Open-World Probabilistic Databases: Semantics, Algorithms, Complexity

Ismail flkan Ceylan®*, Adnan Darwiche®, Guy Van den Broeck®

“Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 30D, UK
bComputer Science Department, University of California, Los Angeles, 404 Westwood Plaza, Los Angeles, CA 90095, US

Abstract

Large-scale probabilistic knowledge bases are becoming increasingly important in academia and industry. They are
continuously extended with new data, powered by modern information extraction tools that associate probabilities
with knowledge base facts. The state of the art to store and process such data is founded on probabilistic databases.
Many systems based on probabilistic databases, however, still have certain semantic deficiencies, which limit their
potential applications. We revisit the semantics of probabilistic databases, and argue that the closed-world assumption
of probabilistic databases, i.e., the assumption that facts not appearing in the database have the probability zero,
conflicts with the everyday use of large-scale probabilistic knowledge bases. To address this discrepancy, we propose
open-world probabilistic databases, as a new probabilistic data model. In this new data model, the probabilities
of unknown facts, also called open facts, can be assigned any probability value from a default probability interval.
Our analysis entails that our model aligns better with many real-world tasks such as query answering, relational
learning, knowledge base completion, and rule mining. We make various technical contributions. We show that
the data complexity dichotomy, between polynomial time and #P, for evaluating unions of conjunctive queries on
probabilistic databases can be lifted to our open-world model. This result is supported by an algorithm that computes
the probabilities of the so-called safe queries efficiently. Based on this algorithm, we prove that evaluating safe
queries is in linear time for probabilistic databases, under reasonable assumptions. This remains true in open-world
probabilistic databases for a more restricted class of safe queries. We extend our data complexity analysis beyond
unions of conjunctive queries, and obtain a host of complexity results for both classical and open-world probabilistic
databases. We conclude our analysis with an in-depth investigation of the combined complexity in the respective
models.

Keywords: knowledge bases, probabilistic databases, semantics, closed-world assumption, open-world assumption,
inference, credal sets, learning, data complexity, dichotomys, lifted inference

1. Introduction

Driven by the need to learn from vast amount of text data, efforts throughout information extraction, natural
language processing (e.g., question answering), relational learning, knowledge representation and reasoning, and
databases are coming together to build large-scale knowledge bases and reason over them. Academic systems such
as NELL [1], DeepDive [2], Reverb [3], and YAGO [4] continuously crawl the Web to extract structured information.
Industry projects such as Microsoft’s Probase [5], or Google’s Knowledge Vault [6] similarly learn structured data
from text, and thus populate their databases with millions of entities and billions of facts. Thus, research on large-
scale knowledge bases serves as an important frontier for artificial intelligence (Al).

Systems such as DeepDive have been used by scientists to build knowledge bases of gene interactions, paleobiol-
ogy, and geoscience, all by reading scientific publications and extracting structured knowledge [7, 8]. One of the most
visible applications of these probabilistic knowledge bases is in search engines (see, e.g., Google search results), i.e.,

*Corresponding author.
Email addresses: ismail.ceylan@cs.ox.ac.uk (Ismail Ilkan Ceylan), darwiche@cs.ucla.edu (Adnan Darwiche),
guyvdb@cs.ucla.edu (Guy Van den Broeck)

Preprint submitted to Artificial Intelligence May 3, 2021

the standard list of relevant web pages is often augmented with a table of structured data that pertains to the search
query, which is clearly linked to the underlying knowledge base.

Knowledge bases contain data which is necessarily uncertain. To go from the raw text to structured data, infor-
mation extraction systems employ a sequence of statistical machine learning techniques, from part-of-speech tagging
until relation extraction [9]. For knowledge-base completion — the task of deriving new facts from existing knowledge
— statistical relational learning algorithms make use of embeddings [10, 11] or probabilistic rules [12, 13]. In both
settings, the output is a predicted fact with a probability, or confidence, value. It is therefore common to interpret such
knowledge through a probabilistic semantics.

The classical and most basic model to represent probabilistic data is that of tuple-independent probabilistic
databases (PDBs) [14], which indeed underlies some of these systems [6, 2]. Probabilistic databases, however, lack a
suitable handling of incompleteness. In particular, each of the above systems encodes only a portion of the real-world,
and this description is necessarily incomplete. For example, according to YAGO, the average number of children per
person is 0.02 [15]. However, when it comes to querying, most of these systems employ the closed-world assumption
(CWA) [16] — according to the tuple-independent PDB semantics, each database atom is an independent Bernoulli ran-
dom variable, and all other atoms have probability zero. That is, many facts are assumed to be impossible, although
they actually have some unknown probability in [0, 1].

In this paper, we revisit the CWA of probabilistic databases, and observe that the CWA is violated in the deployment
of these systems, which makes it problematic to reason, learn, or mine on top of these databases. We will argue the
following salient points in detail. First, query answering under the CWA does not take into account the effect the open-
world can have on the query probability. This makes it impossible to distinguish queries whose probability should
intuitively differ. Second, knowledge bases are part of a larger machine learning loop that continuously updates beliefs
about facts based on new evidence. From a Bayesian learning perspective [17], this loop can only be principled when
learned facts have an a priori non-zero probability. The CWA does not accurately represent this mode of operation
and puts it on weak footing. Third, the CWA is problematic for higher level tasks that one is usually interested
in performing on probabilistic databases, including some principled approaches to knowledge base completion and
mining. Finally, we note that these issues are not temporary: it will never be possible to complete probabilistic
knowledge bases of even the most trivial relations, as the memory requirements quickly become excessive. This
already manifests itself today: statistical classifiers output facts at a high rate, but only the most probable ones make
it into the knowledge base, and the rest is truncated, losing much of the statistical information. For example, 99% of
the facts in NELL have a probability larger than 0.91.

We propose a new semantics for probabilistic knowledge bases to address these problems, based on the open-world
assumption (OWA). In contrast to the CWA, the OWA does not presume that the knowledge of a domain is complete,
and as a consequence, all open atoms remain possible. Our proposal for open-world probabilistic databases (Open-
PDBs) builds on the theory of imprecise probabilities, and credal sets [18], to allow interval-based probabilities for
open atoms. OpenPDBs define a probability threshold to determine which facts make it into the knowledge base,
which is motivated by the mode of operation in systems that learn knowledge bases. In OpenPDBs, all facts in the
open world must have a lower probability, which bounds their contribution to the probability of possible worlds.
This data model provides more meaningful answers, in terms of upper and lower bounds on the query probability.
Throughout this paper, we assume a finite domain, but we include a discussion of probabilistic reasoning with a
possibly infinite number of objects as well as other recent extensions in the related work section.

The organization of this paper is as follows. Section 2 is dedicated to preliminaries, where we provide an overview
on logics, databases, and the query languages that are relevant to our study. This section also includes a brief back-
ground on some complexity classes which are central to this paper. In Section 3, we recall (tuple-independent)
probabilistic databases and analyze the CWA, and its implications in practice, based on the above-mentioned desider-
ata. In Section 4, we introduce OpenPDBs, and discuss how this model evaluates in practice. The decision problems
regarding probabilistic query evaluation are introduced in Section 5 with an overview of existing results. Section 6
contains all the data complexity results, and Section 7 all the combined complexity results obtained in this paper. We
review the related work in Section 8, and locate our approach in the existing literature. We conclude with discussions
for future work and concluding remarks. For presentation purposes, we defer the proofs to the appendix of this paper.

This work is based on a conference paper which appeared first in KR 2016 [19], and later also as an abridged report
in IJCAI 2017 [20]. This paper extends the conference version with all technical preliminaries and proof details. We
also provide a complete picture for our complexity landscape, by including an analysis on the combined complexity.

2

Most of these results appeared earlier, as part of the dissertation of the first author [21].

2. Preliminaries

We recall first-order logic and databases with a special focus on the query answering problem, and various query
languages. We conclude by providing some complexity background that is relevant for this paper.

2.1. Logic and Notation

We focus on the function-free fragment of first-order logic (FOL) and assume a finite domain. A relational vocab-
ulary o consists of finite sets R of predicates, C of constants, and a (possibly infinite) set V of variables. The function
ar : R — N associates a natural number to each predicate R € R that defines the (unique) arity of R. A term is either
a constant or a variable. An atom is of the form R(sy, ..., s,), where R is an n-ary predicate, and sy, ..., s, are terms.
A ground atom (also called fact, record, or tuple) is an atom that contains only constants as terms.

First-order formulas are built from atoms inductively via negation, conjunction, disjunction, existential quantifi-
cation, and universal quantification as usual, using the syntax rule:

D®=R(sp,....5) | -® | ®AD | OVD | Ixd | Yx.D,

where R(sy, ..., s,) is an atom, and x is a variable. We express implication ® - ¥ = -® V¥; truth T = ® vV ~®; and
falsity L = ® A =@, as usual.

A formula is quantifier-free if it does not use a quantifier. A variable x in a formula @ is quantified, or bound
if it is in the scope of a quantifier; otherwise, it is free. We use a vector notation to denote a sequence of variables
X1,...,X; by %, and use ®(¥) to represent a formula ® with free variables X. A (first-order) sentence is a first-order
formula without any free variables, also called a closed formula. A formula is positive (or monotone) if it does not
contain negations, but can contain the truth constant T. A literal is either an atom or its negation. A disjunctive clause
is a disjunction of literals and a conjunctive clause is a conjunction of literals.

The semantics of first-order logic over finite domains can be defined in terms of Herbrand interpretations [22].
The Herbrand base of a relational vocabulary o is the set of all ground atoms that can be constructed from the set of
predicates (R) and set of constants (C). An interpretation is then a truth-value assignment to all the ground atoms in
the Herbrand base. An interpretation w is a model of formula @, denoted by w | @, if w satisfies @, defined in the
usual way.

Let FO be the class of first-order formulas. The class of existential first-order formulas (AFO) consists of first-order
formulas of the form AX.O(%); the class of universal first-order formulas (YFO) consists of first-order formulas of the
form YX.®(%), where @ is any Boolean combination of atoms. The class of formulas in existential conjunctive normal
form (ACNF) consists of first-order formulas of the form AX.®(%); the class of formulas in universal conjunctive
normal form (YCNF) consists of first-order formulas of the form YX.®(X), where in both cases, ® is a conjunction of
disjunctive clauses. The class of formulas in existential disjunctive normal form (ADNF) consists of formulas of the
form JX.®(X); the class of formulas in universal disjunctive normal form (YDNF) consists of formulas of the form
Y X.®(X), where in both cases, @ is a disjunction of conjunctive clauses. The class of formulas in conjunctive normal
form (CNF) consists of ACNF and YCNF formulas. The class of formulas in disjunctive normal form (DNF) consists
of ADNF and YDNF formulas. We also write k<CNF, or kDNF, to denote the class of formulas, where k is the maximal
number of atoms that a clause can contain.

2.2. Databases and Query Languages

Relational databases [23] are standard tools for data management. They provide sophisticated means for storing,
processing, and querying data sources. Intellectual roots of database theory are in first-order logic [24]; in particular, in
finite model theory [25]. We thus adopt a model-theoretic perspective and view a database as a Herbrand interpretation
and denote it by D.

A classical representation of a relational database is in terms of database tables, which organize atoms relative to
the relations. Each table corresponds to a predicate and its rows correspond to ground atoms of that predicate, which
are also called records, facts, or tuples. For example, Table 1 consists of two relational database tables. The atoms

3

Table 1: The relational database D, represented in terms of relational database tables. Each row is interpreted as a ground atom. For example, the
first row in the left table is interpreted as StarredIn(will_smith, ali).

Starredin Couple
will_smith ali arquette cox
arquette scream pitt jolie
pitt mr_ms_smith pitt aniston
jolie mr_ms_smith kunis kutcher

that appear in a table are mapped to true, while ones not listed in any of these tables are mapped to false, according
to the CWA [16]. Similarly, a database D is sometimes represented as a set that contains all ground atoms mapped to
true. For instance, the database from Table 1 is given as:

D,, = {StarredIn(will_smith, ali), StarredIn(arquette, scream), . . ., Couple(kunis, kutcher)}.

The most fundamental task in databases is query answering; that is, given a database D and a query, i.e., a formula
O(xy, ..., x,) of first-order logic, to find all substitutions (answers) [x;/ay, ..., x,/a,] for free variables such that
D E ®[xi/ay,...,x,/a,]. We focus on the special case called (Boolean) query evaluation, that is, given a database D
and a closed first-order formula ®@, to decide whether D | ©.

There exists a plethora of query languages in the literature. Classical database query languages range from the
well-known conjunctive queries to arbitrary first-order queries, which we briefly recall. A conjunctive query (CQ) over
o is an existentially quantified formula Jx; ... x,.¢, where ¢ is a conjunction of atoms constructed from vocabulary o.
A union of conjunctive queries (UCQs) is a disjunction of conjunctive queries over the same free variables. Consider,
for example, the query:

Q1 (x,y) = Iz StarredIn(x, z) A StarredIn(y, z) A Couple(x, y),

which asks for couples that starred in the same movie. This formula is an existentially quantified conjunction of
atoms, i.e., a conjunctive query. Following common convention, we sometimes write the atoms as a comma-separated
list, and drop the existential quantifiers:

01(x,y) = StarredIn(x, z), StarredIn(y, z), Couple(x, y).

Answers to such queries are tuples of constants from the database that match the query. For example, D,, has only
one answer to Q1(x,y), i.e., [x/pitt, y/jolie]. Throughout the paper, we focus on Boolean queries, and on the query
evaluation problem. Answers to such queries are either true or false. For example, the query:

0, = Jx,y, z StarrediIn(x, z), StarredIn(y, z), Couple(x, y),

returns true on the database D,, since there is a match for the query, i.e., [x/pitt, y/jolie, z/mr_ms_smith].
Note that the class UCQ corresponds to positive ADNF sentences. We also refer to unions of YCNF sentences,
denoted UCNF, which is a disjunction of YCNF sentences. For example, the query:

Ovenr = Y, y, z (Actor(x) v StarredIn(y, z)) A (Starredin(x, y) v Male(x)),
is in YCNF and can be rewritten into UCNF as:
Qucenr = Y,y Actor(x) A (Starredin(x, y) vV Male(x)) V Vx, y, z StarredIn(y, z) A (Starredin(x, y) v Male(x)).

This concludes our overview on databases and query languages.

2.3. Complexity Background

We assume familiarity with the basics of complexity theory [26], and introduce the complexity classes that are
most relevant to the presented results.

FP is defined as the class of functions f : {0, 1}* — {0, 1}* computable by a polynomial-time deterministic Turing
Machine. The function class #P is central for problems related to counting [27], and contains the computation prob-
lems that can be expressed as the number of accepting paths of a nondeterministic polynomial-time Turing machine.
The canonical problem for #P is #SAT, that is, given a propositional formula ¢, the task of computing the number of
satisfying assignments to ¢.

In this paper, we focus on decision problems and the associated complexity classes. Intuitively, the complexity
class PP [28] can be seen as the decision variant of #P. Formally, PP is the set of languages recognized by a polynomial
time nondeterministic Turing machine that accepts an input if and only if more than half of the computation paths are
accepting. The canonical problem for PP is MAJSAT, that is, given a propositional formula ¢, the problem of deciding
whether the majority of the assignments to ¢ are satisfying. Many problems in the Al literature, e.g., decisions about
probabilistic inference in Bayesian networks, are PP-complete [29].

PP is closed under truth table reductions [30]; in particular, this implies that PP is closed under complement, union,
and intersection. Due to Toda’s celebrated result, it is known that PH C P*P; that is, a polynomial time deterministic
Turing machine with access to a #P oracle is capable of deciding all problems in the polynomial hierarchy [31]. The
close connection between PP and #P is also given by Toda’s theorem, which proves P?¥ = P#P [32].

Other classes of interest are NPP¥ and PPN, which intuitively combine search and optimization problems. A
canonical problem for PPN can be obtained by extending MAJSAT with quantified formulas [33]. A natural canonical
problem for NP?* is EMAJSAT [34]; that is, given a propositional formula ¢ and a set of distinguished variables ¥
from ¢, is there an assignment u to X-variables such that majority of the assignments 7 that extend u satisfies ¢.
The class NP is important for probabilistic inference, and planning tasks. For instance, maximum a posteriori
probability (MAP) inference in Bayesian Networks is NPPP-complete [35]. The relation of these complexity classes
to other classes can be summarized as follows:

P c NP c PP ¢ PP"" c P =P" C NP™ CPSeace C Exr

For decision classes, many-one reductions are standard. On the other hand, for classes, such as #P, different
types of reductions are widely used. The most common reductions for #P are the so-called polynomial time Turing
reductions, also known as Cook reductions [36]. All of our results in this paper are given under standard many-one
reductions, except the dichotomy results, which are given under polynomial time Turing reductions. Hence, we will
implicitly assume many-one reductions, unless explicitly stated otherwise.

When analyzing the complexity of query evaluation, our main focus is on data complexity which is calculated
only based on the size of the database, i.e., the query is assumed to be fixed, as usual [37]. The combined complexity
of query evaluation is calculated by considering all the components, i.e., the database, and the query, as part of the
input. We also study (bounded-arity) combined complexity (or, simply bounded-arity complexity) which assumes that
the maximum arity of the predicates is bounded by an integer constant. Note that both data and combined complexity
are fairly standard in database theory. We follow standard conventions for hardness and completeness of problems in
data and combined complexity (Chapter 6, [25]).

3. Probabilistic Databases

The literature on probabilistic databases is rich and there are many different types of probabilistic data mod-
els; for details, see e.g. [14, 38]. We adopt the simplest probabilistic database model, which is based on the fuple-
independence assumption. Despite its limitations, the tuple-independent PDB model is very powerful. For instance,
inference in Markov Logic Networks can be reduced to query evaluation in PDBs [39], and analogous results are
known for a restricted class of ontology languages [40]. Tuple-independent probabilistic databases generalize classi-
cal databases by associating every database atom with a probability value.

Definition 3.1. A probabilistic database (PDB) P for a vocabulary o is a finite set of tuples of the form (z : p), where
t is a ground atom over o and p € (0, 1]. Moreover, if {(t : p) € P and (t : gq) € P, then p = q.

5

Table 2: The PDB P,, = {(StarredIn(will_smith, ali) : 0.9), ..., (Couple(kunis, kutcher) : 0.7)} represented in terms of database tables. Each row
is interpreted as a probabilistic atom (7 : p), where 7 is a (ground) atom and p represents its probability.

Starredin P

will_smith ali 0.9 Couple P
will_smith sharktale 0.8 arquette cox 0.6
jada_smith ali 0.6 pitt jolie 0.8
arquette scream 0.7 thornton jolie 0.6
pitt mr_ms_smith | 0.5 pitt aniston | 0.9
jolie mr_ms_smith | 0.7 kunis kutcher | 0.7
jolie sharktale 0.9

Table 2 shows an example PDB where each row in a table represents an atom, and each atom is now also associated
with a probability value. A PDB can be viewed as a factored representation of exponentially many possible worlds
(databases), each of which has a probability of being the true world. Both in the AI [41, 42, 43] and database liter-
ature [14], this is known as the possible world semantics. In PDBs, each database atom is viewed as an independent
Bernoulli random variable, by the tuple-independence assumption. Each world is then simply a classical database,
which sets a choice for all database atoms in the PDB. The CWA forces all atoms that are not present in the database
to have probability zero.

Definition 3.2. A PDB % for vocabulary o induces a unique probability distribution Pp over possible worlds D such
that

Pr(D) = [[Pe(d | |1 - Ppo),

€D 1¢D
where the probability of each tuple is given as:
_(p ift:pyeP
Pp(t) = { 0 otherwise.

