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SUMMARY & CONCLUSIONS 

Both the reliability-wise system structure and the 
multivariate component lifetime distributions are required for 
accurately predicting a complex system’s reliability. Most of 
existing research work either assumes these components’ 
lifetime distributions are statistically independent or they are 
subject to a well-defined multivariate joint distribution, such as 
a multivariate Gaussian distribution. However, oftentimes the 
independence assumption does not match engineering practice 
since components usually have interactions with each other due 
to common manufacturing defects and shared environmental 
conditions, etc. On the other hand, a multivariate joint Gaussian 
distribution may not be adequate, because it cannot describe 
distribution skewness or upper/lower tail dependency among 
multivariate lifetime data that are often observed in real data 
sets. As a result, the system reliability assessment may be 
biased. 

In this study, we present a data-centric multivariate 
distribution construction framework that is based on a sequence 
of copula functions. Under this framework, historical 
degradation data from different components within a system are 
utilized to derive the multivariate degradation model, and 
various types of dependency among these components are 
explicitly scrutinized and used for either component or system 
level performance prediction. Our contributions include that 1) 
we apply the pair copula construction (PCC) method on more 
than two degradation processes to explicitly model the 
association of these processes; 2) we connect the system 
structure and system failure prior information to the PCC 
structure to simplify the construction of multivariate 
distribution; and 3) we demonstrate the biasness in system 
reliability prediction if the dependencies existed in component 
failure processes are ignored. This study highlights the 
applicability and flexibility of the pair copula construction 
method for conducting multivariate reliability analysis for 
complex systems. A case study of degradation analysis of 
optical materials is used to demonstrate our proposed approach.  
 

1 INTRODUCTION 

Modern engineer system is a complex system that consists 
of hundreds to thousands of components, and system 
performance relies on the proper execution of individual 

component function. Therefore, a system failure could be 
caused by any one of numerous combinations of component 
malfunctions. And even worse, these system failure modes are 
not independent to each other due to either known or unknown 
interactions/interferences of component functions. As such, 
predicting the reliability of a complex system requires data 
collection from multiple sources at multiple system levels and 
these data are inherently correlated. At the same time, we 
should utilize the system knowledge extracted from system 
physics to support and reinforce the empirical evidence 
obtained from data analysis. In this paper, we explore a copula-
based multivariate distribution construction technique, Pair 
Copula Construction (PCC), for system characterization and 
reliability prediction.  

The copula approach to multivariate distribution modeling 
originates from the study of parametric bivariate distribution, 
which is to study how two random variables or two random 
processes are coupling together [1]. To extend bivariate copula 
(or bi-copula) to multivariate cases, the PCC method utilizes a 
sequence of bi-copula functions. This method was originally 
proposed in [2], and it has been further explored and discussed 
by [3-6]. More recently, it has been applied on system reliability 
analysis; see [7-11].  

2 A MOTIVATING EXAMPLE 

Optical fibers are widely used for transmitting analog and 

Figure 1: The Degradation Process Chart for 4 Channels 



digital signals, along with transceivers being the devices of 
sending and receiving signals. The performance of optical fiber 
is usually measured by Receiver Sensitivity or so-called Rx 
Sensitivity, which is defined as the minimum signal optical 
power level required at the receiver to achieve a certain level of 
Bit Error Ratio (BER).  Figure 1 below shows a test result of a 
sample transceiver. This specimen is used to convert between 
light signals and electric signals and is able to capture 4 types 
of light with different wavelength (i.e. 4 different channels). As 
time elapsed, each channel’s Rx Sensitivity gradually 
deteriorates. It can be seen that the degradation processes for 
the 4 channels indicate a similar pattern, which implies possible 
underlying dependence. Thus, to evaluate the reliability of the 
optical system, a multivariate dependence modeling framework 
is needed.   

