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SUMMARY & CONCLUSIONS 

We are interested in analyzing the accelerated life testing 
data obtained under time-varying stresses. This is a 
generalization of step-stress accelerated life test, where the 
stress levels are kept constant at each step. Our study shows that 
the time-dependent proportional hazard model, commonly 
appeared in the survival data analysis literature, is not 
applicable for ALTs, because this approach does not take 
accounts of the cumulative damage that the stress profile exerts 
on test units. Instead, we assume that products possess constant 
failure rates over small time intervals, and the change of failure 
rate by the stress variable still have the proportional hazard 
property. With these assumptions, it is possible to formulate the 
data according to a generalized linear model and statistical 
inferences on model parameters can be carried out. We 
demonstrate our models and inference procedures by using both 
synthetic and real datasets.  

 

1 INTRODUCTION 

Analyzing the effect of time-varying stress on product 
reliability prediction was initially investigated in Nelson (1980) 
for an electrical insulation test under low temperature. The test 
protocol can be described as follows: One test unit or a group 
of test units are first tested under the lowest stress level. If a test 
unit fails, it would be removed from the test; for the remaining 
test units, after a certain test period, the stress level will be 
elevated to a higher level in order to hasten their failure process 
further. This type of test is labeled as step-stress accelerated life 
test (SSALT). One of the purposes of employing SSALT is to 
produce more failures within a limited testing period. In 
addition, the failure time data obtained under different stress 
levels can be used to infer life-stress models, thus eliminating 
the need of setting up another reliability test on a different batch 
of test units at a different stress level. Therefore, in theory, this 
test will save precious test specimens as well as the effort of test 
setup.  

Stepping up stress level is the most common approach of 
SSALT; however, for various reasons, we also see some step-
down test protocols in literature. Furthermore, some researchers 
considered the stress ramp-up and ramp-down periods during 
stress level transitions. Van Dorp and Mazzuchi (2004) 
described some time-varying stress ALT procedures, including 
progressive, regressive, and profile step-stress ALTs. In 
particular, the progressive SSALT, where the stress intensity is 
changed in an ascending order, is the most common testing 

procedure used in practice. We can generalize these test 
protocols to be the test with time-varying stress profiles. This 
stress profile could be a monotonic increasing or decreasing 
step or continuous function, or even a non-monotonic function. 
Nevertheless, from the failure or survival time observations of 
all test units, we can study the relationship between product 
lifetime and stress variables, and further predict any lifetime 
characteristic of interest under the normal use stress condition.  

In this paper we investigate the applicability of the well-
known proportional hazard (PH) model on profiled-stress 
ALTs.  It is noticed that the extension of PH model to time-
dependent covariate has been widely discussed in the survival 
data analysis literature, especially for medical applications; 
however, it has not been accepted for ALT data analysis. It is 
our interest to investigate the reason and to propose an 
alternative approach, while still maintain the PH property for 
failure rate to a certain extent.  

The paper is organized into four sections hereafter: Section 
2 gives a brief literature review on SSALT and the cumulative 
damage assumption. In Section 3, we discuss the PH property 
and the implication of preserving the PH property for profiled-
stress ALTs. In Section 4, both synthetic and real data are used 
to demonstrate the results of different modeling statistical 
inference approaches. Lastly, Section 5 concludes the paper and 
points out the limitations of our proposed approach and some 
topics for future investigation. 

 

2 LITERATURE REVIEW 

For an ALT, it is reasonable to assume that a stress variable 
acting on a product will have a lasting effect on the product’s 
lifetime; that is, the stress effect is not transient, but 
accumulated over time to damage the product’s integrity, thus 
its lifetime. Nelson (1980) argued that the failure probabilities 
at a stress transition time point should keep the same value. This 
lead to a compression of lifetime at higher stress levels, and the 
product lifetime distribution is composite distribution due to the 
cumulative exposure (CE) time of the product to time-varying 
stresses. Bhattacharyya and Soejoeti (1989) and Khamis and 
Higgins (1998) used a tampered failure rate model where the 
logarithm of the product failure rate is a linear function of the 
stress level. This model can also be explained by the well-
known proportional hazard (PH) concept. It has been shown 
that when the failure time is exponentially distributed the CE 
SSALT model coincides with the PH model (Lee and Pan 
(2010), Sha and Pan, (2014)).  



