EXISTENCE OF SEMISTABLE SHEAVES ON HIRZEBRUCH SURFACES
1ZZET COSKUN AND JACK HUIZENGA

ABSTRACT. Let F. denote the Hirzebruch surface P(Op1 ®Op1 (€)), and let H be any ample divisor. In
this paper, we algorithmically determine when the moduli space of semistable sheaves Mg, 1 (7, c1, c2)
is nonempty. Our algorithm relies on certain stacks of prioritary sheaves. We first solve the existence
problem for these stacks and then algorithmically determine the Harder-Narasimhan filtration of
the general sheaf in the stack. In particular, semistable sheaves exist if and only if the Harder-
Narasimhan filtration has length one.

We then study sharp Bogomolov inequalities A > ¢z (c1/r) for the discriminants of stable sheaves
which take the polarization and slope into account; these inequalities essentially completely describe
the characters of stable sheaves. The function dz(c1/r) can be computed to arbitrary precision
by a limiting procedure. In the case of an anticanonically polarized del Pezzo surface, exceptional
bundles are always stable and dg(c1/r) is computed by exceptional bundles. More generally, we
show that for an arbitrary polarization there are further necessary conditions for the existence of
stable sheaves beyond those provided by stable exceptional bundles. We compute dx(c1/r) exactly
in some of these cases. Finally, solutions to the existence problem have immediate applications to
the birational geometry of My, (V).
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Let X be a smooth, complex projective surface and let H be an ample divisor on X. The moduli
spaces of sheaves My y(v) parameterizing S-equivalence classes of Gieseker semistable sheaves on
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2 I. COSKUN AND J. HUIZENGA

X play a fundamental role in mathematics, especially in algebraic geometry, Donaldson’s theory
of four-manifolds [Don90] and in mathematical physics [Wit95]. Despite being intensively studied,
many basic questions concerning the geometry of My p(v) remain open. Central among them is
determining when Mx g (v) is nonempty.

We say that a Chern character v is H-semistable if there exists an H-Gieseker semistable sheaf
with Chern character v; or equivalently, when My g (v) is nonempty. Bogomolov’s inequality says
that if v is an H-semistable Chern character for any ample H, then the discriminant satisfies
A(v) > 0. On the other hand, O’Grady’s theorem [O’G96] guarantees the existence of H-semistable
sheaves provided A(v) > 0. However, a complete classification of H-semistable Chern characters
is only known for a handful of surfaces such as P?, K3 surfaces and abelian surfaces (see [CH15,
DLP85, Hul.10, LeP97] for detailed descriptions and references).

There are many results on classifying stable Chern characters on anticanonically polarized del
Pezzo surfaces. Rudakov [Rud88], Gorodentsev [Gor89] and Kuleshov and Orlov [KO95] study
exceptional bundles on del Pezzo surfaces and prove many foundational results. Rudakov studies
the stable Chern characters for the anticanonical polarization on P! x P! and more generally del
Pezzo surfaces [Rud94, Rud96] and shows that exceptional bundles control the classification. These
results on del Pezzo surfaces form the starting point of our investigations.

Let F. for e > 0 denote the Hirzebruch surface P(Op1 @ Opi(€)). Let F' be the fiber of the natural
projection to P! and let E denote a section of self-intersection —e. Let H be any ample divisor on
F. and v be a positive rank Chern character. In this paper, we algorithmically determine the Chern
characters of H-Gieseker semistable sheaves on F.; equivalently, we determine when Mp,_ g (V) is
nonempty. For fixed rank r and c¢;, we obtain sharp Bogomolov inequalities on the discriminant A
for the existence of semistable sheaves. These results have consequences for computing birational
invariants such as ample and effective cones on My, p7(v) (see [CH18b]). Our work is directly inspired
by Drézet and Le Potier’s classification of stable Chern characters on P?; however, the classification
is considerably more complicated. In particular, we will see that for an arbitrary polarization,
exceptional bundles do not control the complete classification.

For any real number m, let

H,, =E+ (e+m)F.
The divisor class H,, is ample if m > 0, and every ample divisor is a multiple of some H,,. Since
scaling a divisor does not change semistability, to study semistable sheaves with respect to any
ample divisor, it suffices to study H,,-semistable sheaves on F.. We will now explain our results in
greater detail.

1.1. Sharp Bogomolov inequalities. Recall that for a smooth surface X the total slope v and
discriminant A of a Chern character v € K(X) are defined by

y=2 A= lV2 - —.
r 2 r
We will often record a Chern character v by the data (r,v, A). The classical Bogomolov inequality
says that if V is a pp-semistable sheaf, then A(V) > 0. By taking the polarization and the total

slope into account, one can prove stronger lower bounds on the discriminant.

Theorem 1.1 (See Theorem 9.7). Let m > 0. There is a unique real-valued function o,°(v) of the
total slope v with the following property. Let v = (r,v,A) € K(F.) be a character of positive rank.

(1) If A > 65,°(v), then there are up,, -stable sheaves of character v.
(2) If there is a non-exceptional py, -stable sheaf of character v, then A > 65, (v).

Thus the inequality A > 6, °(v) is a sharp Bogomolov inequality which is satisfied by all non-
exceptional pp, -stable sheaves. We show that the function d,°(v) exists and we study its basic
properties. We also compute it in many cases.
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(1) For a fixed character v € K(F.), we give an explicit algorithm to determine if there are
(., -stable sheaves of character v. This algorithm can be used to compute 85, (v) as a limit
and approximate it to arbitrary precision. See §1.3.

(2) Ife = 0 or 1, then F, is a del Pezzo surface, and we can consider the anticanonical polarization
Hl,g = —%KFE. In this case, we expand on work of Rudakov to show that the function
(5?“_% (v) can be computed by ezxceptional bundles. See §1.4.

(3) For certain polarizations H,, different from the anticanonical polarization, the function
85, (v) is not always computed by exceptional bundles. We will show that &;°(v) is some-
times computed by orthogonal pairs of Kronecker modules. See §1.7.

1.2. Prioritary sheaves. We now turn to the problem of constructing semistable sheaves. In order
to construct semistable sheaves it is convenient to have an irreducible family of sheaves that contains
all the H,,-semistable sheaves. Recall that for a divisor D on X, a torsion-free coherent sheaf V on
a surface X is called D-prioritary if

Ext*(V,V(-D)) = 0.

For a character v € K(F.), let Pp(v) C Coh(v) be the open substack of D-prioritary sheaves.

The stack Pp(v) of F-prioritary sheaves is irreducible by a theorem of Walter [Wal98], and it
is nonempty whenever the Bogomolov inequality A > 0 holds. Every H,,-semistable sheaf is F-
prioritary. Furthermore, every Hp-semistable sheaf is additionally Hf,, 4 -prioritary, and Pr(v)
contains the stack P, ., (v) as an open substack. See §3 for details. Thus, if My, (v) is nonempty,
we have a chain of open dense substacks

M, (V) C Py, (V) CPR(V).

The existence question for My, (v) can then be reduced to two separate questions.

(1) When is Py, (V) nonempty?
(2) If Py, ., (v) is nonempty, is the general sheaf H,-semistable?

We study the first question in §4. The next theorem gives a complete answer.

Theorem 1.2 (Proposition 4.15 and Corollary 4.17). For a positive integer n, there is an explicitly
computable function oh(v) with the following property. Let v = (r,v,A) € K(F.) be a character
with A > 0. Then Pg, (v) is nonempty if and only if A > 65 (v).

There are two key previous results from [CH17] used in the proof. First, we know that the
general sheaf V in Pr(v) admits a Gaeta-type resolution by line bundles. We use this resolution to
study Ext?(V,V(—H,)). We know the cohomology of a general F-prioritary sheaf, and this gives
us necessary numerical conditions on v in order to have Ext?(V,V(—H,)) = 0. On the other hand,
given a character v that satisfies these conditions, we explicitly construct H,,-prioritary sheaves as
direct sums of line bundles.

Remark 1.3. The theorem can also be rephrased in several other different ways. For example,
given a general F-prioritary sheaf V of character v, what is the largest integer n such that V is
H,,-prioritary? See Corollary 4.18.

Remark 1.4. It follows that 65 provides a strong Bogomolov inequality, in the sense that

oS (v) > 87 1 (v).

The right hand side has the advantage of being easily computable.
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1.3. The generic Harder-Narasimhan filtration. To determine when the stack Pp,, (v) con-
tains H,,-semistable sheaves, we then study the H,,-Harder-Narasimhan filtration of the general
sheaf. In particular, there exists an H,,-semistable sheaf with Chern character v if and only if the
generic H,,-Harder-Narasimhan filtration has length 1.

Remark 1.5. If the substack pH(mW +l(V) C PH[m] (v) is empty, then there are definitely not H,,-
semistable sheaves of character v, but we can still study the generic H,,-Harder-Narasimhan filtra-
tion of sheaves in Py, , (v).

Suppose the H,,,-Harder-Narasimhan factors of the general sheaf in PH 1 (v) are vi,...,vy. They
then must satisfy three key properties. First, My, (v;) is nonempty. Second, prioritariness shows
the general sheaf restricts to a curve of class Hy,,) (which is a PY) or H |m| as a balanced direct sum
of line bundles. This implies that the H,,-slopes of the factors are close: in particular,

This then gives us Ext?-vanishings which allow us to compute the codimension of the Schatz stratum
parameterizing sheaves with H,,,-Harder-Narasimhan factors vy, ..., vy. Since this codimension must
be 0, we get the orthogonality relations

x(vi,vj) =0 (i < j).
Conversely, we show that the Harder-Narasimhan factors are completely determined by these three
properties.

Theorem 1.6 (Lemmas 5.1 & 5.2 and Theorem 5.3). Let v € K(F.), suppose there are Hpy,-
prioritary sheaves of character v, and let v.=vi + --- 4+ vy be a decomposition with the following
properties.

(1) q1 > -+ > qu, where q; is the reduced H,,-Hilbert polynomial of v;.

(2) The moduli space My, (v;) is nonempty.

(3) wi,,(v1) = pm, (ve) < 1.

(4) x(vi,v;) =0 fori < j.
Then the general sheaf V in PH(M (v) has an H,,-Harder-Narasimhan filtration with factors of char-
acters vi,...,vyp. Conversely, the characters of the factors of the H,,-Harder-Narasimhan filtration
of V have all the above properties.

Thus if there is no length ¢ > 2 list of characters with these properties, then there are H,,-
semistable sheaves. We also show that the characters v; necessarily come from a bounded region in
K(F.), so there are only finitely many possibilities to consider. The length ¢ of the filtration is also
at most 4. We can then turn Theorem 1.6 into an effective inductive algorithm to determine when
the moduli space My, (v) is nonempty. See Corollary 5.8 for our most efficient procedure.

Theorem 1.7. For a fized Chern character v € K(F.), there is an inductive algorithm to determine
if the moduli space My, (v) is nonempty. The number 6b,°(v) can be computed to arbitrary precision
as a limit.

1.4. Exceptional bundles and the Drézet-Le Potier function. Recall that an exceptional
bundle is a simple bundle V with Ext’(V,V) = 0 for i > 0. Stable exceptional bundles give
necessary conditions which the invariants of semistable sheaves must satisfy. Suppose V is a upg-
stable exceptional bundle, and suppose W is a pg-stable sheaf of character w = (r,v, A) with

1
o H < p(W) — pu (V) <0.

Then the only possibly nonzero group Ext?(V, W) is Ext!(V, W), so x(V, W) < 0. When expanded
with Riemann-Roch, this gives a lower bound on A. If the order of the H-slopes of W and V is
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reversed, an analogous discussion holds, and we conclude that there is an inequality of the form
A >DLPyy(v)

which is satisfied by every pp-stable sheaf W with 0 < |ug(W) — pu (V)| < —1Kp, - H. See §6.2 for
more details.

For simplicity, suppose W does not have the same H-slope as any exceptional bundle. If we take
all the pg-stable exceptional bundles V which are sufficiently close to W into account, we can define
a Drézet-Le Potier function DLP g (v) which is the supremum of the functions DLP fy. We will
then have

A > DLPy(v),
and it follows that
ot-%(v) > DLPg,, (v);
see Corollary 11.13 in general. Thus the Drézet-Le Potier function gives a stronger Bogomolov
inequality, and can be used to bound the sharp Bogomolov inequality 45, (v).
If e = 0 or 1, then every exceptional bundle on F. is u_f; -stable by Gorodentsev [Gor89].

Expanding on work of Rudakov [Rud94], we see that exceptional bundles precisely compute 5’1‘:95.
2

Theorem 1.8 (Corollary 9.13). Let e =0 or 1, and let v € Pic(F.) ® Q. Then
5’;:% (v) =DLP_k, (v).

Example 1.9. The analogous result holds for P? by work of Drézet and Le Potier. In that case it
is customary to write the slope as p and put 6(u) = DLP g (u). Non-exceptional p-stable sheaves of
character (r, u, A) exist if and only if A > §(u). In Figure 1, the function () is the top fractal-like
curve, bounding the region labeled “S” (for stable).

1.5. Stability of exceptional bundles and stability intervals. On the other hand, computing
DLPy for H different from the anticanonical polarization first requires that we determine the
collection of upg-stable exceptional bundles. This can be done by induction on the rank. First,
we define a restricted Drézet-Le Potier function DLP§;" which only takes the pp-stable exceptional
bundles of rank less than r into account.

Theorem 1.10 (Corollary 11.12). Let v = (r,v,A) € K(F.) be a character such that x(v,v) =1,
and let H be an arbitrary polarization. There is a pp-stable exceptional bundle of character v if
and only if

A > DLP} (v).

Given a bundle V on F., we can seek to compute the open interval
Iy ={m>0:Vis upg,,-stable} C Ry,

its stability interval. When V is exceptional and pp-stable for some polarization H (e.g. —Kp,
in the del Pezzo case), we give an inductive algorithm to compute Iy, precisely; this is essentially
equivalent to Theorem 1.10. See Example 8.10.

For a general sheaf V it turns out that p_ g, -stability is the easiest stability to satisfy in the
del Pezzo case (see Corollary 8.17), and in the non-del Pezzo case a general sheaf which is slope
stable for some polarization is slope stable for polarizations arbitrarily close to Hy. Consideration
of stability intervals leads to the following result.

Theorem 1.11 (Corollaries 9.11 and 11.6). Fiz v € Pic(F.) ® Q. As m moves away from 1 — § the
number is Ob,° (V) increasing.

Remark 1.12. The same statement is true for the function DLP g, (v), which will be an important
technical tool in the second half of the paper. See Proposition 8.14.
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FIGURE 1. On P2, the Drézet-Le Potier function 6(y) is the top curve bounding the
region labeled “S” for stable. Other regions in the (u, A)-plane where the shape of
the Harder-Narasimhan filtration of the general prioritary sheaf remains constant are
also labeled. See Example 1.14.

1.6. Structure of the generic Harder-Narasimhan filtration. When F, is a del Pezzo surface,
the fact that the function 6ff§ (v) is computed by exceptional bundles is closely related to the shape
2

of the general Harder-Narasimhan filtration. The following theorem generalizes an analysis of the
Drézet and Le Potier classification of semistable sheaves on P?. Recall that a semiezceptional bundle
is a direct sum of copies of an exceptional bundle.

Theorem 1.13 (Corollary 7.7). Let e = 0 or 1 and let v = (r,v,A) be a character with A > 3.
Let H be a polarization sufficiently close to —Kp, (depending on v). If there are no H-semistable
sheaves of character v, then at most one of the H-Harder-Narasimhan factors of the general sheaf
V € Pr(v) is not a semiexceptional bundle.

The obvious analogues of Theorems 1.6 and 1.13 also hold in the case of P?. We make this story
more explicit in this case, which motivated our study on F..

Example 1.14. On P2, let H be the class of a line and consider the stack Pp(v) of H-prioritary
sheaves. If v = (r, 1, A) € K(P?) is any character, then there are four possible shapes for the generic
Harder-Narasimhan filtration. See Figure 1.

(1) In region “S” which lies on and above the Drézet-Le Potier curve A = §(u), there are
semistable sheaves.