3 MUTIVARIATE DISTRIBUTION 

Bi-copula function 

A copula function is defined as a multivariate distribution 
function with standard uniform univariate margins: 

𝐶𝐶(𝒖𝒖) = 𝐶𝐶(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑑𝑑)
= 𝑃𝑃(𝑈𝑈1 ≤ 𝑢𝑢1,𝑈𝑈2 ≤ 𝑢𝑢2, … ,𝑈𝑈𝑑𝑑 ≤ 𝑢𝑢𝑑𝑑), 

where 𝑼𝑼 = (𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑑𝑑)𝑇𝑇  is a 𝑑𝑑 -diomensional random 
vector with 𝑈𝑈𝑖𝑖 ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,1),∀ 𝑖𝑖 = 1,2, … ,𝑑𝑑.  

According to Sklar’s theorem, any multivariate joint 
(continuous) distribution can be expressed by a copula function 
as follows: 
Sklar’s Theorem: Let 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑)𝑇𝑇  be a random 
vector with marginal cdfs, 𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑑𝑑(𝑥𝑥𝑑𝑑), and let 
𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑)  be their joint cdf. Define 𝑢𝑢𝑖𝑖 = 𝐹𝐹𝑖𝑖(𝑥𝑥𝑖𝑖) =
𝑃𝑃(𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖), ∀𝑖𝑖 = 1,2, … ,𝑑𝑑. Then, there exists a copula 𝐶𝐶 such 
that 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑑𝑑) = 𝐶𝐶�𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2), … ,𝐹𝐹𝑑𝑑(𝑥𝑥𝑑𝑑)� 
= 𝑃𝑃(𝑋𝑋1 ≤ 𝑥𝑥1,𝑋𝑋2 ≤ 𝑥𝑥2, … ,𝑋𝑋𝑑𝑑 ≤ 𝑥𝑥𝑑𝑑) 
= 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) .                              (1) 

In other words, any continuous univariate random variable 
can be transformed to a continuous uniform random variable 
via its marginal distribution function, and then a copula 
function can assemble a group of random variables to form a 
multivariate distribution. Therefore, the copula function 
characterizes the intrinsic dependency between random 
variables, which is separated from the marginal distribution of 
individual variable. Defining a copula function is equivalent to 
defining the intrinsic dependency between random variables, 
while the marginals of these variables could be any continuous 
distribution. In fact, marginal distribution can be directly 
determined by fitting the data collected for the variable of 
interest.  

Consider a bivariate distribution. Eq. (1) becomes a bi-
copula such that 𝐶𝐶: [0,1]2 → [0,1]  

𝐶𝐶(𝑢𝑢1,𝑢𝑢2) = 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2).                                 (2) 
Subsequently, copula density function can be defined as 

𝑐𝑐(𝑢𝑢1,𝑢𝑢2) = 𝜕𝜕2𝐶𝐶(𝑢𝑢1,𝑢𝑢2)
𝜕𝜕𝑢𝑢1𝜕𝜕𝑢𝑢2

,                                 (3) 
which is the same as the joint probability density function (pdf) 
of  𝑢𝑢1 and 𝑢𝑢2 . A further derivation of Eq. (2) shows that 
multiplying this copula density function with marginal densities 

of individual variables yields the joint density function of these 
variables. That is, 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) =
𝜕𝜕2𝐹𝐹(𝑥𝑥1, 𝑥𝑥2)
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

 

=
𝜕𝜕2𝐶𝐶�𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2)�
𝜕𝜕𝐹𝐹1(𝑥𝑥1)𝜕𝜕𝐹𝐹2(𝑥𝑥2)

𝜕𝜕𝐹𝐹1(𝑥𝑥1)
𝜕𝜕𝑥𝑥1

𝜕𝜕𝐹𝐹2(𝑥𝑥2)
𝜕𝜕𝑥𝑥2

 

= 𝑐𝑐�𝐹𝐹1(𝑥𝑥1),𝐹𝐹2(𝑥𝑥2)�𝑓𝑓1(𝑥𝑥1)𝑓𝑓2(𝑥𝑥2), (4) 
where 𝑓𝑓1(𝑥𝑥1) and 𝑓𝑓2(𝑥𝑥2) are the marginal pdf’s of 𝑋𝑋1 and  𝑋𝑋2, 
respectively.  

