• Independence of increments: For any 0 ≤  𝑡1 <  𝑡2  <

 … <  𝑡∞ <  ∞,  𝑋𝑡2
 −  𝑋𝑡1

, 𝑋𝑡3
 −  𝑋𝑡2

, . . . , 𝑋𝑡𝑛
 −  𝑋𝑡𝑛−1  

are independent.  
• Stationary increments: For any 𝑠 <  𝑡, 𝑋𝑡   –  𝑋𝑠 is equal in 

distribution to 𝑋𝑡−𝑠. 
• Continuity in probability: For any  𝑠 > 0  and 𝑡 ≥  0 , it 

holds that lim
𝑠→0

𝑃(|𝑋𝑡+𝑠  −  𝑋𝑡|) = 0. 
The above important properties of stationary independent 

increments imply that the increments of a Lévy process are 
independent and identically distributed (i.i.d.) whenever the 
time intervals of the increments are in equal length and any 
pairwise time intervals do not overlap.  

In addition, Sato [15] shows that every infinitely divisible 
distribution corresponds in a natural way to a Lévy process. 
Besides, Steutel and Kent [16] provides a list of infinitely 
divisible distributions including Normal distribution, Gamma 
distribution, and IG distribution. Consequently, as subgroups of 
Lévy process, the three typical univariate degradation models- 
Wiener process, Gamma process, and IG process preserve all 
the aforementioned properties.  

2.2 Wiener Process 

Wiener process assumes the increment 𝑋𝑠+𝑡 − 𝑋𝑠  is 
normally distribution with mean 0 and variance 𝜎2𝑡. If 𝜎2 = 1, 
it is called standard Wiener process or standard Brownian 
motion. By considering a gradual drift of the mean value of 
degradation, a general Wiener process model is described as 

𝑊(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡)   (1) 
where 𝜇 is drift parameter, 𝜎 is diffusion parameter, and 𝐵(𝑡) 
is a standard Wiener process.  

Considering the case under degradation testing, the 
measurement, 𝑌𝑖(𝑡𝑗) of 𝑖𝑡ℎunit at the corresponding time 𝑡𝑗 are 
obtained. According to the property of independence of 
increments, 𝛥𝑌𝑖(𝑡𝑗)  is subject to normal distribution with 
mean, 𝜇𝛥Λ(𝑡𝑗)  and variance, 𝜎2𝛥Λ(𝑡𝑗) , where 𝛥𝑌𝑖(𝑡𝑗) =

𝑌𝑖(𝑡𝑗) − 𝑌𝑖(𝑡𝑗−1) , 𝑡0 = 0 , and 𝛥Λ(𝑡𝑗) = Λ(𝑡𝑗 , 𝛽) −

Λ(𝑡𝑗−1, 𝛽) = 𝑡𝑗
𝛽

− 𝑡𝑗−1
𝛽  for 𝑖 = 1, 2, … , 𝑁 , 𝑗 = 1, 2, … , 𝑀 . 

Here, Λ(𝑡𝑗 , 𝛽) = 𝑡𝑗
𝛽 is used to transform time scale to make PCs 

be linear with time [17]. Thus, the individual increment 
𝛥𝑌𝑖(𝑡𝑗) ∼ 𝑁 (𝜇𝛥Λ(𝑡𝑗, 𝛽), 𝜎2𝛥Λ(𝑡𝑗 , 𝛽)) , with probability 
density function (pdf) and cumulative density function (cdf) 
given by 

𝑓𝑊 (𝛥𝑌𝑖(𝑡𝑗))

=
1

√2𝜋𝛥Λ(𝑡𝑗, 𝛽)𝜎2

 exp {−
(𝛥𝑌(𝑡𝑗) − 𝜇𝛥Λ(𝑡𝑗, 𝛽))

2

2𝜎2𝛥Λ(𝑡𝑗, 𝛽)
}, 

(2) 

𝐹𝑊 (𝛥𝑌𝑖(𝑡𝑗)) = Φ [
𝛥𝑊𝑖(𝑡𝑗)−𝜇𝛥Λ(𝑡𝑗,𝛽)

𝜎√𝛥Λ(𝑡𝑗,𝛽)
].  (3) 

2.3 Gamma Process 

Like Wiener process stating that the increments follow 
Normal distribution, Gamma process is built based on Gamma 
distribution. Basically, it is a stochastic process with 
independent, non-negative increments having a Gamma 
distribution with an identical scale parameter [18].  