(2) In the quadrilateral regions marked “K,” the Harder-Narasimhan filtration has length 2.
One factor 5§Bc is a semiexceptional bundle with invariants at the bottom vertex of the
quadrilateral. The other factor is a Kronecker module IC, which has invariants lying on the
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portion of the curve A = §(u) lying over €. For example, suppose pu(K) < p(€3). Then K
has a resolution

0— &P 5 P K —0

where (&1, &2,&3) is an exceptional collection. This gives the orthogonality x(&3,K) = 0
needed for ch(€5°),ch(K) to be the characters of the Harder-Narasimhan factors of the
general sheaf. If u(K) > u(&s) the discussion is dual.

(3) In the triangular regions marked “R,” the general sheaf is rigid and can be written as a
direct sum of semiexceptional bundles with invariants at the vertices of the region.

(4) Below the bottom curve, the stack Py (v) is empty.

In every case where the generic Harder-Narasimhan filtration is nontrivial, we observe that the
generic Harder-Narasimhan filtration arises from a full exceptional collection &1, &, &3 by grouping
some of the adjacent terms together and constructing semistable bundles in the subcategories gen-
erated by the groups. Case (2) corresponds to the groupings &£1&2|€3 and &1]E2E€3, while Case (3)
corresponds to the grouping &;|&2|E3 into three parts.

Example 1.15. Consider F, with e = 0 or 1, and let H and v be as in Theorem 1.13. Let Vy,..., )V,
be the semiexceptional factors appearing in the H-Harder-Narasimhan filtration of a general sheaf
V € Pp(v), ordered as in the Harder-Narasimhan filtration. So, there is at most one additional
factor W, say inserted between Vi and Vi1.

Let &, ..., & be the exceptional bundles appearing in Vi,...,Vy, indexed in the reverse order.
Then &1,...,& is an exceptional collection. Indeed, for i > j we have Hom(&;, £;) = 0 by stability,
Ext?(&;, E;) = 0 since the slopes of the exceptional bundles have to be close (Theorem 1.6 (3)), and
therefore Ext!(€;, ;) = 0 by the orthogonality x(&;,&;) = 0 (Theorem 1.6 (4)).

Any exceptional collection on Fy or F; can be completed to a full exceptional collection (of length
4); see [Rud88] and [KO95]. Furthermore, by a sequence of mutations we can ensure that the new
exceptional sheaves which arise lie between the exceptionals corresponding to Vj, and Vj41. Since
the remaining factor W satisfies the orthogonalities x(V;, W) = 0 for ¢ < k and x(W,V;) = 0 for
1 > k, its Chern character must be a linear combination of the new exceptional sheaves.

We conclude that it is always possible to find a full exceptional collection &1, &9, E3, &4 and group
the terms into adjacent blocks (at most one of size larger than 1) so that the characters in the
H-Harder-Narasimhan filtration correspond to the blocks in the reverse order, with each character
being a linear combination of the exceptionals in the corresponding block. The possible groupings
are

E1|6263E1  E16:631E1  E1|E|EsEL  E11EEIEL  E1ENEsIEL  E1|E:|EslEs.

1.7. Harder-Narasimhan filtrations from orthogonal Kronecker modules. Going in the
other direction from Example 1.15, exceptional collections give a natural starting point to construct
interesting generic Harder-Narasimhan filtrations. If we group the terms of a full exceptional col-
lection &1, &9, &3, &4 into adjacent blocks and construct characters vi,..., vy as linear combinations
of exceptionals in the blocks in reverse order, then the orthogonalities x(v;,v;) = 0 for i < j are
automatic. In Example 1.15 the grouping

E182|E3&4

did not appear since it was forbidden by Theorem 1.13. However, for polarizations other than the
anticanonical, this grouping can be a source of length 2 generic Harder-Narasimhan filtrations where
no factor is semiexceptional. In §10 we carry out this strategy to construct Chern characters v and
polarizations H,, such that the general H,,-Harder-Narasimhan filtration has length 2 and neither
factor is semiexceptional. This will give examples of characters v = (r, v, A) such that the inequality

515 (v) > DLP3 (v)
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is strict. In these cases df,”(v) is not computed by exceptional bundles, but we are able to exactly
compute " (v) (see Theorem 10.11). By contrast with the function DLP 3 (v), which varies in a
locally constant fashion as m changes, we find that 4},°(v) can increase continuously with m!

To construct these examples, we let £ > 3 and start with the full exceptional collection

& =0p,(—E—UF), & =0, &E=0p(F), & =05 (E—({—-1-¢)F).
We consider extensions of the form
0 -K—-E—0
and cokernels of the form
0—-& —& —L£—0,

both of which are determined by Kronecker modules. We then have to determine the polarizations
H,, such that pp,, (K) is slightly larger than pg,, (£) and K and £ are u,, -stable (the bulk of the
methods in the paper come into play here). Then the characters k = chC and 1 = ch £ will give
the H,,-Harder-Narasimhan factors for the general sheaf in Pr(k +1).

For example, on Fy, if € > 0 is small then the Hi2

4 ~Harder-Narasimhan filtration of a general
7

F-prioritary sheaf of character

3 6 . 98
A= (13, 2B+ —F
(r,v, A) <3’13 T3 ’169>

has two factors of characters

1.5 2 6 _ 65
2, -E,° 11, 2E+ —F, —
(’2 ’8) and ( ETREET! ’121)’

neither of which are exceptional. Similarly, on Fo, the H2s -Harder-Narasimhan filtration of a
9

1. 1.3
15,—F + -F, =
( 503 ’5)

general F-prioritary sheaf of character

has two factors given by

1 1 .3 2 6 , 90
2,-F—-F, — 13, =F+ —F,— | .
( SR ’4> and <3’13 13 ’169)
See Examples 10.14 and 10.15.
We conjecture that pairs of orthogonal Kronecker modules are the only additional source of generic
Harder-Narasimhan filtrations. We expect that an affirmative answer to the conjecture will allow
an exact inductive computation of the function 45, (v).

Conjecture 1.16. Let F, be a Hirzebruch surface and let H,, be an arbitrary polarization. Let
v € K(F.) be a character such that there are Hiyy-prioritary sheaves of character v, and let
Vi,...,Vp be the characters of the factors in the H,,-Harder-Narasimhan filtration of a general
sheaf V € Pr(v). Suppose that more than one of the v; is not semiexceptional. Then ¢ = 2, and
there is a full exceptional collection £1,E2,E5,E4 such that vy is a linear combination of ch&s and
ch &4 and vo is a linear combination of ch&; and ch &;.

1.8. Reduction to the del Pezzo case. Much of the paper is written in the del Pezzo case e = 0
or 1, since the anticanonical polarization is often useful. However, in the final section §11 we show
that most of our results in these cases can be easily transported to the surfaces F. with e > 2 by
means of a simple linear map.
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1.9. The birational geometry of My, g,,(v). The results of this paper have immediate appli-
cations to the birational geometry of moduli spaces of sheaves on F.. In [CH16] and [CH18b], we
showed how to compute the ample cone of the moduli spaces of sheaves on a surface using Bridgeland
stability conditions provided A > 0. A pp-stable sheaf is (H, D)-twisted Gieseker semistable for ev-
ery twisting divisor D. Consequently, our results also classify when the Matsuki-Wentworth moduli
spaces of (H,,, D)-twisted Gieseker semistable sheaves are nonempty for generic polarizations H,,
on F.. By the main theorem of [CH18b], if A > 0, the problem of determining the Gieseker wall
in the (H, D)-slice of the Bridgeland stability manifold is equivalent to knowing the classification of
Chern characters of (H, D)-twisted Gieseker semistable sheaves. Hence, our results determine the
Gieseker wall in the (H,,, D)-slice of the stability manifold of F.. Furthermore, when the moduli
space has no strictly semistable objects, by [CH18b], the Bayer-Macri divisor provides a nef divisor
on the boundary of the nef cone. Hence, the calculations in [CH18b, §7.3] extend from P! x P! to
all F, and from rank 2 to arbitrary rank.

The classification of stable Chern characters is also one of the main ingredients of solving the
interpolation problem and constructing theta and Brill-Noether divisors on moduli spaces of sheaves
(see [ABCH13, CH15, CHW17]). Our results make it possible to extend results of [BC13] to higher
rank and all Hirzebruch surfaces. Even in the case of P! x P!, our classification of stable Chern
characters allows constructions of effective divisors using the algorithm of [Ryal8] and eliminates
assumptions in [Ryal8| regarding existence of stable Chern characters.

Organization of the paper. In §2, we recall the preliminary facts needed in the rest of the paper.
In §3, we study basic properties of prioritary sheaves on F. and show that H,,-semistable sheaves
are H{,,)1-prioritary. In §4, we classify Chern characters of F' and Hy-prioritary sheaves for every
integer k. In §5, we study properties of generic Harder-Narasimhan filtrations and obtain strong
restrictions on the Chern characters of the graded pieces.

In sections §6-10, we primarily concentrate on the surfaces Fg and F;. In these cases, the anti-
canonical bundle is ample and the stability of sheaves with respect to the anticanonical polarization
has been studied in great detail. In §6, we recall and reinterpret results of Gorodentsev, Kuleshov,
Orlov and Rudakov concerning stability of sheaves with respect to —Kp,. In §7, we show that the
Drézet-Le Potier surface determines the stability of sheaves on Fy or F; with respect to the anti-
canonical polarization. In §8, we study exceptional bundles on Fy and F; with respect to an arbitrary
polarization and show that the Drézet-Le Potier surface determines them. We also show that the
generic stability interval of an pp,, -stable sheaf contains 1 — § corresponding to the anticanonical
polarization. In §9, we define a sharp Bogomolov function and determine its basic properties. In §10,
we construct examples of spaces of prioritary sheaves and polarizations H,, such that the generic
H,,-Harder-Narasimhan filtration has two factors neither of which are semiexceptional. This shows
that exceptional bundles do not control the entire story away from the anticanonical polarization.

Finally, in §11, we generalize many of the results from sections §6-10 to arbitrary Hirzebruch
surfaces.

Acknowledgments. We would like to thank Daniel Levine and Dmitrii Pedchenko for valuable
conversations.

2. PRELIMINARIES

In this section, we recall basic facts concerning moduli spaces of sheaves, prioritary sheaves and
Hirzebruch surfaces that will be used in the rest of the paper.

2.1. Hirzebruch surfaces. We refer the reader to [Bea83, Cos06] or [Har77] for more detailed
discussions on Hirzebruch surfaces. For any integer e > 0, let F, denote the Hirzebruch surface
P(Op1 @& Op1(e)). The surface F, naturally fibers over P!. Let F' denote the class of a fiber and let E
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denote the class of a section with self-intersection —e. When e = 0, F, = P! x P'. When e > 1, then
the section with negative self-intersection is unique. The Picard group of F. and the intersection
pairing is given by

Pic(F.) = ZE ®ZF, E?=—e, F?=0, E-F=1.

The canonical class of F, is
Kp, = —2FE — (e +2)F.

The nef cone of F,. is spanned F + eF and F and the effective cone of F, is spanned by E and F. In
particular, the anti-canonical class — KT, is effective, but when e > 2, it is not ample. For m € Q,
we consider the divisor class H,, = F + (m + e)F. Then Hj is nef and H,, is ample for m > 0. As
m tends to infinity, the divisor H,, tends to the ray spanned by F, giving the other edge of the nef
cone. Every ample divisor on F. is an integer multiple of some H,, with m > 0.

2.2. Chern charcters and Riemann-Roch. Given a torsion-free sheaf V on a surface X and an
ample divisor H, the total slope v, the H-slope pp and the discriminant A are defined as follows

Ch1 (V) Ch1 (V) -H 1 2 ChQ(V)
V=) MO =—qm A0 =3~ 5oy
These quantities depend only on the Chern character of V and not on the particular sheaf. Given
a Chern character v, we define its total slope, H-slope and discriminant by the same formulae. We
will often record Chern characters by the rank, total slope and the discriminant. Note that one can
recover the Chern classes from this data.
In terms of v and A, the Riemann-Roch Theorem says

x(V) = cho(V)(P(v(V)) = A(V)),

where
1
PW) = X(Ox) + 5 v+ Kx)

is the Hilbert polynomial of Ox. Given two sheaves V, W with invariants (7(V),v(V), A(V)) and
(rOV), v(W), AW)), let ext!(V, W) denote the dimension of Ext*(V,W). The Riemann-Roch The-

orem says that

2
XOVW) =Y (1) ext’ (V, W) = r(V)r(W)(P(r(W) — v(V)) = A(V) — AW)).
i=0
In the case of the Hirzebruch surface F., for a sheaf with invariants v = (r,v, A) = (r,aE + bF, A)
we have

P(v)=(a+1) (b+1—%) and X(V):r((a—i-l) (b+1—%) —A).

2.3. Stability. We refer the reader to [CH15, HuL10] and [LeP97] for more detailed discussions.
A torsion-free, coherent sheaf V is called pp-(semi)stable (or slope (semi)stable) if every proper
subsheaf 0 # W C V of smaller rank satisfies

pOV) < (V)

Define the Hilbert polynomial Py(m) and reduced Hilbert polynomial py(m) of a torsion-free sheaf V
on a surface X with respect to an ample H by

Py(m)

Po(m) = x(V(mH), pv(m) = 7
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A torsion-free sheaf V is H-(semi)stable (or Gieseker (semi)stable) if for every proper subsheaf
W C V, we have
pw(m) < py(m) for m > 0.

Slope stability implies Gieseker stability and Gieseker semistability implies slope semistability. The
Bogomolov inequality asserts that if V is py-semistable, then A(V) > 0.

Every torsion-free sheaf V admits a Harder-Narasimhan filtration with respect to both pgy- and
H-semistability, that is there is a finite filtration

ocVvicV,Cc---CV, =V
such that the quotients
Wi =V;/Vi1
are up (respectively, H-Gieseker) semistable and
pr(Wi) > pag(Wig1)  (respectively, pw, (m) > pw;,, (m) for m > 0)

for 1 < i < n — 1. The Harder-Narasimhan filtration is unique. Being pz-(semi)stable or H-
(semi)stable are open in flat families (see [HuL.10, §2.3]). Furthermore, given a flat family of sheaves,
there is a generic Harder-Narasimhan filtration ([HuL10, Theorem 2.3.2]). A semistable sheaf further
admits a Jordan-Hoélder filtration into stable sheaves. Two semistable sheaves are called S-equivalent
if they have the same associated graded objects with respect to the Jordan-Hoélder filtration.

Gieseker [Gie77] and Maruyama [Mar78] constructed moduli spaces Mx p(v) parameterizing S-
equivalence classes of H-Gieseker semistable sheaves on X. In this paper, we will be concerned with
the question of when Mp, g (V) is nonempty.

The notions of up-(semi)stability and H-(semi)stability depend on the polarization H. If we fix
invariants of a sheaf on X, we obtain a locally finite wall-and-chamber decomposition of the ample
cone of X, where within a chamber the set of sheaves that are p g-stable remain constant (see [HuL10,
§4.C] for more details). In particular, being pp-stable is an open condition in the polarization
H. Similarly, being pp-semistable is a closed condition in the polarization. In contrast, Gieseker
(semi)stability is not as well-behaved under change of polarization. The set of ample divisors H
for which a sheaf is H-Gieseker (semi)stable in general is neither open nor closed. However, if the
sheaf is pp-stable for some polarization, then the ample divisors H for which it is not Gieseker
(semi)stable differ only at the boundary of the corresponding chamber.

2.4. Prioritary sheaves. It can be difficult to construct semistable sheaves. Prioritary sheaves
provide an easier alternative on surfaces with negative canonical class.

Definition 2.1. Let X be a smooth surface and L a line bundle on X. A torsion-free sheaf V on
X is L-prioritary if Ext*>(V,V(—L)) = 0. We write Py (v) for the stack of prioritary sheaves of
character v. We omit the surface X from the notation if no confusion is possible.

We will also frequently consider sheaves that are simultaneously prioritary with respect to two
different line bundles. We write 7751 (V)= Pi(l (v)n Pii (v) for the stack of Li- and Lo-prioritary

sheaves of character v. The stack P}fh (V) C Pffl (v) is an open substack.