Some common bi-copula functions (in short, copula 
functions) are given in Table 1 below.  

Table 1: Commonly-used Bi-Copula Functions 
Copula 𝐶𝐶(𝒖𝒖) 

Gaussian Φ𝚺𝚺�Φ−1(𝑢𝑢1),Φ−1(𝑢𝑢2)� 
Student’s t 𝑇𝑇𝚺𝚺,𝑣𝑣�𝑇𝑇𝑣𝑣−1(𝑢𝑢1),𝑇𝑇𝑣𝑣−1(𝑢𝑢2)� 

Frank −
1
𝛿𝛿

ln �1 +
[exp(−𝛿𝛿𝑢𝑢1) − 1][exp(−𝛿𝛿𝑢𝑢2) − 1]

(exp(−𝛿𝛿) − 1) � 

Clayton �𝑢𝑢1−𝛿𝛿 + 𝑢𝑢2−𝛿𝛿 − 3�
− 1𝛿𝛿 

Gumbel exp �−�(−ln 𝑢𝑢1)𝛿𝛿 + (−ln 𝑢𝑢2)𝛿𝛿�
1
𝛿𝛿� 

 
 
Note that for bivariate Gaussian or Student’s t distribution, 

if the marginal distributions of both individual variables are 
univariate Gaussian or Student’s t distribution, then the bi-
copula function is indeed parametric bivariate Gaussian or 
bivariate Student’s t distribution function. The density 
functions of these two distributions are bell-shaped and 
symmetric and there is no tail dependency in bivariate Gaussian 
distribution. 

Although Frank copula does not have tail dependence 
either, it does have a more squared, wider-spread distribution 
shape. Clayton copula has lower-tail dependency, thus the two 
random variables (marginally with uniform distribution) are 
more correlated with each other when they are having smaller 
values (close to 0). In contrast, Gumbel copula has upper-tail 
dependency, so the two random variables are more correlated at 

Figure 2: Scatter Plots for Frank, Clayton, and Gumbel Copula 
Densities 



larger values (close to 1). See Figure 2 for these copulas. The 
data plotted in these graphs are the simulated data from each 
corresponding copula function. Note that the lower-tail or 
upper-tail association patterns of two random variables cannot 
be captured by any bivariate Gaussian or Student-t distribution.  

Pair copula construction 

To model the dependency among more than two random 
variables, a flexible multivariate distribution construction 
method is introduced in this section. First, bi-copulae, as 
described in the last section, are used to define the relationship 
between any two random variables. Next, a systematic 
approach to be discussed below constructs any general 
multivariate distribution.  

The pair copula construction (PCC) method utilizes the 
natural data structure in an application and existing copula 
functions to embed one cupula function within another one, so 
as to construct a larger model for more than two random 
variables. It involves a sequence of copula functions, with most 
of them applied to pairs of univariate conditional distributions.  

As Sklar’s theorem can be applied on a set of univariate 
conditional distributions, all conditioning on variables in an 
index set S, a sequential mixture of conditional distributions 
leads to the pair copula construction.  