The pdf of Gamma distribution is shown as below: 

𝑓𝑋(𝑥) =  
1

𝛤(𝑘)𝜃𝑘 𝑥𝑘−1𝑒−
𝑥

𝜃 ,  (4) 

where 𝑘 > 0 is shape parameter and 𝜃 > 0 is scale parameter. 
Suppose a degradation process is governed by 

𝐺𝑎𝑚𝑚𝑎 (𝑘Λ(𝑡, 𝛽), 𝜃), the increment 𝛥𝑌𝑖(𝑡𝑗) has the following 
pdf and cdf 

𝑓𝐺 (𝛥𝑌𝑖(𝑡𝑗)) =  
𝛥𝑌𝑖(𝑡𝑗)

𝑘𝛥Λ(𝑡𝑗,𝛽)−1

𝛤(𝑘𝛥Λ(𝑡𝑗,𝛽))𝜃
𝑘𝛥Λ(𝑡𝑗,𝛽)

exp {−
𝛥𝑌𝑖(𝑡𝑗)

𝜃
} ,     (5)          

𝐹𝐺 (𝛥𝑌𝑖(𝑡𝑗)) =
1

𝛤(𝑘𝛥Λ(𝑡𝑗,𝛽))
𝛾 (𝑘𝛥Λ(𝑡𝑗 , 𝛽),

𝛥𝑌𝑖(𝑡𝑗)

𝜃
),      (6)          

where 𝛾 is the lower incomplete gamma function. 

2.4 IG Process 

Even though the existing Wiener process and Gamma 
process we discussed in the above can be applied to degradation 
analysis, there are still many scenarios in which the two 
processes do not fit the data well [9]. In this situation, IG 
process may be a good alternative. 

The pdf of IG distribution is indicated as 

𝑓𝑋(𝑥) =  (
𝜆

2𝜋𝑥3)
1/2

exp {
−𝜆(𝑥−𝜇)2

2𝜇2𝑥
},   (7) 

where 𝜇 is mean and 𝜆 is shape parameter. Thus, it is possible 
to obtain independent random variables, 𝛥𝑌𝑖(𝑡𝑗) , that are 
subject to 𝐼𝐺 (𝜇𝛥Λ(𝑡𝑗 , 𝛽), 𝜆𝛥Λ(𝑡𝑗 , 𝛽)

2
) 

       𝑓𝐼𝐺 (𝛥𝑌𝑖(𝑡𝑗)) =

                       (
𝜆𝛥Λ(𝑡𝑗,𝛽)

2

2𝜋𝛥𝑌𝑖(𝑡𝑗)
3)

1

2

exp {
−𝜆(𝛥𝑌𝑖(𝑡𝑗)−𝜇𝛥Λ(𝑡𝑗,𝛽))

2

2𝜇2𝛥𝑌𝑖(𝑡𝑗)
},          (8)  

𝐹𝐼𝐺 (𝛥𝑌𝑖(𝑡𝑗)) = Φ [√
𝜆

𝛥𝑌𝑖(𝑡𝑗)
 (

𝛥𝑌𝑖(𝑡𝑗)

𝜇
− 𝛥Λ(𝑡𝑗, 𝛽))] +

         exp {
2𝜆𝛥Λ(𝑡𝑗,𝛽)

𝜇
} × Φ [−√

𝜆

𝛥𝑌𝑖(𝑡𝑗)
(

𝛥𝑌𝑖(𝑡𝑗)

𝜇
+ 𝛥Λ(𝑡𝑗, 𝛽))].       

                                                 
(9) 

3 MULTIVARIATE MODELING WITH COPULA 
FUNCTION 

While performing degradation analysis, monitoring more 
than one PC is necessary in some cases. An example is a 
lighting system consisting of many LED lamps for different 
purposes of lighting [19]. The design and the characteristic of 
the LED system may generate two or more PCs, such as light 
intensity and chromatic change, etc. that reflect products 
performance. Sometimes, there are interactions among these 
PCs due to common or similar failure mechanisms. In such 



situations, a bivariate or multivariate degradation model is 
needed for accurately estimating the reliability of products [20]. 
Copula function is a powerful tool for modeling the dependency 
of multivariate [21].  