If H is a polarization on X such that H - (Kx + L) < 0, then every pp-semistable sheaf is
L-prioritary. If V is py-semistable, we have

ext?(V,V(—L)) = hom(V,V(Kx + L)) =0
by semistability. In particular, when Kx + L is anti-effective, then every semistable sheaf for any
polarization H is L-prioritary.
Let X be a birationally ruled surface with fiber class F' and let v be a positive rank Chern

character. Then Walter’s Theorem [Wal98] asserts that the stack Pg(v) is irreducible if nonempty.
Furthermore, if r(v) > 2, then the general member of Pp(v) is a vector bundle.
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2.5. Elementary modifications. Let V be a torsion-free sheaf on a surface X. Let p € X be a
general point and let ¢ : V — O, be a general surjection. Then the kernel V' of ¢

0V V2 Op—0
is a general elementary modification of V. The sheaves V and V' have the same rank r and first
Chern class and satisfy
1
(V) =x(V) 1, AYV) = AW)+ .
By the long exact sequence of cohomology, H?(V) = H?(V'). If h%(V) > 0, then
V) =n'(V) - 1.
If h°(V) = 0, then
ALV =nt (V) +1.
In particular, if V has at most one nonzero cohomology group, so does V.
By [CH17, Lemma 2.7], if V is an L-prioritary sheaf, then V' is also an L-prioritary sheaf.

Consequently, in order to construct an L-prioritary sheaf of a given rank r, first Chern class ¢; and
discriminant A, it suffices to construct an L-prioritary sheaf with invariants (r, 1, A") with A" < A.

2.6. The cohomology of the general sheaf on a Hirzebruch surface. The cohomology of
the general prioritary sheaf with A > 0 was computed in [CH17, Theorem 3.1]. We include the
statement for the reader’s convenience.

Theorem 2.2 (Betti numbers of a general sheaf). Let v € K(F.) be a Chern character with positive
rank r = r(v) and A(v) > 0. Then the stack Pr(v) is nonempty and irreducible. LetV € Pr(v) be
a general sheaf.

(1) If we write v(v) = eE + ¢F, then

(2) If v(v)-F > —1, then h?(F.,V) = 0.

(3) If v(v) - F < —1, then h°(F., V) = 0.

(4) In particular, if v(v) - F = —1, then h'(F.,V) = —x(v) and all other cohomology vanishes.
Now suppose v(v) - F > —1. Then H*(F.,V) = 0, so either of the numbers h°(F.,V) or h'(F.,V)
determine the Betti numbers of V. These can be determined as follows.

(5) If v(v)-E > —1, then V has at most one nonzero cohomology group. Thus if x(v) > 0, then
RO(F.,V) = x(v), and if x(v) <0, then h*(F.,V) = —x(v).

(6) If v(v)- E < —1, then HY(F,.,V) = HY(F.,V(—E)), and so the Betti numbers of V can be
determined inductively using (3) and (5).

(If v(v) - F < —1 and r(v) > 2, then the cohomology of V can be determined by Serre duality.)

3. PRIORITARY SHEAVES AND STABILITY ON HIRZEBRUCH SURFACES

We begin by comparing H,,-semistability with the notion of a prioritary sheaf. The following
lemma is useful for comparing notions of prioritary sheaves with respect to different line bundles.

Lemma 3.1. Let X be a smooth surface and let L and M be line bundles on X. If a torsion-free
sheaf V is L-prioritary and L @ M* is effective, then V is M -prioritary.
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Proof. Use a section of L ® M* to consider an exact sequence
0— Ox(—L) = Ox(—M) - Ox(—M)|p — 0,

where D is the zero scheme of the section. Applying V ® —, we have Tor!'(V, Ox(—M)) = 0, so the
sheaf Tor'(V,Ox(—M)|p) injects into the torsion-free sheaf V(—L). But Tor'(V,Ox(—M)|p) is
torsion, supported on D, so it is zero and we have the exact sequence

0—V(-L) = V(-M) =V &Ox(—M)|p — 0.
Applying Hom(V, —), we get an exact sequence
Ext?(V,V(—L)) = Ext*(V, V(-M)) — Ext*(V,V ® Ox(—M)|p)
We have Ext?(V,V(—L)) = 0 by assumption, and
Ext*(V,V ® Ox(—M)|p) = Hom(V ® Ox(—M)|p,V ® Kx)* =0
by Serre duality since V is torsion-free. Therefore Ext?(V, V(—M)) = 0. O

In particular, on a Hirzebruch surface we can consider the notion of H,,-prioritary sheaves for
integers m.

Proposition-Definition 3.2. Let V be a torsion-free sheaf on F.. One of the following two possi-
bilities holds.

(1) There is an integer p(V) such that V is H,,-prioritary if and only if m is an integer with
m < p(V).
(2) The sheaf V is Hy,-prioritary for all m € Z. In this case we declare p(V) = oco.

The invariant p(V) is called the prioritary index of V.
Proof. By Lemma 3.1, if V is H,,-prioritary, then it is H,,_i-prioritary. We must show that V is
H,,-prioritary for some m. Consider the group

Ext?(V,V(—H,,)) = Hom(V(—H,,),V ® Kg,)* = Hom(V, V(—F + (m — 2)F)).

Pick any ample divisor H. Then V has an H-Harder-Narasimhan filtration. If we pick m < 0, then
we have that

Mmin,H(V) > Mmax,H(V<_E + (m - Q)F))
This implies Ext?(V, V(—H,,)) = 0, so V is H,,-prioritary for m < 0. O

Example 3.3. Since H?(Of,(—H,,)) = 0 for every integer m, line bundles L are H,,-prioritary for
all m, and therefore p(L) = co.

Example 3.4. Let A >0, B > 0, C > 0 be integers, let m,n € Z, and consider the vector bundle
V=05 (-E+(n-1)F)*e0Ff ©O0p (-F)°.
Then
Ext?(V,V(~H,,)) =0 < H*(Op,(—2E — (e+m —n+1)F)) =0
& HY(Op,((m—n—1)F))*=0
sSm—n—1< -1
S m < n.

Therefore p(V) = n.
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Example 3.5. Taking n = —e in Example 3.4 gives a direct sum of line bundles which is F-
prioritary and E-prioritary [CH17, Lemma 3.3]. By choosing the exponents a, b, ¢ appropriately and
by taking twists and/or duals of V, we can construct an F-prioritary and E-prioritary sheaf of any
slope. Furthermore, a calculation shows A(V) < 0 [CH17, Lemma 3.3], so by taking elementary
modifications of V (see §2.5) we obtain the following result [CH17, Corollary 3.6].

Proposition 3.6. Let v € K(F.) be a Chern character of positive rank satisfying the Bogomolov
inequality A > 0. Then the stack Pp g(v) is nonempty.

Recall that Walter’s theorem [Wal98] says that the stacks Pr(v) of F-prioritary sheaves are
irreducible if they are nonempty. Therefore we have a chain of open substacks of the stack Pp(v):

D PrH, (V) D Pra,.(v) D PEH (V) D

For fixed v it is an interesting question to determine the largest integer m such that Pp g, (v) is
nonempty. Then the general F-prioritary sheaf is H,,-prioritary but not H,,-prioritary.

Definition 3.7. Let v € K(F.) be a Chern character of positive rank such that the stack Pp(v) is
nonempty. The generic prioritary index pgen(v) is the prioritary index p(V) of a general V € Pr(v).

Example 3.8. By Proposition 3.6, if A > 0, then pgen(v) > —e.
The next result shows the basic implication between semistability and prioritary sheaves.

Proposition 3.9. Let m > 0 be a rational number, let € € R>q, and let V be a torsion-free sheaf
with

Hmax,Hyy, (V) — Mmin,H,, (V) <e
If n is an integer with n < m + 2 — ¢, then V is H,-prioritary.

In particular, if V is pp,,-semistable, then it is Hy, 41 -prioritary.

Proof. For an integer n, we compute
Ext?(V,V(—H,,)) = Hom(V, V(KF, + H,))*.
Then V is H,-prioritary if
,Umin,Hm (V> > Umax,Hm (V) + (KFE + Hn) : Hm
This inequality holds if
(Ky, + Hy) - Hp, < —e€.
We compute
(Kp, + Hy,) -Hy=(—E+(n—2)F)- (E+ (m+e)F)

—e—(m+e)+(n—2)

=n-—-m-—2,
so if n < m + 2 — ¢, then V is H,-prioritary. O
Remark 3.10. Thus to study H,,-semistability, we will primarily be interested in sheaves that are
prioritary with respect to a line bundle H,, with m > 1. An H;-prioritary sheaf is automatically F-
prioritary by Lemma 3.1, so if m > 1, then the nonemptiness problems for the stacks Pr g, (v) and
P, (v) are equivalent. On the other hand, the stacks Pp,, (v) must typically be badly behaved for

m < 0, since their union is the stack of torsion-free sheaves of character v. The substack Pr g,, (V)
of the irreducible stack Pp(v) is a more reasonable object of study.
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4. EXISTENCE OF PRIORITARY SHEAVES

Throughout this section we let v € K(F,) be an integral Chern character of positive rank r, total
slope v = eE + ¢F, and discriminant A > 0 satisfying the Bogomolov inequality. We fix an integer
m € Z. (Although we primarily care about the case where m > 1, we can handle all integers m by
the same argument.) In this section we give a complete answer to the following question.

Problem 4.1. Is the stack Pr n,,(v) of F- and Hy,-prioritary sheaves of character v nonempty?

We can phrase the answer to this question in two ways. On the one hand, we explicitly compute
the generic prioritary index pgen(V) of v; then Pr g, (v) is nonempty if and only if m < pgen (V).
On the other hand, we will give an explicit function d5,(v) of v such that Pp g, (v) is nonempty if
and only if A > 6h,(v).

4.1. Review of Gaeta resolutions. Our key tool is results from [CH17, §4] which show that the
general sheaf in Pr(v) admits a particular Gaeta-type resolution. Recall that for a line bundle L
an L-Gaeta resolution of a sheaf V of character v on F,. is a resolution of the form

0— L(—E—(e+1)F)* - L(—E —eF)’ & L(—F)" & L’ -V — 0

where «, 3,7, are integers. Here L must be a line bundle such that the inequalities

x(v(=L)) =0
X(v(=L-E)) <0
) (V(-L— F) <0
X(v(-L-E—-F)) <0
are satisfied, and «, 3,7, must be the integers
a=—x(v(-L-E-F))
(o) B=-x(v(-L-E))
- 7= —x(v(~L - F))

6 = x(v(=L))-

Conversely, if we can find a line bundle L such that the numerical inequalities (x) are satisfied, then
the stack Pr(v) is nonempty and the general V € Pr(v) admits an L-Gaeta resolution.

To find an appropriate line bundle L, formally consider a variable line bundle L,j, = aE + bF
with a,b € R. We consider the curve in the (a, b)-plane R? defined by the equation x(v(—Lap)) = 0,
where the Euler characteristic is computed formally by Riemann-Roch. Then x(v(—L,3)) = 0 gives

A:(e—a+1)(gp—b+1—%e(e—a)).

If A > 0 (a similar discussion holds in the degenerate case A = 0), then this describes a hyperbola
with asymptotes

1
li:a=¢e+1 and €2:b:cp+1—§e(e—a)

which are vertical and have slope e/2, respectively; the hyperbola has a branch @, lying left of ¢;
and below /o, and a branch Q)2 lying right of /1 and above £5. See Example 4.9 and Figure 2 for an
example of this hyperbola.

The function x(v(—Lgyp)) is positive below @1 and above )2, and negative on the region between
the branches. Thus a line bundle L, j satisfies the inequalities () if the lattice point (a, b) lies below
(or on) @7 and the points (a+1,b), (a,b+1), (a+1,b+1) lie on or between @; and Q2. There can
be several possible line bundles with these properties, but there is one particular line bundle that
typically works and is useful for our purposes.
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Definition 4.2. Let A

1
(0 -2804‘56((61 —6)—m,

and define a line bundle
Lo := L g1 = [€]E + [Y]F.
Let a, 3,7,0 be the integers defined by (**) when we take L = Ly.

Next we analyze when the line bundle L satisfies the inequalities (x).

Proposition 4.3. The line bundle Lo has 6 > 0, 3 > 0, and v > 0, so the inequalities (x) hold if
and only if « > 0. Thus, if a > 0, then the general sheaf V € Pr(v) admits a resolution of the form

0— Lo(—E — (e+ 1)F)* = Lo(—E — eF)’ @ Lo(-F)' ® L) — V — 0.

Proof. The integer [€] is the largest integer which is strictly smaller than e+ 1. Therefore any point
([e], b) lies left of the asymptote ¢1, and if b < 0, then ([€],b) lies below Q1. A quick computation
with Riemann-Roch shows that

X(V(=Lip+1)) =0,
and therefore [¢] is the largest integer such that x(v(—Le y1)) > 0. Thus § > 0.

Now ([€], [¢]) lies strictly below (1. Considering the asymptotes ¢; and ¢o, the point ([€]+1, [¢])
lies right of (or on) ¢; and below /2, so it lies between (1 and Q2. Similarly, the point ([e], [¢]+1)
lies above (or on) @1 and left of /1, so it lies between @1 and Q3. Therefore, if o > 0, then all the
inequalities (x) are satisfied. O

Remark 4.4. The inequality o > 0 nearly always holds. Indeed, if e > 2, then the inequality a > 0
automatically holds. If e = 0 (resp. e = 1), then it automatically holds if A > 1/4 (resp. A > 1/8).
See [CH17, Lemma 4.5] for details.

Our problem is particularly easy to study in the relatively rare special case o < 0.
Lemma 4.5. If o <0, then the direct sum of line bundles
W=L(-E—-(e+1)F) “@®L(-E —eF)’ o L(-F) & L°
is rigid and F-prioritary of character v. Therefore, the general V € Pr(v) is isomorphic to W.

Thus pgen(v) = —e takes the smallest possible value.

Proof. The Chern class computation is elementary. Since the line bundles in the direct sum are a
strong exceptional collection, it is clear that W is rigid. It is also clearly F-prioritary. Since § > 0,
we compute p(VW) = —e by a computation analogous to Example 3.4. [l

4.2. A necessary condition for existence. If & > 0, then by Proposition 4.3 we can let V €
Pr(v) be general and consider an Ly-Gaeta resolution of V:

0— Lo(—E — (e+ 1)F)® — Lo(—E — eF)’ @ Lo(—F) ) ® L) — V — 0.
To study Ext?(V,V(—H,,)), we apply Ext(—, V(—H,,)) and get an exact sequence

Ext?(Lo(—E — eF),V(—H,,))"
®
(&) Ext’(V,V(-H,)) — Ext}(Lo(—F),V(—=H,))" — Ext?(Lo(—E — (e+1)F),V(—Hy,))°.
®
Ext?(Lo, V(—Hp))°

From this sequence we deduce the following necessary inequality for the existence of an F- and
H,,-prioritary sheaf.



EXISTENCE OF SEMISTABLE SHEAVES ON HIRZEBRUCH SURFACES 17

Theorem 4.6. If there is an F- and H,,-prioritary sheaf of character v, then
X(v(=Lo — Hp,)) <0.

Proof. First notice by Lemma 4.5 that if « < 0, then m < —e whenever there is an H,,-prioritary
sheaf. In this case we have x(v(—Lo — H,,)) < 0 by the definition of L.
Assume « > 0 for the rest of the proof, so we have an exact sequence (). First we compute

Ext?*(Lo(—E — (e + 1)F),V(—Hy,)) = H*(V(—Lo — (m — 1)F)).
Since
v(V(=Lg— (m —1)F))-F =¢€¢— [e] > —1,
we conclude from Theorem 2.2 that H?(V(—Lg — (m — 1)F)) = 0.
Therefore, if Ext?(V, V(—H,,)) = 0, then by sequence (&) we must have Ext?(Lg, V(—H,,)) = 0
(notice that 6 > 0 by the construction of Lg). Now

Ext?(Lo, V(~Hp)) = H*(V(=Lo — Hy)),

and since
v(V(=Lo— Hp)) - F=e—[e] -1 < -1
we have HY(V(—Lo — H,,)) = 0 by Theorem 2.2. Thus we must have xy(V(—Lo — H,,)) < 0. O

Remark 4.7. If € is an integer, then by Riemann-Roch the inequality x(V(—Lo — Hp,)) < 0 is
always true by the Bogomolov inequality A > 0. So, there is no interesting restriction in this case.