Consider d random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑  with 

multivariate distribution F. If we separate these variables to two 

groups, say 𝑔𝑔1 and 𝑔𝑔2, then Sklar’s theorem implies that there 

is a copula 𝐶𝐶𝑔𝑔1;𝑔𝑔2�. ;𝒙𝒙𝑔𝑔2� such that  

𝐹𝐹𝑔𝑔1|𝑔𝑔2�𝒙𝒙𝑔𝑔1�𝒙𝒙𝑔𝑔2� = 𝐶𝐶𝑔𝑔1;𝑔𝑔2�𝐹𝐹𝑗𝑗|𝑔𝑔2�𝑥𝑥𝑗𝑗�𝒙𝒙𝑔𝑔2�: 𝑗𝑗 ∈ 𝑔𝑔1;  𝒙𝒙𝑔𝑔2�, 

where 𝐹𝐹𝑗𝑗|𝑔𝑔2�𝑥𝑥𝑗𝑗|𝒙𝒙𝑔𝑔2� is the univariate conditional distribution of 

𝑥𝑥𝑗𝑗 , for 𝑥𝑥𝑗𝑗 ∈ 𝑔𝑔1 , conditioning on the group 𝑔𝑔2 . Jointly, the 

multivariate distribution F can be expressed as 

𝐹𝐹𝑿𝑿(𝒙𝒙) = ∫ 𝐶𝐶𝑔𝑔1;𝑔𝑔2𝑑𝑑𝐹𝐹𝑔𝑔2�𝒙𝒙𝑔𝑔2�. 

For variables in 𝑔𝑔1  and 𝑔𝑔2 , we can continue to separate 
them into two distinct groups and construct the copula functions 
for them, until each group consists of only two variables. 
Therefore, there are many possible ways to permutate these 
variables to be grouped and nested together, to construct a 
multivariate distribution.  

As an example, consider four random variables 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 
and 𝑋𝑋4. One possible multivariate distribution construction is as 
follows: 

(1) 𝐹𝐹12 = 𝐶𝐶12(𝐹𝐹1,𝐹𝐹2) 
(2) 𝐹𝐹23 = 𝐶𝐶23(𝐹𝐹2,𝐹𝐹3) 
(3) 𝐹𝐹34 = 𝐶𝐶34(𝐹𝐹3,𝐹𝐹4) 
(4) 𝐹𝐹13|2 = 𝐶𝐶13;2(𝐹𝐹1|2,𝐹𝐹3|2) 
(5) 𝐹𝐹24|3 = 𝐶𝐶24;3(𝐹𝐹2|3.𝐹𝐹4|3) 
(6) 𝐹𝐹14|23 = 𝐶𝐶14;23(𝐹𝐹1|23,𝐹𝐹4|23)  

Finally, we integrate 𝐹𝐹13|2 with respect to 𝑓𝑓2 (marginal density 
of 𝑋𝑋2) to obtain 𝐹𝐹123 (joint distribution function of 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3), 
integrate 𝐹𝐹24|3 with respect to 𝑓𝑓3 to obtain 𝐹𝐹234, and integrate 
𝐹𝐹14|23  with respect to 𝑓𝑓23  to obtain 𝐹𝐹1234 . This construction 

method can be illustrated by Figure 3 and it is called D-vine (D 
for drawable).  

Similarly, the pairing of these variables can be arranged in 
a different manner such as: 

(1) 𝐹𝐹12 = 𝐶𝐶12(𝐹𝐹1,𝐹𝐹2)  
(2) 𝐹𝐹13 = 𝐶𝐶13(𝐹𝐹1,𝐹𝐹3) 
(3) 𝐹𝐹14 = 𝐶𝐶14(𝐹𝐹1,𝐹𝐹4) 
(4) 𝐹𝐹23|1 = 𝐶𝐶23;1(𝐹𝐹2|1,𝐹𝐹3|1) 
(5) 𝐹𝐹24|1 = 𝐶𝐶24;1(𝐹𝐹2|1,𝐹𝐹4|1) 
(6) 𝐹𝐹34|12 = 𝐶𝐶34;12(𝐹𝐹3|12,𝐹𝐹4|12) 

 And the joint distribution function 𝐹𝐹1234 can be obtained by 
integration 𝐹𝐹34|12  with respect to the density function 𝑓𝑓12 . 
Graphically, this construction method is shown in Figure 4 and 
it is called C-vine (C for “Canonical”).  