Whenever the probabilistic database is clear from the context, we simply write P(¢), instead of Pp(f). We say that a
database is induced by a PDB P if it is a possible world (with a non-zero probability) of P.

Observe that the choice of setting Pp(#) = O for facts missing from PDB % is a probabilistic counterpart of the
CWA. Let us now illustrate the semantics of PDBs on a simple example.

Example 3.3. Consider the PDB #,, from Table 2 and the database:
D,, = {StarredIn(will_smith, ali), .. ., Couple(kunis, kutcher)},
as given in Table 1. The probability of the world D,, can then be computed as follows:
P(®»,,)=09-1-0.8)---(1-0.6)-0.9-0.7.

If we further add the fact Couple(will_smith, aniston) to D,,, then P(D,,) = 0 because the additional fact does not
appear in the PDB #,,,.

Queries are interpreted through the possible world semantics, which amounts to walking through all the possible
worlds, and summing the probabilities of those worlds that satisfy the query.

Definition 3.4 (query semantics). Let Q be a Boolean query and # be a PDB. The probability of Q in the PDB P is
defined as

Pr(Q) =) Pp(D),
DEQ

where D ranges over all possible worlds.

In general, there are exponentially many worlds, and this makes probabilistic query evaluation a computationally
very demanding task, but as we discuss later, in certain cases, computing the query probability efficiently is known to
be feasible.

Consider for instance the PDB #,,, and the query Q = Jx,y, z Starredin(x, y), Couple(x, z). To evaluate Q, we
can naively check, for each world D, whether D | Q, and sum over the probabilities of the worlds, for which the
satisfaction relation holds. However, it is easy to compute the probability of the above query in a different way.
Notably, this is the case for any PDB and not only for our toy PDB in data complexity. We will later look into
existing results on query evaluation in order to provide more insights on easy, and hard queries. We now evaluate the
probabilistic database model and its use in practice, which constitutes our main motivation.

3.1. Probabilistic Databases in Practice

We evaluate PDBs on several criteria, and illustrate certain limitations, which are inherent to the semantics of
PDBs and the widely employed assumptions. Most importantly, the CWA presumes complete knowledge about the
domain being represented, and this assumption is warranted in many cases [16]. For example, when a flight does not
appear in an airline database, we can be sure that it never took place. In what follows, we assess the adequacy of the
CWA for probabilistic databases.

3.1.1. Distinguishing Queries in PDBs
The fact that many queries evaluate to probability zero makes it impossible to distinguish a large class of queries,
which should intuitively differ, as we illustrate next.

Example 3.5 (specificity). Consider the PDB #,, from Table 2 and the following queries:

Q(x,y) = Jz StarredIn(x, z) A StarrediIn(y, z) A Couple(x, y),
0, = Ax,y, zStarredIn(x, z) A Starredin(y, z) A Couple(x, y).

Let us consider the queries Q,(pitt,jolie) and Q,. From a logical perspective, Q;(pitt,jolie) entails Q», i.e.,
Q1 (pitt, jolie) = Q». In other words, the pattern specified by Q(pitt, jolie) is only a special case of the pattern specified
by O». Hence, the reasonable expectation in an open-world setting is that P(Q») is most likely to have a larger prob-
ability than P(Q,(pitt, jolie)), since there exist a large number of couples, for which we do not yet have information,
and that could satisfy the query Q,. Under the CWA, however, P(Q,) = P(Q;(pitt, jolie)) = 0.28 in the PDB #,,.

Example 3.5 shows that query semantics under the CWA fails to distinguish a query from a particular instance of
this query. In our next example, we consider two logically incomparable queries that have varying level of support in
the database.

Example 3.6 (support). Consider the queries Q;(will_smith,jada_smith) and Q,(thornton, aniston). The former
query is supported by two facts in the PDB #,, (both people have starred in the same movie), while the latter
query is supported by none, which should make it less likely. Conversely, the number of tuples to be added to
the PDB %, to satisfy Q;(thornton, aniston) are more than the number of tuples to be added to the PDB #,, to satisfy
Q1 (will_smith, jada_smith). Observe, however, that

P(Q;(thornton, aniston)) = P(Q; (will_smith, jada_smith)) = 0,
that is, both of the queries evaluate to probability zero under the CWA.

Example 3.6 shows that queries that do not have a matching answer in the database are viewed to be the same
by the query semantics, even though these queries clearly have different levels of support in the database. The fol-
lowing example takes these observations to the extreme, by comparing the probabilities of a satisfiable query with an
unsatisfiable query.

Example 3.7 (satisfiability). The query StarredIn(x, y) A =StarredIn(x, y) is an unsatisfiable query, whose probability
is zero on any database. The query Q;(will_smith, jada_smith), on the other hand, is a satisfiable query, but evaluates
to the same probability (i.e., zero) on the PDB #,,.

The CWA forces a strict view on query probability, and as a result, it is not always possible to distinguish a
satisfiable query from an unsatisfiable one, by comparing their probabilities.

7

3.1.2. Learning, Mining, and Knowledge Base Completion in PDBs

We analyze the consequences of the CWA in the context of higher-level tasks that one is usually interested in
performing on probabilistic databases. These tasks range from learning, or mining to tasks such as knowledge base
completion, as we detail in the sequel.

Let us consider the Bayesian learning paradigm, which is a popular view on machine learning, where the learner
maintains beliefs about the world as a probability distribution, and updates these beliefs based on data, to obtain a
posterior distribution. Probabilistic data (and knowledge) bases can be cast into this principled framework, as follows.

Suppose that we are building a probabilistic knowledge base from scratch. The first step of Bayesian learning is to
come up with a prior belief about the facts in the database. Next, as we read the web, we incorporate more evidence
into our distribution. For example, suppose we observe two web pages, d, and dj, and are interested in querying for
0, as defined above. Then, we may have

P(Q») = 0.01, P(Q» | d,) = 0.09, P(Q» | dy,dp) = 0.08,

that is, our prior belief is that the probability of O, is 1%, but after observing the information on web page d,, that
probability becomes 9%. When additionally observing web page d;, giving evidence to the contrary, the belief drops
to 8%.

This sequence is a typical run of Bayesian learning. Unfortunately, it is not the mode of operation for large-scale
PDBs as they currently function. A typical run would instead be

P(Q») =0, P(Q | do) = 0.09, P(Q | dg, dp) = 0.08,

The difference is subtle, but important. The first induction, from a belief of 0% to 9% is impossible to obtain from a
single probability distribution P and violates the axioms of belief update. When O, is impossible according to P, it
remains impossible after observing evidence. Hence, the Bayesian learning paradigm fails in practice. More precisely,
given a PDB at time #, such systems gather data D' to obtain a new model P'*!(.) = P(.| D"). Systems continuously
add facts f, that is, set P"*!(f) > 0, whereas previously P’(f) = 0; an impossible induction for Bayesian learning'.

Differently, let us consider knowledge base completion, i.e., the task of predicting new facts based on the existing
facts in the knowledge base. One approach to knowledge base completion is to learn a probabilistic model from
training data. Consider for example a probabilistic rule [12, 13] of the form

Costars(x, y) & StarredIn(x, z), Starredin(y, z), Couple(x, y).

encoding the fact that if the query StarredIn(x, z), StarredIn(y, z), Couple(x, y) succeeds on a database, there is an
80% probability that we should derive the fact Costars(x, y). To evaluate the quality of this rule to predict the Costars
relation, the standard approach would be to take the current probabilistic database together with labeled training data:

D = {Costars(will_smith, jada_smith), Costars(pitt, jolie)},

and quantify the conditional likelihood of the rule [44]. However, the rule predicts the probability zero for the fact
Costars(will_smith, jada_smith), as it is missing from the database. The rule gets the worst likelihood score of zero,
regardless of its performance on other facts in the training data. Indeed, the semantics tells us that the absence of
a single tuple can make Costars(will_smith, jada_smith) impossible, invalidating the entire rule, which is otherwise
highly accurate.

Another high-level task is to mine frequent patterns in the knowledge base. Given the probabilistic database the
goal would, for instance, be to find interesting patterns, such as the pattern that many couples star in the same movie,
and report it to the data miner. Again, the CWA will underestimate the expected frequencies of these patterns, and
stand in the way of progress [45].

! Our goal is to highlight the consequences of the CWA in the Bayesian learning paradigm. We acknowledge, however, that the problems related
to fact acquisition in knowledge bases are deeper. One may argue, for instance, that fact acquisition should be interpreted as another type of belief
revision task, which is not necessarily Bayesian. While such discussions are very important, they are beyond the focus of the current paper, and
require an independent, and a dedicated study.

Finally, we note that most of the automatically constructed PDBs are hardly probabilistic in the sense that most
facts have a very high probability (highly skewed towards one), placing PDBs into an almost crisp setting. The
underlying reason is that these systems retain only a small fraction of the discovered facts. Facts with a probability
below a threshold are discarded. This mode of operation is not an oversight, but in most cases, a necessity. It is not
always possible to retain all facts. Consider, for instance, the Sibling relation over a domain of 7 billion people. Storing
a single-precision probability for all Sibling facts would require 196 exabytes of memory; two orders of magnitude
more than the estimated capacity available to Google [46]. Moreover, the distribution of probabilities for such a
closed-world database would be vastly different from the current ones, i.e., highly skewed towards zero. This issue
of truncating and polynomial blow-up is inherent to probabilistic knowledge bases and needs to be acknowledged in
their semantics.

4. Open-World Probabilistic Databases

We observe that large-scale knowledge bases are incomplete by their nature and systems used to build such knowl-
edge bases should incorporate these characteristics into the query semantics. A feasible approach is to relax the
probabilities of facts that are not in the database to a default probability interval, which is very different from the
closed-world assumption of PDBs that requires the probabilities of such facts to be zero. Our proposal on open-world
probabilistic databases builds on the theory of imprecise probabilities to allow such default, interval-based proba-
bilities for the atoms that are not in the database. Syntactically, an open-world probabilistic database is a pair of a
probabilistic database and a predefined threshold value.

Definition 4.1 (syntax). An open-world probabilistic database (OpenPDB) is a pair G = (P, 1), where P is a proba-
bilistic database and A is any rational number in [0, 1].

The semantics of OpenPDBs is based on completing probabilistic databases. Intuitively, an OpenPDB denotes a
partial specification over a vocabulary and needs to be completed by assigning a probability value from an interval
[0, A] to each of the open atoms.

Definition 4.2 (completion). A A-completion of a probabilistic database P is another probabilistic database that is
obtained as follows. For each atom ¢ that does not appear in , we add an atom (z : p) to P for some p € [0, 1].

An OpenPDB induces a set of PDBs, each of which differs in the probabilities of the open atoms. Therefore,
while a closed probabilistic database induces a unique probability distribution, an OpenPDB induces a (credal) set of
probability distributions. A credal set is a closed convex set of probability distributions over a shared set of random
variables.

Definition 4.3 (OpenPDBs). An open probabilistic database G = (P, A) induces a credal set of probability distribu-
tions Kg such that distribution P belongs to Kg if and only if P is induced by some A-completion of the PDB #.

Intuitively, an OpenPDB represents all possible ways to extend a PDB with new atoms from the open world, with
the restriction that the probability of these unknown atoms can never be larger than 4. When it is clear from the
context, we will say completion instead of A-completion.

Example 4.4. Consider again the PDB #,, from our running example. The pair G, = (P, 0.5) denotes an OpenPDB
where open tuples can have the probability at most 0.5, shown in Table 3. Clearly, there are infinitely many possible
completions of G.. Consider, for instance, the following completions:

Po =P U{t:0)]|1isan open atom in the PDB P,,},
Pos = Pm Ut :0.5) | tis an open atom in the PDB Pp,}.

These completions are special since they uniformly set all of the open atoms to the same probability value. These
two completions induce different probability distributions, both of which belong to Kg, .

Query semantics has to also take into account sets of probability distributions, and provide query probabilities in
terms of upper and lower probability values.

Table 3: The OpenPDB G, = (P, 0.5) induces an infinite set of PDBs. Rows depicted in orange color represent open atoms that can take on any
rational probability value from the default probability interval [0, 0.5].

StarredIn P
wil_smith ali 0.9 Couple P
will_smith sharktale 0.8 arquette cox 0.6
jada_smith ali 0.6 pitt jolie 0.8
arquette scream 0.7 thornton jolie 0.6
pitt mr_ms_smith 0.5 pitt aniston 0.9
jolie mr_ms_smith 0.7 kunis kutcher 0.7
jolie sharktale 0.9 will_smith jada_smith | [0, 0.5]
pitt ali [0, 0.5] arquette jolie [0, 0.5]
pitt fightclub [0, 0.5] pitt kutcher [0, 0.5]
arquette fightclub [0, 0.5] [0, 0.5]
[0, 0.5]

Definition 4.5 (query semantics). Let O be a Boolean query and G be an OpenPDB. The probability interval of Q in
the OpenPDB G is defined as Kg(Q) = [EQ(Q), Pg(Q)], where

€

Pg(Q) = minP(Q) and Pg(Q) = max P(O).

Let us illustrate these concepts on an example.

Example 4.6. Consider the OpenPDB G, = (#,,,0.5) and an open atom 7. We have Eg{_(t) = 0and l—)gc(l) = A by the
query semantics. For instance, the ground query Q = StarredIn(pitt, fightclub) evaluates to probability zero in ,,. As
for G., it is easy to see that Eg[.(Q) =0 and ﬁg{_(Q) = (.5. The lower probability of Q remains the same due to the
completion that assigns all open atoms the probability 0, while the upper probability increases due to the completion
%Po.5, shown earlier.

Our approach is analogous to the open world assumption defined over classical databases [16], where a database
no longer corresponds to a single interpretation, but rather to the set of interpretations that extend it. A similar effect
is achieved by OpenPDBs: an open probabilistic database no longer corresponds to a single distribution, but to the set
of distributions that extend it. In restricting the probabilities of open atoms to lie in [0, 1], OpenPDBs follow a rich
literature on interval-based probabilities [47], which is also employed in credal networks [48]. Note also that setting
a default probability interval is a form of default reasoning [49].

4.1. OpenPDBs in Practice

We discuss the implications of the open-world semantics, and compare it to closed-world PDBs. In particular, we
revisit the motivating examples provided in Section 3, and highlight the differences in OpenPDBs.

4.1.1. Distinguishing Queries in OpenPDBs

In Section 3, we argued that the closed-world semantics fails to distinguish a class of queries which intuitively
differ. Let us evaluate these queries in OpenPDBs, starting with the problem of distinguishing different levels of
specificity.

Example 4.7 (specificity). Consider again the following queries:

Q1(x,y) = Jz StarredIn(x, z) A StarredIn(y, z) A Couple(x, y),
0, = StarredIn(x, z), StarredIn(y, z), Couple(x, y).

In Example 3.5, we have noted that both the query Q;(pitt, jolie) and Q, evaluate to the same probability in the
PDB #,,. Since Q(pitt, jolie) E Q», we argued that it was more reasonable to expect that P(Q;) > P(Q;(pitt, jolie)),

10

assuming our knowledge is not complete. This is indeed the case for the OpenPDB G. = (¥, 0.5) for upper prob-
abilities: Pg (Q2) > Pg,(Q;(pitt, jolie)) since there are many worlds with non-zero probability that entail O, but not
QO (pitt, jolie). Notice that the lower probabilities remain unchanged.

It is hence possible to distinguish a query from a particular instance of this query, by comparing their respective
upper probabilities in OpenPDBs. A similar argument applies to queries with varying level of support.

Example 4.8 (support). Recall that Q; (will_smith, jada_smith) has more support than P(Q, (thornton, aniston)) in P,,,
as less additional facts are needed in P, to satisfy Q(will_smith,jada_smith). Both queries evaluate to probability
zero in P, as identified in Example 3.6. Let us evaluate the queries in the OpenPDB G, = (., 0.5), where the upper
probability of open facts is bounded by 0.5, and hence lower than the probability of existing facts in #,,. Then,

P(Q, (will_smith, jada_smith)) > P(Q, (thornton, aniston)) > 0,

as P, requires fewer additional facts in a completion to satisfy Q;(will_smith, jada_smith).

Thus, it is possible to distinguish queries that do not have a matching answer, as such queries typically have
varying levels of support in the database. We also observed that an unsatisfiable query is, in some cases, as likely as a
satisfiable one in the closed world. How are such queries evaluated in the open world?

Example 4.9 (satisfiability). Recall from Example 3.7 the query Q;(will_smith, jada_smith) as well as the query
StarredIn(x, y) A =StarredIn(x, y) evaluates to probability zero on the PDB #,,. In the open-world setting, the upper
probability of a satisfiable query is always greater than the upper probability of an unsatisfiable query. Clearly, any
unsatisfiable query still has a zero upper probability, because it is false in all completions.

These synthetic examples underline the difference in the semantics of PDBs and OpenPDBs. Do we really en-
counter similar examples in real-world data, which can benefit from an open-world perspective? To elaborate more
on this question, we have extracted a portion from the NELL database concerning movies, actors, directors, etc. We
conclude this subsection with this example.

Example 4.10 (real-world data). Consider the following queries constructed based on a portion of the NELL database:
Q) = Actor(pattinson) A Workedfor(pattinson, hardwicke) A Director(hardwicke),

0, = dx Actor(x) A StarredIn(x, trainspotting) A Movie(trainspotting) A —Director(x),
Q5 = dx Actor(pattinson) A Workedfor(pattinson, x) A Director(x).

All of the above queries have probability zero on the NELL database, yet we know they correspond to factually
true statements. These queries, however, can be distinguished in an open-world setting, as they have varying levels of
support. For example, we observe that Q; entails Qsz, and posing these queries in the open-world setting, we indeed
obtain P(Q3) > P(Q) for any non-zero threshold A. For instance, P(Q3) = 0.82 and P(Q;) = 0.51 for A = 0.3. The
query O, finds actors that starred in the movie Trainspotting and did not direct a movie. Interestingly, there is no
world satisfying this query in the (closed-world) NELL database. Evaluating Q, in OpenPDBs yields P(Q5) = 0.98
and P(Q,) = 0.78 with thresholds 0.7 and 0.3, respectively. These answers are clearly more in line with what one
would expect.

4.1.2. Learning, Mining, and Knowledge Base Completion in OpenPDBs

We argued that the Bayesian learning paradigm is not in line with the CWA: as all open atoms are assigned
the probability zero by the CWA, the principles of Bayesian learning are continuously violated while extending the
knowledge base with new facts. The open-world semantics avoids this problem since (i) our initial belief consists of
a set of probability distributions instead of a single one, and (ii) open atoms can take on probabilities from a default
interval, i.e., not necessarily the probability zero.

We also argued that CWA permeates knowledge base completion, mining, and evaluation tasks, where we want to
learn new facts to add to the database, using the facts that are already present. Recall the probabilistic rule [12, 13]:

Costars(x, y) ﬁ Starredin(x, z), StarredIn(y, z), Couple(x, y),

11

stating that if the query StarredIn(x, z), Starredin(y, z), Couple(x, y) succeeds on a database, there is an 80% probabil-
ity for deriving Costars(x, y). Unlike PDBs, we do not get a prediction score zero for Costars(will_smith, jada_smith)
in OpenPDBs, as there are completions that contain this fact. Thus, the rule does not get the worst likelihood score of
zero, but a higher likelihood, based on any completion that contains the fact Costars(will_smith, jada_smith).