Remark 4.8. If € is not an integer, the inequality x(V(—Lo — H,,)) < 0 can be interpreted graph-
ically in terms of the hyperbola x(v(—Lgp)) = 0 in the (a,b)-plane. Let (ag,bo) = ([€], [¢¥]) be
the lattice point which lies strictly below the branch @ such that (agp + 1,bp) lies to the right
of the vertical asymptote ¢; and (ag,bg + 1) lies on or above the branch Q. Analogously, let
(a1,b1) = (ap+1, b1) be the lattice point which lies strictly above the branch @2 such that (a; —1,b1)
lies left of the vertical asymptote ¢ and (ai,b; — 1) lies on or below the branch Q2. Then the in-
equality x(V(—Lo — Hy)) < 0 means that the lattice point (ag + 1, b9 + € +m) lies on or below the
branch (2. Equivalently, we must have

bo+e+m<b —1,

or
mgbl—bo—e—l.

Example 4.9. We illustrate the definitions and Remark 4.8 in a particular case. See Figure 2. We
takee=1,v = %E + %F, and A = %, and let 7 be a rank such that the character v = (r,v, A) is
integral (r = 120 will do). Then we compute ¢ = —3% and Ly = Op, (E — F). The points (a;, b;)
are (ap,bp) = (1,—1) and (a1,b1) = (2,5), respectively. Therefore x(V(—Lo — Hy,)) < 0 holds for
integers m < 4. Conversely, we will see that the general V € Pp(v) is Hy-prioritary in Corollary
4.18.

Remark 4.10. Fix the integer m, and view v € K(F.) as a Chern character with fixed rank r > 0
and slope v = e¢FE + @F, but variable discriminant A > 0; then the corresponding line bundle
Lo = Lo(A) also varies with A. Suppose € is not an integer. As A increases, the branches of the
hyperbola x(v(—Lgyp)) = 0 are pushed further away from the center (e +1,¢ + %e + 1), but the
asymptotes remain fixed. Then the lattice points (ag, bo) = (ao, bo(A)) and (a1,b1) = (a1, b1(A)) of
Remark 4.8 are pushed further apart from one another as A increases. Thus the right hand side of
the inequality
m S bl(A) *bo(A) —e—1

is increasing in A. Furthermore, the functions b;(A) are right-continuous in A (i.e. they remain
constant when we increase A a little bit) and their discontinuities happen at rational A.
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\_____________________________

(@0,bo)

e

FIGURE 2. For e = 1, we show the hyperbola x(v(—Lgp)) = 0 for a character v with
v(v) = %E + %F and A(v) = %. Its two branches Q1 and @2, asymptotes ¢ and
U9, and the points (ag,by) = (1,—1) and (a1,b1) = (2,5) are shown. See Example
4.9.

Definition 4.11. If € is not an integer, we let &5, (v) € Q¢ be the smallest nonnegative number A
such that

m < bl(A) — bo(A) —e— 1.
If € is an integer, then because of Remark 4.7 we define 65, (v) = 0. Thus, if there is an F- and H,,-
prioritary sheaf of character v = (r,v, A) with A > 0, then A > &5, (v).

Suppose 01, (v) > 0. If &, (v) < 0%, 1(v), then 05, (v) is characterized as the discriminant which
makes x(V(—Lo — Hy,)) = 0. On the other hand it is possible that &5, (v) = &% ., (v), since both
bi(A) can jump at the same value of A. In this case &, ,(v) < 68 (), so 01, (v) is characterized
as the discriminant which makes x(V(—Lo — Hm+1)) = 0; there is no discriminant which solves the
equation x(V(—Lo — Hp,)) = 0.

Example 4.12. If m < —e, then since b1 (A) — by(A) > 1 for any A > 0, the function &b, (v) is
identically 0. This corresponds to the fact that Pr g(v) is nonempty by Proposition 3.6.

Remark 4.13. Since twists of H,,-prioritary sheaves are H,,-prioritary and duals of locally free
H,,-prioritary sheaves are H,,-prioritary, it is important to see that the necessary inequality of



EXISTENCE OF SEMISTABLE SHEAVES ON HIRZEBRUCH SURFACES 19

Theorem 4.6 is unchanged when we take a twist or dual. Correspondingly, the number &5, (v) is
unchanged under twisting or dualizing the slope v.

Let M be a line bundle, and write Ly(v) for the line bundle Ly of Definition 4.2 corresponding
to the character v. Then Lo(v ® M) = Lo(v) ® M, so the inequality is unchanged.

Slightly less trivially, suppose the rank is at least 2 (so a general sheaf in Pp(v) is locally free)
and consider the Serre dual Chern character vP. If € is an integer, then the inequality always
holds for both v and v, so assume € is not an integer. Let Lo(v) = ao(Vv)E + bo(v)F and
Li(v) = a1(v)E + bi1(v)F be the line bundles corresponding to the lattice points (ag(v),bo(v))
and (a1(v),b1(v)) defined for the character v. Then it is easy to check that Lo(v”) = Li(v)* and
L1(vP) = Lo(v)*. Therefore

b1(v?) = bo(v?) = —bo(v) + b1(v)
and the inequality is unchanged.

We can also more explicitly rephrase the inequality x(V(—Lo — H,,)) < 0 as an upper bound on
m in terms of v and A.

Corollary 4.14. If € is not an integer, then the inequality x(V(—Lo — Hy,)) < 0 holds if and only
of
A

mE a1y 2T (W=

Thus if there is an F- and H,,-prioritary sheaf of character v, the displayed inequality holds.

In particular, a (slightly weaker) necessary condition for the existence of an H,,-prioritary sheaf
is the simpler inequality

A e
m < ——+1

~ ([l —e)(e—Le]) 2

that depends only on € and A (and not ¢).

Proof. We use Riemann-Roch to compute

X(V(=Lo — Hp))

= Pv(V(~Lo— Hp))) ~ A

= (e~ [eDp— 9] —e—m+ 1 se(e— [~ 1)) - A,

so the inequality x(V(—Lo — H,,)) < 0 is equivalent to

A A e 1 A
m < el —e e— |e] _§+1+<(p+§e({d—e)+€_td>_WJ
A e
=TT 3~ WI-9)
as claimed. .

4.3. Construction of prioritary sheaves. Next we show that the inequality in Theorem 4.6 is
sufficient for the existence of an F- and H,,-prioritary sheaf. Note that if there is an F- and H,,-
prioritary sheaf of invariants (r,v, A), then by considering elementary modifications there is also
an F- and H,,-prioritary sheaf of invariants (r,v, A’) for any A’ > A such that the character is
integral. Thus to complete the classification it suffices to construct F- and H,,-prioritary sheaves
of rank r, slope v, and discriminant at most b, (v).
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Proposition 4.15. Fiz a rank r, total slope v = eE + oF, and integer m. Suppose the point
(€,¢) € Q% is a convex combination
(e,0) = A1(—=1,m — 1) + X2(0,0) + A3(0,—1).
Then there are uniquely determined integers A, B,C' such that the direct sum of line bundles
V=0 (—E+(m-1)F)"®0F &0 (-F)°
has rank v and total slope v. The bundle V is F- and H,,-prioritary, and
oP (v) = max{A(V),0}.

The proposition can also be viewed as giving a more explicit description of the function b, (v)
on the triangular region 7" with vertices (—1,m — 1), (0,0), (0, —1). By taking twists and duals, we
can cover the entire plane Q? with regions of this shape. Since &5,(v) is invariant under twists and
duals, we can compute the function for any v.

Proof. We must have \; = —¢, A3 = —((m—1)e+¢), and Ay = 1—A; —A3. These are all nonnegative
rational numbers with denominators dividing r, so the desired nonnegative integers are A = r\q,
B =r)y, C' =rA3. By Example 3.4, the bundle V is F- and H,,-prioritary.

Next we compute A(V). We have

(V) = (A+ B+C,—AE + (A(m —1) — CO)F, %A(—e —o(m—1)))
—A%e —2A(A(m —1)—-C)  A(e+2m —2)
20A+B+0C)? 20A+B+C)

A(V) =

= 21;12 (B(e+2m —2) 4+ C(e +2m)).

If A(V) = —£/r? <0, then by taking ¢ elementary modifications of V¥" we can construct an F-
and H,,-prioritary sheaf of rank 72, slope v, and discriminant 0. This implies dp, () = 0.

Finally suppose A(V) > 0; then in particular e is not an integer. We compute the line bundle Lg
for the character ch V. We have [e] = 0, and

1 A
b=+ el = ~ ==
Alm—-1)-C eA _A(B(e+2m —2) +C(e +2m))
r o 2r 21“2(—7 +1)

C
" B+C
There are two cases to consider.

Case 1: B> 0. If B >0, then [¢| =0 and Ly = Op,. Then

V(—Hp) = Op,(—2E — (e + 1)F)* & Op,(—E — (e + m)F)? @ O, (-E — (e + m + 1)F))°
has x(V(—H,,)) = 0, and therefore A(V) = dh,(v) by Remark 4.10.

Case 2: B = 0. In this case V is actually H,,41-prioritary. Here [¢] = —1, so Ly = Op, (—F).
Notice that x(V(—Lo — F)) = x(V) = 0 and x(V(—Lo — Hm+1)) = x(V(—Hyn)) = 0. This implies
that A(V) = 6%, ,,(v), but also 03,,(v) = &%, ,;(v): in the notation of Remark 4.10, the lattice points
(ap,bo + 1) and (a1,b; — 1) both lie on the hyperbola, so b1(A) — by(A) — e — 1 jumps from m — 1
tom+ 1 at A(V). O

This construction allows us to complete the classification of F- and H,,-prioritary sheaves which
satisfy the Bogomolov inequality.
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Theorem 4.16. Let v € K(F.) be an integral Chern character of positive rank which satisfies the
Bogomolov inequality A > 0, and let m € Z. Let Lo be the line bundle of Definition 4.2. Then the
stack Prg m,,(v) is nonempty if and only if

x(v(=Lo— Hyp)) <0.

Proof. By Theorem 4.6, we need to show that if the inequality holds then the stack is nonempty. If
r = 1, then the inequality automatically holds and the stack is nonempty, so we may as well assume
r > 2. By taking twists and/or duals, any slope (¢, ¢) € Q? can be moved into the triangular region
T with vertices (—1,—m — 1), (0,0), (0, —1). Since both the nonemptiness of the stack and the
validity of the inequality are unchanged under taking twists and duals (see Remark 4.13), we may
as well assume (e, ¢) lies in T. The inequality x(v(—Lo — Hy,)) < 0 implies A > 65,(v), and then
taking elementary modifications of the bundle V in Proposition 4.15 of discriminant A(V) < &5, (v)
produces an F- and H,,-prioritary sheaf of character v. [l

The next two corollaries are equivalent reformulations of Theorem 4.16.

Corollary 4.17. For v as in Theorem 4.16 with total slope v, the stack Pr m,, (V) is nonempty if
and only if

A = 07,(v),
where 5, (v) is the function of Definition 4.11.

Corollary 4.18. For v as in Theorem /.16 with slope v = eE + ©F, if € is not an integer, then the
generic prioritary index satisfies

A e
pot) = |y e 5+ 1~ (041 -9)

where

1
Y=+ ge(fe] —6)—m-

If € is an integer, then pgen(V) = 00.

Proof. This is immediate from Theorem 4.16 and Corollary 4.14. U

5. THE GENERIC HARDER-NARASIMHAN FILTRATION

Throughout this section, we let m € Q¢ and suppose v € K(F.) is a Chern character such
that there are H,,-prioritary sheaves of character v. Then the general F-prioritary sheaf of char-
acter v is Hf,, -prioritary. For a general V € Pr(v), the numerical invariants of the factors in
the H,,-Harder-Narasimhan filtration of V are fixed. The goal of this section is to describe a fi-
nite computational procedure for determining these numerical invariants. In particular, we can
computationally determine whether the moduli space My, (v) is nonempty.

Let V,/S be a complete family of F-prioritary sheaves of character v = (r, v, A) parameterized by
a smooth and irreducible variety S. By passing to an open dense subset of S, we may assume that
every sheaf Vg is Hy,,j-prioritary and has an H,,-Harder-Narasimhan filtration where the quotients
have the same numerical invariants. Suppose this Harder-Narasimhan filtration has length ¢, and the
H,-semistable quotients gr; ; have corresponding H,,,-Hilbert polynomials P;, reduced Hp,-Hilbert
polynomials p; > --- > py, and Chern characters gr; = (r;, vi, A;).

Note that these assumptions require the moduli spaces My, (gr;) to be nonempty. Additionally,
since the stack Pg(v) is irreducible, the invariants gr; depend only on m and v, and not on the
particular choice of complete family.

First we show the total slopes of the terms in the H,,-Harder-Narasimhan filtration lie in a narrow
strip centered on the slope v. This result depends on the existence of Hp,j-prioritary sheaves.
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Lemma 5.1. With the above notation, we have
0<(vi—v) Hpn<1,
and therefore
|(v; —v) - Hp| <1

for each i.

Proof. First suppose C' C F. is a smooth rational curve. The general Vs is either locally free (if
r > 2) or a twist of an ideal sheaf supported at general points of F., so Vs|¢ is locally free. Recall
that if Vs/S is a complete family of O, (C)-prioritary sheaves which are locally free along C', then
the general Vs has restriction Vs|¢ which is a balanced vector bundle [CH17, Proposition 2.6], so
that

Mmax(VS|C) - Mmin(vs|C) <1
Observe that Mmax,OFe(C)(Vs) < pmax(Vs|o). Indeed, suppose F C Vs is a subsheaf. Then

'U’OJFG(C)(]:) = M(f’C) < Nmax(vs‘c)'

Analogously we have pimin,0p, (0)(Vs) > pmin(Vs|c), and we conclude that

Hmax,0p, (C) (VS) ~ Hmin,Of, (C) (VS) <1

holds for a general s € S. (Even if L is not ample, we write for example fimax, 1,(V) for the maximum
L-slope of a subsheaf of V, if it exists. For L = Op,_(C), the above restriction argument shows the
maximum exists.)

Now observe that if Vs /S is a complete family of H [m)-Prioritary sheaves, then it is also a complete

family of H),, -prioritary sheaves. Therefore by the previous paragraph, for a general s we have
/-Lmax,H(mw (VS) - /-‘LmiILH","L'I (VS) S 1
:U’max,HLmJ (Vs) - ,U/min,HLmJ (Vs) S 1.
Then we have an inequality pm,, (8r15) < Hmax, Hip1 (Vs), as well as three analogous inequalities
obtained by switching gry ; with gr,, or [m] with [m]. Write m as a convex combination m =
Alm] + (1 = A)[m]. Then Hy, = AH | + (1 — A)Hipy), s0 taking s to be general we find
(Vl - Vﬁ) -H,, = Hmax,H,, (Vs) — Mmin,H,, (Vs)
= (i, (8r1,5) — i, (870,5)
= )‘(MH\_mJ (grl,s) — HH |, (grf,s)) + (1 - )‘)(:U'H(m} (grl,s) — HHp,, (grﬁ,s))
< )\(Nmax,HLmJ (Vs) — Hmin,H |, (Vs)) +(1=X) (,U/max,H[m] (Vs) — Hmin, Hp,p, (Vs))
<A+ (1-=X)
= 1.
Both v; - Hp, and v - Hy, lie in the interval [vp - Hp,,v1 - Hy,] of length < 1 (and v - H,y, is in the

interior unless the interval is a point), so the second statement follows immediately. O

Next we show that the characters gr; must satisfy strong orthogonality properties.

Lemma 5.2. With the above notation, we must have x(gr;,gr;) =0 for all i < j.

Proof. Let Sy, (P1,...,P;) = S be the Schatz stratum parameterizing sheaves V, with an H,,-
Harder-Narasimhan filtration having quotients with Hilbert polynomials Pi, ..., P,. Therefore the
codimension of the stratum in S is 0.
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On the other hand, we can use a standard argument to compute the codimension of the stratum in
a different way. Fix some s € S, and equip Vs with its Harder-Narasimhan filtration with quotients
gl s> 805 Then by [LeP97, §15.3] there is a spectral sequence with Ej-term given by

gra _ J @Bt (gr e, ) ifp <0
1 0 ifp>0

which abuts on ExtﬁJrq(Vs, Vs) in degree p + ¢. Similarly, there is a spectral sequence with Fj-term

given by
gra_ [0 if p <0
@, ExtPT(gr; o, gr;_p, ) ifp>0
which abuts on Ext?™4(V,, V) in degree p + q.