Both D-vine and C-vine utilize six copula functions and 
they are flexible enough to characterize various association 
patterns among different variables. Therefore, they are 
examples of PCC. Obviously, there could be many other ways 
to construct this 4-variate distribution. However, for studying 
system reliability, we can make use of the physical 
configuration of the system and/or the data proximity among 
these variables to select a sounded multivariate distribution 
construction procedure, and, consequently, connect the system 
lifetime behavior to its physical or data models more closely.  

PCC pairing structure 

Choosing a specific PCC pairing structure seems to be a 

Figure 4: C-vine of 4 variables 

Figure 3: D-vine of 4 variables 



daunting task. However, with enough understanding of the 
context of the system under study, we may conveniently 
integrate some prior information into the PCC structure to make 
it theoretically sounded and computationally simpler at the 
same time. For instance, consider a safety-critical system with 
hot standbys as illustrated in Figure 5(a), where there are always 
two components – primary and secondary components – 
sharing loads at the same time, and when the primary is failed, 
the secondary becomes the primary one and the next standby 
component moves to take the secondary role, and so on. 
Therefore, the lifetimes of the first and second components 
should be closely correlated since they are sharing the same 
load in the same time period. With the same argument, the 
second and third components or the third and fourth 
components are closely related. Therefore, D-vine is a proper 
choice here.  

As another example, suppose a system has multiple 
components and the failure of each component may induce a 
complete or partial failure of the whole system. Figure 5(b) 
represents the relationship between system-level failures 
(Block 1) and component-level failures (Blocks 2, 3 and 4). To 

investigate the relationship between system-level performance 
and component failures, C-vine becomes a handy tool for this 
case, because the dependencies between 1 and 2, 1 and 3, and 1 
and 4 become more important.  

In fact, D-vine and C-vine are well defined structures that 
can be represented by matrices with regular patterns. Consider 
the 4-variate D-vine example aforementioned. Using an upper 
triangle matrix to express the pairs of variables at each level, 
we have 

�

− 12
−

23 34
13|2 24|3
− 14|23

−

�,                               (5) 

and it can be more succinctly written as 

�
1 1

2
2 3
1 2
3 1

4

�,                                    (6) 

 
so that on the top line of Matrix (5) the pairs can be constructed 
by the variables appearing on the diagonal of Matrix (6) and the 

variables on the top line of Matrix (6), and for subsequent lines, 
the entries of Matrix (5) are again formed by the variables on 
this line on Matrix (6) and its diagonal variable while 
conditioning on the variables above this line.  

For C-vine, these matrices become 

�

− 12
−

13 14
23|1 24|1
− 34|12

−

�                                (7) 

or 
                

�
1 1

2
1 1
2 2
3 3

4

�                                     (8) 

The structure patterns of matrices (6) and (8) are clear to 
see. The variable indices appear in order on diagonals of both 
matrices. In D-vine matrix, off-diagonal elements are filled 
with variables with a same-number-on-slant pattern, while in C-
vine matrix, it is a same-number-on-horizonal pattern. Thus, the 
construction process of these regular PCCs follows certain rules 
and can be automated. 

4 SYSTEM RELAIBILITY 

Define a generic system state function to be an indicator 
such that it equals to 1 when the system is working at a given 
time t, and 0 otherwise. That is, 

𝜙𝜙𝑠𝑠(𝑡𝑡) = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
0 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

The same type of state function can be defined for each 
component in the system.  

𝜙𝜙𝑖𝑖(𝑡𝑡) = �1 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
0 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

For a coherent system, the system’s state is determined by its 
components’ states in the sense that the system is working only 
if the combination of component states satisfies certain 
requirements. That is, 
𝜙𝜙𝑠𝑠(𝑡𝑡) = �1 𝑖𝑖𝑖𝑖 (𝜙𝜙1(𝑡𝑡), … ,𝜙𝜙𝑑𝑑(𝑡𝑡)) 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
For example, for a series system this requirement requires all 
components must be working, while for a parallel system this 
requirement requires only one working component. Obviously, 
other complicated requirements may be imposed on a complex 
system based on the system design.  