The first treatment of survival data analysis using a 
Generalized Linear Model (GLM) was given by Aitkin and 
Clayton (1980) and Whitehead (1980). This approach was also 
summarized in McCullagh and Nelder (1983). With the GLM 
formulation, the model parameter estimation can be carried out 
through the Iteratively Weighted Least Squares (IWLS) 
method. Barbosa and Louzada-Neto (1994) and Barbosa et al. 
(1996) applied this GLM technique on a constant-stress ALT 
with either a Weibull failure time distribution or piecewise 
exponential distribution. Wang and Kececioglu (2000) applied 
the IRWLS algorithm to estimate model parameters in Weibull 
ALT models. They concluded that this method is effective and 
numerically stable. 

 

3 PH PROPERTY AND TIME-DEPENDENT STRESS 

To deal with time-varying covariates, it seems to be natural 
to directly apply the PH model with time-dependent covariates, 
as used in many medical applications (see, e.g., Therneau et al. 
(2021)). However, this model is not suitable for modeling the 
effect of external life accelerating stresses when the cumulative 
damage of stress profile on product life needs to be taken into 
account. In the ALT literature, the cumulative damage model is 
widely accepted because it is consistent with the general 
understanding of physics of failures of materials. As shown in 
this section, we may still introduce the PH property into failure 
rates at different stress levels, but the cumulative hazard 
function will not demonstrate the separation of baseline hazard 
(time-dependent) and effect of stress (time-independent) terms, 
thus this model is not the PH model with time-dependent 
covariates.  

3.1 PH Regression 

In the PH model, we assume the hazard function satisfies 
𝜆(𝑡; 𝑥) = 𝜆0(𝑡) exp(𝛽𝑥), 

where 𝜆0(𝑡) is the baseline hazard function and exp(𝛽𝑥) is the 
effect of stress variable 𝑥 exerted on the failure rate. Notice that 
if the stress variable is a constant, then only the baseline hazard 
function is a function of time.  

The PH model specifies the ratio of two hazard functions 
with different covariate values is time independent, i.e.,  

𝜆(𝑡;𝑥1)

𝜆(𝑡;𝑥2)
= exp(𝛽(𝑥1 − 𝑥2)). 

Due to this property, to estimate the coefficient 𝛽, the PH 
regression utilized the partial likelihood function so that the 
baseline hazard function needs not to be explicitly specified. 
That is the reason that PH models are regarded as semi-
parametric models.  

From the above hazard function, the cumulative hazard and 
reliability functions are derived to be, respectively, 

Λ(𝑡; 𝑥) = ∫ 𝜆0(𝑢) exp(𝛽𝑥)𝑑𝑢
𝑡

0
= Λ0(𝑡) exp(𝛽𝑥), 

and 
𝑅(𝑡; 𝑥) = exp(−Λ(𝑡)) = [𝑅0(𝑡)]

exp(𝛽𝑥), 
where Λ0(𝑡) = ∫ 𝜆0(𝑢)𝑑𝑢

𝑡

0
, is the baseline cumulative hazard 

function and 𝑅0(𝑡) = exp(−Λ0(𝑡)), the baseline reliability 
function. Again, these functions are time dependent, but the 

cumulative hazard function is factored out two terms – baseline 
cumulative hazard function, which is time dependent, and the 
effect of covariate, which is time independent. 