Since Hom(gr; ¢, gr; ) = 0 for i < j by semistability, we see that Ext% (Vs, Vs) = 0. Likewise,
Lemma 5.1 gives

Hmax,Hpy, (Vs) — Mmin,H,, (Vs) <1< *K]Fe : Hma
SO
ext®(gr; (Vs), g1;(Vs)) = hom(gr; (Vs), gr; (Vs) © Kz,) =0
for any i, j, and therefore both Ext? (Vs, Vs) = 0 and Ext? (Vs, Vs) = 0. So, the only nonzero terms
in the spectral sequence for Ext?, +q(Vs, Vs) have p + ¢ = 1, and we conclude

extJr Vs, Vs) = Z ext (gr;( Z x(gr;, gr;)
1<j 1<j

By using the scheme of relative flags we can then show that Sg,, (Pi,..., ;) C S is smooth at s and
the normal space has dimension ext! (V, Vs); see [LeP97, §15.4] for details. Since x(gr;,gr;) <0
for all ¢ < j, the result follows. U

Conversely, the restrictions in Lemmas 5.1 and 5.2 determine the characters gr;.

Theorem 5.3. Suppose wi,...,wp € K(F.) are characters of positive rank with the following
properties.

(1) wi+ -+ wg = V.

(2) q1 > ...> qx, where q; is the reduced H,,-Hilbert polynomial corresponding to w;.

(3) pr,,(W1) = p,, (wWi) < 1.
(4) x(wi,w;) =0 fori <j.
(5) The moduli space My, (w;) is nonempty for each i.

Then k = { and gr; = w; for each i.

Proof. Pick H,,-semistable sheaves W; € My, (w;) for each i, and consider the sheaf
U= GB Wi,
i
so that the Harder-Narasimhan filtration of U has factors Wy, ..., Wy. Then by assumption
Hmax, H,, (Z/{) — Mmin,H,, (Z/[) = HKH,, (Wl) - MHn, (Wk) <1

so by Proposition 3.9 we see that U is H,,j-prioritary of character v.

We can now construct a complete family U;/% parameterized by a smooth, irreducible va-
riety ¥ such that U = U, for some tg € T. Indeed, let d > 0 be sufficiently large and
divisible, let x = x(Of,(—dH,,),U), and consider the universal family of quotients U;/¥ on
Y = Quot(Or, (—dHp,)X, chlU) parameterizing quotients

(®) 0— Kt — Op,(—dHp,)X — Uy — 0.
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Let tyg € X be the point corresponding to the canonical evaluation
Oy, (—dH,,) ® Hom(Op, (—dH,,),U) — U.

The tangent space to 3 at a point ¢ corresponding to an exact sequence (#) is Hom(/KC;, Uy ), and 32
is smooth at ¢ if Ext! (K, ;) = 0. Applying Hom(—,U;) to (#), we get the following portion of the
long exact sequence in cohomology:

Hom(/Cy, Uy) — Ext!(Uy, Uy) — Ext(Op, (—dH )X, Uy) — Bxt! (Ky, Uy) — Ext? Uy, Uy).
By passing to the open subset parameterizing locally-free sheaves if necessary, we have
ext?(U;, Uy) = hom (U, Us(Kr,)) = 0 by our assumptions on the slopes. Since d > 0, we have
Ext!(Op,(—dH,,)X,U;) = 0 by Serre vanishing and boundedness of the Quot scheme. Therefore
Ext!(K;,U;) = 0 and ¥ is smooth at ¢, including at ¢ = to. Furthermore, the Kodaira-Spencer map
at ¢ is the natural map
;% = Hom(Ky, Uy) — BExt! Uy, Uy),

so the universal family on ¥ is complete at ¢, including at ¢ = t5. We have thus constructed the
required complete family U />.

Let Q; be the H,,-Hilbert polynomial corresponding to w;. Then by the same computation as in

the proof of Lemma 5.2, the Schatz stratum Sy, (Q1,...,Qk) C X is smooth at ¢y of codimension
0. Therefore the stratum is dense in X, and the general sheaf U; has an H,,-Harder-Narasimhan
filtration with quotients of character w;. Thus gr; = w;. O

It follows that if we know (say by induction) when moduli spaces My, (w) are nonempty for
characters w with rank smaller than v, then we can determine the characters gr; by searching for
the unique list of characters wy, ..., wy satisfying the assumptions of Theorem 5.3. If there is no
such list with length k& > 2, then the only possibility is that £ = 1 and the moduli space My, (v) is
nonempty.

We can make a couple quick observations to place further bounds on the characters gr; which
reduce the search for a list of characters wy, ..., wy satisfying the assumptions of Theorem 5.3 to a
finite computation. First, we bound the total slopes v; of the gr; to a parallelogram region centered
on v.

Lemma 5.4. For each i, we have

|(vi —v) - F| < max{1,

}

e+2m
|(v; —v) - Hp| < 1.

Proof. The second inequality was Lemma 5.1. For any i < j, the orthogonality x(gr;,gr;) = 0,
Riemann-Roch, and the Bogomolov inequality give
P(V]’—Vi) :Az—f—A] ZO

We also have the inequalities
—1§(V]’*Vi)-Hm§0
from Lemma 5.1. Write v; — v; = aF + bF'. Then these inequalities give

1
P(aE+bF):(a+1)(b+1—§ea) >0

and
—1<am+b<0.

These inequalities easily imply
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or

[(vj —vi) - F| < max{1, e+—2m}'

The result follows since v = a1y + - -+ + ayvp is a weighted mean of the v;’s, so that

m

2
(@i =w)- Fl =13 oy —vy) - F < 3 el =) - Fl < max{l, == 03,
j J

with the last inequality being strict because of the 0 term «;|(v; — ;) - F'| = 0 in the sum. O
The discriminants A; of the gr, are also easy to describe.

Lemma 5.5. Suppose £ > 2, so that there are no semistable sheaves of character v.

(1) If v1 - Hy > vg - Hy,, then each discriminant A; is the smallest discriminant of an H,y,-
semistable sheaf with arbitrary rank and slope v;.

(2) If v =vy =--- =y, then £ = 2. Then Ay (resp. Ag) is the smallest (resp. second smallest)
discriminant of an H,,-semistable sheaf with arbitrary rank and slope v.

If m is generic and vy - H,, = vy - Hy,, then v1 = --+ = 1y, so one of the two cases of Lemma 5.5
always applies when m is generic.

Proof. (1) Given an index 1 < i < ¢, either vy - Hy,, > v; - Hy, or v; - Hy, > vy - Hy,. Assume
vy - Hy, > v; - Hy; the other case is similar. Suppose there is an H,,-semistable sheaf V of rank 7/,
slope v;, and discriminant A’ < A;. We have x(gr;, gr;) = 0, so Riemann Roch gives

X(gr].?/V) — P(VZ _ I/l) _ Al _ A/ > P(V’L _ I/l) _ Al _ Az — X(gr]_?gri) — 0
m@r rir;

)

and therefore x(gr,V) > 0. If gr; is an H,,-semistable sheaf of character gr;, then
hom(gry, V) = ext?(gr, V) =0

by semistability and Serre duality since (v —v;) - Hy, < 1. Therefore x(gr;,V) < 0, a contradiction.

(2) First note that the discriminants satisfy A; < Ay < --- < Ay. Then since x(gr;,gry) = 0,
Riemann-Roch shows x(gr;,gr,) < 0 if £ > 2. Therefore ¢ = 2.

The rest of the proof is similar to (1). We have x(gr;,gry) = 0. Suppose we can find an H,,-
semistable sheaf V with slope v and discriminant A’ < A;. Then x(V,gry) > 0, even though
hom(V, gry) = ext?(V, gry) = 0 for any H,,-semistable sheaf gry of character grs.

Similarly, suppose we can find an H,,-semistable sheaf V with slope v and discriminant A’ satisfy-
ing A1 < A’ < Ay. Then x(gry,V) > 0, but hom(gry, V) = ext?(gry, V) = 0 for any H,,-semistable
sheaf gr; of character gr;. O

Finally, the length ¢ of the generic Harder-Narasimhan filtration is easy to bound.
Lemma 5.6. The characters gry,...,gr, € K(F.) ® Q are linearly independent. Therefore { < 4.

Proof. Suppose the characters are dependent. Then we can partition {1,...,¢} = A[] B into two
sets A and B and find nonnegative integers {mg}qca and {ny}pep (not all 0) such that

Z Megr, = angrb = w.

acA beB
The stack Pp,,, (W) is nonempty since it contains the sheaf €, 4 13", as in the proof of Theorem
5.3. Then Theorem 5.3 shows that both {m.gr,}sca and {nygr,}scp are the characters of the
quotients in the Hy,-Harder-Narasimhan filtration of a general sheaf W € Pp,, (w). However, the
gr; are all distinct and the H,,-Harder-Narasimhan filtration is unique, so this is a contradiction. [
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If we have computed the generic Harder-Narasimhan filtration for all characters of rank < r, then
it becomes easier to find the generic Harder-Narasimhan filtration for a character of rank r. Instead
of searching over all lists gry, ..., gr, for the generic Harder-Narasimhan filtration, we can instead
just search for the character gr, of the maximal destabilizing subsheaf. Then under the assumption
that gr; is the first character in the generic Harder-Narasimhan filtration, the rest of the characters
gry, ..., gr, are determined by induction.

Lemma 5.7. Lel u = gry + - + gr,. Then there are Hi,, -prioritary sheaves of character u,
and the generic U € PHWW (u) has an H,,-Harder-Narasimhan filtration with quotients of characters

gro, ..., 8ry.

Proof. Considering slopes, a direct sum of sheaves of characters gry,...,gr, is Hf,, -prioritary,
so such sheaves exist. Since the characters gry,...,gr, are the characters of the H,,-Harder-
Narasimhan filtration of a general sheaf in PH(p1 (v), they satisfy all the properties listed in Theorem
5.3. The theorem also shows that gr,, ..., gr, are the characters of the H,,-Harder-Narasimhan fil-
tration of a general sheaf in Py, . (u). O

This gives us the following inductive version of Theorem 5.3.

Corollary 5.8. Let w; be a character and let u = v — wy. Then wi = gry if and only if the
following conditions are satisfied.

(1) There are Hiyp-prioritary sheaves of character u. In this case, let wa, ..., wy be the char-

acters of the H,,-Harder-Narasimhan filtration of a general sheaf in PH(mW (u).

(2) q1 > q2, where q; is the reduced H,,-Hilbert polynomial corresponding to wy;.

(3) pm,,(Wi) — pm, (wg) < 1.

(4) x(wy,w;) =0 fori> 2.

(5) The moduli space My, (w1) is nonempty.

Furthermore, if these conditions are satisfied, then w; = gr; for all i.

Proof. Everything follows immediately from Theorem 5.3 and the fact that was,..., wy are the
characters of a generic Harder-Narasimhan filtration. ([l

6. EXCEPTIONAL BUNDLES AND NECESSARY CONDITIONS FOR STABILITY

In this section we study exceptional bundles on Hirzebruch surfaces and their stability. First we
recall known results from the case of a del Pezzo surface with anticanonical polarization to show that
the exceptional bundles on Fy and F; can be explicitly determined by induction on the rank. For
a given polarization, the exceptional bundles define a Drézet-Le-Potier type surface which restricts
the numerical invariants of semistable bundles.

6.1. Exceptional bundles on del Pezzo and Hirzebruch surfaces. Here we recall some pre-
vious results on exceptional bundles, mostly for anticanonically polarized del Pezzo surfaces and
Hirzebruch surfaces.

Definition 6.1. A sheaf V on a smooth surface X is
(1) simple, if Hom(V,V) = C;
(2) rigid, if Ext'(V,V) = 0;
(3) exceptional, if it is simple, rigid, and Ext?(V, V) = 0;
(4) semiexceptional, if it is a direct sum of copies of an exceptional sheaf.

We call a character v € K(X) of positive rank potentially exceptional if x(v,v) = 1, and exceptional
if there is an exceptional bundle of character v.

Simplicity automatically implies strong results about prioritariness when —Kx is effective.
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Lemma 6.2. Let V be a simple bundle on a smooth surface X. If D € Pic(X) is a divisor such
that —(Kx + D) is nontrivial and effective, then V is D-prioritary.

In particular, any simple bundle on F, is Hy-prioritary.
Proof. By Serre duality,

ext>(V,V(=D)) = hom(V(—D),V(Kx)) = hom(V, V(Kx + D)).

Suppose there is a nonzero map V — V(Kx + D). Since —(Kx + D) is effective, we can compose
this with an injective map V(Kx + D) — V to get a map V — V. Since —(Kx + D) is nontrivial,
this map is not an isomorphism, but it is also not zero since V(Kx + D) — V is injective. This
contradicts the simplicity of V, so hom(V,V(Kx + D)) = 0.

In the Hirzebruch case, we have —(Kp, + Hy) = E. O

As a consequence, exceptional bundles on Hirzebruch surfaces are determined by their Chern
characters.

Proposition 6.3. Let V be an exceptional bundle on F..

(1) If D € Pic(F.) is any divisor such that —(Kp, + D) is effective, then V is D-prioritary. In
particular, V is F-prioritary and Ho-prioritary.
(2) Any exceptional bundle with the same invariants as V is isomorphic to V.

Proof. (1) This is Lemma 6.2.

(2) The stack Pr(v) is irreducible. Therefore, in any complete family of F-prioritary sheaves
of character v, the general sheaf is isomorphic to V. The same argument applies to any other
exceptional bundle. O

The next result was first proved by Mukai for K3 surfaces, then restated in a way that holds more
generally in [Gor89].

Proposition 6.4 ([Muk87, Gor89]). Let X be a smooth surface.
(1) If V is a torsion-free sheaf on X, then
ext'(V,V) > ext! (V*, V™) + 2length(V**/V).

In particular, if V is rigid, then it is locally free.
(2) Suppose
0O—-W—=V—-U—=0
is a short exact sequence with Hom(W,U) = Ext?>(U, W) = 0. Then

ext'(V,V) > ext! (W, W) + ext! (U, U).
Thus if V 1is rigid, then so are W and U.
Rigid bundles on del Pezzo surfaces decompose into exceptional bundles.

Theorem 6.5 ([KO95, Theorem 5.2]). Let X be a del Pezzo surface. Then any rigid bundle V splits
as a direct sum of exceptional bundles.

The exceptional bundles on an anticanonically polarized del Pezzo surface are automatically
slope-stable.

Theorem 6.6 ([Gor89]). Let X be a del Pezzo surface. Then any exceptional bundle is ji_k , -stable.
The next lemma collects several useful facts about exceptional bundles on Hirzebruch surfaces.

Lemma 6.7. Let v € K(F.) be a potentially exceptional character of rank r with ¢1(v) = aFE + bF.
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(1) The discriminant of v is
1

1

2 22

(2) The integers r and a are coprime, and r is odd if e is even. The integer b satisfies the
congruence

A =

2ab = a®e + aer —r* —1  (mod 2r).

Conversely, the residue class of b (mod r) is uniquely determined by r and a.

(8) The character v is primitive.

(4) If V is an H,,-stable sheaf of discriminant A(V) < 3, then V is exceptional.

(5) If m is generic and V is a pp,, -semistable sheaf of character v, then it is pp,, -stable and
exceptional.

(6) If m is generic and V is an Hp,-semistable sheaf of discriminant A(V) < %, then V is
semiexceptional.

Proof. (1) We have x(v,v) = 1, so solving the Riemann-Roch formula
1= x(v,v) =r*(P(0) — 24)

for A proves the equality.
(2) The Euler characteristic x(v) must be an integer. By Riemann-Roch,

1 1
T‘( <E—|— F) 2+2—742>
(2 < 1_@)_1+L>
r 2r 2 2r?
1

=3 (1+ 2ab+ 2r(a+b) —a’e — aer +17) .
,

Therefore, 2r divides 1 + 2ab — a?e — aer + r2, giving the congruence
2ab = a’e + aer —r* —1 (mod 2r).

Then e and r cannot both be even. Furthermore, 1 is a Z-linear combination of r and a.

Note that r is odd if either a or e are even. Therefore a’e + aer — 2 — 1 is always even, and the
congruence is equivalent to

1
ab = E(aQe +aer —r* —1) (mod 7).

Since a and r are coprime, this uniquely determines b (mod r).
(3) Clearly v is primitive by (2).
(4) We have hom(V,V) =1 and ext?(V, V) = 0, so

XV, V) =1 —ext!(V,V) =r*(1 - 2A) > 0.

