
Optimal Planning and Inference for Sequential Accelerated Life 
Testing with Two or More Experimental Factors 

Arun Bala Subramaniyan, Arizona State University  
Rong Pan, Arizona State University  
Wendai Wang, Thoratec Corporation  

Key Words: Accelerated Life Testing, Sequential ALT design, Multi-Layer Ceramic Capacitor Reliability  

SUMMARY & CONCLUSIONS 

An important task before conducting Accelerated Life 
Testing (ALT) experiments is to specify a prior lifetime 
model, based on the historical data of similar products or 
expert opinions. The initial estimates of model parameters 
need to be reasonable so that the test plan can produce 
sufficient failure data. Though many methods have been 
developed to design test plans with unknown prior 
distributions, there is still active research in this area to obtain 
the best value of the final parameter estimates. A main 
drawback is that, in most cases, these ALT test plans consider 
only one stage of experimentation, which is often inadequate 
for building a reasonable prediction model. In this paper, we 
propose a modified version of sequential ALT planning and 
life quantile prediction framework involving multiple factors. 
The first stage of design is carried out based on the prior 
knowledge of various possible acceleration regression models 
for a limited testing time and experimenting at more than one 
level for at least one factor, followed by an adaptive second-
stage ALT test planned under the given budget to improve the 
prediction accuracy obtained from the first stage. The 
proposed approach is validated through real accelerated life 
testing data of Multi-Layer Ceramic Capacitor (MLCC) data 
involving three factors: temperature, humidity and voltage. 

1 INTRODUCTION 

Today’s manufacturers are facing increasing pressure to 
develop and deliver new products within a short span of time. 
There are various reliability tests both in product design stage 
as well as in manufacturing stage ranging from material and 
component level to a complete system level. But many times, 
the manufacturer does not have the luxury of having all the 
information about the product due to various reasons. But, 
how does the manufacturer decide on the warranty level for 
these products? It is not possible to wait until the products fail 
in the field and decide on the optimum warranty level.   

To help industries to compete against the time and money, 
Accelerated Life Testing (ALT) provides a ubiquitous way to 
infer or predict the reliability of a product at its use condition 
by testing a specified number of samples at elevated stress 
conditions to accelerate the occurrence of failures. Many 

mechanical, electrical and electronic components applicable to 
several fields, that we come across in our everyday life (e.g., 
automobile parts, photovoltaic modules, aerospace 
components, smart phone components, etc.), are subject to 
ALT before being released to the market. But conducting 
ALT/ ADT (Accelerated Life Test/ Accelerated Degradation 
Test) is not an easy task since it involves a lot of factors. 
Meeker et al. [1] discussed the pitfalls of ALT for various 
phases like planning, conducting and analyzing ALT data. The 
most common problems quoted are: the allocation of equal 
number of samples for all levels, ignoring the effect of 
interactions between the factors, complex data analysis 
methods and testing protocols, etc.  

In this paper, we consider the planning (design) stage as 
well as the inference (analysis) stage of ALT. One of the most 
important step is to design a statistically sound ALT test plan 
such as deciding on the number of factors for the test, the 
levels of each factor, sample size, censoring type, etc. The test 
results often need to be extrapolated through a physics-based 
and statistical model to obtain the reliability prediction at use 
level. The traditional design of experiments approach is 
inadequate for ALT planning and analysis since the test would 
yield censored data, non-occurrence of failure modes at some 
stress levels and so on. In addition, most of previous work on 
designing ALT plans focused on ALTs with single stress. 
Escobar et al. [2] designed and analyzed ALTs with two or 
more experimental factors, assuming a linear model without 
interaction between factors.  

A major problem in designing ALT is that there is a need 
for at least some prior information about the product 
reliability. In some cases, the error in a prior model can lead to 
extremely misleading information and results in wastage of 
the resources. For instance, consider the Arrhenius model, the 
effect of temperature (usually termed as activation energy) 
needs to be as precise as possible since a small variation will 
lead to misleading results, as the effect of temperature is 
expressed as an exponential term. Similar problems could 
occur with Peck’s model and modified Coffin-Manson models 
too. A common practice of developing an optimal test plan 
involves minimizing the uncertainty of failure time 
distribution for the product’s normal use condition, which is 



hard to achieve with single stage of experimentation.  
Bessler et al. [3] demonstrated the importance of 