A copula is a function that connects the joint distribution 
function with individual marginal distribution functions. 
However, it simplifies this process by separating the learning of 
marginal distributions from the learning of dependence 
structure [22]. The definition of copula function is given by [21] 

A 𝑝-dimentional copula function 𝐶 , of which domain is 
𝒖 ∈ [0,1]𝑝, has the following properties: 
• Zero-grounded: 𝐶(𝑢1, 𝑢2, … , 𝑢𝑝) = 0  if at least one 

coordinate of 𝒖 is 0. 
• Uniform margins: if all coordinates of 𝒖 are 1 except 𝑢𝑘, 

then 
𝐶(1, … ,1, 𝑢𝑘, 1, … ,1) = 𝑢𝑘 . 

• 𝑝-increasing: for each hyperrectangle 𝐵 = ∏ [𝑥𝑘 , 𝑦𝑘]𝑝𝑝
𝑘=1 , 

the 𝐶-volume is non-negative: 

∫ 𝑑𝐶(𝑢)
𝐵

= ∑ (−1)𝑝(𝑧)𝐶(𝑧) ≥ 0

𝑧∈×𝑘=1
𝑝

{𝑥𝑘,𝑦𝑘}

, 

where the 𝑝(𝒛) = #{𝑖: 𝑧𝑖 = 𝑥𝑖}. 
If we replace (𝑢1, 𝑢2, … , 𝑢𝑝)  with    

(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑝(𝑥𝑝)) , where 𝐹𝑘(𝑥𝑘)  is the cdf of 
random variable 𝑋𝑘 , then an important theorem, Sklar’s 
theorem [21] is obtained as below.  

Sklar’s Theorem: Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)  be a random 
vector with marginal distributions 𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑝), 
and let 𝐻 be their joint cumulative distribution function. Then, 
there exists a copula function 𝐶 such that 

𝐻(𝑥1, 𝑥2, … , 𝑥𝑝) = 𝐶 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑝(𝑥𝑝)).      (10) 

This theorem states that there exists a copula function 𝐶, 
which uniquely defines joint cdf 𝐻 . Furthermore, the pdf of 
joint distribution can be derived as 

ℎ(𝑥1, 𝑥2, … , 𝑥𝑝) = 𝑐 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑝(𝑥𝑝)) ∏ 𝑓𝑘(𝑥𝑘),

𝑝

𝑘=1

 

(11) 
where 𝑓𝑘(𝑥𝑘)  is the marginal pdf of 𝑋𝑘  and 
𝑐 (𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑝(𝑥𝑝)) is copula density function, which 
can be achieved by taking partial derivative of copula function. 

Due to different construction routes, there are three 
commonly used classes of copulas- Elliptical copulas, 
Archimedean copulas, and extreme-value copulas. Among 
them, Archimedean copulas have a wide range of applications 
because they can be constructed easily and can be extended 
from 2-dimension to 𝑝-dimension when some conditions are 
satisfied [1]. Thus, in this paper, three functions that belong to 
the Archimedean family, 2-dimension Gumbel copula, Clayton 
copula, and Frank copula, are introduced. Inside these 
functions, there is an association parameter 𝛿, which is used to 
measure the dependency between two variables.  Note that the 
relationship between Kendall’s correlation 𝜏  and the 

association parameter 𝛿 is also given.  
• Gumbel copula 

𝐶(𝑢1, 𝑢2) = exp {− [(−log 𝑢1)
1

𝛿 + (−log 𝑢2)
1

𝛿]
𝛿

} ,    (12) 

where 𝛿 ∈  (0,1] and 𝜏 = 1 − 𝛿. 
• Clayton copula 

𝐶(𝑢1, 𝑢2) = max ((𝑢1
−𝛿 + 𝑢2

−𝛿 − 1)
−

1

𝛿, 0),            (13) 

where 𝛿 ∈ [−1, ∞)/ {0} and 𝜏 =
𝛿

2+𝛿
 . 

• Frank copula 
𝐶(𝑢1, 𝑢2)                                                                                 

= −
1

𝛿
log {1 +

[exp(−𝛿𝑢1) − 1][exp(−𝛿𝑢2) − 1]

exp(−𝛿) − 1
}, 

(14) 

where 𝛿 ∈ (−∞, 0)⋃ (0, ∞)  and 𝜏 = 1 + 4
𝐷1(𝛿)−1

𝛿
 with 

𝐷1(𝛿) =
1

𝛿
∫

𝑡

𝑒𝑡−1
𝑑𝑡

𝛿

0
 being a Debye function. 

Apparently, with the introduction of copulas into 
multivariate degradation modeling, two major benefits are 
achieved immediately. 
• Marginal models and dependency structure can be 

separated. This feature eases the process of parameters 
estimation, which will be discussed in section 5.  

• There is also no restriction on marginal models. They can 
be any distribution that comes from continuous univariate 
models. 