Therefore ext!(V,V) = 0.

(5) Since v is primitive and m is generic, V has no subsheaf of smaller rank with the same
H,,-slope. Thus V is pp,, -stable, and V is exceptional by (4).

(6) Since m is generic, the Jordan-Holder factors gry, ..., gr, of V all have the same total slope and
discriminant. They are also exceptional bundles, by (1), so their Chern characters are primitive,
hence have the same rank, and they are the same. By Proposition 6.3 (2), the factors are all
isomorphic. Then an easy induction using ext!(gr;, gr;) = 0 shows V & grl . O
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6.2. The Drézet-Le Potier surface. Consider a Hirzebruch surface F. polarized by an ample
divisor H. Suppose V is a up-stable sheaf on F.. The existence of V restricts the possible numerical
invariants of up-semistable sheaves. In particular, if W is a up-semistable sheaf with

1
§K1Fe “H < pg(W) — pa(V) <0,

then Hom(V, W) = 0 and
ext?(V, W) = hom(W, V(KF,)) = 0

by stability and Serre duality. Therefore, x(V,W) < 0. By the Riemann-Roch formula, this
inequality can be viewed as a lower bound on A(W) :

AW) > P(v(W) —v(V)) — A(V).
Likewise, if instead

0<paW)—pa(V) < —%KFG - H,
then the inequality x(W,V) < 0 provides a lower bound

AW) = P(r(V) —v(W)) — A(V)

on A(W).
Heuristically, up-stable exceptional bundles V often give strong bounds for p-semistability since
their discriminants are small. For a pp-stable exceptional bundle V, we define a function

Pv—v(V))—A(V) if 1Kg,-H < (v—v(V))-H<O0
DLPyy(v) = { P(v(V) —v) — A(V) if0<(v—v(V) H<-iKp -H
max{P(+(v — v(V)) = AW} i (v — (V) - H = 0.
on the strip of slopes v = 2E + bF (%, %) € Q? satisfying
(v~ v (V) H| < 5 Ks,  H.

Our previous discussion shows that if there is a uz-semistable sheaf of total slope v and discriminant
A such that 0 < |(v —v(V)) - H| < —3Kp, - H, then A > DLPp y(v).

Remark 6.8. The definition of DLP ), (v) in the third case (v—v(V))-H = 0 is somewhat arbitrary.
In particular, we don’t necessarily know that A > DLP g (v) whenever there is a p1g-semistable
sheaf of total slope v and discriminant A such that (v —v(V)) - H = 0.

However, if H is generic, then (v —v(V)) - H = 0 will only happen when v = v(V). Suppose W is
H-semistable of total slope v(W) = v (V). If AOW) = A(V), then W is semiexceptional by Lemma
6.7 (6). On the other hand if A(W) # A(V), then either Hom(W,V) = 0 or Hom(V, W) = 0 by
H-semistability, and in either case Riemann-Roch implies

1 1
A(W) > DLP = -4+ ——.
W) = H,V<V) 92 + 27.0})2
Thus if H is generic, then A > DLPp y(v) whenever there is an H-semistable sheaf of total slope
v and discriminant A satisfying |(v — v(V)) - H| < —i Ky, - H.

Remark 6.9. In the previous remark, if H is generic and W is only up-semistable, we cannot
conclude A(W) > DLPy y(v). For example, the sheaf Op, @ I, on F,. is only pp-semistable, but
has discriminant 3 < DLP Hos, (0) =1.
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FIGURE 3. For e = 0 or 1, we graph the functions DLP g, 0. (¢£ + ¢F) on the
square [—2,2] x [—2,2] in the (¢, ¢)-plane. See Example 6.11.

Remark 6.10. It is useful to expand the two branches defining the function DLP gy (v). We have

P = (V) = AV) = S (v~ vV)’ +1 = AWY) ~ LK, - (v~ (V)

Pu(V)—v) = AWV) = (v —v(V))? + 1 - AV) + % r. - (v —v(V)).

N — DN

Thus the two branches have very similar formulas; the only difference is that depending on the sign
of (v —v(V)) - H, we either subtract or add 1K, - (v — v(V)).

In particular, in the special case where e = 0 or 1 and H = —Kp_, if (v —v(V)) - (—KF,) = 0,
then both branches always produce the same result. Thus the two numbers being maximized in the
third part of the definition of DLP _;, 1(v) are the same, and DLP g, 1(v) is continuous on its
domain in this case.

For all polarizations that are not a multiple of —K¥,, the function DLP 5 y(v) is discontinuous
along the line (v —v(V))- H = 0, although the two branches do produce the same result at the point
v=uv(V).

Example 6.11. In Figure 3, we let e = 0 or 1 and plot the functions DLP _k; o (¢E + ¢F)
for (e,¢) in the square [—2,2] x [—2,2]. We cut off the graph below A = 0, since the Bogomolov
inequality will apply in that case. The black line indicates the line of slopes where the branch used
to compute the function changes. Observe that the surface is highest for total slopes close to v(OF,).
For other exceptional bundles, the graph is translated by the total slope and shifted downward by
the discriminant.

Example 6.12. In Figure 4, we show how the function DLP ), changes with the polarization. For
e=0and 0 <t <8, we graph the function DLPy , og (eE + ¢F) on the square [—2,2] x [—2,2].
8

Similar pictures hold for other exceptional bundles and other Hirzebruch surfaces.

Taking the inequalities coming from all the pg-stable exceptional bundles V produces a Drézet-Le
Potier type surface that restricts the numerical invariants of semistable sheaves.
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FIGURE 4. For e =0 and 0 < ¢ <8, we graph the functions DLPp , o, (eE + ¢F)
8
on the square [—2,2] X [—2,2] in the (€, ¢)-plane. See Example 6.12.

Definition 6.13. Let Eg be the set of ug-stable exceptional bundles on F.. Define a function

DLPgy(v) = sup DLP gy (v).
VeEy
((v—v(V))-H|<~5 Kp. H

Similarly, it is useful to define analogous functions where the ranks of the exceptional bundles are
bounded. For an integer r > 1 we define

DLP} (v) = sup DLPgy(v).
VeEEY
|(v—v(V))-H|<—5 K¢, H
r(V)<r
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In the special case r = 2, we get a function DLPI<{2<V) controlled by line bundles. Since this function
is important in what follows, we write it as

DLP (v) = L5 DLPy 1 (v).
\(qu)»H\<7%eKFE ‘H

Note that there is no question of stability for line bundles.

Remark 6.14. For any exceptional bundle V), polarization H, and ¢ € R, the set
1
(DLPxy) (fe,00)) = {v: |(v—v(V)) - H| < —§K]Fe -H and DLPyy(v) > ¢}

is bounded. It follows that the supremum in the definition of DLP 5" (v) is actually a maximum.

On the other hand, at least if irrational slopes v are allowed, then the supremum in the definition
of DLPy(v) may not be achieved by any exceptional bundle. Similar phenomena occur as in the
case of P?: the analogous function §(y) on P? takes a value of % at some transcendental slopes p,
and this value is not computed by any particular exceptional bundle. See [CHW17, §4]. On Fy, Abe
[Abel7] shows that there are balanced slopes puF) + pFy with the same property.

Our discussion in this section shows the following.
Proposition 6.15. Let H be generic.
(1) If W is an H-semistable exceptional bundle on F. of rank r, then
A(W) > DLP§ (v(W)).
(2) If W is an H-semistable non-semiexceptional sheaf on Fe, then
A(W) > DLPg(v(W)).

Example 6.16. To build intuition, we graph some of the functions DLP <. ( ), which will be
studied heavily in the next section. These pictures will be better justified after T heorem 8.8, which
will give us a quick algorithm to determine all the exceptional bundles up to a given rank.

In Figure 5, we take e = 0 and graph the function DLPfE;(FO (v) over the unit square [0, 1] x [0, 1]
of slopes e+ ¢F = (€, ). There are contributions to the surface from exceptional bundles of ranks
1,3,5,7 (see Example 8.10 and Table 1).

In Figure 6, we take e = 1 and graph the function DLPf;(lF (v) over the unit square [0, 1] x [0, 1]
of slopes eE+ ¢F = (€, ). There are contributions to the surf(;%ce from exceptional bundles of ranks
1,2,4,5,6. (see Example 8.10 and Table 2).

In each case, both functions take values slightly below 1/2 on certain small regions where higher
rank exceptional bundles have not been included; on the other hand, we will see that when all
exceptionals are accounted for we have DLP g, (v) > % See Corollary 7.12.

7. SUFFICIENT CONDITIONS FOR STABILITY ON A DEL PEZz0O HIRZEBRUCH SURFACE

In this section, we study the existence problem for semistable sheaves on an anticanonically
polarized del Pezzo Hirzebruch surface Fg or F;. Similar results were previously obtained by Rudakov
in [Rud94] and [Rud96].

7.1. Line bundles and DLP}LI on a del Pezzo surface. Before proceeding, we need to study the
function DLPL (v) which uses line bundles to restrict the numerical invariants of semistable sheaves
on Fg and Fy. We begin by investigating the anticanonical case.

Lemma 7.1. Let e =0 or 1, and let v € Pic(F.) ® Q be a total slope. Then

3
DLPL ., (v) > 3
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FiGURE 5. For e = 0, we graph the function DLPf%IF (eE + ¢F) on the unit square
0
in the (€, ¢)-plane. See Example 6.16.

Proof. We may as well assume v = eE + oF = (¢, ) € Q? lies in the unit square [0,1] x [0, 1]. Then
a straightforward computation shows that one of the four line bundles O, O(E), O(F), or O(E+ F)
always provides the required inequality. Il

Remark 7.2. When e = 1, in fact DLPl_KF (%E + %F) = %, and there is a rank 2 exceptional
bundle of this slope. When e = 0, the inequality can be further improved to DLP! K (V) > %,
which is achieved at the total slope %Fl + %Fg, although we won’t need this.

The next result is the line bundle version of a more general result we will prove later.

Lemma 7.3 (Monotonicity in the polarization—line bundle case). Let e = 0 or 1, and let v €
Pic(F.) ® Q be a total slope. Consider the polarizations A, = —%K]Fe +mF. If0<m <m orif
S—1<m/ <m <0, then

DLP} (v) <DLPY}  (v).

Informally, as a function of the polarization H, DLPY(v) gets larger as (the ray spanned by) H
moves away from (the ray spanned by) —Kp, .
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FIGURE 6. For e = 1, we graph the function DLPf;{IF (eE + ¢F) on the unit square
1
in the (€, ¢)-plane. See Example 6.16.

Proof. Let L be a line bundle. Notice that in the definition of DLP g7, the two formulas
P(+(v - L)) — A(L)

defining the function don’t depend on H; the polarization H only matters to select the appropriate
branch depending on the sign of (v — L) - H. In the special case when H = —K7,_, we furthermore
have
DLP_j (v) = min{P(+(v — L)) — A(L)}

by the formulas in Remark 6.10. Thus, the smaller of the two branches is always selected when
H = —Ky,. As H moves away from —K7,_, the sign of (v — L) - H possibly changes, and the larger
branch will be selected to compute DLP g 1, (). Once the larger branch is selected it will continue
to be selected as H moves further away from —Ky,_, so long as v remains in the domain of definition
of DLPy 1,(v). With m,m’ as in the statement, it follows that

DLP 4, 1(v) < DLP4 , 1(v)

if v is in the domain of definition of both functions.

As H moves away from —Kp,_, it is also possible that v either leaves or enters the domain of
definition of DLP 1,(v); this transition happens when |(v — L) - H| = —3Kp, - H. There are four
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cases to consider, but they can all be handled similarly. Suppose (v — L) - H = —%KFE -H. Let H_
be a polarization slightly closer to —KF, and let Hy be a polarization slightly farther from —Kp,.
Suppose that

1
(v—L) -Hy >~ K, - Hy

1
(v—1L)-H. <Ky -H-,

so that v is in the domain of definition of DLPy_ 1 but not in the domain of definition of DLP g, .
Consider the line bundle L' = L ® (—Ky,). Then (v — L) - H = 1Ky_- H, and

1
(v—L")-Hy > S KFe - Hy,

so that v is in the domain of definition of DLP 7, ;-. But the function P satisfies P(v+KF,) = P(-v)
by Serre duality, so

DLPy, /() = P(v— L') — A(L') = P(L — v) — A(L) = DLPy_y(v).

Thus as v leaves the domain of definition of DLP y_ 1, it enters the domain of definition of DLP 7, -,
and the formula used to compute each function at v is the same. Therefore, the computation of the
maximum in the definition of DLPL,(v) is unaffected as v enters or leaves the domain of definition
of a function DLP g ;. Thus we have shown that every term in the supremum defining DLP}L‘m(y)
is bounded by some term in the supremum defining DLPIIL‘m, (v). O

Combining Lemmas 7.1 and 7.3, we get the following inequality that will be needed in the next
subsection.

Corollary 7.4. Let e =0 or 1, and let v € Pic(F) ® Q. For any polarization H, we have

3
DLPL (v) > 3

7.2. Exceptional bundles and stability for del Pezzo surfaces. In the anticanonically po-
larized del Pezzo case, Proposition 6.15 actually gives necessary conditions for the existence of
semistable (resp. exceptional) sheaves. Since the anticanonical polarization can lie on various walls
it is more convenient to first work with polarizations arbitrarily close to it.

Theorem 7.5. Let e = 0 or 1 and let v = (r,v,A) € K(F.) have positive rank. Let ¢ > 0 be
sufficiently small (depending on r) and let H := Hy = —%KFE +el. If

A > DLPF (v)
then there is an H-semistable sheaf of character v.

Proof. The result is clear if » = 1, so assume r > 2. If e = 0, then by symmetry we only have to

consider the polarization H = H_. By Corollary 7.4 we have DLP}I(V) > %, so we may as well

assume A > %. Then there are Hi-prioritary sheaves of character v, since in the notation of Section
4 if v = aF + BF then
1
——4+1-1|=1

2
and [1 — § & €] = 1 (recall we are taking the — sign if e = 0) we can use the methods of Section 5
to study the H-Harder-Narasimhan filtration of a general sheaf V € Pp(v).

A
e = | (o TaD
by Corollary 4.18. Since

v

-5+ (-

| oolee

1
H = —gKFe + GF = Hl—%:ﬁ:e
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Suppose that there is no H-semistable sheaf of character v, so that the H-Harder-Narasimhan
filtration of V has length at least two. Let gry,...,gr, be the characters of the factors, with
total slopes vy, ...,y and discriminants Ay, ..., Ay. Then in particular y(gr,,gr,) = 0, and so by
Riemann-Roch

P(yy— 1) = Ay + Ay

Here we have —1 < H - (1, — v1) < 0. We want to show that either A; or Ay is less than %, SO
that the corresponding factor is semiexceptional by Lemma 6.7 (6). To do this, we can show that
P(vy — 1) < 1 with equality if and only if 11 = vy; when equality holds, the fact that the filtration
is a Harder-Narasimhan filtration forces A1 < Ay.

We want to choose € > 0 small enough that the Harder-Narasimhan factors of ¥ remain constant
as € becomes arbitrarily small. To do this, note that if € is bounded to an interval (say (0,1)),
then by Lemma 5.4 the total slopes v; will come from a fixed bounded region that does not depend
on €. Since the ranks are bounded, there are then only finitely many possibilities for the slopes
v;. Thus there are only finitely many values m such that two distinct total slopes v; have the
same H,,-slopes. If € is chosen small enough, it follows that the ordering of the numbers H,, - v;
does not change as € shrinks to 0. By an induction on the rank, if we further shrink €, then for a
polarization H,, € [H, —%KFE) the set of H,,-semistable sheaves of rank less than r will not depend
on m. Hence, for this choice of € the H,,-Harder-Narasimhan filtration of V is independent of the
polarization H,, € [H, —%KFE).