Without loss of generality, a component’s survival state 
can be defined by requiring the component’s performance 
characteristic to be less than a threshold value. Thus, the 
reliability of a working component at time t is given by 

𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑃𝑃(𝜙𝜙𝑖𝑖(𝑡𝑡) = 1) = 𝑃𝑃(𝑋𝑋𝑖𝑖(𝑡𝑡) < 𝑥𝑥𝑖𝑖
𝑇𝑇 ) 

where 𝑥𝑥𝑖𝑖𝑇𝑇  is the threshold value for the i-th component’s 
performance characteristic. Consequently, system reliability 
becomes 

 𝑅𝑅𝑠𝑠(𝑡𝑡) = 𝑃𝑃(𝜙𝜙𝑠𝑠(𝑡𝑡) = 1) =
𝑃𝑃 ��𝜙𝜙1(𝑡𝑡), … ,𝜙𝜙𝑑𝑑(𝑡𝑡)� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� =
𝑃𝑃�(𝑋𝑋1(𝑡𝑡), … ,𝑋𝑋𝑑𝑑(𝑡𝑡)� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 
 

For a series system the system reliability is given by 

(a)                                        (b) 

Figure 3: (a) safe-critical system with hot standbys; (b) system-
component failure relationship. 



𝑅𝑅𝑠𝑠(𝑡𝑡) = 𝑃𝑃(𝑋𝑋1(𝑡𝑡) < 𝑥𝑥1𝑇𝑇 , … ,𝑋𝑋𝑑𝑑(𝑡𝑡) < 𝑥𝑥𝑑𝑑𝑇𝑇) 
And for a parallel system, it is  

𝑅𝑅𝑠𝑠(𝑡𝑡) = 1 − 𝑃𝑃(𝑋𝑋1(𝑡𝑡) > 𝑥𝑥1𝑇𝑇 , … ,𝑋𝑋𝑑𝑑(𝑡𝑡) > 𝑥𝑥𝑑𝑑𝑇𝑇) 
 
Therefore, we can see that when the multivariate distribution of 
𝑋𝑋1, … ,𝑋𝑋𝑑𝑑  has been fully specified by a multivariate copula 
function, system reliability is ready to be evaluated. 

5 DATA ANALYSIS 

In this section, we revisit the motivating example and carry 
out its data analysis. The R package, VineCopula, has been used 
to assist with the analysis. 

First of all, observing that the Rx Sensitivity of the four 
channels indicates nonmonotone trend, a well-known statistical 
tool – the Wiener process – is suitable for modeling the 
degradation processes. The model we assume is 𝛥𝛥𝑌𝑌𝑖𝑖�𝑡𝑡𝑗𝑗� ∼
𝑁𝑁 �𝜇𝜇𝑖𝑖𝛥𝛥Λ�𝑡𝑡𝑗𝑗 , 𝛾𝛾𝑖𝑖�,𝜎𝜎𝑖𝑖2𝛥𝛥Λ�𝑡𝑡𝑗𝑗, 𝛾𝛾𝑖𝑖�� , where 𝛥𝛥𝑌𝑌𝑖𝑖�𝑡𝑡𝑗𝑗�  is the 
degradation increment for channel 𝑖𝑖 , 𝑖𝑖 = 1,2, … ,4, at time 𝑡𝑡𝑗𝑗 , 
𝑗𝑗 = 1,2, … ,41.  𝛥𝛥Λ�𝑡𝑡𝑗𝑗, 𝛾𝛾𝑖𝑖� = 𝑡𝑡𝑗𝑗

𝛾𝛾𝑖𝑖 − 𝑡𝑡𝑗𝑗−1
𝛾𝛾𝑖𝑖  is a time-scale 

transformation function to linearize the degradation processes. 
𝜇𝜇𝑖𝑖 ∈ ℝ  is the location parameter and 𝜎𝜎𝑖𝑖 > 0  is the scale 
parameter. Table 2 provides the results of Wiener process 
parameter estimation for the four channels’ marginal 
degradation processes.  