Finally, while motivating the need for open-world probabilistic databases, we argued that the issue of truncating
and polynomial blow-up is inherent to probabilistic knowledge bases, and hence needs to be acknowledged in their
semantics, since it is not always possible to retain all facts in the database whose probability fall below a certain
threshold. The A-value in OpenPDBs precisely represents this threshold.

5. Probabilistic Query Evaluation

Computing the probability of a query is a computationally demanding task in PDBs. We recall existing results for
decision problems in PDBs and then present our results on OpenPDBs.

5.1. Query Evaluation in Probabilistic Databases

Dalvi and Suciu proved a dichotomy result for probabilistic query evaluation that classifies UCQs as either being
computable in polynomial time, or #P-hard [50]. We are interested in the decision problem of probabilistic query
evaluation, as defined next.

Definition 5.1 (probabilistic query evaluation). Given a PDB £, a query Q and a threshold value p € [0, 1), prob-
abilistic query evaluation, denoted PQE, is to decide whether Pp(Q) > p. We write PQE(Q) to denote probabilistic
query evaluation for a fixed query Q. PQE can be defined over a particular query language instead of a specific query,
in which case, we write PQE(L) to define PQE on the class £ of queries.

Whenever the probabilistic database is clear from the context, we simply write P(Q) in place of Pp(Q).

Remark 1. 1t is important to note that the decision problems PQE(Q) and PQE(L) are different. The former is more
specific than the latter. Specifically, we can define the classes of instances captured by the respective decision problems
as follows:

PQE(Q) = {Decide whether Pp(Q) > p? | P is a PDB, p € [0, 1)},
PQE(L) = {Decide whether Pp(Q) > p? | Pisa PDB, p € [0,1), Q € L}.

That is, PQE(L) = Uger PQE(Q).

Remark 2. For our complexity analysis, we follow standard notions of data, and (bounded-arity) combined complex-
ity, as explained in Section 2: data complexity of probabilistic query evaluation is calculated only based on the size
of the probabilistic database, i.e., the query is fixed. The combined complexity of query evaluation is calculated by
considering all the components, i.e., the probabilistic database, and the query are part of the input. For (bounded-arity)
combined complexity, we additionally assume that the maximum arity of the predicates is bounded by an integer con-
stant®>. Within the scope of this paper, we always assume that the threshold value p € [0, 1), and the probability values
from the interval [0, 1] are always given as rational numbers. We also allow the threshold value p to depend on the
input. This is a reasonable assumption since the probability computation necessarily depends on the data.

We defined the decision problems based on the comparison operator >, but since we focus on probabilistic
databases, where the probabilities are always directly encoded in the input atoms, it is always possible to reduce
the test for > to the test for >, and vice versa.

Lemma 5.2. For any PDB P, and query Q, there exists a value € which is polynomial in the size of P such that
deciding P(Q) > p can be reduced to deciding P(Q) > p + €, and deciding P(Q) > p can be reduced to deciding
P(Q) > p — € in polynomial time. Similarly, deciding P(Q) < p can be reduced to deciding P(Q) < p —¢€, and deciding
P(Q) < p can be reduced to deciding P(Q) < p + € in polynomial time.

2Clearly, PQE(Q) only applies to data complexity, since the query is fixed by definition. PQE(L) applies to all measures considered, e.g., in
data complexity, we are free to choose any query Q € L for PQE(L), but the query must still be fixed.

12

@

(@) Ou = Jx,y G(x) A R(x, y) A D(x) (b) Onn = 3x,y C(x) A R(x,y) A D(y)

Figure 1: Venn diagram for the queries Ony (non-hierarchical) and Qg (hierarchical).

We state Lemma 5.2 for PDBs, but it is easy to generalise this to many other related models, including OpenPDBs.
This lemma gives us some liberty in the use of the operators > and >. Hence, in some proofs, we will use, e.g., > and
> interchangeably.

The data complexity of query evaluation depends heavily on the structure of the query. It is common to say that
a query is safe if the computation problem is in FP, and unsafe, otherwise. Probabilistic query evaluation, as defined
here, is the corresponding decision problem. It is easy to see that this problem is either in P or it is PP-complete, as a
corollary to the original result of Dalvi and Suciu.

Corollary 5.3 ([50]). Let Q be a UCQ. Then, PQE(Q) is either in P or it is PP-complete for PDBs in data complexity
under polynomial-time Turing reductions.

Just like the original dichotomy, this result holds under polynomial-time Turing reductions. We use the same
terminology also for the decision problem: we say that a query Q is safe if PQE(Q) is in P, and unsafe, otherwise.

Dalvi and Suciu [51] proved the small dichotomy result, which applies to a subclass of conjunctive queries. As
it gives nice insights on the larger dichotomy result [50], and allows us to introduce the basic notions relevant to this
paper, we present this result in more detail. The small dichotomy applies to all conjunctive queries without self-joins,
i.e., conjunctive queries with non-repeating relation symbols. It asserts that a self-join free query is hard if and only if
it is nonhierarchical, and it is safe, otherwise. Therefore, it is crucial to understand hierarchical and nonhierarchical
queries.

Definition 5.4 (hierarchical queries). Let Q be a conjunctive query. For any variable x that appears in the query Q,
its x-cover, denoted X, is defined as the set of all relation names that have the variable x as an argument. Two covers
X and y are pairwise hierarchical if and only if XN # 0 implies ¥ C y or § C X. A query Q is hierarchical if every
cover X, ¥ is pairwise hierarchical; otherwise, it is called nonhierarchical.

Let us consider the query Ong = 3dx,y C(x) A R(x,y) A D(y). It is easy to see that this query is not hierarchical,
since (i) the relation R occurs in both covers X and (as depicted in Figure 1b), and neither of the covers is a subset
of one another. This simple join query is already unsafe [51]. Note, however, that removing any of the atoms from
Ony results in a safe query. For example, the query dx,y C(x) A R(x,y) is hierarchical and thus safe. The query
Oy = 3dx,y C(x) A R(x,y) A D(x), as shown in Figure 1a, is yet another example of a safe query.

The intuition behind a safe query is the query being recursively decomposable into sub-queries such that each
sub-query is probabilistically independent. For example, the query Oy admits a decomposition: we can first ground
over x, which results in a query of the form Jy C(a) A R(a, y) A D(a) for a grounding [x/a]. The atoms in the resulting
query do not share a relation name or a variable, and since we additionally assume tuple-independence, it follows
that the probability of each atom is independent. Thus, their probabilities can be computed separately and combined
afterwards using appropriate rules of probability.

Note that the observation for the independence is also valid for all different groundings of Qy. For example,
the groundings Qy[x/a] and Qylx/b], are probabilistically independent, since after applying a grounding over y, we
obtain mutually disjoint sets of ground atoms. That is, once x is mapped to different constants, then all mappings
for y will result in different sets of atoms. As a result, their probabilities can be computed separately and combined
afterwards. The decomposition of the safe query Qy is depicted in Figure 2a in terms of a tree. The key ingredient

13

C(x) A R(x,y) A D(x) C(x) AR(x,y) A D(y)

A /\

C(a) A R(a,y) A D(@) C(b) AR(b,y) A D(b) C(a) A R(a,y) A D(y) C) AR, y) A D(y)

o o o ’ o o | T |
R(a, b) R(b, a) R(a, b) R, a)

(a) Different branches of the tree do not share an atom, (b) Different branches of the tree share D-atoms, which

which ensures independence. makes them dependent.

Figure 2: Decomposition trees of a safe (a) and an unsafe query (b), respectively. In each of the trees, left branch corresponds to the grounding
[x/a,y/b], and right branch corresponds to the grounding [x/b, y/a].

in this example is related to the variable x, which serves as a separator variable and allows us to further simplify
the query.

Definition 5.5 (separator variable). Let Q be a first-order query. A variable x in Q is a separator variable if x appears
in all atoms of Q and for any two different atoms of the same relation R, the variable x occurs in the same position.

For example, the query Ong has no separator variable, since neither x nor y serve as a separator variable. Intu-
itively, this means that the query cannot be decomposed into independent sub-queries. That is, two different ground-
ings Onulx/a] and Onu[x/b] are not independent for Ony, since they do not necessarily result in mutually exclusive
sets of atoms once grounded over y, as shown in Figure 2b. The small dichotomy theorem uses other rules of proba-
bility theory to further simplify the query as we illustrate next.

Example 5.6. Consider the hierarchical query Qg = Jx,y C(x) A R(x,y) A D(x). To compute the probability of Qy,
we first apply the decomposition based on the separator variable x, which yields

P(On) =1- l_[1 =Py C(c) A R(c,y) A D(c)),
ceC

Here, c ranges over the database constants, and the probability of the resulting expression can be computed by decom-
posing the conjunctions as

P(dy C(e) A R(e,y) A D(e)) = P(C(c)) - P(Ay R(c,) - P(D(c)).

The probabilities of the ground atoms C(c), D(c) can be read off from the given probabilistic database; thus, it only
remains to apply the grounding in R(c, y), which results in

Py R(c.y) = 1-[[1 - P(Rec,d)).
deC

The dichotomy for UCQs is much more intricate and a characterization of safe queries is unfortunately not easy.
Thus, an algorithm is given to compute the probability of all safe queries by recursively applying the simplification
rules on the query [50]. This algorithm is complete, i.e., when the algorithm fails on the query, then the query is
unsafe. Later, a version of the algorithm that targets YVCNF queries, called Lirt®, was proposed [52], which is also
complete for that query class.

5.2. Query Evaluation in Open-World Probabilistic Databases

We now study probabilistic query evaluation in OpenPDBs, focusing in the following decision problems that
extend probabilistic query evaluation to consider lower and upper probabilities for queries.

14

Definition 5.7 (upper, lower probabilistic query evaluation). Given an OpenPDB G, a query Q and a value p € [0, 1),
upper probabilistic query evaluation, denoted PQE, is to decide whether Pg(Q) > p and lower probabilistic query
evaluation denoted PQE, is to decide whether BQ(Q) > g. We write PQE(Q) (resp., PQE(Q)) to denote upper (resp.,

lower) probabilistic query evaluation for a fixed query Q. Both PQE and PQE can be defined over a particular query
language; thus, we write EQE(L) (resp., PQE(L)) to define ﬁQE (respectively, PQE) on the class of L queries.

OpenPDBs model an infinite set of PDBs, and it may seem like an unsurmountable task to efficiently compute the
probability intervals Kg(Q). As we show later, the problem can be simplified to consider only extremal probability
distributions that are obtained by setting the probability values of all elementary events to one of the extreme points.

Definition 5.8. Let G = (P, A) be an arbitrary OpenPDB; we call a probability distribution P € Kg an extremal
distribution if for all open atoms ¢, either P(¢) = A or P(¢) = 0 holds.

We now show that to compute the upper and lower probability bounds, it is sufficient to consider the distributions,
where open atoms can take on the probability A or 0, i.e., no intermediate choices need to be examined.

Theorem 5.9. Let G be an arbitrary OpenPDB and Q an FO query. There exist extremal distributions P, Pe Kg such
that P(Q) = P(Q), and P(Q) = Pg(Q).

Clearly, there are exponentially many extremal distributions, each of which sets the probability of (at least) one
atom to a different extreme. Thus, Theorem 5.9 suggests a naive query answering algorithm: generate all extreme
distributions P, compute P(Q), and report the minimum and maximum. This is very inefficient, as it requires expo-
nentially many calls in the number of open-world atoms. Note that the monotonicity of unions of conjunctive queries
allows us to further simplify query evaluation. In essence, we can simply choose the minimal (resp., maximal) bound
for every atom and the resulting probability for the UCQ is ensured to be minimal (resp., maximal). Thus, the lower
probabilities of conjunctive queries in OpenPDBs can be computed using a standard PDB algorithm. To compute
the upper bounds, we can construct a new PDB from the OpenPDB, by adding all the open facts with default upper
probabilities A and simply reuse standard algorithms developed for PDBs.

Theorem 5.10. Let G = (P, A) be an arbitrary OpenPDB, Q a UCQ and P, the completion that sets the probabilities
of all open tuples to A. Then, it holds that Kg(Q) = [Pp(Q), Pp,(Q)].

Observe that in OpenPDBs, we can easily recover the upper (resp., lower) probability of a query from the
lower (resp., upper) probability of its negation, as shown next.

Lemma 5.11. Let G = (P, A) be an OpenPDB and Q a first-order query. It holds that ﬁg(Q) =1- Eg(_‘Q) and
P.(Q) = 1 - Pg(=0Q).

The construction given in Theorem 5.10 is still not very efficient, as it adds all the atoms to the PDB, which grows
polynomially in the domain size. Unfortunately, this is impractical for PDBs with a large domain. Indeed, on the
Sibling example from Section 3.1.2, the upper bound would have to be computed on a 196 exabyte closed-world
PDB. Thus, an important question is whether this grounding can be avoided, as we investigate next.

Note that the lower probability of a UCQ in OpenPDBs can be computed with any closed-world PDB algorithm.
We present an algorithm, called LIFTS (Algorithm 1), which can be used to compute the upper probability of a UCQ
in OpenPDBs. LIFT% performs operations on YCNF formulas, i.e., unions of CNF formulas. More specifically, LIFTS
takes as input an OpenPDB G = (P, 1) over a domain, and a negated UCQ Q as an input, and outputs BQ(Q). Since we

can compute the upper probability of any UCQ, from the lower probability of its negation, i.e., ﬁg(Q) =1-Ps(= o)
for any query Q by Lemma 5.11, this algorithm can be used directly to compute the upper probability of a given UCQ
in OpenPDBs.

Preprocessing. The algorithm assumes that any input query is preprocessed such that (i) it does not contain any
constant symbols and (ii) all variables appear in the same order in each predicate occurrence in Q. This preprocessing
can be done in polynomial time in data complexity and therefore it is efficient. Preprocessing is necessary for several
reasons; most importantly, in order to capture all safe queries by an algorithm. Let us first present the details of the
preprocessing.

15

Definition 5.12 (shattering, ranking). A first-order query Q is shattered if it does not contain any constants. A first-
order query Q is ranked if there exists a total order < on its variables such that for every atom R(¥) of arity k > 2,
whenever x;, x; occur in R(X) and x; occurs before x; then x; < x;; in particular, no atom contains the same variable
twice.

Let us briefly illustrate the process of ranking on a simple example.

Example 5.13. Consider the query Jx,y S(x,y) A S(y, x), which is not ranked, since the variables x and y occur in
different orders in the same predicate. To rank this query, we first split the predicate S into three predicates S,<y, Sy<,
and S,-,. We then define a total order p on the database constants (say, a and b) and split the S-atoms in the PDB
such that all occurrences of

— S(a, b) is replaced with S,.,(a,b) if a < b,
— S(a, b) is replaced with S, (b, a) if b < a,
— S(a, a) is replaced with S,_,(a),
— S(b, b) is replaced with S,_,(b).

This ensures that all appearances of the variables in some atom respect the order. Then, the ranking of the example
query dx,y S(x,y) A S(y, x) is given as: Ax,y (Sy«y(x,y) A Sy<x(x,y)) V IxS,_(x). Intuitively, this preprocessing
partitions the predicates and the corresponding atoms in the database with respect to some ordering. It is easy to see
that this transformation preserves the semantics; for details, we refer to the dichotomy result of Dalvi and Suciu [50].

It has been shown that the preprocessing does not affect the probability computation in PDBs: let Q be a query,
be a PDB, and Q", #", their rankings. Then, it holds that Po(Q) = Pp-(Q"). This clearly translates to OpenPDBs, since
once a A-completion is chosen for all open atoms, we obtain a single ranked PDB (assuming we added a polynomial
number of atoms to the database with zero probability). Thus, it is easy to conclude that this preprocessing preserves
the semantics also for OpenPDBs.

Ranking can be done in linear time in PDBs, but for OpenPDBs, this is unfortunately not always the case, since we
also have to consider the open atoms. Thus, in the worst case, ranking will cause a polynomial blow-up seems to be
unavoidable in OpenPDBs. Hence, it remains open whether the overall polynomial cost can be avoided in OpenPDBs.
We note, however, that ranking is only needed for repeating relation symbols, i.e., if the query is self-join free, then
this process is not needed. Therefore, this preprocessing can be limited to repeating relation symbols so as to avoid
to polynomial blow-up as much as possible. In the presented algorithm, we assume that the query and the PDB are
preprocessed in this way.

Lifted Inference Algorithm. Algorithm 1 is an adaptation of the Lirt® algorithm [52], which goes back to the algorithm
givcen by Dalvi and Suciu [50]. This algorithm is called LIFTg, where O stands for open.

Step 0. Recall that the given UCQ is negated in the preprocessing to obtain a YCNF query Q. As a result, all atoms
appear negatively in Q. The base case of the algorithm applies when the query is simply a negated ground atom —t.
In this case the probability of the query is trivial to compute: if the atom appears in the PDB with a probability p, then
the algorithm returns (1 — p); otherwise, it is an open atom and the algorithm returns (1 — Q).

Step 1. The first step is to rewrite the query Q into a union (disjunction) of CNF sentences, or UCNF. For example,
consider the CNF formula: (R(x) vV S(y,z)) A (S(x,y) V T(x)) which can be rewritten as the disjunction of the CNF
formulas:

R(x) A S(x,y) union R(x) A T(x) union S(y,z) A S(x,y) union S(y,z) A T(x).

The intuition behind this transformation is to produce multiple disjuncts from the given CNF in order to make (dis-
junctive) independencies explicit (if there are any). Note that such a rewriting does not always produce multiple
disjuncts, in which case, the formula is clearly also a CNF.

16

Algorithm 1 Liftg(Q, P, 4, A), abbreviated by L(Q, P)

Require: A negated UCQ Q, an OpenPDB G = (P, 1), and domain A.
Ensure: The lower probability P(Q) in the OpenPDB G = (%, 1) over domain A.
1: Step 0 Base of recursion

if O = -, where ¢ is a ground atom then
if (¢ : p) € P then return (1 — p) > Closed atoms
else return (1 — 1) > Open atoms

Step 1 Rewriting of the query
Convert Q to UCNF: Queng = VXQ) V...V (YYO,)

Step 2 Decomposable disjunction > Probabilistically independent disjuncts
if m > 1 and Quene = Q1 V O, where Q1 L Q> then

q1 < L(Q1,P,) and g2 « L(D2,P),,)
10: return 1 — (1 —¢q;) - (1 — g2)

R A U

11: Step 3 Inclusion-exclusion

12: Apply cancellations/minimizations on Q.

13: if m > 1 but Qucnr has no independent sub-query Q; then

14 return oo (- D! L(Aies 00 P, _,) > [m] = {1,...,m}
15: Step 4 Decomposable conjunction > Probabilistically independent conjuncts

16: Convert Q back to CNF: Qcng = VX0 A ... A Oy
17: if 0 = Q1 A Q> where Q1 L Q> then

18: return (L(Q1, Py,) - L(Q2, P,,))

19: Step 5 Decomposable universal quantifier > Probabilistically independent projection
20: if Q has a separator variable x then

21: let E be all constants that appear as x-argument in P

22: qe < [lece L(Q[x/e],P)._) > Ground and recurse over known atoms
23: qo < L(Q[x/e],0) forsome e € A\ E > Recurse over a canonical open atom
24; return q. - q'OA\E ! > Generalize the computation to the size of the domain

25: Step 6 Fuail

Step 2. The second step applies when the resulting UCNF has multiple disjuncts (or equivalently if it is not a CNF).
The algorithm checks whether it is possible to partition the query into two UCNF formulas such that Q = Q; V 0,
where Q| and Q; do not share any relational symbols, denoted Q; L Q,, which ensures independence of Q; and Q5.
Then, it applies the probabilistic decomposition rule for disjunction:

P(Q)=1-(1-P(Q1)- (1 -P(Q2)).