The zero locus of the equation P(r) = 1 in the v-plane is a hyperbola; the inequality P(v) < 1
holds between the branches of the hyperbola. The tangent line to P(rv) =1 at v = 0 (corresponding
to OF,) is given by the equation v - (—Kp,) = 0, and the tangent line to P(v) =1 at v = Ky, is the
parallel line v - (—KF,) = —K%e. Then if v satisfies

~K§, <v-(-Kg,) <0,

it follows that P(r) < 1, with equality if and only if v is either 0 or K, .
By our choice of €, the inequalities —1 < H - (vp — 1) < 0 give

1
—1FeF - (yy—11) < —§KJFE (Ve —11) <05

notice that if H - (vy — 1) = 0, then vy = v4. Since the H-Harder-Narasimhan filtration of V does
not change as e further shrinks, we can conclude that

1 1
_QKI%‘e < -1 S —§KF6 . (V( - 7/1) S 0.

Then the previous paragraph shows P(v, — v1) < 1, with equality if and only if v = vy.
Thus we have shown that either gr; or gr, is semiexceptional. Without loss of generality, suppose
gr, is semiexceptional. Then

14

x(gri,v) =Y _x(gr;.gr;) = x(gr;, gry) > 0.
=1

We conclude that
A< DLPH,ng(V),

so A < DLP3/ (v) holds. O
Combining the theorem with Proposition 6.15 gives the next more complete picture.

Corollary 7.6. Let e = 0 or 1 and let v = (r,v,A) € K(F.) have positive rank. Let € > 0 be
sufficiently small (depending on r) and let H := Hy = —%KFe +eF.
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(1) If v is potentially exceptional, then it is exceptional if and only if
A > DLP} (v).
(2) If v is not semiexceptional, there is an H-semistable sheaf of character v if and only if

A > DLPy(v).

Proof. (1 & 2) (=) This is Proposition 6.15 (1) and (2).
(2) («=) By assumption A > DLPy(r) > DLP} (), so there are H-semistable sheaves of char-
acter v by Theorem 7.5.

(1) («) By Theorem 7.5 there are H-semistable sheaves of character v, and Lemma 6.7 (6)
completes the proof. O

Analyzing the proof of Theorem 7.5 gives the following fact about the generic Harder-Narismhan
filtration in the anticanonically polarized case.

Corollary 7.7. Let e = 0 or 1 and let v = (r,v,A) € K(F.) have positive rank. Let ¢ > 0 be
sufficiently small (depending on r) and let H := Hy = —%Kye +eF. If A > % and there are not
H-semistable sheaves of character v, then at most one of the H-Harder-Narasimhan factors of the
general sheaf V € Pp(v) is not a semiexceptional bundle.

Proof. The assumption A > % allows us to carry out the argument in the proof of Theorem 7.5, but
instead of analyzing the factors gr; and gr, we can analyze gr; and gr; with ¢ < j. It follows that
at least one of gr; and gr; is semiexceptional, so at most one factor gr; is not semiexceptional. [

The next technical lemma allows us to deduce results about the polarization —K¥,_, instead of
polarizations arbitrarily close to it.

Lemma 7.8. Let e = 0 or 1, let r > 2, and let v € Pic(Fe) @ Q. If € > 0 is sufficiently small
(depending on 1) and H := Hy = —1 Ky, + €F then

DLP<} (v) = DLP}/ (v).

Proof. 1f € is sufficiently small, then every exceptional bundle of rank less than r is ppy-stable, so
the exceptionals used to compute DLPfTKF and DLP};" are the same. By Remark 6.14 there are
only finitely many exceptionals which are relevant to the computation. Let W be any exceptional
used to compute either function. Then if € is sufficiently small we actually have

DLP—KFE %Y (I/) = DLP}LW (I/) .
Indeed, either

(1) potentially shrinking e further, —Kp,_ - (v — v(W)) and H - (v — v(W)) have the same sign,
in which case both sides are computed in the same way, or

(2) =K, - (v —v(W)) = 0, in which case both the expressions P(v — v(W)) — A(W) and
P(v(W) —v) — A(W) which could compute DLP _ g,y (v) and DLP g yy(v) are equal. (See
Remark 6.10.) ‘

Therefore the supremums over the relevant exceptional bundles are equal. [l

We deduce the following cleaner statement for exceptional bundles. This allows us to quickly
compute the exceptional bundles by induction on the rank.

Corollary 7.9. If e = 0 or 1 and v = (r,v,A) € K(F.) is potentially exceptional, then it is
exceptional if and only if
A > DLP<. (v).
Fe
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Proof. (=) Let V be an exceptional bundle of character v, and let YW be an exceptional bundle
which computes DLPf;{IF (v). Without loss of generality, suppose

1
H—Kp, (W) - EK%E < H—Kp, (V) < H—Kp, (W)

Since V is p_k, -slope stable and 7(W) < 7(V), we have Hom(W,V) = Ext?(W,V) = 0, so
X(W,V) <0. It follows that A > DLP_ g, w(v) = DLP<} (v).

(<) Let € > 0 be small and let H = —Kp, — eF. By Lemma 7.8,
A> DLPf%Fe (v) = DLP}/ (v),
and v is exceptional by Corollary 7.6 (1). O

Analogously there is a statement for semistability which only refers to the anticanonical polar-
ization; however, since sheaves with different total slopes can have the same —KF,_-slope, it is not a
complete classification.

Corollary 7.10. Let e =0 or 1 and let v = (r,v, A) € K(F.) have positive rank. If
A > DLPf}’(F (v),
then there are — Ky, -semistable sheaves of character v.

Proof. The proof is similar to the proof of Corollary 7.9. If ¢ > 0 is sufficiently small and Hy =
—3Krp, £ €F, then we have DLP<} (v) = DLPg (v) and there are Hi-semistable sheaves of

character v. By the irreducibility of the stack of prioritary sheaves, there are sheaves of character v
which are simultaneously both H,- and H_-semistable, and they will also be —Kp,_-semistable. [J

Example 7.11. On Fy = P! x P! with Pic(Fy) = ZF, @ ZF,, the bundle O(Fy) @ O(F) is
— K,-semistable of discriminant %. Its invariants satisfy A < DLP_g, (v), even though it is not
semiexceptional.

We can now also prove the following qualitative fact about the Drézet-Le Potier surface.

Corollary 7.12. Let e =0 or 1 and let v € Pic(F.) ® Q. Then

1
DLP_k, (v) > 3.

Proof. To get a contradiction, let v = (r,v, A) € K(F.) be a Chern character of smallest rank such
that

1
DLP g, (v) €A < 5.

Then DLPf;(]Fe (v) < A. By Lemma 7.8, if € > 0 is sufficiently small and H = —3Kp, — €F, then
DLPf%Fe (v) = DLP§ (v), so DLP}/(v) < A. Theorem 7.5 then gives an H-semistable sheaf V of
character v. The character v is primitive by our minimality assumption, and since H is generic V
is H-stable. By Lemma 6.7 (4), V is exceptional. Since V' is p_f,_-stable by Theorem 6.6, we find

1 1 1
DLP—K]Fe (I/) > DLP—K]Fe,V(V) = 5 + ﬁ > 5,

contradicting our assumption. O

8. STABILITY INTERVALS AND THE STABILITY OF EXCEPTIONAL BUNDLES

For a sheaf V, we can study the collection of polarizations such that V is stable. In this section,
we both study this question in general and discuss how to compute this set for exceptional bundles
on del Pezzo Hirzebruch surfaces.
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8.1. Stability intervals in general. First we make a general definition for an arbitrary Hirzebruch
surface F..

Definition 8.1. Let V be a coherent sheaf on F.. The stability interval of V is
Iy ={m>0:Vis ug,, -stable} C Rsy.

Proposition 8.2. The stability interval Iy is either empty or it is an open interval (mg,m1),
possibly with mg = 0 or mp = co. If mg > 0, then V is strictly LH,,, -Semistable, and if mp < o0,
then V is strictly pu,, -semistable.

Proof. Suppose Iy, is nonempty. Slope stability is open in the polarization, so if V is ppy-stable then
it is also pp-stable for H' sufficiently close to H. If H, H' are two polarizations such that V is both
- and pg-stable, then V is ugr-stable for any convex combination H” of H and H’. Therefore,
Iy is a nonempty open interval.

Without loss of generality, suppose m; < oo; then V is not i, -stable. On the other hand, if
it is not pup,,, -semistable, then a destabilizing subsheaft would show that V is not pp,, _ -stable for
€ > 0 small. Therefore V is strictly up,, -semistable. (I

Remark 8.3. We could analogously define intervals using other notions of stability, e.g. slope-
semistabity or Gieseker (semi)-stability. If V is ug-stable for some polarization H, then the closure
of Iy, is the interval given by slope-semistability, and the other intervals potentially differ only at
the endpoints.

Also of interest is the stability interval of the general sheaf. The next result shows that this notion
makes sense.

Proposition 8.4. Suppose there is a pug-stable sheaf of character v for some polarization H. There
is an open dense substack of Pr(v) parameterizing sheaves V such that the stability interval I, := Iy
s as large as possible.

We call I, the generic stability interval.

Proof. Let I, = (mg, m1) be the union of the stability intervals Iy, of all F-prioritary sheaves V
of character v. Since Pr(v) is irreducible and slope-stability is open in the polarization, Iy is a
nonempty open interval. If m;y is finite, then for m < m; sufficiently close to m; the notion of
1tH,,-stability for sheaves of character v is independent of m, since the walls for stability are locally
finite near H,,,. If m; = oo, then by Yoshioka [Yos96, Lemma 1.2] the notions of pp, -stability
of sheaves of character v stabilize for large enough m. In either case, there is an open substack of
Pr(v) parameterizing sheaves which are pp, -stable for all m < m; sufficiently close to mj.

If e = 0, then by symmetry the notion of uy, -stability stabilizes for sheaves of character v as
m > my approaches my. If e > 1 then H,,, is a positive class in the sense of Huybrechts and Lehn
[HuL10, §4.C], and again the walls for stability are locally finite near H,,, (even when mgo = 0). So
again, the notion of pp, -stability stabilizes for m > mg close to my.

If my > mp and m} < m; are sufficiently close to mo and mj, then the open substack of
simultaneously u H,y and pp ,-stable sheaves is the substack parameterizing sheaves V with I, =

1

1. ]

8.2. Stability intervals of exceptionals on Fy and F;. Let e = 0 or 1 and let V be an exceptional
bundle on F. of rank at least 2. Then V is j_f;_-stable, but as we vary the polarization it will
eventually cease to be stable. Intuitively, Proposition 6.4 says that the destabilizing subsheaf will
have to be an exceptional sheaf of lower rank. This makes it possible to compute the stability
interval Iy.
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Remark 8.5. Let V be an exceptional bundle of rank at least 2, and let v(V) = eE + ¢F. By
Lemma 6.7 (2), € is not an integer. The prioritary index p()) is then finite by Corollary 4.18, and
V is not upg,, -semistable if m is sufficiently large.

Note that ¢ is also not an integer. Indeed, a simple computation as in Lemma 7.1 shows that if
¢ is an integer then DLP! Ke, V) = 1. This contradicts Corollary 7.9.

The remark proves the following.

Proposition 8.6. Let e =0 or 1 and let V be an exceptional bundle of rank at least 2 on F.. The
stability interval Iy, is an open interval (mg,my) that contains 1 — § (corresponding to — Ky, ), and
mp < 00. O

Remark 8.7. If e = 0 and V is an exceptional bundle on Fj of rank at least 2, then by symmetry the
stability interval Iy, = (mg, m1) has mg > 0. If ¢1(V) = aF} + aFy is symmetric, then furthermore
Iy is of the form (1/m,m), but in general this need not be the case. See Example 8.10 for a rank 5
example.

On Fy, there are many exceptional bundles with a stability interval of the form (0,mq). If
7 : F1 — P? is the blowdown map, 7*Tp2 gives such an example.

If V is an exceptional bundle of rank r and the intervals Iy have already been computed for all
exceptional bundles W of rank less than r, then we can compute the interval Iy.

Theorem 8.8. Let ¢ = 0 or 1 and let V be an exceptional bundle of rank r > 2 on F.. For an
exceptional bundle W # V, let my )y € Qsq be the number m > 0 such that V and VW have the same
H,,-slope, if it exists. Let

{ W is an exceptional bundle with r(W) < r,
Sy = {myyy :

C .
X(W, V) >0, and myw € Ty } Q0

Then Iy is the connected component of Rso \ Sy that contains 1 — 5.

Proof. First let us show that Iy N Sy = (. Suppose m := my )y € Sy, where W is an exceptional
bundle that proves m € Sy. Let us show that V is not up,, -stable; suppose instead that V is pg, -
stable. We have ug, (V) = ug,, (W), and W is ug,, -stable since m € Iyy. Then Ext?(W, V) = 0 by
stability, and since x(W, V) > 0 we have Hom(W, V) # 0. Stability forces V = W, which contradicts
r(W) <r(V).

Therefore, Iy, is contained in R<g \ Sy. On the other hand, say Iy, = (mg, m1). By symmetry, it
is enough to show that mq, € Sy. Let € > 0 be small. Then V is uHml—semistable but not Hy,, y.-
semistable; let F C V be a maximal destabilizing subsheaf for H,,, +-semistability, and assume e
was chosen small enough that F does not depend on e. Note that since V is pip,, -semistable, it
is H[p, 141-prioritary and therefore it is Hp,, 4 -prioritary. Since V is rigid, the Hy,,-Harder-
Narasimhan filtration of V' is the Harder-Narasimhan filtration of a general Hf,,, . -prioritary sheaf
of character ch V. If we consider the exact sequence

0-F—-V—->Q—0,

then we have Hom(F, Q) = 0 (since F is the maximal destabilizing subsheaf) and Ext2?(Q, F) = 0
by Lemma 5.1. From Proposition 6.4 we see that F is rigid, and since it is semistable for a generic
polarization H,,, +. it must be semiexceptional by Theorem 6.5. Say F = W®* for an exceptional
bundle W. Then x(F,Q) = 0 by Lemma 5.2, so x(W,Q) = 0 and x(W,V) = k > 0. By our
choice of €, we have pp,, (W) = pmn,, (V), so myy = my. Finally, since W is Hy, e-stable it is
WH,,, -stable by Proposition 8.6. Therefore my € Iyy. We conclude that m; € Sy. O

Remark 8.9. The set Sy can be efficiently computed near 1 — §. Suppose W is an exceptional

bundle that shows that m = my )y € Sy, and let
v=v(V) —v(W)=aFE +bF = (a,b) € Q%
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Thenv-H,, =am+b=0,s0m = —72. Geometrically, in order to have m > 0, the slope of the line
between (0,0) and (a,b) must be negative. Equivalently, a and b must have opposite signs.

Since x(W,V) > 0 and A(V) > 0, we must have P(r) > 0 by Riemann-Roch. We have
1
PzE+yF)=(x+1) <y+1 — §€.I> .

The two lines /1 : # = —1 and {3 : y = —1+ §2 meet at (—1, —1—§) and divide the (z,y)-plane into
four regions. The function P is positive on the region R; right of ¢; and above ¢» and the region
Ry left of /1 and below #£5. All the points in Ry have both of their coordinates negative, so we must
have v € Ry since m > 0. Furthermore, the region in R; of points with coordinates with opposite
signs is contained in the union of two unit width rectangular strips

Ry = ((=1,0) x (0,00)) U ((0,00) x (=1,0)).

If e =0, then R3N Ry = R3. If e =1, then R3N R; contains one unbounded strip ((—1,0) x (0, 00))
and a bounded triangular region with vertices (0, —1), (0,0), and (2,0).

Since the coordinates of (V) are not integers (see Remark 8.5), line bundles L give infinitely
many points v(V) —v(L) in each unbounded component of R3 N R;. Riemann-Roch shows that any
of these line bundles with ¢; sufficiently far away from v(V) will compute an element my , € Sy.
When e = 0, this computes both an element M; € Sy larger than 1 (coming from the vertical strip)
and an element My € Sy smaller than 1 (coming from the horizontal strip). When e = 1, this
computes an element M; € Sy larger than 1/2 (coming from the vertical strip). We let My = 0
when e = 1 to streamline the exposition.

Now to compute Sy near 1—§ we only need to consider exceptional bundles W such that (W) < r,
v(V)—v(W) € R3N Ry, and myyw € (Mp, M1). But, the region Ry of points v in Rz N Ry such that
the slope of the line through v and (0,0) is between —M; and — M, is bounded, and only contains
finitely many points of the form v (V) — v(W) where W is an exceptional bundle with r(W) < r.
Thus we can compute the set Sy in a neighborhood of 1 — 5, and in particular we see that it is finite
near 1 — 5. A slightly more detailed analysis would show Sy, is discrete in R, but we do not need
this.