3.2 Incorporating Stress Profile  

Now, extending the PH regression to modeling ALTs with 
time-varying stress variables, we have 

𝜆(𝑡; 𝑥(𝑡)) = 𝜆0(𝑡) exp(𝛽𝑥(𝑡)).                       (2) 
Then the hazard ratio becomes 

𝜆(𝑡;𝑥1(𝑡))

𝜆(𝑡;𝑥2(𝑡))
= exp(𝛽(𝑥1(𝑡) − 𝑥2(𝑡))), 

which is not time independent in general.  
In the survival data analysis literature, however, the PH 

model has been applied on the cases with time-dependent 
covariates. This is argued through the counting process of 
failure events. Let 𝑌𝑖(𝑡) be the indicator that subject i is at risk 
(survived up to) at time t and 𝑁𝑖(𝑡) be the cumulative number 
of events for the subject up to time t. The empirical cumulative 
hazard estimator, given a particular covariate profile, is given 
by 

Λ̂(𝑡; 𝑥(𝑡)) =∑ ∫
exp (�̂�𝑥(𝑢))𝑑𝑁𝑖(𝑢)

∑ 𝑌𝑗(𝑢)exp(�̂�𝑥𝑗(𝑢))𝑗

𝑡

0

𝑛

𝑖=1
 

where the summation over index j in the denominator refers to 
the at-risk set at any point of event. In practice (software 
implementation), the hazard function is only evaluated at times 
of events. This is like discretizing the covariate profile to a step 
function, assuming the covariate is constant before the next 
event. This approach does not incorporate the concept of 
cumulative damage, thus not suitable for ALT analysis. 

We propose an alternative approach that combines the PH 
property and the concept of cumulative damage, although this 
approach will bring more restrictions on the lifetime model than 
the PH regression approach. These assumptions are: 

1. Over a short time interval, product failure rate is a 
constant; 

2. The PH property is preserved for these constant failure 
rates with their stress levels being the average stress 
level over the time interval. 

In fact, the above assumptions have defined a stepwise 
exponential lifetime distribution, which is a strong assumption 
to applications.  

Figure 1 shows a general stress profile. It is segmented to 
several time intervals and their corresponding constant failure 
rates are shown below. Here, (𝜏1, 𝜏2, … ) are segmentation 
points and (𝜆1, 𝜆2, … ) are the corresponding failure rates over 
these intervals. Assuming the PH property, we have  

𝜆𝑖
𝜆𝑗
= exp(𝛽(𝑥𝑖 − 𝑥𝑗)) 

where 𝑥𝑖 and 𝑥𝑗 are the average stress level at intervals i and j, 
respectively.  
 

 



 

Figure 1. A stress profile and its corresponding stepwise 
failure rate function. 

 
As illustrated in Figure 1, suppose there is a test unit, unit 

k, failed at time 𝑡𝑘  and this failure time falls into the time 
interval (𝜏3, 𝜏4). Then, the cumulative hazard experienced by 
this unit is found to be 
Λ(𝑡𝑘) = 𝜆1𝜏1 + 𝜆2(𝜏2 − 𝜏1) + 𝜆3(𝜏3 − 𝜏2) + 𝜆4(𝑡𝑘 − 𝜏3) 

= 𝜆4𝑡𝑘 + (𝜆3 − 𝜆4)𝜏3 + (𝜆2 − 𝜆3)𝜏2 + (𝜆1 − 𝜆2)𝜏1 
Note that this cumulative hazard is equivalent to testing the unit 
under a pseudo-constant stress level, 𝜆𝑒𝑞(𝑡𝑘), for a time period 
of 𝑡𝑘 . This leads to  

𝜆𝑒𝑞 = 𝜆4 + (𝜆3 − 𝜆4)
𝜏3
𝑡𝑘
+ (𝜆2 − 𝜆3)

𝜏2
𝑡𝑘
+ (𝜆1 − 𝜆2)

𝜏1
𝑡𝑘

 

Also note that even though (𝜆1, 𝜆2, 𝜆3, 𝜆4) possess the PH 
property, 𝜆𝑒𝑞 does not, thus we cannot apply the PH regression 
analysis directly with 𝜆𝑒𝑞. 