It is easy to verify the correctness of this decomposition provided that Q; and Q, are independent terms which holds,
as they do not share any relation symbols. The main idea in the second step (as well as in the remaining steps) is to
recurse on simplified queries, using standard simplification rules of probability. Importantly, in the various recursions,
the algorithm shrinks the set of atoms in the given PDB . Specifically, |, denotes the subset of #, containing only
atoms for the predicates that appear in Q.

Step 3. The third step also applies only when the UCNF has multiple disjuncts and recurses using the inclusion-
exclusion principle:

P = > (=D P(AQ)).

s#0,sC[m]

The key aspect in this step is to apply cancellations before the inclusion-exclusion step. The idea is to remove
redundancies from the query and minimize it by checking for CNF formulas that are implied by others. This can be

17

done using standard algorithms [53]. After simplifying the query, we also need to use the Mobius function to build an
implication lattice, and then, count how many times to include each subquery using the Mdbius function, and finally,
remove subqueries whose inclusion-exclusion coefficients sum to 0 [50]. Importantly, note that these manipulations
are only on the query and, therefore, independent of the database.

Step 4. In the fourth step the query is rewritten back as a CNF. Then, the algorithm checks for independent sets of
clauses in the CNF such that Q = Q| A Q,, where Q; and Q, do not share any relational symbols. If this is the case,
then it applies the probabilistic decomposition rule for conjunction:

P(Q) = P(Q1) - P(Q2).

Step 5. The fifth step is the workhorse of LIFTg, and the key difference with the Lift? algorithm [52]. It searches
for a separator variable. The existence of a separator variable implies that for any two distinct instantiations ey, e;
of the separator, the queries Q[x/e;] and Q[x/e;] are independent. Hence, by multiplying l_D(Q[x/e]) for all e in the
domain A, we obtain ﬁ(Q).

The implementation of step five in LIFI‘]S performs one key optimization over this simple multiplication. First, note
that x appears in exactly one argument position in Q for every predicate. We call these arguments the x-arguments.
Step five partitions the constants in the domain into two sets: (i) the constants E that appear as x-arguments in the
tuples in #, and (ii) all other constants, denoted by A \ E.

For (i), LIFTg still enumerates all instantiations of x and computes their probability separately. For (ii), it suffices
to compute the probability of a single instantiation of x. All instantiations with constants from A \ E will have the
same probability, as they do not depend on the tuples in . The probability of their conjunction is computed by
exponentiation. Moreover, in the recursive calls for [x/e], we can pass along the subset of the atoms $|,-, where all
x-arguments are constant e.

Step 6. Finally, LIFTg can fail in step six, yielding no answer, which implies that the query in unsafe, as we shall
discuss in the next section.

6. Data Complexity Results

We first study data complexity, and obtain complexity results relative to different query languages under consid-
eration. We start with an overview of the data complexity results.

6.1. Overview of the Data Complexity Results

Our open-world semantics is supported by a query evaluation algorithm for UCQs. This class of queries, cor-
responding to monotone ADNF, is particularly well-behaved and the focal point of database research. Perhaps the
largest appeal of PDBs comes from a dichotomy result by Dalvi and Suciu [50], perfectly delineating which unions
of conjunctive queries can be answered efficiently in data complexity. Their algorithm runs in polynomial time for all
efficient queries, called safe queries, and recognizes all others to be #P-hard (which translates into PP-hardness under
polynomial-time Turing reductions).

We give an algorithm LIFTlé, which extends the PDB algorithm of Dalvi and Suciu [50] and inherits its elegant
properties: all safe queries run in polynomial time, and whenever our algorithm fails, then the query is PP-hard. Thus,
for unions of conjunctive queries, we are able to show that the data complexity dichotomy in PDBs can be lifted to
OpenPDBs, as depicted in Figure 3a.

Importantly, we show that LIPTg runs in linear time in the size of the ranked OpenPDB (resp., PDB), under certain
assumptions. More specifically, by the properties of LIFTS, we show that the original dichotomy of PDBs can be
strengthened under mild assumptions, i.e., (i) unit arithmetic cost assumption, that is, the complexity of all arithmetic
operations in the algorithmis fixed, and (ii) the domain of the input PDB is sorted, e.g., it is an integer domain.
Hence, all safe queries can be computed in linear time in the size of the input PDBs. The fact that the original
PDB dichotomy [50] can be strengthened in this way is perhaps not technically surprising. However, this practically
significant observation has not been made earlier in the literature. It is open whether the linear-time computation can
be extended to the case of OpenPDBs for the full class of safe UCQs. The algorithm LIFTIS runs in linear-time in

18

S/¥ 0o
CONPPP @ 1. _ N 0, VFO o Jvo Ay e NPPP

ESA
PP .. . ye PP AN e
PP o “~e”” e PP
0 Q Q0
CONP # ¢ _ 3p 0. kg g0t e NP
P ey) se P \‘~\~\ ‘,."’
P) “~ie-"" ° P
PQE(Q) PQE(Q) PQE(Q) -
PQE(L) PQE(L) PQE(L)
(a) Dichotomy for UCQs: Safe (resp., unsafe) UCQs
coincide for all problems PQE(Q), PQE(Q), and (b) Data complexity results for the problems PQE(L), PQE(L), and
PQE(Q) for any Q € UCQ. PQE(L) for the query classes £ € {IFO, YFO, FO} U {IFO,, YFO,, FO,}.

Figure 3: Data complexity map for OpenPDBs in comparison to PDBs. Figure 3a depicts the dichotomy results for UCQs: safe (resp., unsafe)
UCQs for PDBs coincide with safe (resp., unsafe) UCQs for OpenPDBs. Figure 3b depicts the complexity results for more general query classes
VFO, 3FO, and FO, and their restricted safe fragments; for each such query class, the complexity of probabilistic query evaluation increases in
OpenPDBs, compared to PDBs.

the size of the preprocessed, ranked OpenPDB, rather than the input OpenPDB, and this preprocessing can lead to a
polynomial blow-up in the case of OpenPDBs. We note, however, that such preprocessing is not needed for, e.g. self-
join-free queries, and, in this case, the linear-time algorithm applies also to OpenPDBs under the same assumptions.

‘We then extend our analysis to other query languages, which results in a richer complexity landscape. All results
for AFO, YFO, and FO queries for upper and lower probabilistic query evaluation are depicted in Figure 3b (upper
part). Our results suggest that the complexity of open-world reasoning can go up significantly with negation. Specif-
ically, we first show that PQE(JFO), PQE(YFO), and PQE(FO) are all PP-complete in data complexity for PDBs.
On the other hand, PQE(3F0), PQE(YFO), and PQE(FO) are NPPP-complete in data complexity for OpenPDBs.
Similarly, the corresponding lower probabilistic query evaluation problems are shown to be coNP-complete in data
complexity for OpenPDBs.

Knowing that all safe (resp., unsafe) queries remain safe (resp., unsafe) in OpenPDBs for UCQs, we pose the
following question: could this also be the case for more expressive queries, where the satisfaction relation is not
monotone? To make this concrete, we denote by AFOs, YFOq, and FOy, the subclasses of the query classes AFO, VFO,
and FO, respectively, where each such subclass contains only queries, which are safe for PDBs. We note that the
classification status of nonmonotone query classes still remain open in PDBs, i.e., there is no known classification for
such general query classes. We show that the class of safe PDB queries are not preserved when we consider Open-
PDBs. Specifically, we identify a YFO, query, which is safe for PDBs, but becomes NP-complete on OpenPDBs. All
results for AFO;, VFOq, and FO, queries for upper and lower probabilistic query evaluation are depicted in Figure 3b
(lower part).

OpenPDBs are closely related to credal representations, and thus our complexity results align with that of credal
networks which also show an increase from P to NP and from PP to NP [54] compared to Bayesian networks [55].
Nevertheless, one source of hardness for probabilistic inference in credal networks is due to the conditional depen-
dencies encoded in the network structure, which is very different from OpenPDBs, where the hardness stems from
rich structure of queries.

6.2. Results for Unions of Conjunctive Queries

We start our analysis with UCQs, and discuss the implications of Algorithm 1, in detail. The original di-
chotomy [50] is supported by an algorithm similar to LIFT%: if this algorithm fails, then the query is #P-hard, and
if it does not fail, it runs in polynomial time. This dichotomy-supporting algorithm has one major difference com-
pared to LIFTIS, aside from our support for open-world inference. When it applies the inclusion-exclusion step, it

19

performs cancellations to avoid computing some of the recursive steps. This is a key aspect of the algorithm that
ensures efficiency for all safe queries. Based on Theorem 5.10 and Corollary 5.3 we can lift the dichotomy result for
UCQ queries in PDBs to OpenPDBs.

Corollary 6.1 (dichotomy). Let Q be a UCQ. Then, PQE(Q) is either in P or it is PP-complete for OpenPDBs in data
complexity under polynomial-time Turing reductions. Moreover, a UCQ Q is safe in OpenPDBs if and only if it is safe
in PDBs.

We already emphasized that the reduction given in Theorem 5.10 for the class of safe queries can be inefficient
in practical terms as the construction results in a polynomial blow-up. Similarly, the preprocessing step in LIFl‘lé
algorithm, can be polynomial. Ignoring the preprocessing, we show that, LIFrg extended with cancellations in the
inclusion-exclusion step, runs in linear time. For this to hold, we need two assumptions: (i) unit arithmetic cost
assumption, that is, the complexity of all arithmetic operations in the algorithm is fixed, and (ii) the domain of the
OpenPDB is sorted, e.g., it is an integer domain. Intuitively, the first assumption is needed since the cost of arithmetic
operations can grow beyond linear in the size of the probability values. The second assumption is necessary to ensure
that we always recurse over the subset of atoms, in an ordered way, so as to avoid revisiting them.

Theorem 6.2. Let G = (G, 1) an OpenPDB over an integer domain (or, any sorted domain). Assuming unit arithmetic
cost, the following results hold. The algorithm LIFT% runs in polynomial time in data complexity. The probability of
any safe UCQ can be evaluated in linear time in the size of the ranked OpenPDB G in data complexity. Moreover, any
safe UCQ which is self-join-free can be evaluated in linear time in the size of the input OpenPDB G in data complexity.

The algorithm LIFTg clearly runs in polynomial time in data complexity (while it answers Fail for unsafe queries).
It is also easy to see that it is linear in the size of the ranked OpenPDB G in data complexity. Notice though, that the
ranked OpenPDB can be polynomially larger than the original given one. The final statement states that, if the query
is additionally self-join-free, in which case, ranking is not needed, then LIFT% runs in linear time in the size of the
input OpenPDB & in data complexity.

Theorem 6.2 implies that the algorithm Lirt®, which is a special case of LIFTg, also runs in linear time. While the
preprocessing can be polynomial in OpenPDBs, it remains linear in PDBs. Overall, these imply a stronger dichotomy
for PDBs.

Corollary 6.3. Let Q be a UCQ, and P be a PDB over an integer domain (or, any sorted domain). Assuming unit
arithmetic cost, PQE(Q) for PDBs over integer domains is either in linear time, or it is PP-complete.

This result extends the original dichotomy for PDBs from polynomial time to linear time under the given as-
sumptions. This observation appears to be novel in the PDB literature. The original algorithm [50] is not shown to
be linear-time. Existing linear-time probabilistic query evaluation complexity results, see e.g. [56], do not apply to
unions of conjunctive queries. The key insight behind our linear-time algorithm is the projection of the probabilistic
database only on the relevant atoms for each recursive call. This concludes our data complexity analysis for unions of
conjunctive queries.

6.3. Results Beyond Unions of Conjunctive Queries

We now focus on query languages that strictly contain UCQs, i.e., the query classes IFO, YFO, and FO. Let us
start our data complexity analysis with PDBs. We give a general theorem which shows that the probabilistic query
evaluation problem is PP-complete in PDBs for all query languages under consideration.

Theorem 6.4. PQE(JFO), PQE(VFO), and PQE(FO) are PP-complete for PDBs in data complexity.

For the membership results, the main idea is to code each world induced by a PDB into a nondeterministic Turing
machine such that each world satisfying (resp., not satisfying) the query corresponds to a number of accepting (resp.,
rejecting) computation branches proportional to its probability. By additionally introducing artificial accept (resp.,
reject) branches, we ensure that the majority of the runs of the nondeterministic Turing machine answer yes if and
only if the given instance of probabilistic query evaluation has a positive answer.

To show PP-hardness (under many one reductions) we give a reduction from counting the satisfying assignments
of a Boolean formula: given a quantified Boolean formula of the form ® := C° xy,..., x, ¢, where C represents the

20

counting quantifier and ¢ = ¢ A --- A ¢ is a propositional formula in 3CNF, defined over the variables xi, ..., x,,
decide whether @ is valid. Intuitively, this problem amounts to checking whether there are ¢ assignments for xp, ..., x,
that satisfy ¢, which is a PP-complete problem [33].

We proceed with the data complexity results for OpenPDBs. Let us start with a simple observation, which is very
useful for OpenPDBs. By Lemma 5.11, we know that P(Q)=1- P(=Q). In particular, this implies that:

Pg(Q) > pif and only if it is not the case that Pg(=Q) > 1 - p,
BQ(Q) > p if and only if it is not the case that ﬁg(ﬂQ) >1-p,

for any OpenPDB G, query Q and threshold value p. Recall that > can be replaced with > by Lemma 5.2. Then,
since YFO and JFO queries are dual to each other, probabilistic query evaluation for these queries can be reduced to
each other by taking the complement of the respective problem. In essence, all complexity results obtained for the
problem PQE(YFO) immediately hold for the complement of the problem PQE(JF0), and vice versa. Similarly, all
complexity results for the problem PQE(YFO) hold for the complement of the problem PQE(JFO), and vice versa.
We refer to this as the duality property and use it to simplify the proofs of some of the theorems. Practically speaking,
this allows us to state the results regarding both to IFO and YFO queries, while providing the proof details only for
one of these classes. It is worthwhile to note that lower and upper probabilistic query evaluation for the same query
language are not dual to each other, e.g., the result for PQE(YFO) does not imply the result of PQE(YFO), or vice
versa, and so such results are proven separately, but they nevertheless rely on similar ideas.

We have shown that the data complexity dichotomy for UCQs can be lifted from PDBs to OpenPDBs: all safe
(resp., unsafe) queries remain safe (resp., unsafe). Could this also be the case for more expressive queries, where the
satisfaction relation is not monotone? There is no obvious way of determining the completion that maximizes (or,
minimizes) the query probability for such query classes. Therefore, an intriguing question is, whether a nonmonotone
query, which is safe in PDBs, can become hard for OpenPDBs?

We note that the classification status of nonmonotone query classes still remain open in PDBs, i.e., there is no
known classification for such general query classes that perfectly delineates safe queries from unsafe ones; it is also
open whether such a dichotomy exists at all. We are only interested in knowing whether the class of safe queries
could possibly be preserved when we consider OpenPDBs. To make this concrete, let us denote by dFOs, YFOs, and
FOq, the subclasses of the query classes AFO, YFO, and FO, respectively, where each such subclass contains only
safe queries from the general class. For instance, YFO; € YFO, and every query Q € VYFOs is safe in PDBs, i.e., its
probability can be computed in polynomial time for any PDB. For these query classes, we obtain the following result.

Theorem 6.5. ﬁQE(FOS) is NP-complete and PQE(FOy) is coNP-complete for OpenPDBs in data complexity. Fur-
thermore, there exists a query Qsare € YFOs such that PQE(Qsarg) is NP-complete for OpenPDBs in data complexity.
This implies that PQE(YFOy) is NP-complete, and, by duality, PQE(IFOy) is coNP-complete, for OpenPDBs in data
complexity.

The membership results are rather straight-forward. PQE(FO;) can be decided by a nondeterministic Turing
machine in polynomial time: given an OpenPDB, and a query Q € FOs, we can guess a completion (which is a
PDB), and, based on this completion, we can verify whether the probability of the query exceeds a given value p
in polynomial time in data complexity (since the query is assumed to be safe). By similar arguments, we can also
conclude that PQE(FOj) is in coNP. These membership results then also apply to AFO and YFO queries.

Theorem 6.5 additionally shows that there are some queries, which are safe for PDBs, but become hard for
OpenPDBs. Briefly, once negation is allowed, it is not always easy to determine the completion upon which the
maximal (resp., minimal) probability can be computed. We choose a YFOg query, and show that this query is safe in
PDBs, but it is NP-hard in OpenPDBs via a reduction from satisfiability of propositional 3CNF formulas. This result
is quite intricate, as the class of safe queries enjoy properties which make them easy to compute in PDBs, and, in
many cases, the same properties allow us to locally optimize our choices for the bounds in OpenPDBs, i.e., to choose
the right completion while avoiding a combinatorial blow-up. Therefore, it is a non-trivial task to identify a query
which is safe for PDBs, and, at the same time, hard for OpenPDBs. The full proof involves a series of transformations
in order to define such a query. The main computational difference between the two different data models is in the
application of the inclusion-exclusion principle: while we obtain cancellations in PDBs, which make the computation
of the resulting terms easy, this is not the case for OpenPDBs, mainly due to interacting choices.

21

PSpace e Sl > PSrace
CONPPP ¢ ¢------= 0, ¥yro AL ETEEEE > NP
uC |7 we
PPNP (____________Q_________: e e Q ________ > PPNP
PQE(L) PQE(L) PQE(L)

Figure 4: Bounded-arity complexity of PQE(L) and PQE(L) for OpenPDBs in comparison to PQE(L) for PDBs. The given results cover query
languages £ € {UCQ, dFO, VFO, FO}.

We extend our analysis to more general queries, e.g., the class of queries AFO, YFO, or FO. How can an arbitrary
query (i.e., potentially unsafe for PDBs) from these classes be evaluated in OpenPDBs? The following theorem states
our results for these query languages.

Theorem 6.6. Let £ € {dFO,VFO,FO}. Then, ﬁQE(L) is NPPP—complete, and PQE(L) is coNPPP—complete for
OpenPDBs in data complexity.

The membership results follow from similar ideas as before: guess a completion and verify whether the probability
of a given query exceeds a threshold relative to this completion. Differently, this verification step now requires a PP
oracle, since probabilistic query evaluation over these query classes are PP-complete, as shown in Theorem 6.4. This
implies that PQE(FO) can be decided in NPF", since we can guess a completion, and based on this completion, we
can decide whether the query probability exceeds a threshold, by calling a PP oracle. By analogous arguments, we
conclude that PQE(FO) is in coNPF*. These upper bounds clearly apply to IFO and YFO queries.

For the hardness results, it is important to note that, unlike in Theorem 6.5, we now have the liberty to choose an
unsafe query. That is, even after identifying the right completion, we still need to make a probabilistic computation,
which is PP-hard. We make use of this fact to prove the respective hardness results. The first reduction is from an
NPPP-complete problem: given a quantified Boolean formula of the form ® = Jxy,...,x,Cyy,...,yn, ¢, where C
represents the counting quantifier and ¢ = ¢; A - - - A ¢y, is a propositional formula in 3CNF, defined over the variables
XlyenvsXps Y1s---5Ym, decide the validity of @. This problem is NPPP-complete [33]. Intuitively, our construction
ensures that choosing the maximal completion for an OpenPDB, corresponds to finding a partial assignment to the
variables xp, ..., x, in @, which can be extended to at least c satisfying assignments. We use a variant of this problem
to obtain the respective coNP¥-hardness result.