sequential ALT and came up with the idea of optimal 
sequential ALT design assuming exponential failure times. 
The proposed sequential ALT is an important strategy for 
niche products in which the parameter uncertainties are quite 
high due to the lack of complete information. Tang et al. [4] 
continued with sequential testing scheme with one factor and 
showed that conducting the experiments in sequential stages 
will increase the prediction accuracy and robustness of the 
model. But, most of these literatures were tested and validated 
for only one stress factor and is designed to conduct only one 
set of experiments at higher level during the first stage. This 
will not produce satisfactory results because the experiment 
needs to be carried at two different levels to get an estimate of 
one factor.  

Experimental designs for ALTs with multiple stress 
factors have been discussed in Monroe et al. [5-6], Yang and 
Pan [7], Pan et al. [8], Nasir and Pan [9-10]; however, these 
previous publications did not consider sequential test plans for 
the model uncertainty problem. Instead, they either assumed 
that the ALT model was fully known, or a prior distribution of 
model parameter was known, and a Bayesian robust plan 
could be derived. More recently, Zhao et al. [11] used 
Bayesian averaging model by performing experiments at all 
the stress levels for the first stage and planning the second 
stage using the posterior from the first stage. Their sequential 
plan was shown to have a better performance than one-shot 
plans, but computationally this strategy was not easy to 
implement. To alleviate the above-mentioned problems and 
achieve good results, we modify the sequential ALT planning 
and life quantile prediction framework by testing at more than 
one level even during the first stage. Since there is a high 
probability for the failures to occur at highest stress level, the 
allocation of samples will be adjusted so that additional stress 
levels can be included in the first stage for model validation. 
This will help in obtaining a more precise lifetime model in 
the first stage and then, in the second stage, the ALT 
experiment can focus on predicting the life distribution or life 
stress relationship at the use stress level.  

In summary, it is important to develop a good sequential 
ALT design considering two or more factors to improve the 
model estimates, but it is also a challenging task. The 
following sections describe the proposed methodology 
followed by case study of accelerated life testing of MLCC 
capacitors. 

2 METHODOLOGY 

A typical parametric ALT model consists of two main 
components, the first one being the failure time or lifetime 
distribution and the second one being the life-stress 
relationship. Usually a log-location-scale family, as given in 
Equation (1), will be used to model the failure time 
distribution of the components under ALT and is linked with 
the life-stress model given in Equation (2).  

 
F(t) = Φ [(log (t) − μ) /σ],          (1) 

 
where Φ is the standardized location-scale Cumulative 
Distribution Function (CDF), μ is the location parameter, σ is 
the scale parameter and t denotes the failure time. The life-
stress model is chosen based on the factors involved in the 
experimentation. For instance, if the major cause of failure is 
temperature, then Arrhenius model is used to capture the 
relationship between failure time and stress variable (i.e., 
temperature). Usually, many experiments involve more than 
one variable such as humidity, pressure, voltage, etc., in 
addition to the temperature effect. 
 

μ = β0 + β1s1+ …+ βnsn  (2) 

where ‘si’, ∀i = 0,1,..., n, denotes the stress (i) acting on the 
product with the corresponding effect βi. Clearly, this model 
involves various parameters denoted by φ = (β0, βi, σ) and all 
these parameters should to be estimated. 

The first stage of design is carried out based on the prior 
knowledge of various possible acceleration regression models. 
Usually, the sequential ALT involves testing only at highest 
factor level in the first stage followed by a second stage 
experimentation at remaining levels. Since some of the factors 
like activation energy are much sensitive, testing at one level 
during the first stage will not be helpful in getting a good 
estimate to proceed for second stage. In this paper, we propose 
designing the first stage of experimentation with more than 
one level, followed by an adaptive second-stage ALT test 
planned under the given budget to improve the prediction error 
obtained from the first stage. Hence the model in Equations 
(1) and (2) remains unchanged. This method of testing at more 
than one level at the first stage of testing need not be done to 
estimate all the factors since the test will involve several 
combinations if the number of factors is greater than one. 
However, the method can be effective for critical or more 
sensitive factors playing a major role in failures (ex: 
temperature/ activation energy). 
 