Table 2: Results of Parameters Estimation for Marginal 
Degradation Processes. 

Channel 𝜇𝜇 𝜎𝜎 𝛾𝛾  

1 6.35 × 10−4 8.50 × 10−3 1.09 
2 2.14 × 10−4 5.80 × 10−3 1.21 
3 1.00 × 10−4 4.13 × 10−3 1.29 
4 1.98 × 10−4 9.92 × 10−3 1.22 

 
Next, based on the marginal information, we calculate the 

corresponding univariate distribution function values and draw 
a scatter plot of the pairs of pseudo observations; see Figure 6.  

Notice that Channel 1 has strong correlations with all other 
channels. A C-vine model is appropriate to build such a 
dependency relationship. Meanwhile, we also check the tail 
dependence for each pair of variables. It is found that the pair 
of Channels 1 and 4 have similar upper-tail and lower-tail 

dependences. For other pairs, stronger upper-tail dependences 
are present. Thus, we chose the Frank copula for the pair of 
Channels 1 and 4 and the Gumbel copula for other pairs. The 
parameter estimation for the C-vine model gives  𝛿̂𝛿12 =
1.83, 𝛿̂𝛿13 = 1.85, 𝛿̂𝛿14 = 3.99, 𝛿̂𝛿23|1 = 1.1, 𝛿̂𝛿34|1 = 1.0,  and 
𝛿̂𝛿24|13 = 1.0. Here,  𝛿̂𝛿 is called the association parameter and a 
large value indicates a stronger association between two 
variables.  

Finally, given the marginal and joint model, we carry out 
reliability analysis for the system, assuming that the system 
requires all four working channels (i.e., a series system). Thus, 
if any channel’s Rx Sensitivity passes its failure threshold (in 
this case, 1 dB is the thresholds for all channels), the system is 
failed. Figure 7 has the reliability curves of system reliability 
functions under the dependent multivariate distribution and the 
independent distribution assumption, respectively. Notice that 
if the dependencies among four channels (which have been 
clearly shown through our data analysis) are ignored, the 
system reliability would be significantly underestimated. 
Underestimating a system’s reliability may severely affect its 
maintenance plan and increase its maintenance cost. For 
example, one may wrongly replace the cable more frequently 
than actually needed. 
 

6 CONCLUSION 

In this paper we introduce the PCC method for constructing 
any multivariate distribution and apply this multivariate 
distribution on system reliability assessment. We argue that 
given the knowledge of system structure and failure causes, it 
is often possible to choose a specific order of copula functions 
that is theoretically sounded and computationally manageable. 
This method is also data-centric, thus the data collected from 
the system may lead to a natural, and oftentimes simpler, 
variable pairing structure.  

The contribution of this paper to the reliability literature is 
three-folded. First, we use PCC method explicitly model the 
association among more than two degradation processes, which 
has not been done before. Second, we show that the PCC 
structure selection can be greatly simplified by cleverly 
utilizing our prior knowledge of system structure and system 
failure. Lastly, we demonstrate the biasness in system reliability 

 Figure 4:  Scatter Plot of Pseudo Observations. 

 
Figure 5: System Reliability Function. 



prediction if the dependencies existed in component failure 
processes are ignored. In the demonstrative example of optical 
fiber system degradation data analysis, it has been shown that 
the proposed method can adequately capture the tail 
dependencies among data from different channels that cannot 
be done by traditional means. It is important to include these 
dependencies in system reliability assessment to avoid any 
potential biases.  
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