We examine the likelihood function for this test unit. The 
reliability function of this test unit is given by 

The reliability function of this test unit is given by 
𝑅(𝑡𝑘) = exp(−Λ(𝑡𝑘)) = exp(−𝜆𝑒𝑞𝑡𝑘) 

And the failure density function is 
the failure density function is 

𝑓(𝑡𝑘) = 𝜆𝑒𝑞 exp(−𝜆𝑒𝑞𝑡𝑘) 
It becomes 

𝑓(𝑡𝑘) = exp(−𝜆1𝜏1) exp(−𝜆2(𝜏2 − 𝜏1)) exp(−𝜆3(𝜏3
− 𝜏2)) 𝜆4 exp(−𝜆4(𝑡𝑘 − 𝜏3)) 

= 𝑅1(𝜏1)𝑅2(𝜏2 − 𝜏1)𝑅3(𝜏3 − 𝜏2)𝑓4(𝑡𝑘 − 𝜏3) 
where  

𝑅𝑖(𝑡) = exp(−𝜆𝑖𝑡) 
and  

𝑓𝑖(𝑡) = 𝜆𝑖exp(−𝜆𝑖𝑡) 
 
The above derivation shows that this test unit can be treated 

as four independent test units and each of them is tested on a 

distinct stress level (thus a distinct constant failure rate) over a 
short time interval. We name these independent test units to be 
equivalent test units. The first three equivalent units survive 
their tests, while the last one fails.  

To generalize the above discussion, a test with a stepwise 
failure rate can be decomposed to multiple tests with individual 
failure rates and the failure event could only happen at the last 
time interval. See Figure 2.   

Figure 2. Decompose one test to multiple tests. 
 
Following the approach described above, for a general 

stress profile applied on test units during an ALT experiment, 
we may discretize the profile and then apply the cumulative 
damage model with the PH property to formulate the likelihood 
function.  

3.3 Poisson Regression 

The PH property defines the relationship between failure 
rate and stress level to be a log-linear function such as 

log 𝜆𝑖 = 𝛼 + 𝛽𝑥𝑖 
Here we define the baseline hazard to be as 𝜆0 = exp(𝛼). In 
the following discussion, we use subscript k to index for all 
equivalent test units, instead of original test units. Then, the 
total likelihood function is given by 

𝐿 =∏ 𝑓𝑘
𝑐𝑘(𝑡𝑘)𝑅𝑘

1−𝑐𝑘(𝑡𝑘)
𝑘

 

where 𝑐𝑘  is an indicator variable for right censoring. So, with 
exponential distributions at each stress levels, we have 

𝐿 =∏ 𝜆𝑘
𝑐𝑘 exp(𝜆𝑘𝑡𝑘) =∏ 𝜇𝑘

𝑐𝑘 exp(−𝜇𝑘) 𝑡𝑘
−𝑐𝑘

𝑘𝑘
 

where 𝜇𝑘 is defined as 𝜇𝑘 = 𝜆𝑘𝑡𝑘. 
We notice that this likelihood function consists of two 

parts, i.e., 𝜇𝑘
𝑐𝑘exp(−𝜇𝑘) and 𝑡𝑘

−𝑐𝑘. The first part is a Poisson 
probability mass function for variable 𝑐𝑘  and mean parameter 
𝜇𝑘, where  

log 𝜇𝑘 = 𝛼 + 𝛽𝑥𝑘 + log 𝑡𝑘 
The second part is a function of failure time only, not related to 
the distribution mean, 𝜇𝑘, or regression coefficients, 𝛼 and 𝛽. 
Therefore, to maximize the likelihood function to find 
regression coefficient estimates, we only need to maximize the 
first part, which is the same as treating 𝑐𝑘  as a Poisson variable. 
This Poisson regression has a log link function with an offset 
term.  
 