 
Figure 1. Flow chart of the Sequential Accelerate Life Testing 

(SALT) method 
 

The flowchart in Figure 1 represents the steps involved in 



conducting the proposed sequential ALT methodology. Plan 
and conduct the first stage of experimentation with at least two 
levels based on the available information (expected failure 
time distribution and life stress model) at hand. Once the test 
results are available, obtain the failure time distribution for the 
test units and estimate the location and scale parameters (μi 
and σs) for the given stress levels. Once the failure time 
distribution parameters are available, then it’s time to update 
the model parameters φ = (β0, βi, σ). The Maximum likelihood 
method can be used to update φ with details given in 
Equations (3) and (4) [11]. In case of more than one stress 
level, the first stress factor or the critical factor is tested at two 
different levels keeping the other factors constant with an 
assumed prior distribution. The model can be updated only 
when there is enough data available from the subsequent 
stages. 

Let μ = (μ1, μ2, ……, μn) be the mean vector of all the 
lifetime distributions and S be the diagonal matrix of variances 
of all μi’s (i = 1, 2, …, n) and D be the matrix of stress 
variables. Then the analytical solution of β and σ is given in 
Equation (3) and (4) [11]. 

 
β = (DTS-1D)-1(DTS μ)  (3) 

 
σ = (∑ Var−1(n

i=1  σi))-1 ((∑  σi Var−1(n
i=1  σi))  (4) 

 
Now, the estimates of the model parameters are available 

and can be utilized to plan for the second stage of 
experimentation. In the first stage, the user can allocate equal 
samples or with pre-determined ratio of sample allocation for 
each level based on the testing limitations. If the first stage of 
experimentation is done at highest and lowest level, then the 
middle level can be chosen to run the test to check for 
curvature effect, and so on, but depending on the equipment 
capability and cost/time constraint. But, to decrease the 
prediction error and improve the model accuracy further, a 
second stage of experimentation can be performed to update 
the estimates using the remaining samples from the first stage. 
Equation (5) to Equation (8) can be helpful in determining the 
optimum sample size and stress levels for the second stage of 
experimentation [4]. In this approach, the minimum expected 
number of failures (Q) should be specified, which would be 
around 5 as suggested in [2]. Seo and Pan [12] developed the 
optimal test planning approach that accommodates three 
optimality criteria: D-Optimality, U-Optimality and I-
Optimality. Usually, it is recommended that the tests to be 
done with 2 or 3 levels at different combination of factors to 
obtain robust estimates. Let nl denotes the number of units 
available after the first stage of experiments, πi denotes the 
proportion of units required to be allocated at stress level xi 

(standardized), then the optimization problem is as follows. 

Objective: 
Min E β (Var y(i); xi, πi )        (5) 

Subject to: 
n.πi.p(xi) ≥ Ri    (6) 

 

0 ≤  x𝑖𝑖 ≤ 1    (7) 
 

0 ≤  ∑ π𝑖𝑖𝑛𝑛
𝑖𝑖=1  ≤ 1    (8) 

where p(xi) denotes the failure probability at the stress level 'i'. 
The estimated parameters from the first stage will be used for 
the unknown values in this probability density function (PDF). 
Once the optimization problem is solved, the second stage of 
experimentation is conducted and the model fitting and the 
final parameter estimation are carried out in a similar way as 
discussed previously. 

 

3 CASE STUDY: ALT OF MLCC CAPACITORS 

The proposed approach is demonstrated through  
accelerated life testing of Multi-Layer Ceramic Capacitors 
(MLCC), involving three stress factors: temperature, humidity 
and voltage. The failure mode is the cracking as shown in 
Figure 2. These MLCC capacitors find a wide variety of 
application in electronic devices, and the reliability can 
usually be determined by the performance of the capacitors 
(e.g., impedance/leakage in this case). While the capacitors 
may fail due to several reasons, most of the failures happen 
due to mechanical and thermal stress. The cracking may occur 
due to inappropriate design, assembly, operation, etc.  Cracked 
capacitors manifest several defects like increased leakage 
current, intermittent open circuit or short circuit etc. In 
addition, when the devices are operating in an excessive 
humid environment, there is a high probability that the water 
vapor will enter the cracked regions aggravating the failure 
mechanism. Hence, the reliability of the capacitors operating 
in conditions with high temperature and humidity poses a 
major issue to the safe operability of the devices.  
 