7. Combined Complexity Results

In the context of databases, the study of combined complexity is less popular, as data complexity often captures
the real-world complexity of the relevant problems in a more adequate manner. On the other hand, it is not hard to
imagine scenarios where a safe query (in data complexity) could require super-polynomial time in the query. Similar
observations motivated some work on this subject; see e.g. [57] where the goal is to isolate cases where probabilistic
query evaluation is tractable in combined complexity. We therefore expand our analysis to the combined complexity
of probabilistic query evaluation for both PDBs and OpenPDBs. Importantly, we make the bounded-arity assumption,
i.e., all relations are at most of arity k for some fixed k. Let us first give an overview of the combined complexity
results.

7.1. Overview of the Combined Complexity Results

There is yet another subtle reason for (mostly) abandoning combined complexity analysis in PDBs, which is of a
technical nature: most of the existing data complexity results (including the data complexity dichotomy) are shown
under Turing reductions, which leads to the collapse of many interesting classes, that could make a difference in the
case of combined complexity. Our combined complexity analysis, as many other results in this work except from

22

dichotomy results, are under many-one reductions, which allows us to obtain more fine-grained characterizations. All
bounded-arity combined complexity results are summarized in Figure 4.

Arguably, the most interesting result for PDBs is to show that the problem PQE(UCQ) is PPNP-complete in
bounded-arity combined complexity, while it is PP-complete in the data complexity. The standard query evalua-
tion problem is already NP-hard in bounded-arity combined complexity for UCQs. Intuitively, this implies that for
every world, we need a verification step that is NP-hard. If we restrict our attention to acyclic queries, however, the
query evaluation can be done in polynomial time (and even better, see e.g. [58]), and so, probabilistic query evaluation
for acyclic conjunctive queries remains in PP. Similarly, query evaluation is PSpace-complete for arbitrary FO queries
(where the quantifier nesting is not necessarily bounded). It is easy to see that this class dominates the probabilis-
tic query evaluation problem. All results given for PDBs also hold for combined complexity, i.e., if we remove the
bounded-arity assumption.

The results for OpenPDBs can be summarized as follows. First of all, the bounded-arity combined complexity
results for OpenPDBs coincide with PDBs when we consider UCQs. This is due to the same reason as in data
complexity: for UCQs, we can efficiently reduce upper and lower probabilistic query evaluation in OpenPDBs to
probabilistic query evaluation in PDBs. For query languages IFO and YFO. We have already shown (co)NPFP-
hardness results for the data complexity, which clearly also apply to bounded-arity combined complexity. However,
these problems do not become harder, despite the fact that query evaluation relative to these queries (which is required
for verification) is harder in bounded-arity combined complexity. Intuitively, this holds, since the complexity classes
NP, and coNP*? are strong enough to do these harder verifications.

7.2. Derivation of the Combined Complexity Results

We now focus on individual combined complexity results, and start our analysis with PDBs. Our first result
shows that probabilistic query evaluation for the class of queries UCQ, JFO, YFO is complete for PPNY for PDBs in
combined complexity.

Theorem 7.1. PQE(UCQ), PQE(3FO), and PQE(YFO) is PPNY-complete for PDBs in bounded-arity combined com-
plexity. These complexity bounds also hold without the bounded-arity assumption.

The membership results follow from similar ideas to those given for Theorem 6.4, i.e., coding each world induced
by a PDB into a nondeterministic Turing machine such that the majority of its runs answer yes if the given instance of
probabilistic query evaluation has a positive answer. The main difference is that the complexity of query evaluation
on standard databases (i.e., the verification step) is harder in combined complexity: determining whether a database
(induced by a given PDB) satisfies the query is NP-complete for IFO queries (and UCQs), and coNP-complete for
VFO queries. Hence, we additionally require calls to an NP oracle to do such verifications.

For hardness, we show that PQE(UCQ) is PPN -hard, by giving a reduction from the problem of deciding validity
of formulas of the form ® = Cxy, ..., Xpdy1,...,Yn ¢1 Ad2 A -+ A ¢, Where every ¢; is a propositional clause over
XlsenvsXms Vis--->Yn, and k,m,n>1 [33]. Importantly, all the predicates used in the proof are of a bounded arity; that
is, the proof applies to the bounded-arity combined complexity. The key reason for this hardness is again due to the
query evaluation problem for UCQs being NP-complete on standard databases. In fact, if we restrict our attention
to e.g. acyclic conjunctive queries, for which query evaluation problem is in polynomial time, probabilistic query
evaluation for these queries will remain in PP in combined complexity.

It only remains to determine the complexity of FO queries for PDBs in combined complexity. We obtain the
following result for probabilistic query evaluation over FO queries for PDBs.

Theorem 7.2. PQE(FO) is PSpace-complete for PDBs in bounded-arity combined complexity. This result also holds
without the bounded-arity assumption.

Observe that PSpace-hardness of PQE(FO) is immediate since query evaluation is PSpace-complete in standard
databases for FO queries (and a database can be viewed as a special PDB). The argument for membership is to walk
through all worlds induced by a PDB (each of which is of polynomial size), and sum out their probabilities, if they
satisfy the query (which can be determined in polynomial space). This concludes our analysis for PDBs in combined
complexity.

We extend our analysis to OpenPDBs in bounded-arity combined complexity. Our first result is for UCQs, which
coincides with the bounded-arity combined complexity results given for PDBs.

23

Theorem 7.3. PQE(UCQ) and PQE(UCQ) is PPNP-complete for OpenPDBs in bounded-arity combined complexity.

This result follows again by the fact that the satisfaction relation is monotone for UCQs, which allows us to
efficiently determine the maximal (resp., minimal) completion for a given OpenPDB, and reduce the problem to
probabilistic query evaluation in PDBs. The only subtlety is that each such completion must be of polynomial size,
and this is ensured by the fact that the maximal arity of relations is fixed.

Looking into dFO and VFO queries, we observe a somewhat more interesting phenomenon: the bounded-arity
combined complexity of the studied problems coincides with the data complexity of the respective problems.

Theorem 7.4. Let £ € {AFO,VFO}. Then, PQE(L) is NP -complete, and PQE(L) is coNP**-complete for Open-
PDBs in bounded-arity combined complexity.

It may appear somewhat surprising that these results coincide with the data complexity, since the verification
step, which requires query evaluation is hard in combined complexity, as discussed earlier. Intuitively, we can decide
PQE(JFO) in €N?, where € = NP, by applying similar ideas to those in Theorem 6.6, and, by additionally calling
an NP oracle. It is then sufficient to note that NP*® does not gain additional computational power by calling another
NP oracle [31]. Similar arguments then also apply to PQE(JFO), and other cases, yielding the membership results.
Hardness results are an immediate consequence of Theorem 6.6, i.e., the respective hardness results given for data
complexity.

Finally, as for PDBs, the complexity of classical query evaluation dominates the complexity of probabilistic query
evaluation in OpenPDBs.

Theorem 7.5. PQE(FO) and PQE(FO) are PSpace-complete for OpenPDBs in bounded-arity combined complexity.

The study of combined complexity without the bounded arity assumption is a somewhat intricate notion in Open-
PDBs in the following sense: since neither the arity nor the schema is fixed, a completion can grow exponentially,
leading to a very high complexity, i.e., we need to perform probabilistic inference over exponentially large comple-
tions. These are beyond the focus of our work. We note, however, that a similar observation is also valid for other
representations such as Markov Logic Networks, i.e., the size of each world is exponential if the arity of the predicates
is not fixed, and with this remark, we conclude our complexity analysis.

8. Related Work

The management of uncertain and probabilistic data is an important problem in many applications of artificial
intelligence, e.g., data integration from diverse sources, predictive and stochastic modeling, applications based on
(error-prone) sensor readings, and also for automated knowledge base construction [1, 2, 3, 4, 5, 6]. The most basic
data model for managing large uncertain data is that of probabilistic databases [14]. Probabilistic database literature
is rich, as it is almost as old as traditional database research. We note that the first formulation of possible world
semantics in the context of databases is due to Imilieski and Lipski [59], and the work of Fuhr and Réllecke [60]
has been very influential in probabilistic database research. For a detailed historical treatment, we refer the reader to
standard texts in the literature [14]; here, we mostly focus on recent advancements in probabilistic data and knowledge
bases, for which more details can be found in the recent surveys [38, 61].

It is well-known that query evaluation in probabilistic databases is a computationally demanding task, which
motivated a line of research aiming at fine-grained classification results. The first thorough study in the database
literature appears in the context of reliability analysis for queries, by Grédel, Gurevich and Hirsh [62], where, for
instance, the query C(x) A R(x, y) A C(y) is shown to be #P-hard. Dalvi and Suciu obtained the small dichotomy result
on queries without self-joins [51], and eventually the complete dichotomy on UCQs [50]. There are results which
support first-order queries in probabilistic databases [63], but for queries with negation, only partial dichotomy results
are known [56]. Other dichotomy results extend the dichotomy for unions of conjunctive queries in various directions;
e.g., allowing for disequality (#) joins in the queries [64], or allowing for inequality (<) joins in the queries [65]. A
trichotomy result is given for queries with aggregation [66]. Amarilli and Ceylan [67] recently extended the dichotomy
for UCQs to infinite unions of conjunctive queries over binary signatures. This implies a dichotomy for a large class of
query languages beyond UCQs, including negation-free (disjunctive) Datalog, regular path queries, and a large class
of ontology-mediated queries on binary signatures.

24

Our work is motivated by open-world reasoning. The open-world assumption is common in deterministic knowl-
edge bases, which are widely studied in the context of ontology languages, mostly based on description logics [68], or
Datalog® [69]. Instead of posing the queries directly to the database, the idea is to use a logical theory (or ontology)
as a query interface, in order to obtain a more complete set of answers from an incomplete knowledge base via the
open-world assumption. This paradigm is known as ontology-mediated query answering [70], and the open-world
assumption is a driving force for ontology-based technologies. The literature on probabilistic extensions of ontology
languages is rich, and ontology-mediated queries for probabilistic databases have been investigated in the context of
both description logics [71, 72] and Datalog® [73, 74, 75, 40]. Importantly, these models are typically open-domain,
i.e., they allow reasoning over infinitely many objects in the domain (unlike our finite-domain assumption). There is
a key restriction in such models that allows to preserve some nice computational results: although reasoning is over
infinitely many objects, the query semantics is defined relative to probability distributions over known atoms in the
database to ensure that the probability space remains finite. One subtle aspect is that these models employ certain
answer semantics, and so if a query is not entailed, its probability is set to zero [71, 72, 74]. That is, their seman-
tics partially import closed-world PDB semantics for non-entailments. Other models[73, 40] employ a semantics
closely related to Markov logic networks, while keeping the open-domain reasoning. We note that OpenPDBs are
extended with ontological knowledge [75] to allow for probabilities from a default interval for non-entailments, while
the ontology allows for open-domain reasoning. For further details on the semantic differences, such as open-domain
vs closed-domain, open-world vs closed-world models; we refer the reader to [61], where a detailed classification,
including OpenPDBs, is given.

Our work draws inspirations from lifted inference [76] in avoiding explicit reasoning over all atoms, or constants:
our lifted inference algorithm operates on first-order structures to exploit symmetries thereby avoiding a complete
grounding. In this respect, our work brings together the high-level reasoning of lifted inference and the data-centric
reasoning of probabilistic databases. OpenPDBs are also closely related to credal networks [48]. The major difference
is that one source of hardness for probabilistic inference in credal networks is due to the conditional dependencies
encoded in the network structure, which is very different from OpenPDBs, as such dependencies stem from the
query in OpenPDBs. Work in probabilistic logic programming has studied their complexity for different semantics,
including credal semantics [77]. OpenPDBs also motivated further research to extend the open-world probabilistic
database model to have schema-level constraints on completion probabilities [78]. OpenPDBs are defined over a
finite domain, and the work of Grohe and Lindner [79] extends the open-world probabilistic database model to infinite
universes.

Weighted model counting (WMC) has emerged as a unifying approach for probabilistic inference in various data
models [80, 81]. Query answering in probabilistic databases reduces to WMC over DNF structures, as every con-
junctive query is equivalent to a DNF via its lineage representation (which is of polynomial size in data complexity).
WMC over DNFs is clearly #P-hard [27], which motivated two paradigms for solving this problem. One prominent
approach for WMC is based on knowledge compilation [82, 83], which compiles the problem in a target language,
upon which the respective task is tractable. That is, the computational overhead is pushed to an offline phase, amor-
tized by a large number of online queries. Knowledge compilation has been studied also in the context of PDBs [84].
Another prominent approach for WMC is approximate solving, which provides approximations of the model count as
opposed to an exact solution. There are numerous approximation algorithms for weighted model counting: a classical
result from Karp, Luby and Madras [85] asserts that weighted model counting over DNF structures admits a fully
polynomial randomized approximation scheme (FPRAS). Hashing-based approximation techniques [86] can solve the
unweighted model counting problem on DNF structures with probabilistic accuracy guarantees. These algorithms are
not very scalable in practice; recently, a neural model counting approach has been proposed [87] for fast weighted
model counting, which does not provide accuracy guarantees, but experiments suggest a reliable prediction accuracy.

Many probabilistic relational database management systems, dedicated for large-scale probabilistic data process-
ing, have been developed, such as MystiQ [88] and SPROUT [89]. Importantly, SPROUT [89] also supports a type of
open-world inference in the sense that it enables querying “Google Squared” tables which are extracted from open-
world text without a fixed vocabulary. Other approaches include Slimshot [39] which can encode complex relations
over a closed-domain, and Tuffy [90] which uses Markov chain Monte Carlo for probabilistic inference.

25

Summary and Outlook

We proposed a probabilistic data model, called OpenPDBs, that acknowledges the incomplete nature of the knowl-
edge bases, as part of its semantics. In OpenPDBs, atoms that are not in the database still remain possible with some
default probability. This is in contrast with PDBs, where atoms that do not appear in the database are assigned a proba-
bility zero by the CWA. Our work builds on the foundations of tuple-independent PDBs [14]. In particular, we extend
the dichotomy result of Dalvi and Suciu [50], given for UCQs to OpenPDBs. As a side contribution, we observe
that the original dichotomy for PDBs is stronger: under reasonable assumptions, all safe queries can be computed
in linear time. We also show that nonmonotone queries are typically harder in OpenPDBs than those in PDBs. Our
analysis includes both data and combined complexity and provides a complete picture for the complexity landscape
of OpenPDBs in comparison with PDBs.

OpenPDBs already motivated several lines of work. One of the key challenges in OpenPDBs is to restrict the open
world to provide tighter probability bounds, as the default probability interval may not always be very informative.
One way of excluding spurious possible worlds, and limiting the probability mass of open atoms is by using an
additional knowledge representation layer towards more informative probability bounds [75]. An alternative way is to
define schema-level constraints on the probability space, ensuring more informative bounds [78]. Our study focuses
on finite domains, which may not be satisfactory in every application domain, which motivated an extension to infinite
universes [79].

The focus of our work is merely on exact inference (of the associated decision problems). It is well-known that
probabilistic query evaluation admits an FPRAS for UCQs, as it can be reduced to weighted model counting over
DNEF structures. This results immediately translates to OpenPDBs, by the reductions presented in this paper. We think
that a dedicated study for approximate inference in OpenPDBs can be an interesting direction for future work.

Acknowledgments

This work is partially supported by the UK EPSRC grant EP/R013667/1, NSF grants #1IS-1943641, #1IS-1633857,
#CCF-1837129, DARPA XAI grant #N66001-17-2-4032, a UCLA Samueli Fellowship, and gifts from Intel and
Facebook Research.

Bibliography

[1] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, J. Welling, Never-Ending Learning, in: Proceedings of the 29th AAAI Conference on Atrtificial Intelligence (AAAI-15), AAAI
Press, 2015, pp. 2302-2310.

[2] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, C. Ré, Incremental knowledge base construction using deepdive, Proceedings of VLDB
Endowment 8 (11) (2015) 1310-1321. doi:10.14778/2809974.2809991.

[3] A. Fader, S. Soderland, O. Etzioni, Identifying relations for open information extraction, in: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP-11), Association for Computational Linguistics, 2011, p. 15351545.

[4] J. Hoffart, F. M. Suchanek, K. Berberich, G. Weikum, Yago2: A spatially and temporally enhanced knowledge base from wikipedia, Artificial
Intelligence 194 (2013) 28-61. doi:10.1016/j.artint.2012.06.001.

[5] W. Wu, H. Li, H. Wang, K. Q. Zhu, Probase: A probabilistic taxonomy for text understanding, in: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, Association for Computing Machinery, 2012, pp. 481-492. doi:10.1145/2213836.
2213891.

[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, W. Zhang, Knowledge vault: A web-scale approach
to probabilistic knowledge fusion, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Association for Computing Machinery, 2014, pp. 601-610. doi1:10.1145/2623330.2623623.

[7] J. P. Ku, J. L. Hicks, T. Hastie, J. Leskovec, C. Ré, S. L. Delp, The mobilize center: An NIH big data to knowledge center to advance
human movement research and improve mobility, Journal of the American Medical Informatics Association 22 (6) (2015) 1120-1125.
doi1:10.1093/jamia/ocv071.

[8] S.E.Peters, C. Zhang, M. Livny, C. Ré, A Machine Reading System for Assembling Synthetic Paleontological Databases., PLoS ONE 9 (12).
doi:10.1371/journal.pone.0113523.

[9] M. Mintz, S. Bills, R. Snow, D. Jurafsky, Distant supervision for relation extraction without labeled data, in: Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, Association for Computational Linguistics, 2009, pp. 1003-1011.

[10] A. Bordes, J. Weston, R. Collobert, Y. Bengio, Learning structured embeddings of knowledge bases, in: W. Burgard, D. Roth (Eds.), Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11), AAAI Press, 2011, p. 301306.

26

(1]

(12]

[13]
(14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
(26]
[27]
(28]
[29]
[30]
(31]
[32]
[33]
[34]
[35]
[36]

(37]

[38]
[39]

[40]

[41]
[42]
[43]
[44]

[45]

R. Socher, D. Chen, C. D. Manning, A. Ng, Reasoning with neural tensor networks for knowledge base completion, in: Proceedings of the
26th International Conference on Neural Information Processing Systems, Curran Associates, Inc., 2013, pp. 926-934.

W. Y. Wang, K. Mazaitis, W. W. Cohen, Programming with personalized pagerank: A locally groundable first-order probabilistic logic, in:
Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM-13), Association for Computing
Machinery, 2013, pp. 2129-2138. doi1:10.1145/2505515.2505573.

L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, M. Verbeke, Inducing probabilistic relational rules from probabilistic examples, in:
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), AAAI Press, 2015, p. 18351843.

D. Suciu, D. Olteanu, C. Ré, C. Koch, Probabilistic Databases, Vol. 3, Morgan & Claypool Publishers, 2011. doi:https://doi.org/
10.2200/S00362ED1V01Y201105DTMO16.

L. Galdrraga, S. Razniewski, A. Amarilli, F. M. Suchanek, Predicting completeness in knowledge bases, in: Proceedings of the 10th ACM
International Conference on Web Search and Data Mining (WSDM-17), Association for Computing Machinery, 2017, pp. 375-383. doi:
10.1145/3018661.3018739.

R. Reiter, On closed world data bases, Springer US, 1978, pp. 55-76. do1:10.1007/978-1-4684-3384-5_3.

C. M. Bishop, Pattern recognition and machine learning, Springer-Verlag, 2006.

I. Levi, The Enterprise of Knowledge: : An Essay on Knowledge, Credal Probability, and Chance, MIT Press, 1980.

i1 Ceylan, A. Darwiche, G. Van den Broeck, Open-world probabilistic databases, in: Proceedings of the 15th International Conference on
Principles of Knowledge Representation and Reasoning (KR-16), AAAI Press, 2016, pp. 339-348.