4 RELIABILITY FUNCTION 

Suppose the trend of a product PC being monitored in 
degradation test is decreasing over time, a “soft failure” 
happens when the PC measurement reaches a critical point. 
Then, the product reliability is defined as the probability of the 
product’s performance level decrease is less than the threshold 
𝜔 at a given time. One can monitor the degradation process of 
PCs so as to infer the failure time- 𝑇 of the product. On the other 
hand, the reliability at given time- 𝑡 can be estimated as well. 
Thus, the lifetime is defined as 𝑇𝜔 = inf  {𝑡: 𝛥𝑌(𝑡) < 𝜔} , 
where 𝛥𝑌(𝑡) = −(𝑌(𝑡) − 𝑌0) and 𝑌0 is the initial performance 
value.  

4.1 Marginal Reliability 

For an individual PC, each degradation process is 
demonstrated by the path of a single PC. Thus, the marginal 
reliability function can be acquired easily from the cdf of 
univariate models except the scenario of Wiener process 
because of its non-monotonicity. However, Folks and Chhikara 
[23] proves that the first passage time (i.e. 𝑇𝜔 ) follows an 
inverse Gaussian distribution, 𝐼𝐺(

𝜔

𝜇
,

𝜔2

𝜎2), under Wiener process.  
• Wiener process 

𝑅(𝑡) = 𝑃(𝑇𝜔 > 𝑡) = 1 − 𝑃(𝑇𝜔 ≤ 𝑡)                  

= 1 − Φ [
𝜇𝑡𝛽 − 𝜔

𝜎√𝑡𝛽
] − exp (

2𝜇𝜔

𝜎2
) Φ (−

𝜇𝑡𝛽 + 𝜔

𝜎√𝑡𝛽
).    (15) 



 
• Gamma process 

𝑅(𝑡) = 𝑃(𝑇𝜔 > 𝑡) = 𝑃(𝛥𝑌(𝑡) < 𝜔) =
1

𝛤(𝑘𝑡𝛽)
𝛾 (𝑘𝑡𝛽 ,

𝜔

𝜃
). 

(16) 
• IG process 

𝑅(𝑡) = 𝑃(𝑇𝜔 > 𝑡) = 𝑃(𝛥𝑌(𝑡) < 𝜔)                                        

= Φ [√
𝜆

𝜔
 (

𝜔

𝜇
− 𝑡𝛽)] + exp (

2𝜆𝑡𝛽

𝜇
) Φ (−√

𝜆

𝜔
(

𝜔

𝜇
+ 𝑡𝛽)). 

(17) 

4.2 Joint Reliability 

When two or more PCs are correlated with each other, the 
joint reliability needs to be considered. It is assumed that the 
product fails if any one PC reaches its corresponding threshold- 
𝜔𝑘, where 𝑘 is the PC index. Denote the failure time of the 𝑘th 
PC by 𝑇𝑘, then the product lifetime is 𝑇 = min (𝑇1, 𝑇2, … , 𝑇𝑝)， 
where 𝑝 is the total number of PCs being monitored. So the 
joint reliability can be expressed as 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 𝑃(𝑇1 > 𝑡, 𝑇2 > 𝑡, … , 𝑇𝑝 > 𝑡) 

  = 𝑃(𝛥𝑌1(𝑡) < 𝜔1, 𝛥𝑌2(𝑡) < 𝜔1, … , 𝛥𝑌𝑝(𝑡) < 𝜔𝑝).  (18) 
If all PCs are assumed to be independent, Equation (18) 

becomes 
𝑅(𝑡) = 𝑅1(𝑡) × 𝑅2(𝑡) × ⋯ × 𝑅𝑝(𝑡).               (19) 

However, if there exist correlations among these PCs, 
Equation (18) is essentially a copula function. 

𝑅(𝑡) = 𝐶(𝑅1(𝑡), 𝑅2(𝑡), ⋯ , 𝑅𝑝(𝑡); 𝛿).               (20) 
Here, the marginal reliability in Equation (20) can be any 

one from Equations (15), (16) and (17). Thus, again, one can 
easily see that how big advantage it brings by introducing 
copulas into multivariate degradation modeling.   