 

 
Figure 2. Cracking of MLCC capacitors 

 
To test the reliability of the capacitors and develop a good 

parametric model, the ALT with three factors - Temperature, 
Relative Humidity and Voltage - is planned. The experiments 
are conducted for at least two levels for each factor. It is to be 
noted that due to limitations in time constraint, the experiment 
could not be done for all combinations of three factors (i.e., if 
there are 3 factors and 3 levels, then 33 = 27 different sets of 



experiments). Since, the temperature effect was considered 
more critical than the other two factors, the first stage is 
started with the estimation of temperature effect (activation 
energy), but the user can choose any factor depending on the 
problem. The experiment is done for two levels of temperature 
keeping the other factors constant. Furthermore, the prior 
distributions were assumed for other unknown factors [13-14]. 
This will make the activation energy estimate closer to the true 
value than testing with only temperature because the effect of 
humidity and voltage will contribute to decrease the activation 
energy required to initiate the failure. We use coded variables 
(0 to 1) where 0 denotes the highest stress level, 0.5 denotes 
the middle level and 1 denotes the usage stress level. The 
decoded/actual values for the temperature is (85°C, 70°C, 
60°C), Voltage of (4V, 2V, 1V) and RH is (85%, 70%, 50%).  

The first stage of experiments is conducted, and the 
results are shown in Figure 3. The Weibull distribution and 
lognormal distribution is used to fit the failure time and the 
Peck’s model (Temperature and Humidity) along with Voltage 
function given in Equation (9) is used to model the life stress 
relationship. The linearized form of life stress model is given 
in Equation (10), which is a linear function of all the stresses 
and can be estimated analytically. 

 
TTF = A e-Ea/RT. (RH)-m. (V)-b   (9) 

 
ln (TTF) = ln A – Ea

R
(1
T

) – m ln(RH) -b ln(V)  (10) 
 

where A is a constant, ‘Ea’ is the activation energy, m is the 
relative humidity effect and b is the effect of voltage. During 
the first stage, four sets of experiments were conducted with 
an equal sample allocation of 200 for each set with an 
additional set for validation. Hence, a total of 1000 samples 
are utilized for first stage of experimentation and an additional 
1000 samples are available for the second stage. The estimates 
of unknown parameters of the Weibull model (shape and 
scale) and Peck's model (activation energy 'Ea', humidity 
exponent 'm' and voltage exponent 'b') are also tabulated in 
Table 1 and the similar results for lognormal distribution is 
shown in Table 2. The first row in each table consists of the 
parameter estimates for the lifetime distribution (location, 
scale and shape) fitted using the life testing data at level 
(0,0,1), as well as the assumed prior distributions for the 
unknown parameters of the life-stress distribution. Now, using 
the results of second set of experiments (0.5, 0, 1) along with 
the first set results, the value of intercept (ln (A)) and 
temperature effect (Ea) gets updated using the maximum 
likelihood estimation method (shown in the second row). 
Likewise, all the parameters are updated step by step in the 
first stage and the final estimates (highlighted in red) are 
obtained.  

To validate the developed model, an additional set of 
experiments at level (1, 0.5, 0.5) is used. The actual location 
parameter for the Weibull failure time model is about 9.42 and 
the predicted location parameter is 6.17 with error of around 
35%. Though the values of activation energy and other 

exponents fall within the wide range as stated in other 
literatures [13-14] of similar products, there is significant 
difference between the actual and predicted values using 
Weibull distribution. As shown in validation section of Table 
2 using the lognormal failure time distribution, the prediction 
error is only about 10% but can still be improved. From this 
initial set of results, it is to be noted that if the first stage has 
only one set of experiments as per the usual sequential ALT 
methodology [3, 4] along with incorrect assumption of failure 
time distribution (in our case, Weibull distribution), then the 
parameter estimates will be far from acceptable value resulting 
in a poor prediction model. Therefore, it is important to have 
at least two sets of experiments even during the first stage and 
certainly, this model can be improved for better prediction 
using additional stages of experimentation, with the remaining 
resources from the first stage. 