4 NUMERICAL STUDIES 

4.1 Synthetic Dataset 

Consider a ramp stress linearly increasing from 0 stress 
level to 10 stress level over a time period of 10 time units. 
Assume there are 10 test units being tested under this stress 
profile and it is observed one failure at t=6, 2 failures at t=8 and 
t=9, 3 failures at t=10, and the failure times of remaining test 
units are right censored at the end of the test. Figure 3 illustrates 
the stress profile and the failure/survival events observed under 
this profile. Using this synthetic dataset, we want to investigate 
the following: 

1. Will the time-dependent Cox PH model work for this 
case? 

2. How to implement the cumulative damage model with 
the PH property for this case? 

3. Will the fineness of discretizing time interval have a 
significant impact on model parameter estimation? 

 

Figure 3. Ramp stress and ten test units’ failure and survival 
time 

 
Analysis 1: Following the conventional survival data 

analysis, we approximate the stress profile by discretizing it at 
the times of failures, while stress levels are set at the levels 
when failures occur. 

 
id start end stress failure 
1 0 6 6 1 
2 0 6 6 0 
2 6 8 8 1 
3 0 6 8 0 
3 6 8 8 1 
4 0 6 6 0 
4 6 8 8 0 
… … … … … 
10 9 10 10 0 

 
The R code for the PH regression is given below:  
 

fit1 <- coxph(Surv(start, end, failure) ~ log(stress), 
data=analysis1) 

 
Note that we did a log transformation of stress variable. 

This is because we regard the stress as a pressure type of stress 

and its physical acceleration model follows an inverse power 
function. After transformation, the stress is not longer linearly 
increasing over time.  

 
The result from this analysis is disappointing. As one can 

see the coefficient estimate is negative, which means that this 
model predicts a lower failure rate at a higher stress level. This 
is in contradiction to our general understanding of ALT. The 
error is due to the lack of consideration of cumulative damage 
in the ordinary PH regression model. We also notice that the 
coefficient estimate is very unreliable, as its standard error is 
huge. Therefore, we do not recommend the PH regression for 
profiled-stress ALT analysis. 

 
Analysis 2: Introduce a constant baseline hazard; that is, 

assume exponential lifetime distributions for the failure times 
of test units. Then, we can use the Poisson regression approach 
to estimate reliability function. The dataset is presented below. 
The stress profile is discretized by time intervals with one time 
unit. We treat the “failure” variable as the response variable. As 
shown in the previous section, the likelihood function of this 
dataset is the likelihood of Poisson variables with an offset 
term, ln(𝜏𝑖+1 − 𝜏𝑖). We set all time intervals to be one time 
unit. 

 
id eq. unit time stress failure 
1 1 1 0.5 0 
1 2 1 1.5 0 
1 3 1 2.5 0 
1 4 1 3.5 0 
1 5 1 4.5 0 
1 6 1 5.5 1 
2 7 1 0.5 0 
… … … … … 
10 90 1 9.5 0 

 
R code: fit2< - glm(failure ~ log(stress) + offset(log(time)), 
data=analysis2, family = poisson(link = "log")) 

 
The above results are more consistent with what are 

expected, as the stress coefficient estimate is positive and it is 
statistically significant. 

 
Analysis 3: We widen the time interval to 2 time units to 

discretize the stress profile.  
 

id eq. unit time stress failure 
1 1 2 1 0 
1 2 2 3 0 
1 3 2 5 1 
1 4 2 1 0 



1 5 2 3 0 
1 6 2 5 0 
2 7 2 7 1 
… … … … … 
10 46 2 9 0 

 

 
It turns out that this stress coefficient estimate is quite 

different from that of Analysis 2, and the statistical significance 
of this estimate is reduced too. This indicates that a wider time 
interval will decrease the effect of cumulative damage of stress 
on test unit lifetime, although the wider time interval will 
reduce computational efforts. Therefore, we need to be careful 
on how to segment a stress profile. It is suspected that the 
optimal segmenting scheme is related to the rate of change of 
stress profile, but this conjecture has yet to be validated. 