5 METHOD OF PARAMETERS ESTIMATION 

Consider a copula-based multivariate distribution, the 
density based on Equation (11) is given by 

ℎ(𝑥1, 𝑥2, … , 𝑥𝑝;  𝛩1, 𝛩2 , … , 𝛩𝑝, 𝛿) 

= 𝑐(𝐹1(𝑥1; 𝛩1), 𝐹2(𝑥2; 𝛩2), … , 𝐹𝑝(𝑥𝑝; 𝛩𝑝); 𝛿) ∏ 𝑓𝑘(𝑥𝑘; 𝛩𝑘)𝑝
𝑘=1   

(21) 
where 𝛩𝑘 is the parameters set for each marginal distribution.  

Thus, the log-likelihood function in a multivariate 
degradation scenario with 𝑁  units, 𝑀  measuring time points 
and 𝑝 PCs is 

log 𝐿(𝛩1, 𝛩2, … , 𝛩𝑝, 𝛿) 

= ∑ ∑ log 𝑐(𝐹1(𝑥𝑖𝑗1; 𝛩1), 𝐹2(𝑥𝑖𝑗2; 𝛩2), … , 𝐹𝑝(𝑥𝑖𝑗𝑝; Θ𝑝); 𝛿)

𝑀

𝑗=1

𝑁

𝑖=1

+ ∑ ∑ ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘 ; 𝛩𝑘),

𝑝

𝑘=1

𝑀

𝑗=1

𝑁

𝑖=1

                        (22) 

where 𝑥𝑖𝑗𝑘 is the corresponding dataset- (𝛥𝑌𝑖𝑘(𝑡𝑗), 𝛥𝛬(𝑡𝑗)).  

Obviously, to carry out Maximum Likelihood Estimation 
(MLE), one needs to feed Equation (22) to an optimization 
routine. This may be a difficult task. However, the separation 
of margins and copula density suggests that we may firstly 
estimate marginal parameters and then infer the copula 
association parameter, leading to a two-stage method. In first 
stage, each PC is treated separately. All the univariate models 
discussed in Section 2 are considered as potential candidate 
models. The parameters embedded in each model for each PC 
are estimated using MLE. Then, AIC is deployed to compare 
the goodness-of-fit,  

AIC = 2𝑘 − 2log�̂�, 
where 𝑘 is the number of parameters and �̂� is the maximized 
value of likelihood function. In second stage, the cdf calculated 
from the best fitted marginal models are plugged into the three 
Archimedean copula functions mentioned in Section 3 to infer 
the association parameter. In short, it can be represented as 
• Stage 1 

𝛩�̂� = argmax
𝛩𝑘

∑ ∑ log 𝑓𝑘(𝑥𝑖𝑗1; 𝛩1)𝑀
𝑗=1

𝑁
𝑖=1  ∀𝑘.          (23) 

• Stage 2 

�̂� = argmax
𝛿

∑ ∑ log 𝑐(𝐹1(𝑥𝑖𝑗1; 𝛩1̂), 𝐹2(𝑥𝑖𝑗2; 𝛩2̂),

𝑀

𝑗=1

𝑁

𝑖=1

  

… , 𝐹𝑝(𝑥𝑖𝑗𝑝; Θ�̂�); 𝛿).                  (24) 
By utilizing this method, each maximization task has a very 
relatively small number of parameters, greatly reducing the 
computational difficulty [24]. It is also asymptotically efficient 
[25].  

6 NUMERICAL EXAMPLE 

To illustrate how to apply the copula-based multivariate 
model into degradation data analysis, we make use of an actual 
LED lamps dataset from Chaluvadi’s PhD thesis [26]. This 
dataset presents a degradation testing result of LED lamps, of 
which lighting intensity is measured every 50 hours under a 
stress level of 40mA current. It has been widely analyzed by 
many researchers. For example, Ye et al. [27] and Tang et al. 
[28] did univariate modeling based on Wiener process, while 
Hao et al. [29] constructed bivariate model using Frank copula 
with Gamma process as marginal. Later in this section, we will 
compare our approach with theirs.  

For demonstrating bivariate modeling, similarly to Hao et 
al. [29],  we split the LED dataset into two streams as if the first 
half represents PC1 and the left indicates PC2, which are shown 
in Table 1. LED is considered to be failed if any PC value is 
under 30. In addition, the degradation path of each PC for every 
unit is demonstrated in Figure 1. Note, it is necessary to apply 
time scale transformation due to the nonlinear trend of the path.  