 
     Table 1. Results of the Sequential ALT (First stage) of 

MLCC data using Weibull distribution 

 
 
 

Table 2. Results of the Sequential ALT (First stage) of MLCC 
data using lognormal distribution 

 
 

Since the initial lifetime distribution and stress life 
relationship model and its estimates are available, an optimum 
test plan can be easily designed for second stage using 
Equations (5) to (8). In case of the samples following Weibull 
distribution with 'n' factors, the ALTopt package in R software 
by Seo [12] can be used to easily design the second stage of 
experiments. But, in our case, the lognormal distribution 
provides a better fit to the capacitors' failure time and the 
temperature is assumed to be the most critical factor among 
the others. A variation of 0.01 eV in activation energy has 
been proved to result in a big difference in the final model 
predictions of similar products [15, 16]. Also note that, after 

Temp RH Volt Loc Scale Shape ln A Ea m b
Stage I

0 0 1 10.99 59564 0.467 N(-15,5) N(1.5,0.5) N(-2.5,1) N(-3,1)
0.5 0 1 9.74 17012 0.467 -18.92 0.88 N(-2.5,1) N(-3,1)
0.5 1 1 14.2 1422014 0.467 -18.92 0.88 -5.37 N(-3,1)
0.5 1 0 13.4 663165 0.467 -18.92 0.88 -5.37 -1.04

Validation
Act Loc Pred Loc Error

1 0.5 0.5 9.42 6.177 34.43%

Temp RH Volt Loc Scale ln A Ea m b
Stage I

0 0 1 11.46 4.93 N(-15,5) N(1.5,0.5) N(-2.5,1) N(-3,1)
0.5 0 1 12.72 4.93 -17.36 0.89 N(-2.5,1) N(-3,1)
0.5 1 1 15.28 4.93 -17.36 0.89 -4.82 N(-3,1)
0.5 1 0 16.5 4.93 -17.36 0.89 -4.82 -0.88

Validation
Act Loc Pred Loc Error

1 0.5 0.5 13.59 4.93 12.24 9.93%



the first stage of experiments, there are additional 1000 
capacitor samples available for second stage of experiments. 
Since we are interested in minimizing the variance of the 
expected lifetime of the product at its use condition, the U-
optimal design is chosen. The U-optimal design minimizes the 
prediction variance and provides much more confidence in 
predicting the reliability of the product at its use condition. 
The optimal ALT experimental design along with the 
allocated samples for each experimental set is shown in Table 
3. The testing is still being carried out and the results will be 
provided later. 

 
Table 3. U-Optimal design for ALT of MLCC data 

 
 

 

4 CONCLUSION 

In this paper, a modified approach for designing and 
analyzing the sequential Accelerated Life Testing method is 
presented. The proposed methodology is demonstrated using 
the actual life testing data of MLCC capacitors. This approach 
of sequentially testing with more than one stage of 
experimentation is advantageous when compared to the one 
stage experimentation since it reduces the uncertainty in 
failure time distribution as well as life stress model parameters 
by updating them systematically. In regards with the time 
consumption, this will take extra hours than conducting 
experiments all at once. Especially, this will be a hindrance for 
products that are tested inside the chamber for three to six 
months (ex: Photovoltaic modules). But, in cases when the 
testing is done for a couple of days or hours, this method will 
be helpful in getting a good estimate for the model parameters. 
A practical aid for applying the sequential testing framework 
for single stage experimentation with longer test duration 
would be that, even though the tests are designed for only one 
stage of experimentation, there will be some test runs prior to 
starting the actual experiments to make sure the chamber is 
ready for testing. Hence, the data collected from the samples 
during this test run could be effectively utilized for 
redesigning and updating the model.  

Whenever possible, testing at three levels will be 
advisable. The advantage of testing at more than two levels is 
that the intermediate level(s) might provide the information 
about a possible curvature (if any) in the model. But, due to 
experimental limitations, additional testing could not be done 
during the first stage to check model curvature for MLCC 
data. But, the user is recommended to use a third set of 
experiments in the first stage at level (0.5, 0.5, 0.5) to get a 
good prior model. In addition, care should be taken to avoid 
zero failure problem for each level by following the 
compromised test plan suggested by Ma and Meeker [17], 

since ALT will be unsuccessful if there are no failures at one 
or more levels. The Equations (5) to (8) will be useful to avoid 
such problems by specifying the failure threshold. In our case 
of MLCC capacitors data, there are failures occurring at all 
stages of experimentation, so this problem is fortunately 
avoided. In future, the methodology will be extended to 
incorporate the effect of step stresses along with non-
homogeneity in stress levels across components. 
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