1. 1. Ceylan, A. Darwiche, G. Van den Broeck, Open-world probabilistic databases: An abridged report, in: Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-17), 2017, pp. 4796—4800. doi:10.24963/1jcai.2017/669.

1. I. Ceylan, Query answering in probabilistic data and knowledge bases, Ph.D. thesis, TU Dresden (2017).

T. Hinrichs, M. Genesereth, Herbrand logic, Tech. Rep. LG-2006-02, Stanford University (2006).

E. F. Codd, Relational completeness of data base sublanguages, IBM Corporation, 1972.

S. Abiteboul, R. Hull, V. Vianu (Eds.), Foundations of Databases: The Logical Level, 1st Edition, Addison-Wesley Longman Publishing Co.,
Inc., 1995.

L. Libkin, Elements of Finite Model Theory, Springer-Verlag, 2004.

M. Sipser, Introduction to the Theory of Computation, 1st Edition, International Thomson Publishing, 1996.

L. G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8 (2) (1979) 189-201. doi:https://doi.
0org/10.1016/0304-3975(79) 90044-6.

J. T. Gill, Computatonal complexity of probabilistic Turing machines, STAM Journal on Computing 6 (4) (1977) 675-695. doi:10.1137/
02060409.

M. L. Littman, S. M. Majercik, T. Pitassi, Stochastic boolean satisfiability, Journal of Automated Reasoning 27 (3) (2001) 251-296. doi :
10.1023/A:1017584715408.

R. Beigel, N. Reingold, D. Spielman, PP is closed under intersection, Journal of Computer and System Sciences 50 (2) (1995) 191-202.
doi:https://doi.org/10.1006/jcss.1995.1017.

S. Toda, O. Watanabe, Polynomial-time 1-Turing reductions from #PH to #P, Theoretical Computer Science 100 (1) (1992) 205-221. doi:
https://doi.org/10.1016/0304-3975(92)90369-0Q.

S. Toda, On the computational power of pp and +p, in: Proceedings of the 30th Annual Symposium on Foundations of Computer Science,
1989, pp. 514-519. doi:10.1109/SFCS.1989.63527.

K. W. Wagner, The complexity of combinatorial problems with succinct input representation, Acta Informatica 23 (3) (1986) 325-356.
doi1:10.1007/BF00289117.

M. L. Littman, J. Goldsmith, M. Mundhenk, The computational complexity of probabilistic planning, Journal of Artificial Intelligence
Research 9 (1998) 1-36. doi:10.1613/jair.505.

J. D. Park, A. Darwiche, Complexity results and approximation strategies for MAP explanations, Journal of Artificial Intelligence Research
21 (1) (2004) 101-133. do1:10.1613/jair.1236.

S. A. Cook, The Complexity of Theorem-proving Procedures, in: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing
(STOC-71), Association for Computing Machinery, 1971, pp. 151-158. doi:10.1145/800157.805047.

M. Y. Vardi, The complexity of relational query languages, in: H. R. Lewis, B. B. Simons, W. A. Burkhard, L. H. Landweber (Eds.),
Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC-82), Association for Computing Machinery, 1982, pp.
137-146. doi1:10.1145/800070.802186.

G. Van den Broeck, D. Suciu, Query processing on probabilistic data: A survey, Foundations and Trends in Databases 7 (3/4) (2017) 197-341.
doi:10.1561/1900000052.

E. Gribkoft, D. Suciu, SlimShot: In-Database Probabilistic Inference for Knowledge Bases, Proceedings of VLDB Endowment 9 (7) (2016)
552563. doi1:10.14778/2904483.2904487.

S. Borgwardt, 1. I. Ceylan, T. Lukasiewicz, Ontology-mediated query answering over log-linear probabilistic data, in: Proceedings of the 33rd
AAALI Conference on Atrtificial Intelligence (AAAI-19), 2019, pp. 2711-2718. doi:https://doi.org/10.1609/aaai.v33101.
33012711.

T. Sato, A statistical learning method for logic programs with distribution semantics, in: Proceedings of the 12th International Conference on
Logic Programming (ICLP-95), MIT Press, 1995, pp. 715-729.

D. Poole, The independent choice logic for modelling multiple agents under uncertainty, Artificial Intelligence 94 (1-2) (1997) 7-56. doi:
10.1016/S0004-3702(97)00027-1.

L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic prolog and its application in link discovery, in: Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IICAI-07), Morgan Kaufmann, 2007, pp. 2468-2473.

C. Sutton, A. McCallum, An introduction to conditional random fields, Machine Learning 4 (4) (2011) 267-373. doi:10.1561/
2200000013.

L. A. Galdrraga, C. Teflioudi, K. Hose, F. Suchanek, Amie: Association rule mining under incomplete evidence in ontological knowledge

27

(40]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
(54]
[55]
[56]

(571

(58]

[59]

[60]
[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
(71]
(72]
(73]
(74]
[75]

[76]

bases, in: Proceedings of the 22nd International Conference on World Wide Web (WWW-13), Association for Computing Machinery, 2013,
p-413422. doi:10.1145/2488388.2488425.

R. Munroe, Google’s datacenters on punch cards (2015).

J.'Y. Halpern, Reasoning about uncertainty, MIT Press, 2003.

F. G. Cozman, Credal networks, Artificial Intelligence 120 (2) (2000) 199-233. doi:https://doi.org/10.1016/
50004-3702(00)00029-1.

R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1) (1980) 81-132. doi:https://doi.org/10.1016/
0004-3702(80)90014-4.

N. Dalvi, D. Suciu, The dichotomy of probabilistic inference for unions of conjunctive queries, Journal of ACM 59 (6) (2012) 1-87. doi:
10.1145/2395116.23951109.

N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases, The VLDB Journal 16 (4) (2007) 523-544. doi:10.1007/
s00778-006-0004-3.

E. Gribkoft, G. Van den Broeck, D. Suciu, Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting,
in: Proceedings of the 30th Annual Conference on Uncertainty in Artificial Intelligence (UAI-14), AUAI Press, 2014, pp. 280-289.

Y. Sagiv, M. Yannakakis, Equivalences among relational expressions with the union and difference operators, Journal of ACM 27 (4) (1980)
633-655. doi1:10.1145/322217.322221.

C. P. De Campos, F. G. Cozman, The inferential complexity of bayesian and credal networks, in: Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI-05), 2005, pp. 1313-1318.

A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge University Press, 2009. doi:10.1111/73.1751-5823.
2012.00179_15.x.

R. Fink, D. Olteanu, Dichotomies for queries with negation in probabilistic databases, ACM Transactions on Database Systems (TODS)
41 (1) (2016) 4:1-4:47. doi:10.1145/2877203.

A. Amarilli, M. Monet, P. Senellart, Conjunctive queries on probabilistic graphs: Combined complexity, in: Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS-17), Association for Computing Machinery, 2017, pp.
217-232. doi1:10.1145/3034786.3056121.

G. Gottlob, N. Leone, F. Scarcello, The complexity of acyclic conjunctive queries, Journal of ACM 48 (3) (2001) 431-498. doi:10.1145/
382780.382783.

T. ImieliAski, W. Lipski, Incomplete information in relational databases, in: J. Mylopolous, M. Brodie (Eds.), Readings in Artificial In-
telligence and Databases, Morgan Kaufmann, 1989, pp. 342 — 360. doi:https://doi.org/10.1016/B978-0-934613-53-8.
50027-3.

N. Fuhr, T. Rolleke, A probabilistic relational algebra for the integration of information retrieval and database systems, ACM Transactions on
Information Systems (TOIS) 15 (1) (1997) 32-66. doi:10.1145/239041.239045.

S. Borgwardt, I. I. Ceylan, T. Lukasiewicz, Recent advances in querying probabilistic knowledge bases, in: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-18), 2018, pp. 5420-5426. doi:10.24963/1jcai.2018/765.

E. Gridel, Y. Gurevich, C. Hirsch, The complexity of query reliability, in: Proceedings of the 17th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems (PODS-98), Association for Computing Machinery, 1998, pp. 227-234. doi1:10.1145/275487.
295124.

R. Fink, D. Olteanu, S. Rath, Providing support for full relational algebra in probabilistic databases, in: Proceedings of the 27th International
Conference on Data Engineering (ICDE-11), 2011, pp. 315-326. doi:10.1109/ICDE.2011.5767912.

D. Olteanu, J. Huang, Using obdds for efficient query evaluation on probabilistic databases, in: Proceedings of the 2nd International Confer-
ence on Scalable Uncertainty Management (SUM-08), Vol. 5291 of Lecture Notes in Computer Science, Springer-Verlag, 2008, pp. 326-340.
D. Olteanu, J. Huang, Secondary-storage confidence computation for conjunctive queries with inequalities, in: Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, Association for Computing Machinery, 2009, pp. 389-402. doi:
10.1145/1559845.1559887.

C. Ré, D. Suciu, The trichotomy of having queries on a probabilistic database, The VLDB Journal 18 (5) (2009) 1091-1116.

A. Amarilli, 1. . Ceylan, A dichotomy for homomorphism-closed queries on probabilistic graphs, in: C. Lutz (Ed.), Proceedings of the 23rd
International Conference on Database Theory (ICDT-20), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementa-
tion, and Applications, 2nd Edition, Cambridge University Press, 2007.

A. Cali, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies, Journal of Web
Semantics 14 (2012) 57-83. doi:https://doi.org/10.1016/7j.websem.2012.03.001.

M. Bienvenu, B. T. Cate, C. Lutz, F. Wolter, Ontology-based data access: A study through disjunctive datalog, csp, and mmsnp, ACM
Transactions on Database Systems (TODS) 39 (4) (2014) 1-44.

J. C. Jung, C. Lutz, Ontology-based access to probabilistic data with owl ql, in: Proceedings of the 11th International Conference on The
Semantic Web - Volume Part I, Springer-Verlag, 2012, pp. 182-197.

I. I. Ceylan, R. Pefialoza, Probabilistic query answering in the bayesian description logic BEL, in: Proceedings of the 9th International
Conference on Scalable Uncertainty Management (SUM-15), Vol. 9310, Springer-Verlag, 2015, pp. 21-35.

G. Gottlob, T. Lukasiewicz, M. V. Martinez, G. I. Simari, Query answering under probabilistic uncertainty in datalog+/- ontologies, Annals
of Mathematics and Artificial Intelligence 69 (1) (2013) 37-72. doi1:10.1007/s10472-013-9342-1.

1. 1. Ceylan, T. Lukasiewicz, R. Pefialoza, Complexity results for probabilistic datalogz, in: Proceedings of the 28th European Conference on
Artificial Intelligence (ECAI-16), Vol. 285, IOS Press, 2016, pp. 1414-1422. doi:10.3233/978-1-61499-672-9-1414.

S. Borgwardt, 1. I. Ceylan, T. Lukasiewicz, Ontology-mediated queries for probabilistic databases, in: Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI-17), AAAI Press, 2017, pp. 1063-1069.

D. Poole, First-order probabilistic inference, in: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IICAI-03),
Vol. 3, 2003, pp. 985-991.

28

[77] F. G. Cozman, D. D. Maud, On the semantics and complexity of probabilistic logic programs, Journal of Artificial Intelligence Research
60 (1) (2017) 221262.

[78] T. Friedman, G. Van den Broeck, On constrained open-world probabilistic databases, in: Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IICAI-19), 2019, pp. 5722-5729. doi:10.24963/1jcai.2019/793.

[79]1 M. Grohe, P. Lindner, Probabilistic databases with an infinite open-world assumption, in: Proceedings of the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS-19), 2019, pp. 17-31. doi:10.1145/3294052.3319681.

[80] C.P. Gomes, A. Sabharwal, B. Selman, Model counting, in: Handbook of Satisfiability, IOS Press, 2009.

[81] M. Chavira, A. Darwiche, On probabilistic inference by weighted model counting, Artificial Intelligence 172 (6-7) (2008) 772-799. doi:
10.1016/j.artint.2007.11.002.

[82] M. Cadoli, F. Donini, A survey on knowledge compilation, AI Communications 10 (3-4) (1997) 137-150.

[83] A. Darwiche, P. Marquis, A Knowledge Compilation Map, Journal of Artificial Intelligence Research 17 (1) (2002) 229-264.

[84] A.Jha, D. Suciu, Knowledge Compilation Meets Database Theory: Compiling Queries to Decision Diagrams, Theory of Computing Systems
52 (3) (2013) 403440. doi:10.1007/s00224-012-9392-5.

[85] R. M. Karp, M. Luby, N. Madras, Monte-Carlo approximation algorithms for enumeration problems, J. Algorithms 10 (3) (1989) 429448.
doi:10.1016/0196-6774(89)90038-2.

[86] K. S. Meel, A. A. Shrotri, M. Y. Vardi, On hashing-based approaches to approximate DNF-counting, in: Procceedings of 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS-17), 2017, pp. 1-14. doi:
10.4230/LIPIcs.FSTTCS.2017.41.

[87] R. Abboud, I. 1. Ceylan, T. Lukasiewicz, Learning to reason: Leveraging neural networks for approximate DNF counting, in: Proceedings of
the 34th AAAI Conference on Artificial Intelligence (AAAI-20), AAAI Press, 2020.

[88] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Ré, D. Suciu, Mystiq: A system for finding more answers by using probabilities, in:
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Association for Computing Machinery, 2005,
pp- 891-893. doi:10.1145/1066157.1066277.

[89] R. Fink, A. Hogue, D. Olteanu, S. Rath, Sprout®: A squared query engine for uncertain web data, Association for Computing Machinery,
2011, pp. 1299-1302. doi:10.1145/1989323.1989481.

[90] F. Niu, C. Ré, A. Doan, J. W. Shavlik, Tuffy: Scaling up statistical inference in markov logic networks using an RDBMS, Proceedings of
VLDB Endowment 4 (6) (2011) 373-384. do1:10.14778/1978665.1978669.

[91] G. S. Tseitin, On the Complexity of Derivation in Propositional Calculus, Springer-Verlag, pp. 466—483. doi:10.1007/
978-3-642-81955-1_28.

Appendix A. Proofs of Semantic Results

This part contains the initial results stated in Section 5, most of which are semantic results.

Proof of Lemma 5.2

It is sufficient to choose an € value, which has strictly lower probability than any of the worlds induced by the
given PDB #. Let us denote by n be the number of atoms in the PDB %, and by m the maximal precision among
the fact probabilities in . We set € = 0.0...01, which has exactly n - m zero’s, and ensures that (i) € has a lower
probability than any of the worlds induced by %, and (ii) the size of € is polynomial in . It is then easy to verify that
Pp(Q) > p if and only if Pp(Q) > p + €. Conversely, it is easy to verify that Pp(Q) > p if and only if Pp(Q) > p — €.
Analogous arguments hold also for < and <.

Proof of Corollary 5.3

Let Q be a safe UCQ for PDBs. Then, for any PDB %, the exact probability Pp(Q) can be computed in polynomial
time. Hence, it is possible to decide whether Pp(Q) > p for a given threshold p, in polynomial time. Thus, PQE(Q) is
in P for any safe UCQ Q.

Conversely, let Q be an unsafe UCQ for PDBs. Then, there exists a PDB # such that computing P(Q) is #P-hard
under polynomial-time Turing reductions. Let us loosely denote by P(Q) the problem of computing P(Q). We need to
show that PP is contained in PP?¥(@ i e, any problem in PP can be reduced to PQE(Q) under polynomial time Turing
reductions.

To show this, let A be a problem in PP. Let us denote by #A, its computation problem. By assumption, #A, is
contained in FPP©), i.e., there is a polynomial-time Turing machine with oracle P(Q) that computes the output for #A.
We can adapt this Turing machine then to compare the output to some threshold, which means that A is contained in
PP@_ We also know that P(Q) is contained in FPPED 35 we can perform a binary search over the interval [0, 1] to
compute the precise probability P(Q). This implies that A is contained in P* where € = FPPE(Q Finally, note that the
intermediate oracle does not provide any additional computational power (as this computation can be performed by
the polynomial time Turing machine and the oracle PQE(Q) can be queried directly). This shows that A is in PPREQ),
which proves the result.

29

Proof of Theorem 5.9

First, note that the functions ﬁg : FO — [0, 1] and Bg : FO — [0, A] are well-defined w.r.t. the set Kg, i.e.,
the existence of a maximum (resp., minimum) is ensured by the properties of credal sets. We need to show that the
maximal (resp., minimal) probabilities of queries can always be obtained from the extreme probability distributions.
We prove the claim only for P as P can be treated analogously.

To simplify the proof, we use the lineage representation of the database atoms, which can be realized simply by
introducing a propositional literal p, for every atom ¢. Similarly, we focus on the lineage of the query, which can
be obtained by first grounding the query and then converting it into a propositional formula by replacing every tuple
in the ground query with its lineage. It is well-known that every first-order query relative to a finite structure has
a corresponding propositional lineage representation and thus our assumption is without loss of generality. Since
any propositional formula is equivalent to a formula in 3CNF, we can further assume that the lineage is in 3CNF.
Moreover, for simplicity we assume that the CNF contains exactly three literals. Thus, it suffices to prove the claim
for 3CNF formulas ¢ = ¢; A ... A c, Where ¢; = O, V O, V Q.

Suppose that there is a probability distribution P, where the probabilities of k (positive) literals in ¢ are set to
intermediate probability values from the interval (0, 1). We prove that, for each such literal /, there is (at least) one
extreme assignment to / that does not decrease the probability of ¢. Formally, given P, we define two new probability
distritl)uotions P! and P"=0 such that P"=(l;j) = P(l;;) and P"=°(l;j) = P(l;;) for all ; different from [and P'='(]) = 4,
and P=V()) = 0.

Claim. Either P=4(¢) > P(¢), or P=(¢) > P(¢) holds.

To prove the claim, suppose that P=4(¢) < P(¢), i.e., the probability of ¢ = ¢| A ... A ¢, decreases if we increase the
probability of / to . We make a case analysis.

Case 1. Assume that the literal / appears only positively in ¢. This immediately leads to a contradiction since, if for
every clause c;, [appears positively, then the probability of ¢ is clearly monotone in I. Thus, P=4(¢) > P(¢).

Case 2. Assume that the literal / appears only negatively in ¢. If for every clause c;, [appears negatively, then the
probability of ¢ is antitone in I. This immediately implies that P'=°(¢) > P(¢) since further decreasing the probability
of] increases the probability of ¢.

Case 3. Assume that the literal / appears both positively and negatively in ¢. We can summarize all clauses where /
appears positively with the formula

v (((-')ul V©u) AL A ((ﬂ)u,v(ﬂ)u,ﬂ)),

Ay

and similarly the clauses where [appears negatively with the formula

-l v (((ﬂ)vl V) AL A ((ﬂ)vsv(ﬁ)vm)).

Ay

Moreover, let Az be the conjunction of all clauses where the literal / does not appear. Thus, we obtain (I V Aj) A (=l V
Ay) A Az as a rewriting of ¢.
We can further simplify ¢ and deduce:

P(¢) = P() P(Az A Az) + P(=D) P(A; A Az),

which is maximized by setting P(l) = 4, if P(A; A A3) > P(A; A A3z), and by setting P(l) = 0, otherwise. This shows
that if P’=”(¢) < P(¢) then P1:0(¢) > P(¢). Therefore, this concludes our case analysis and proves the claim.