Table 1 - LED Degradation Test Data 

Unit Inspection time (hour) 
0 50 100 150 200 250 

PC1       
1 100 86.6 78.7 76.0 71.6 68.0 
2 100 82.1 71.4 65.4 61.7 58.0 
3 100 82.7 70.3 64.0 61.3 59.3 
4 100 79.8 68.3 62.3 60.0 59.0 
5 100 75.1 66.7 62.8 59.0 54.0 
6 100 83.7 74.0 67.4 63.0 61.3 

PC2       
1 100 73.0 65.0 60.7 58.3 58.0 
2 100 86.2 67.6 62.7 60.0 59.7 
3 100 81.2 65.0 60.6 59.3 57.3 
4 100 66.8 63.3 59.3 57.3 56.5 
5 100 66.1 64.2 59.4 58.0 55.3 
6 100 76.5 61.7 61.3 59.7 56.0 

6.1 Correlation Analysis 

First, we check the Pearson correlation of negative 
increments between PCs for every unit. The results in Table 2 
indicate the two PCs are highly correlated. Thus, building a 
bivariate degradation model is necessary. 

Table 2 - Correlation between PCs among Each Unit 

Method Correlation between PC1 and PC2 
1 2 3 4 5 6 

Pearson 0.95 0.787 0.979 0.888 0.967 0.899 

6.2 Selection of Marginal Model 

Then, the first stage of parameters estimation for each PC 
is conducted on every univariate model from section 2 with 
results shown in Table 3. It is found that Gamma process is 
appropriate to model both PCs due to lowest AIC. However, as 
stated earlier, Ye et al. [27] and Tang et al. [28] directly chose 
Wiener process as priori without checking other possible 
candidate models. This has impact on subsequent reliability 
assessment.  

Table 3 - Parameters Estimation of Marginal Model 

PC Wiener process 
μ σ β AIC Ranking 

PC1 3.2205 1.5567 0.4566 139.3159 2 
PC2 7.8777 4.7098 0.3068 175.0414 3 

 Gamma process 
𝑘 𝜃 𝛽 AIC Ranking 

PC1 3.8473 0.8358 0.4569 137.7911 1 
PC2 2.7694 2.7204 0.3149 157.4284 1 

 IG process 
 𝜇 𝜆 𝛽 AIC Ranking 

PC1 3.3693 11.1856 0.4485 139.5361 3 
PC2 8.8137 17.4782 0.2862 158.5518 2 

6.3 Selecting the Copula Function 

In the next step, the second stage of parameters estimation 
is performed via utilizing “copula” package in R. After 
inserting the estimated parameters of marginal, the association 
parameter of every possible copula function can be inferred. 
Table 4 indicates that Gumbel copula is appropriate to describe 
the bivariate distribution. But Hao et al. [29] directly deployed 
Frank copula, which will also affect reliability prediction. 

Table 4 - Parameters Estimation of Copula Function  

Copula 𝛿 𝜏 AIC Ranking 

Gumbel 1.358 0.2638 -4.847779 1 
Clayton 0.0081 0.0040 1.999144 3 
Frank 1.925 0.2064 0.8024627 2 

6.4 Reliability Assessment 

After marginal and joint models are decided, the reliability 
can be calculated according to Equation (15)- (20).   

Figure 2 presents the marginal reliability plot of both PCs 
for Gamma process and Wiener process. In our calculation, we 
compare the goodness-of-fit of three potential marginal models 
and conclude that Gamma process is a proper model. However, 
if Wiener process is arbitrarily pre-determined as priori without 
checking the assumption, the reliability curve of PC2 deviates 

Figure 1.Degradation Path of Each PC 

Figure 2. Comparison of Marginal Reliability Curves 



from its case of Gamma process obviously.     
Then, a comparison study of joint reliability based on 

independent, dependent with Frank copula and dependent with 

Gumbel copula cases are demonstrated on Figure 3. 
Apparently, the reliability of the first two scenarios are 
underestimated comparing to that of Gumbel copula due to 
either not considering dependence or underestimating the 
significance of dependence.  

Lastly, Figure 4 shows the marginal reliability line based 
on the Gamma process for each PC and the joint reliability line 
based on the Gumbel copula function.  

7 SUMMARY 

In this paper, we proposed a multivariate degradation 
modeling approach for reliability prediction. This approach 
provides a structured framework for both univariate and 
multivariate modeling along with their reliability function 
estimation. Our model is developed based on the concept of 
copula function; thus it is able to separate marginal modeling 
and correlation estimation and results in a two-stage model 
building process. In the case study, the marginal Gamma 
process and the joint Gumbel copula are obtained. Comparison 
study with other researchers’ results are also presented. In 
conclusion, our approach is more flexible to various data 

structures and it leads to an efficient implementation of 
multivariate degradation analysis. 
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