 

4.2 Real Dataset 

Nelson (1980) provides a dataset obtained from an SSALT 
of power cable insulation at cryogenic temperature and the 
stress variable is voltage. Ten steps of stress are applied on the 
test units during the testing and, based on the setting of holding 
times at the stress levels, there are four testing stress profiles. 
For the purpose of illustration, here we only use two stress 
profiles in this paper. Due to the partial data, the estimation 
results presented in this paper cannot be compared to the 
original study. 

There are 6 test units and each of them are tested for 10 
minutes at stress 5, 10, 15, 20kv without failures. Then, they are 
tested at remaining stress level, 26, 28.5, 31, 33.4, 36 and 
38.5kv. Three test units are tested at these levels with a holding 
time of 60 minutes, and the other three with a holding time of 
15 minutes. The following table present the data. The stress 
level has been adjusted for cable thickness.  

 
id level time stress failure 
1 1 10 5.133 0 
1 2 10 5.826 0 
1 3 10 6.231 0 
1 4 10 6.519 0 
1 5 60 6.782 0 
1 6 60 6.783 0 
1 7 60 6.957 0 
1 8 60 7.032 0 
1 9 60 7.107 0 
1 10 30 7.174 0 
2 1 10 5.133 0 
2 2 10 5.826 0 
2 3 10 6.231 0 
2 4 10 6.519 0 

2 5 60 6.782 0 
2 6 60 6.873 0 
2 7 60 6.957 0 
2 8 60 7.032 0 
2 9 60 7.107 0 
2 10 5 7.174 0 
3 1 10 5.185 0 
3 2 10 5.878 0 
3 3 10 6.284 0 
3 4 10 6.571 0 
3 5 60 6.834 0 
3 6 60 6.926 0 
3 7 60 7.010 0 
3 8 60 7.084 0 
3 9 60 7.159 0 
3 10 5 7.226 1 
4 1 10 5.221 0 
4 2 10 5.915 0 
4 3 10 6.320 0 
4 4 10 6.608 0 
4 5 15 6.870 0 
4 6 15 6.962 0 
4 7 15 7.046 0 
4 8 15 7.121 0 
4 9 2 7.95 1 
5 1 10 5.221 0 
5 2 10 5.915 0 
5 3 10 6.320 0 
5 4 10 6.608 0 
5 5 15 6.870 0 
5 6 15 6.962 0 
5 7 15 7.046 0 
5 8 15 7.121 0 
5 9 13 7.195 1 
6 1 10 5.221 0 
6 2 10 5.915 0 
6 3 10 6.320 0 
6 4 10 6.608 0 
6 5 15 6.870 0 
6 6 15 6.962 0 
6 7 15 7.046 0 
6 8 15 7.121 0 
6 9 13 7.195 1 

 
The analysis show that the stress variable does have 

significant effect on elevating the failure rate of cable, thus 
shortening its lifetime.  

 
With this parametric model, we can predict the reliability 

at various stress levels. The first three low stress levels (5, 10, 



15kv) generate no failure observations in the ALT experiment. 
By plugging in their values into the loglinear function of failure 
rate, the following reliability functions are obtained for the 
three lowest stress levels, respectively. 

  

Figure 4. Reliability prediction at the three lowest stress levels 
 

5 CONCLUSIONS 

In this study, we investigate the PH regression model for 
the profiled-stress ALT analysis. It is found that due to the 
cumulative damage concept the PH property cannot be 
maintained in the overall product failure time likelihood 
function; however, under the stricter assumption of stepwise 
exponential distribution, the PH property can be preserved for 
the failure rates of constant stress levels over a short time 
interval. This in turn facilitates the data analysis, as we can 
estimate the stress effect via a Poisson regression approach. As 
aforementioned, the optimal stress profile segmentation scheme 
needs to be further researched. Furthermore, extending this 
approach to Weibull distribution seems to be possible, worth of 
further investigation.  
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