Observe that this argument can be applied repeatedly until there is no such literal left, i.e., all literals are assigned a
probability value that is extreme. Clearly, this procedure terminates, and implies that, for any probability distribution
that is maximal, but not extreme, we can find a corresponding extreme distribution that is also maximal.

30

Proof of Theorem 5.10
We prove the result for the upper bound: ﬁg(Q) = Py, (Q). The proof for the lower bound BQ(Q), can be obtained

analogously. It is easy to see that the function ﬁg : UCQ [0, 4] is monotone for any choice of A. By Definition 4.3,
we know that Pp, € Kg. Thus, we obtain l_)g(Q) > Pp, (Q). To show the other direction, i.e., ﬁg(Q) < Pp, (Q), assume
by contradiction that ﬁg(Q) > Pp,(Q). Then, by Theorem 5.9, there exists a PDB P that uses only the extreme points
for the open tuples (i.e., induces an extreme distribution) and that satisfies Px(Q) = ﬁg(Q) > Pp (Q). Since P, and P
induce different distributions, there must exist at least one atom ¢ for which P;(f) = 0 and Pp,(f) = A. Then, by the
monotonicity of Pon UCQs, it follows that Pz(Q) < Py, (Q), which leads to a contradiction.

Proof of Lemma 5.11

This is a simple consequence of the query semantics: either D = Q or O = —Q holds for any database D and
query Q. On this level, the semantics forces completeness, and therefore, it is never the case that neither D = Q nor
D E —Q holds. By this argument, for any probability distribution P, it holds that P(Q) = 1 — P(=Q). Using this and
the existence of maximal and minimal distributions in OpenPDBs, it is easy to deduce:

1 -Pg(Q) = 1 - max{P(Q) | P € Kg} = min{1 - P(Q) | P € Kg} = min{P(=Q) | P € Kg} = P4(~0),

and the other case can be shown analogously.

Appendix B. Proofs of Data Complexity Results

This part contains all the proofs of the data complexity results stated in Section 6.

Proof of Theorem 6.2

Consider an OpenPDB G = (P, 1) over a sorted domain, and a UCQ. Let us denoted by G" = (#’, 1) the prepro-
cessed OpenPDB, which is ranked. Note that in general £ can be polynomially larger than .

First, we show that the number of calls in the recursion tree of Algorithm 1 is linear in the size of #" (i.e., the
number of atoms in the preprocessed PDB). We can ignore calls below each invocation of Line 23, as these calls no
longer depend on #". For the remaining calls to LIFT%, we show a constant upper bound on how many calls are added
when a single atom ¢ is added to $. We say that a LIFTg-CaH covers an atom if that atom appears in its -argument.
In Step 5, the separator variable must appear in every atom, which means that the separator variable must appear in
t as well. Hence, of the child calls generated in Line 22, at most one can cover . The number of calls that cover
t is therefore bounded above by the number of recursive calls that can be generated in Steps 2—4. These steps are
independent of £, and only a function of the query. Therefore, the number of calls covering ¢ is at most a constant
in the size of #”. Every call to LIFTlé must cover at least one atom (ignoring the constant cost of Line 23 and its calls
with empty databases), which bounds the number of calls to be linear in #".

Second, we show that the computations inside each individual call to LIFTg admit an overall linear complexity.
When adding an atom ¢ to #", the calls that cover ¢ are of two types: (1) calls that do not cover another atom in "
except for ¢, and (2) calls that already cover another atom in #’.

(1) Because of database restriction operators such as # _ . throughout Algorithm 1, the calls of type 1 all have the
minimum required database as an argument, that is, |#"| = 1. Thus we have a constant data complexity for
non-recursive computations in calls of type 1.

(2) To analyze the complexity of type-2 calls, we make the standard assumption that the domain has a given one-to-
one correspondence with the integers. This allows for the operation #] __ to be implemented in linear time for
all ¢ simultaneously (i.e., Step 5 has linear data complexity sans the recursive calls). The complexity of type-2
calls thus grows linearly with $".

31

In total, adding an atom to " will add a constant number of type-1 calls, whose internal computations all have
constant data complexity. It will also increase the runtime of a constant number of type-2 calls by a constant. This
gives an overall linear data complexity.

Hence, the algorithm LIFT% runs in time polynomial in data complexity (accounting also for preprocessing). The
probability of any safe query can be evaluated in linear time in the size of the ranked OpenPDB G" in data complexity.
Moreover, any safe query which is self-join-free can be evaluated in linear time in the size of the input OpenPDB G,
since ranking is not needed for self-join free queries.

Proof of Theorem 6.4

For the membership results, it is sufficient to show that PQE(FO) is in PP in data complexity. Let #* be a PDB, QO
a FO query and p € (0, 1] a rational value. Let us denote by P the probability distribution induced by £. We need to
show that P(Q) > p can be decided in PP. Note that there are exponentially many databases (worlds) D induced by
%, each of which holds with some probability. We now create multiple copies of each world in such a way that the
uniform distribution over all thus generated worlds is equivalent to P when each copy is taken to represent its original
world. Given this uniform distribution over the worlds, we now consider a nondeterministic Turing machine, where
each branch corresponds to one of these worlds. Each branch of the nondeterministic Turing machine represents an
accepting run if the test D | Q is positive for the corresponding world D (which can be verified in polynomial time
in data complexity). Moreover, for threshold values properly above (respectively, below) 0.5, we introduce artificial
success (respectively, failure) branches into the nondeterministic Turing machine such that satisfying the original
threshold corresponds to having a majority of successful computations. Then, P(Q) > p (i.e., the answer to the
probabilistic query entailment problem is yes) if and only if the nondeterministic Turing machine answers yes in the
majority of its runs, which proves membership.

As for the hardness results, we first prove that PQE(YFO) is PP-hard in data complexity. Let # be a PDB, Q a YFO
query and p € (0, 1] a threshold value. We reduce from the following problem. Given a quantified Boolean formula
@ :=Cxy,...,x, ¢, where C represents the counting quantifier and ¢ = ¢; A --- A ¢y is a propositional formula in
3CNF, defined over the variables xi, ..., x,, decide whether @ is valid. Intuitively, this amounts to checking whether
there are ¢ assignments for xi, ..., x, that satisfy ¢, and deciding the validity of such formulas is PP-complete [33].
For the reduction, we consider the following YFO query:

Osar :=Yx,y,z2(L) v L)V L@ VRI(xy) A
(=Lx) v LV Lk VR(xy,2)A
(-L(x) v =Ly v L) v Rs(x,y,2) A
(=L(x) v =L(y) vV =L(2) V Ra(x,y,2)) ,

which is used to encode the satisfaction conditions of the formula ®. Furthermore, we define the PDB $g4 that stores
the structure of ® as follows.

— For each variable x;, 1 < i < n, Pg contains the atoms {L(x;) : 0.5), where we view each x; as a database
constant.

— The clauses ¢; are described with the help of the predicates Ry, ..., R4, each of which corresponds to one
type of clause. More specifically, there are at most four different types of clauses in a 3CNF formula (modulo
permutations): (i) R; encodes clauses with exactly three positive literals, (ii) R, encodes clauses with exactly
two positive literals and a single negated literal, (iii) R3 encodes clauses with exactly two negated literals and
a single positive literal, (iv) R4 encodes clauses with exactly three negated literals. For example, for the clause
¢; = x1 V nxp V -y, we add the atom (R3(x4, x2, x1) : 0) to Po, which enforces via Qsar that either —L(xy),
=L(x,) or L(x;) holds. All other R-atoms that do not correspond in such a way to one of the clauses, we add
with probability 1 to Pg.

Claim. The formula @ is valid if and only if Pp,(Qsar) > € - (0.5)".

Suppose that @ is valid. Then, there are at least ¢ different assignments 7 to the variables x, ..., x, that satisfy
¢. For each satisfying assignment 7, there is a corresponding database D induced by P4 such that (i) D contains an

32

atom L(x;) if and only if 7 sets x; to true in @, and (ii) D contains all R-atoms that occur in P¢ with probability 1. For
each such database 9, it holds that D = Qsar, as each such world is in one-to-one correspondence with a satisfying
valuation. Note that there are only n probabilistic atoms in Pg, i.e., the atoms L(x;), 1 < i < n (corresponding to
the variables in ®@). Thus, every database D induced by Pg has the probability 0.5". By our assumption, there are ¢
satisfying assignments 7 to @, and hence, it follows that Pp, (Qsar) > € - (0.5)".

For the other direction, let Pp, (Qsar) > ¢ - (0.5)". Then, each database O induced by P sets a choice for
the nondeterministic atoms L(x;),...,L(x,) and each such database has the probability (0.5)" (as there are only n
nondeterministic atoms in the PDB). As a consequence, there must exist at least ¢ databases induced by ¢ that
satisfies D = Q. For each such database D, we define a corresponding assignment 7 to the variables xi, ..., x, such
that x; is mapped to true in 7 if and only if L(x;) € D. It is then easy to verify that 7 | ¢. As there are ¢ different
assignments 7 that satisfy ¢, we conclude that the formula @ is valid. This proves PP-hardness for PQE(VFO).

Observe that this hardness immediately applies to PQE(FO), as Osar € FO. Finally, note that the negation of
QOsar is an AFO query and PP is closed under complement as it is closed under truth table reductions [30]. Hence, this
hardness also holds for PQE(JFO).

Proof of Theorem 6.5

We start by proving the membership results. It is sufficient to show that FQE(FOS) is in NP and PQE(FOy) is in
coNP, since the membership results for the query classes AFOg and YFOq follow from these. Let G = (P, 1) be an
OpenPDB, QO be a FOg query, and p € (0, 1] a rational value. We first show that deciding whether ﬁg(Q) > pisin
NP. To see why this holds, consider a nondeterministic Turing machine, where each computation branch corresponds
to an extreme completion of G. Each of these computation branches, corresponding to a completion P, can then be
used to verify whether P;(Q) > p. Note that this verification can be performed in polynomial time in data complexity,
since any completion is a PDB, and the query Q € FOy is safe for PDBs, by our assumption. Then, ﬁg(Q) > p
if and only if the described nondeterministic Turing machine answers yes. Hence, PQE(FO) is in NP. To show
that deciding whether P,(Q) > p is in coNP, we can prove that the complementary problem of deciding whether
P;(Q) < pis in NP. To see why this holds, consider the same construction for a nondeterministic Turing machine as
before, except that each computation branch now verifies whether P3(Q) < p (which can be done in polynomial time
in data complexity), for the respective completion % that it represents. Then, P;(Q) < p if and only if the described
nondeterministic Turing machine answers yes. Hence, PQE(FOj) is in coNP.

For the hardness results, we prove PQE(YFOy) is NP-hard, which, by duality, implies PQE(IFOy) is coNP-hard.
Clearly, these lower bounds apply to FO4 queries, and we obtain the all the claimed results. To prove this result, we
carefully choose a query which is safe for PDBs, but becomes hard for OpenPDBs. More concretely, we carefully
define a YFOq query Qsarg and prove the following propositions:

Proposition B.1. PQE(Qsarg) is in P for PDBs (i.e., Osarg is safe for PDBs).
Proposition B.2. PQE(Qsarg) is NP-hard for OpenPDBs.

Then, by Proposition B.1, it holds that Qsare € YFOs, and together with Proposition B.2, we conclude that PQE
(YFOq) is NP-hard for OpenPDB. The proof is thus structured as follows: (i) Identifying a query Qsare, (ii) Proof of
Proposition B.1, and (iii) Proof of Proposition B.2.

Identifying the query Qsarg
The construction of Qsapg is quite intricate. We start by describing this query, which, once identified, is fixed.
The idea is to start from a VFO query:

Osar :=Yx,y,z(LV LV L&z VRixy2)A
(-L&x)V LoV L@V Rxy,2) A
(=L(x) V=LV L) VR3xy,2)A
(=L(x) v =L(y) vV =L(2) V Ra(x,y,2)) ,

which is shown to be unsafe for PDBs in the proof of Theorem 6.4. Observe also that the construction given in the
proof of Theorem 6.4 shows that Osar can encode an arbitrary propositional formula in 3CNF.

33

We apply a chain of transformations on Qsar in order to obtain Qsapg. First, we transform the query Qsar into a
query QOgq that consists of individually safe clauses, while Qg itself remains unsafe. Our transformation ensures that
the queries QOsar and Qgq are equisatisfiable, and even more is actually true: there is a one-to-one mapping between
the models of these queries. We then apply another transformation on the query to produce Qsare from Qgq. Recall
that Qgq is an unsafe query, but each of its clauses are safe. Qgq is hard since the terms produced in the inclusion-
exclusion step are hard to evaluate. Put in more intuitive terms, clauses in Qgq are probabilistically dependent of each
other, and this serves as the source for hardness. We manipulate these clauses so that they become mutually exclusive,
which in turn helps us to come up with the Osarg, that is safe for PDBs. QOsapg is defined in such a way that all the
unsafe terms will cancel out during the exhaustive application of the inclusion-exclusion rule. This is the intuitive
reason why QOsarg is safe for PDBs, while it is hard for OpenPDBs. We now provide the details of the corresponding
transformations.

Transforming Qsar to Qpq. We show how to transform Qsar into an equisatisfiable query Qgq, using a special type
of Tseitin transformation [91]. The idea is to detect the unsafe fragments in each clause of Qsar and replace them
recursively with fresh atoms until the clause is safe. While doing so, we also add additional clauses to the formula,
which assert the equivalence of the freshly introduced atom to the old formula, ensuring the overall equisatisfiability
of Osar and Qkgq.

We omit the full details of this transformation (as it is well-known), but explain it on a small example. Consider,
for instance a clause Vx, y L(x) vV L(y) V R;(x, y), which is not safe as there is no separator variable. To transform this
query, we define a fresh atom Z(x, y) to be equivalent to the formula L(y) vV R;(x,y), which results in the following
query:

Vx,y (L(x) vV Z(x,) A (Z(x,y) © (LK) V Ri(x,).

Notice that the first conjunct is already safe. The second conjunct can further be simplified as:

v,y (Z(x,y) = (L) VRiGey)) A (C L) V- Ri(x,) = Z(x,y)) =
Vx,y(=Z(x,y) vV LGV Ri(xy)) AL A =Ri(xy) Vv Z(x,).

Note that the first clause is also safe as there y is a separator variable (and afterwards x serves as a separator
variable). However, the last clause is not in disjunctive form but can be decomposed into two disjunctive clauses:

(=LO») V Z(x,y) A (Z(x,y) V =R (x,y)),

both of which are safe. Clearly, we can apply this transformation to any universally quantified formula, and it will
eventually result in a (potentially) large conjunction of clauses, each of which is individually safe. As a consequence,
we obtain a query Qg = A ¢i(x,y,2), where each ¢;(x,y,z) is a safe clause over the variables x, y and z. By
construction, it is easy to see that any model of Qsar can be extended to a model of Qgq, by interpreting the freshly
introduced atoms to be equivalent to the sub-formula they replaced.

Transforming Qgq to QOsare. Every clause g;(x,y,z) in the query Qrq = Ai<i<n ¢i(%,y,2) is safe, while the query
itself is still not safe, and the reason is hidden in the inclusion-exclusion terms that are hard to evaluate. We define the
following formula:

Osare = Yx, 9,2 /\ (givV-H) A /\ (=H; v =Hj) A (\/ H:),

I<i<n I<i<j<n I<i<n

where H; is a zero-arity predicate. Let us give some insight on this formula. Note that the second part of the formula
consists of only H;-atoms. The last clause simply says that at least one of the atoms H; must be true. Together with
the other clauses, the second part of the formula asserts that exactly one atom Hg, for some 1 < k < n can be true, and
all the remaining atoms H;, 1 < i # k < n must be false. This has direct implications on the first part of the formula
where the clauses ¢; from the original formula Qrq appear. Briefly stated, if we choose to satisfy the k-th atom, Hy,
then this means all clauses ¢; V —H; will be trivially satisfied for i # k. Intuitively, this means that their influence on

34

the query probability will be fixed, and only ¢x vV —H; will be counted. It is important to note that Qsarg and Qgq are
not equisatisfiable.
We have now identified the query Osarg, and based on this query, we prove the propositions.

Proposition B.1. PQE(Qsarg) is in P for PDBs (i.e., Qsark is safe for PDBs).

Proof. Observe that the clauses in Qsapg of the form —H; V ¢; consist of multiple atoms that are not connected
by a relational variable. That is, every clause consists of independent literals. Therefore, the entire query can be
written as (—=H; A A) V (¢; A A), which is a UCNF. Applying this transformation to all clauses (all such clauses have
disconnected H;-atoms), we obtain a large union, on which we can perform inclusion-exclusion in Step 3. The detailed
implementation of inclusion-exclusion for PDBs (cf. [52]) removes a large number of unsatisfiable CNF clauses from
this union. Afterwards, all remaining CNF formulas in the union have the form:

ﬁk:—!Hl/\”-/\Hk/\qk/\...—!Hn,

that is, one H;-atom for every i, and containing exactly one positive atom H; with a corresponding clause gx(x,y, z).
The entire UCNF is then given by \/?_, ;. Importantly, the individual formulas §; are mutually exclusive, removing the
need for any nonsingular combination of B;-terms in the inclusion-exclusion formula. Thus, the inclusion-exclusion
rule computes:

Pp(QOsarr) = Z Pp(B:),
-1

for some arbitrary PDB . Then, since ¢; and H-atoms do not share any relation name, we can further decompose the
query as:

Pp(Bi) = Pp(qi) - Pp(=Hi A--- AHi AL oHy),

where the first term of the multiplication is safe by construction and it is easy to see that the second term is also safe.
Thus, we obtain:

Pp(Qsare) =) Pp(gi) - Pp(=Hi A=+ AH; AL =Hy),

m
i=1

which allows us to conclude that Qsagg is safe for PDBs. O

Proposition B.2. PQE(Qsare) is NP-hard for OpenPDBs.

Proof. We give a reduction from the satisfiability problem defined over 3CNF formulas: given a propositional for-
mula ¢ in a 3CNF, decide whether it is satisfiable. For our construction, we define an OpenPDB G4 = (P, 1) over
a vocabulary o that contains the relation symbols from Qsarg (thus also from Qgq) as well as some additional con-
stants (while assuming at least 3 of them). Intuitively, the fixed query Qsarpg encodes (in a loose sense) the satisfaction
conditions of the given 3CNF formula ¢. The PDB P stores the structure of ¢ as follows:

— P4 contains all atoms (H; : 0.5) for 1 <i < n.

— The clauses ¢; are described with the help of the predicates Ry, ..., R4, each of which corresponds to one type
of clause, as described in the proof of Theorem 6.4. All other R-atoms that do not correspond in such a way to
one of the clauses, we add with probability 1 to Pg.

— All the remaining atoms (that are directly related to the satisfaction of Qgq) are left open. In other words, there
are only n probabilistic atoms.

35

Claim. The formula ¢ in 3CNF is satisfiable if and only if ﬁgé(QSAFE) >n-(0.5)".

Let us assume that §g¢(QSAFE) > n - (0.5)". This implies that there exists a completion that sets a choice for the open
atoms such that the probability of Qsarg relative to this completion is at least z - (0.5)". By the structure of Qsarg, we
already know that there are n different configurations of the H;-atoms, each with probability (0.5)". This means that all
qi(x,y,2), | <i < n must be satisfied by a distinct database with probability (0.5)". Note, however, all these databases
differ only with respect to the H;-atoms. Apart from H-atoms, all the atoms are deterministic in the completion; that
is, they either are in the completion with probability 1, or are excluded. This implies that there exists a database D
that satisfies all ¢;(x,y,z), | <i < n. We now define a propositional assignment 7 such that it maps a variable u« in ¢
to true if and only if L(«) € D. It is then easy to show that 7 = ¢.

Conversely, let us assume that ¢ is satisfiable and let 7 be a satisfying assignment of ¢. We define the completion
P as follows. First note that the completion P; 2 Py, i.e., all atoms (H; : 0.5) for 1 < i < n are in the completion,
and so are the R; atoms from P¢. Moreover, we add (L(u) : 1) if 7 maps u to true; otherwise, we add (L(u) : 0) to
the completion $;. Notice that all Z-atoms are introduced to be equivalent to some L-atom (in the construction of
the query). To preserve this, we also add the respective Z-atoms, either with probability O, or 1, depending on the
L-atoms.

As before, there are n configurations of H;-atoms, each with 0.5" probability. For each such configuration exactly
one g; must be satisfied, which holds since each database O induced by #- differs only on the H-atoms and it is easy to
verify that each of them satisfies D = ¢; for all 1 < i < n. Thus, we obtain that ﬁg ,(Osare) = Pp (Osare) = n-(0.5)",
which concludes the proof of Proposition B.2. (]

We have thus proven all membership and hardness results stated in Theorem 6.5.

Proof of Theorem 6.6

We start by proving the membership results. As before, it is sufficient to show that PQE(FO) is in NP*? and
PQE(FO) is in coNP?, and these cover all membership results for all query classes under consideration. Let G =
(P, A) be an OpenPDB, Q be a FO query, and p € (0, 1] arational value. To show that deciding whether ﬁg(Q) > pisin
NP, consider a nondeterministic Turing machine with a PP oracle such that each computation branch corresponds to
one of the extreme completions # of G (as in the proof of Theorem 6.5), and, for each such branch, the corresponding
verification Py(Q) > p is done by the PP oracle. Note that the verification P3(Q) > p can be performed in PP in data
complexity, since the completion Py is a PDB, and PQE(FO) is in PP for PDBs. Then, ﬁg(Q) > p if and only if the
described nondeterministic Turing machine answers yes. Hence, PQE(FO) is in NP*". To show that deciding whether
P;(Q) > pisin coNP™, we prove that the complementary problem of deciding whether P;(Q) < pisin NPPP,
Consider the same construction for the nondeterministic Turing machine as before, except that each computation
branch uses the oracle, for verifying P;(Q) < p. This verification is in PP, since it is the complement of deciding
P4(Q) > p, which is PP-complete, and PP is closed under complement. Then, P(Q) < p if and only if the described
nondeterministic Turing machine answers yes.

For the hardness results, we prove (i) PQE(YFO) is NP*P-hard for OpenPDBs, and (ii) PQE(YFO) is coNP*P-hard
for OpenPDBs. By duality, (i) and (ii) imply the results for ﬁQE(EIFO), and PQE(JFO). Clearly, all these lower
bounds apply to FO queries, and we obtain all the claimed results.

Proposition B.3. PQE(YFO) is NP*"-hard for OpenPDBs.

Proof. We reduce from the following problem. Let ® = Axy,...,x,C yy,...,ym ¢, denote a quantified Boolean
formula, where C represents the counting quantifier and ¢ = ¢y A - - - A ¢y is a propositional formula in 3CNF, defined
over the variables xi, ..., x¢, ¥1, . .., ym. Deciding the validity of such formulas is NPPP-complete [33]. Intuitively, this
amounts to checking whether there is a partial assignment for xi, ..., x, that admits at least ¢ extensions to yi, ..., Vm,
that satisfy ¢.

To reduce the problem to upper probabilistic query evaluation, we consider again the universally quantified
query QOsar given in the proof of Theorem 6.5. As before, Osar is used to encode the satisfaction conditions of
the formula @ together with the PDB $Pg that stores the structure of ®. The PDB Pg is given as follows: for each
variable y;, 1 < j < m, Pg contains the atoms (L(y;) : 0.5), where we view each y; as a constant. As in the proof of
Theorem 6.5, the clauses ¢; are described with the help of the predicates Ry, ..., Rs. All other R-atoms that do not

36

correspond in such a way to one of the clauses, we add with probability 1 to Pg. Notice that the atoms (L(x;) : 0.5),
1 < i < [that correspond to the x-variables in ® are left open. Finally, we define the OpenPDB G¢ = (Pg, 1). The
construction provided for Qsar and Gg is clearly polynomial. Furthermore, the query is fixed, and only P¢ depends
on ®. We now prove the following claim.

Claim. The formula @ is valid if and only if ﬁgm(QSAT) >c-(0.5™.

Suppose that @ is valid. Then, for some assignment y of the variables xp, ..., x;, there are at least ¢ different
assignments 7 extending u to the variables y, ..., y, that satisfy ®. We use the assignment y in order to set a choice
for all open atoms L(x;), 1 < i < £. More precisely, we define the A-completion P, that contains (L(x;) : 1) if u sets x;
to true and contains (L(x;) : 0), otherwise. Intuitively, every assignment of the existentially quantified variables in @
corresponds to a different completion and the assignment y is realized by the completion #,,.

Moreover, observe that for each satisfying assignment 7 extending u to the variables yy,...,y,, there exists a
database O induced by #,. We can define such a database D as follows: add all atoms to D that are in £, with
probability 1 and add every atom L(y;) to D if and only if 7 sets y; to true. It is easy to see that each such database
satisfies D | Qsar. Finally, it suffices to observe that there are only m nondeterministic atoms in #,,; namely the atoms
L(yj), 1 < j < m that correspond to the y-variables in ®. Thus, every database O induced by P, has the probability
0.5". By our assumption, there are ¢ satisfying assignments 7 extending y; thus, it follows that Pp,(Osar) = ¢-(0.5)",
which implies ﬁg(D(QS at) = C - (0.5)™ as a consequence of the query semantics in OpenPDBs.

For the other direction, let Pg, (Qsar) = ¢ - (0.5)". Then, there exists a A-completion P, such that Pp (Qsar) >
¢ - (0.5)™. Moreover, each database D induced by P, sets a choice for the nondeterministic atoms L(y{),...,L(n)
and each such database has the probability (0.5)” (as there are only m nondeterministic atoms in the PDB). As a
consequence, there must exist at least ¢ databases induced by #,, that satisfies D | Q.

We define an assignment y to the variables xp, ..., x; such that x; is mapped to true in y if and only if (L(x;) : 1) €
P.. Then, for each database D induced by P, and that satisfies D | Qsar, we define an assignment 7 that sets y;
to true if and only if L(y;) € O. It is then easy to verify that 7 = @ and that 7 properly extends u to a complete
assignment. As there are ¢ different assignments 7 that extend u while satisfying ¢, we conclude that the formula @ is
valid. O

Proposition B.4. PQE(VFO) is coNPP-hard for OpenPDBs.

Proof. This proof follows similar ideas to the proof of Proposition B.3. We reduce from the problem of deciding
validity of formulas of the following form ® = Vx,...,x,C yi,..., s ¢, which is similar to the earlier problem,
except that the x-variables are now universally quantified. We use the exact same construction for G = (Pg, 1) and
QOsar as before with the only difference being that the x-variables are now universally quantified.

Claim. The formula @ is valid if and only if Egm(QSAT) >c- (0.5

Suppose that @ is valid. Consider any completion #, that sets a choice for the open atoms L(x;),...,L(x;). We
define an instantiation g such that 4 maps x; to true if and only if (L(x;) : 1) is in the PDB #,. Since @ is valid,
we know that for any instantiation of the variables xp, ..., x,, there exists at least ¢ assignments 7 that extends this
instantiation to the variables yy, ..., y, satisfying ¢. Thus, there must exists at least ¢ assignments 7 extending y such
that 7 = ¢.

It is easy to see that each such assignment 7 defines a database 9, induced by the PDB %, and that D, = QOsar-.
As before, every D has the probability 0.5” since there are m nondeterministic atoms. This proves that, for any
completion, the probability of the given query cannot be less than ¢ - (0.5)", which yields P, (Qsar) = ¢ - (0.5).

For the other direction, we know that regardless of the completion $, that is chosen, it holds that P,(QOsat) > ¢ - (0.5)™.
Moreover, every completion corresponds to a valuation i of the x-variables in @ and for each such assignment can be
extended to c satisfying assignments, as before.

Observe that every world induced by a completion $, has the probability 0.5”. To satisfy Pg,(Qsar) > ¢ - (0.5)",
there have to be ¢ databases induced by P, satisfying Osar. We have shown that each such database D, corresponds
to a satisfying assignment 7 that extends u such that 7 |= ¢. Hence, there must be at least ¢ such assignments. Finally,
since we proved this for an arbitrary completion (hence, for an arbitrary valuation of the x-variables), we conclude
that the @ is valid. [

37

We have thus proven all membership and hardness results stated in Theorem 6.6.

Appendix C. Proofs of Combined Complexity Results

This part contains all the proofs of the combined complexity results stated in Section 7.

Proof of Theorem 7.1

We first show that PQE(JFO) is in PP in combined complexity. Let be a PDB, Q a AFO query and p € (0, 1]
a threshold value. To decide whether P(Q) > p, consider a nondeterministic Turing machine as described in the proof
of Theorem 6.4, but one, which additionally has access to an NP oracle. The only difference is that the verification
step D | Q, for each world D induced by the PDB %, is NP-complete in combined complexity. The answer to this
test can be retrieved from the oracle machine. Then, P(Q) > p (i.e., the answer to the probabilistic query entailment
problem is yes) if and only if the nondeterministic Turing machine answers yes in the majority of its runs. This proves
that PQE(JFO) (and hence PQE(UCQ)) is in PPN? in combined complexity. Finally, observe that PQE(YFO) is also in
PP since query evaluation for YFO queries is coNP-complete, i.e., the same oracle can be called for the verification
step D [Q for universal queries.

In order to show hardness, we reduce from the following problem: decide validity of formulas of the form
D =Cx,.e s XAV, Y G1 A2 A -+ A @i, Where every ¢; is a propositional clause over Xy, ..., X, Y15« -« » Vs
and k,m,n>1. @ is valid if and only if, for at least ¢ of the partial assignments y to xi,..., x,, the formula
Ay, .oy (@1 Ao A -+ Agy) is true. This is a PPNP-complete problem [33]. To simplify the proof, we also as-
sume, without loss of generality, that ¢ contains all clauses of the form x; V —x;, 1 < j < m, and similarly y; Vv —y;,
1 < j < n; clearly, this does not affect the existence or number of satisfying assignments for ¢. We also assume that
each clause ¢; contains exactly three literals. This is also without loss of generality, since otherwise we can introduce
additional existentially quantified variables to abbreviate the clauses, or duplicate literals if the clauses are too short.

We can now describe the construction for a PDB and a query. We define the PDB #Pg, for the reduction as follows:

— For each variable x;, 1 < j < m, Pg contains the atoms (L(x;,0) : 0.5) and (L(x}, 1) : 0.5).

— Each clause ¢; is described with the help of a predicate M(.,-, -, j) of arity 4, which encodes the satisfying
assignments for ¢;. For example, consider the clause ¢; = x, V —y4 V y;. For the satisfying assignment x,
true, y4 &> true, y| — false, we add the atom M(1, 1,0, j) with probability 1, and similarly for all other satisfying
assignments. There are at most 7 satisfying assignments for each clause.

Furthermore, we define the UCQ:

Qo = (@yr,-oyntpr Ao M) V (Ax L(x, 0) A Lx, 1)),

where each /; is a conjunction that is derived from ¢; depending on the types of the involved variables. We describe
the details again on the example clause ¢; = x, V —y4 Vy;. The satisfaction of this clause is encoded by the conjunction

¥ = MG, ya,y1,) A L(xo, 1),

where i is an additional existentially quantified variable that is local to ¢, and j is fixed. Intuitively, i ; asserts that the
truth assignment for x», y4, and y; (given by x, i, and yi, respectively) satisfies ¢;. Note that the variables yi, ..., y,
have to be mapped to O or 1, since otherwise they cannot satisfy the M-atoms. Moreover, observe that an alternative
way of satisfying Qg is due to the last clause in Qg: it applies when L-atoms represent an inconsistent assignment (in
®) for at least one variable of the form x;. Note that, in this case, the query can be satisfied without actually sat-
isfying the original formula ®. This happens only if the the world contains both L(x;,0), L(x;,1). As there are 2m
nondeterministic atoms in Pg, there are 4™ worlds; among them, (4™ — 3™) satisfy the last clause of the query Qg,
which corresponds to an inconsistent valuation in ®@. Note that there are other inconsistent assignments, namely, those
that exclude both L(x;,0) and L(x;}, 1), but these cannot satisfy the query. Based on the given construction, and these
observations, we now prove the following claim.

Claim. ® is valid if and only if Pp, (Qg) > 0.5%"(4™ — 3™ + ¢).
38

Suppose that @ is valid. Then, there are at least ¢ assignments y for xy, . .., x,, such that each of these assignments
admit an extension 7 to the variables yy, ..., y, such that 7 |= ¢. For each partial valuation y, we define a database D),
such that it contains all atoms from P that occur with probability 1. Moreover, D, contains an atom L(x;, 1) if x; is
mapped to true in u, and an atom L(x;, 0) if x; is mapped to false in p. It is easy to see that each such database D, is
induced by the PDB $g. Besides, since each of these assignments p admit an extension 7 to the variables yy, ..., y,
such that 7 | ¢, it follows that D, = (Ayi,...,y.¥1 A --- AYy), as all satisfying assignments are already encoded
in the database. In particular, this implies that D, | Q¢ for ¢ worlds. Recall also that (4™ — 3™) worlds satisfy the
last clause in the query (which captures the inconsistent valuations). As every world has the probability 0.5)%", we
conclude that Pp, (Qg) > 0.52m(4™ — 3™ 1 ¢).

Conversely, if Pp, (Q¢) > 0.5%"(4™ — 3™ 1 ¢), then there are at least ¢ worlds that satisfy the first clause in Q. For
each of those worlds D, we define a partial assignment uq such that a variable x; is mapped to true if L(x;, 1) € D and
it is mapped to false if L(x;,0). Moreover, D | (yy,...,y,¥1 A -+ Ayy) implies that there is a satisfying mapping
for the y-variables in the database. Recall that, this can only be the case if a variable y; is either mapped to 0 or to 1
due to the structure encoded in M-atoms. We define an extension 7o of g, which maps a variable y; to true if and
only if it is mapped to 1 in the database and to false, otherwise. It is easy to verify that 7o | ¢. Thus, for ¢ partial
assignments, the formula Jyy,...,y, ¢ A --- A ¢ is satisfiable; meaning that, the formula ® must be valid.

Proof of Theorem 7.2

We first show that PQE(FO) is in PSpack in combined complexity. Let ? be a PDB, Q a FO query and p € (0, 1]
a threshold value. To decide whether Po(Q) > p, consider a polynomial-space bounded nondeterministic Turing
machine that enumerates all (exponentially many) worlds 9, while keeping one world in memory at a time, and
performs the test O | Q for those worlds; then, adds up their probabilities if the test is successful. Note that the
test D = O can be performed in polynomial, since the query evaluation problem for FO queries is PSpace-complete.
Finally, the machine answers yes if and only if Pp(Q) > p, which proves membership.

Hardness is an immediate consequence of the fact that probabilistic query evaluation is a generalization of query
evaluation, and query evaluation for FO queries is PSpace-hard in combined complexity (even if we assume that the
arity of the predicates are bounded). Specifically, consider an arbitrary database 9 and a FO query Q. To decide
whether D | Q, we define a PDB £, which contains all the atoms from D with probability 1. Then, D = Q if and
only if Pp(Q) > 1.

Proof of Theorem 7.3

For the membership results, it is sufficient to show that ﬁQE(UCQ) is in PP"P (since PQE(UCQ) coincides with
PQE(UCQ)). Let G = (P,) be an OpenPDB, Q be a UCQ, and p € (0, 1] a rational value. To decide whether
ﬁg(Q) > p, we consider the completion $, of #, which sets the probability of all open atoms to A. By Theorem 5.9 and
by the monotonicity of UCQs, this completion maximizes the query probability, and since the arity of the predicates
is bounded, the size of this completion is also bounded by a polynomial. Thus, for a UCQ Q, we have reduced
Pg(Q) > p to Pp (Q) > p, which is in PPN* by Theorem 7.1. Hardness also follows from Theorem 7.1, which asserts
that PQE(UCQ) is PPNP-hard for PDBs.

Proof of Theorem 7.4

We prove the results for PQE(IFO), and PQE(JFO) in bounded-arity combined complexity, and by the duality
property, the results for universal queries are implied. Let G = (%, 1) be an OpenPDB, Q a FO query and p € [0, 1).
To decide whether ﬁg(Q) > p, consider a nondeterministic Turing machine with a PP oracle. The nondeteterministic
Turing machine is used to guess a completion P (that is of size polynomial in bounded-arity complexity) and then
for verifying whether P;(Q) > p. Since Py is a PDB, this verification can be done using the PP™P oracle as shown
in Theorem 7.1. This implies an upper bound NP¢, where € = PP™'. Then, using Toda’s result [32], which asserts
that PPPH C PPP it is easy to see that € C PPP and thus NP® = NPFP. To show that deciding whether P;(Q) > pin

bounded-arity combined complexity is in coNPP?

, we can show that the complement problem, i.e., deciding P(Q) < p
in bounded-arity combined complexity is in NPP¥. This can be shown using the same construction, except that the
verification step checks for Pp(Q) < p, after identifying the right completion. This verification can also be done using

the PPN oracle since the complement of this check is in PPN* by Theorem 7.1, and PP™Y is closed under complement.

39

This concludes all membership results in bounded-arity combined complexity, and all hardness results in bounded-
arity combined complexity follow from the hardness results given for data complexity, i.e., by Theorem 6.6.

Proof of Theorem 7.5

We prove ?QE(FO) and PQE(FO) are PSpace-complete in bounded-arity combined complexity. Let G = (P, 1)
be an OpenPDB, Q a FO query and p € [0, 1). To decide whether ﬁg(Q) > p, consider a polynomial space bounded
nondeterministic Turing machine that enumerates (exponentially many) extreme completions, each of which is of
polynomial size, keeping only one such completion in memory at a time. Then, for each of these completions P, it
tests whether Pz(Q) > p, which is in PSpace by Theorem 7.2. By similar ideas, we can decide whether Bg(Q) >p
using a polynomial space bounded nondeterministic Turing machine. PSpace-hardness follows from the hardness
given for probabilistic query evaluation given in Theorem 7.2.

40

	Introduction
	Preliminaries
	Logic and Notation
	Databases and Query Languages
	Complexity Background

	Probabilistic Databases
	Probabilistic Databases in Practice
	Distinguishing Queries in PDBs
	Learning, Mining, and Knowledge Base Completion in PDBs

	Open-World Probabilistic Databases
	OpenPDBs in Practice
	Distinguishing Queries in OpenPDBs
	Learning, Mining, and Knowledge Base Completion in OpenPDBs

	Probabilistic Query Evaluation
	Query Evaluation in Probabilistic Databases
	Query Evaluation in Open-World Probabilistic Databases

	Data Complexity Results
	Overview of the Data Complexity Results
	Results for Unions of Conjunctive Queries
	Results Beyond Unions of Conjunctive Queries

	Combined Complexity Results
	Overview of the Combined Complexity Results
	Derivation of the Combined Complexity Results

	Related Work
	Proofs of Semantic Results
	Proofs of Data Complexity Results
	Proofs of Combined Complexity Results