Example 8.10. Using Remark 8.9, it is straightforward to program a computer to compute the
intervals Iy, for all exceptionals V of low rank. At the same time, we can record the exceptional
bundles W that compute the endpoints of Iy, in the sense of Theorem 8.8. (If e = 0, each endpoint
is computed by such an exceptional bundle; if e = 1, then the right endpoint is computed by an
exceptional, and the left endpoint is computed by an exceptional if and only if it is not 0.) In Tables
1, and 2, we record the rank and first Chern classes of the exceptional bundles V of rank up to
20. When e = 0, we use twists, duality, and the symmetry between the two fiber classes to take
c1(V) = (a,b) = aFy + bFy with 0 < a <r/2and a < b <r. When e = 1, we use twists and duality
to take ¢1(V) = (a,b) = aE+bF with 0 < a <r/2 and 0 < b < r. We compute the stability interval
Iy = (mg, my), and we compute the ranks and first Chern classes of exceptional bundles W; which
compute the endpoints m; of Iy, if they exist.

Remark 8.11. In Theorem 8.8, the set Sy could instead be defined by requiring x(V, W) > 0; in
the proof, we just replace the maximal destabilizing subbundle with a minimal destabilizing quotient
bundle, and the component of R+ \ Sy containing 1 — § won’t change.

Now that we understand the stability of exceptional bundles on Fy and F1, we are ready to study
how the functions DLP ;" () and DLP 7 (v) change with the polarization. We examine some pictures
first, since they explain the key phenomenon that occurs when exceptional bundles are destabilized.

Example 8.12. Let e = 0. In Figure 7 we graph the functions DLPfIS . (eE + ¢F) on the unit
1+4
square in the (€, p)-plane, where 0 < ¢ < 8. There are two times ¢ to focus on:
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TABLE 1. Stability intervals and destabilizing bundles for exceptional bundles V of
rank up to 19 on Fy. See Example 8.10.

(r(V),ci(V)) Iy (rWo),e1(Wo))  (r(Wh), cs(WW))

(1,(0,0)) (0,00)

(3’ (171)) (1/272) (1’(_171)) (17(17_1))
(57 (172)) (1/273) (17(_171)) (17(17_2))
(77 (173)) (1/274) (17(_171)) (17(17_3))
(97 (174)) (1/275) (17(_171)) (17(17_4))
(117(175)) (1/276) (17(_171)) (17(17_5))
(117 (47 4)) (4/77 7/4) (57 (_27 4)) (57 (4, _2))
(137(176)) (1/277) (17(_171)) (1,(1,—6))
(157(177)) (1/278) (17(_171>) (17(1,—7))
(177(178)) (1/279) (17(_171>) (17(17_8))
(17,(5,5))  (8/9,9/8) (7,(1,3)) (7,(3,1))
(197 (179)) (1/2710) (17(_171>) (1,(1,—9))
(197 (47 7)) (8/97 3) (77 (17 3)) (17 (la _2))

TABLE 2. Stability intervals and destabilizing bundles for exceptional bundles of
rank up to 20 on F;. See Example 8.10.

—
=
—
~
N—
9}
G
—
~
N—
N—

Iy (rWo),e1(Wo))  (r(Wr), ci(WWh))

(1,(0,0)) (0,00)

(2,(1,1)) (0,1) (1,(1,0))
(47(172)) (072) (17(1,_1))
(5,(2,2))  (0,2/3) (1,(1,0))
(67(1a3)) (073) (1,(1,—2))
(87(1a4)) (074) (L(L_S))
(107(175)) (075) (17(17_4))
(117(375)) (3/ a2) (67(173)) (L(la_l))
(127(176)) (0?6) (1>(1a_5))
(13,(5,5))  (0,5/8) (1,(1,0))
(147(177)) (077) (L(la_ﬁ))
(16’(178)) (078) (L(la_?))
(18’(179)) (079) (1>(1a_8))
(197 (5a 10)) (1/97 9/5) (57 (_27 3)) (6¢ (5a _3))
(20’ (1,10)) (07 10) (1,(1,—9))

e At time ¢t = 0, we recover the function with the anticanonical polarization (see Example 6.16
and Figure 5).

e At time ¢t = 8, the polarization is Ho, where the rank 3 exceptional bundle with v = %E + %F
is destabilized by the line sub-bundle Op,(E — F') or the quotient line bundle O, (F). At
this time the branches of the surface controlled by the destabilizing objects meet up and
cover the part of the surface controlled by the rank 3 exceptional bundle.

Example 8.13. Let e = 1. In Figure 8 we graph the functions DLPI<{71 \ (eE 4+ ¢F') on the unit

2712
square in the (€, p)-plane, where 0 < ¢ < 8. There are three times ¢ of particular note:

e At time ¢t = 0, we recover the function with the anticanonical polarization (see Example 6.16
and Figure 6).
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t=0 t=1 t=2

.

FIGURE 7. For e = 0 and 0 < ¢ < 8, we graph the functions DLP5®  (¢E + ¢F) on
1+

1
8

the unit square in the (¢, ¢)-plane. See Example 8.12.

e At time ¢ = 2 the polarization is Hy/3, where the rank 5 exceptional bundle with v = %E —i—%F
is destabilized. It is destabilized by the sub-line bundle O, (E) and the quotient rank 4
exceptional bundle with v = ;11E + %F . At this time the portion of the surface controlled
by these two destabilizing exceptional bundles meet up and cover the portion of the surface
controlled by the rank 5 exceptional bundle.

e At time ¢t = 6 the polarization is Hy, and the rank two exceptional bundle with v = %E + %F
is destabilized by the sub-line bundle O, (F) and the quotient line bundle O, (F'). The
branches of the surface controlled by these line bundles meet up and cover the portion of
the surface controlled by the rank 2 exceptional bundle.

Now we generalize Lemma 7.3 to higher rank.

Proposition 8.14 (Monotonicity in the polarization). Let e = 0 or 1, let r > 2, and let v €
Pic(F.) ® Q be a total slope. Consider the polarizations A, = —%KIFe +mF. If0 <m <m orif



44 I. COSKUN AND J. HUIZENGA

t=0 t=1

FIGURE 8. For e =1 and 0 <t < 8, we graph the functions DLPI<1,71 (eE + ¢F)

t
2t12

on the unit square in the (¢, ¢)-plane. See Example 8.13.

£—1<m <m<O0, then
DLPY" (v) < DLPY" (v) and DLPy4,, (v) <DLPa_,(v).

Proof. We consider the function DLPJ;"(v); all the arguments apply identically to DLP g (v) after
trivial modifications. As H moves away from —Kp,, the number DLP} () can potentially change
in three different ways: there must be a pg-stable exceptional bundle V of rank less than r such
that either

(1) as H changes the branch of DLP gy used to compute DLP iy (v) changes;

(2) as H changes the slope v either leaves or enters the domain of definition of DLP g y; or

(3) as H moves away from —Kp,_ the bundle V becomes unstable, so that it no longer contributes

to the computation of the supremum in the definition of DLP " (v).

We discuss each case in turn, with cases (1) and (2) being similar to the line bundle case discussed
in the proof of Lemma 7.3.
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Case 1: This case is handled exactly as in the line bundle case; just replace L with V in the proof.

Case 2: As in the proof of Lemma 7.3, there are four cases to consider. Again consider the case
where (v —v(V))-H = —1Kp_- H, let H_ and H, be polarizations slightly closer to and farther
from —Kfp,, respectively, and suppose v is in the domain of definition of DLPy_ y but not in the
domain of definition of DLPf, y. Consider the bundle V' =V ® (—Kf,). Since V is pp-stable, it
is also pp, -stable, and V' is g -stable. Then as in the proof of Lemma 7.3, the slope v is in the
domain of definition of DLPy, y» and DLPy, y/(v) = DLPg_ y(v). We conclude as before.

Case 3: The idea is that as V is destabilized, one of its Harder-Narasimhan factors will provide a
stronger inequality. Let H be a polarization such that V is strictly H-semistable, and let Hy be a
polarization slightly farther from —Kp_ . Let Vi,...,V, be the H -Harder-Narasimhan factors of V.
By an induction on ¢ and Proposition 6.4 (2), these factors will all be rigid and semistable for the
generic polarization H,. They are direct sums of exceptional bundles by Theorem 6.5, but since
they are H,-semistable they must be semiexceptional. Let &1, ..., & be exceptional bundles with
V; = £P%. By our choice of Hy, we have puy(V) = up(&;) for all 4, and therefore the functions
DLPp,y and DLP 7 ¢, have the same domain of definition. Let v be a total slope in this domain. The
bundles &; are H-stable (and H-stable) of rank less than r, so they contribute to the computation
of DLPF(v), and they will continue to contribute to the computation of DLPE:(V) so long as v
remains in the domain of definition; if v does not remain in the domain of definition, then as in
Case (2) the exceptional bundle can be replaced by a twist without changing the computed value.

To complete the proof, we must show that

DLPgy(v) < maxDLPg g, (v).
(2

Since V and the &; all have the same H-slope, the numbers (v — v(V)) - H and (v — v(&;)) - H are
all equal and the numbers DLP () and DLP ¢, (v) are all computed using the same branch.
Without loss of generality assume (v —v(V))- H < 0, as the other two cases are dealt with similarly.
Let v =chV, v; = chV;, and e; = ch&;, and consider the (rational) character w = (1,7, 0) of rank
1 and discriminant 0. Then the inequality to be proved is

x(v, w) < max —X(ei’ w) .

T(V) i r (ez)

But v =), a;e;, so the number on the left is the weighted mean of the numbers on the right:

x(v,w) aix(er,w)+ -+ apx(es, w)

riv) arr(e;) + -+ + apr(ey)
alr(el)% +-+ GZT(GZ)XSQZ‘;’)

ajr(er) + -+ apr(er)
Thus the required inequality holds. [l

Combining Corollary 7.12 and Proposition 8.14 immediately proves the following result.

Corollary 8.15. Let e =0 or 1 and let v € Pic(F.) ® Q. Let H be an arbitrary polarization. Then

1
DLPy(v) > 3
Theorem 8.8 focuses on describing the polarizations such that a given exceptional bundle V is
stable. On the other hand, we can fix a polarization and study the stable exceptionals. We can now
show that the Drézet-Le Potier surface answers this question. This result generalizes Corollary 7.9
to arbitrary polarizations.
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Corollary 8.16. Lete =0 or 1, and let H be an arbitrary polarization. If v = (r,v, A) is potentially
exceptional, then there is a pp-stable exceptional bundle V of character v if and only if

A > DLP3/ ().

Proof. (=) Suppose there is a pp-stable exceptional bundle V. Then V is also pp, -stable for a
polarization H slightly farther from —Kp,, and Proposition 6.15 (1) gives A > DLPE:(I/). By
Proposition 8.14, we have A > DLP§ (v).

(<) Suppose A > DLP3 (v). Then by Proposition 8.14, we know that A > DLPf’[’(IF (v), and
therefore by Corollary 7.9 there is an exceptional bundle V of character v. It remains to show that
V is pp-stable. Let

I={m>0:A>DLPy (v)}.
By Proposition 8.14, I is an interval containing 1 — §. As m moves away from 1 — §, the number
DLPE;(V) is locally constant and only jumps up at special values, so I is open.

We claim that I = Iy, is the stability interval of V. From the first direction of the proof, we know
that if V is pg,, -stable, then m € I, and therefore Iy, C I. On the other hand, suppose V is strictly
1tH,,-semistable, and in the notation of Theorem 8.8 let VW be a n g, -stable exceptional bundle that
shows that m = my )y € Sy. Let H, be a polarization slightly farther away from —Kp, than H,,.
Then x(W,V) > 0 and py, (W) > ppg, (V), which shows that A < DLPy, yy(v) and therefore
A< DLPE: (v). This shows that m must be an endpoint of the interval I. Therefore I = Iy. [

8.3. Generic stability intervals. We can also combine the results of the past three sections to
study the stability interval of a general bundle on a del Pezzo Hirzebruch surface. Intuitively, for a
general sheaf it is easier to be u_k; -stable than slope stable for other polarizations.

Corollary 8.17. Let e =0 or 1, and let v = (r,v, A) be a character such that there is a pu,, -stable
sheaf V for some m. Then the general sheaf in the stack Pr(v) is p_r,, -stable.
In other words, the generic stability interval I, contains 1 — 5.
Proof. Without loss of generality assume m > 1 — §. Let V € Pp(v) be a general sheaf. Then it is
WH,,..-stable for € > 0 small. By Propositions 6.15 and 8.14 and Lemma 7.8, we find (shrinking e if
necessary)
A > DLPIYHE(V) > DLPf?}(JFe (v) = DLPf;(]FE—eF(V)‘

By Theorem 7.5, the general sheaf in Pr(v) is both (—Kp, — eF')-semistable and py,, , .-stable, and
so it is pu—k;_-stable. d

Corollary 8.18. Let e =0 or 1, and let I, be the generic stability interval of v € K(F,).

(1) If m € Iy, then the moduli space Mpy,, (v) is birational to M_r, (V).
(2) If m & I, then My, (v) is empty.

Proof. (1) The spaces Mp,,(v) and M_f;,_(v) are both irreducible, and by Corollary 8.17 they share
the open dense subsets of simultaneously pp,,- and u—f;_-stable sheaves.

(2) If V € My, (v), then m € Iy, and then m € I, by the construction of Iy. O

Example 8.19. Sheaves that are not general in moduli can be slope-stable for some polarization H
and fail to be slope-stable for —KF,. For example, on Fy it is easy to show that a general extension
of the form

0— Op, =V — Op,(2F1 — 3F») — 0
is strictly ,uH% -semistable and MH%+6—stable for all € > 0, so that Iy, = (%, 00). But, such sheaves V

are certainly not general in moduli; we have A(V) = 2, so

dim(MH%+E (v)) = dim(M_g,_(v)) =r*(2A - 1)+1=09,
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while dim (P Ext!(Op,(2F1 — 3F3), Or,)) = 3.

9. SHARP BOGOMOLOV INEQUALITIES

In this section we introduce functions of the slope which provide sharp Bogomolov-type inequali-
ties for various stabilities. We study their general properties in preparation for the rest of the paper,
where we will perform some computations of these functions.

Definition 9.1. Let v € Pic(F.) ® Q. We define

O0F3(v) = inf {A > — : there is a up,, -stable sheaf of total slope v and discriminant A} .

N =

We identically define functions d%,, §55 and d,°°, where the notion of stability is replaced with

H,,-stability, H,,-semistability, and p g, -semistability, respectively. If the Hirzebruch surface F, is
not evident, we may write notation such as 4,7 .

Analogously, recall that for m € Z we defined the function dh, () which bounds the discriminant
of H,,-prioritary sheaves. See Corollary 4.17. From the basic relationship between Gieseker and
slope stability and Proposition 3.9, it follows that we have inequalities

5 n (V) < 0% () < 5 (0) < 85, (v) < 38 (v)

for any m and v. If m is special, then there are examples showing that any one of the inequalities
can be strict. On the other hand, if m is general, then things are much better behaved, as we now
show.

9.1. Generic polarization. Here we compare the various é-functions in the case where the polar-
ization H,, is generic.

Theorem 9.2. Let v € Pic(F.) ® Q, and let m be generic. Then
O (V) = 0 (v) = 63°(v)

If furthermore there is no pm,,-stable exceptional bundle of total slope v, then these numbers also
equal 65, (V).

The result follows from a series of facts about the existence of sheaves exhibiting various stabilities.
Since the polarization is generic, the proofs mostly carry over directly from results in [DLP85], where
analogous statements were proved for P?.

Proposition 9.3. If m is generic and there is no pp,, -stable exceptional bundle of total slope v,
then

() = 533(v)

Proof. Let V be a pp,,-semistable sheaf with invariants (7, v, A). Consider a (possibly trivial) H,,-
Harder-Narasimhan filtration for V with factors gry, ..., gr, which have invariants (r;,v;, A;). Since
m is generic, each factor gr; has the same total slope v, the discriminants A; are strictly increasing,
and A is a weighted mean

rA =1r1A1+ -+ 1y

Thus gry is an H,,-semistable sheaf with A; < A. If A} < % then an H,,-Jordan-Holder factor of

gry is a pp,, -stable exceptional bundle by Lemma 6.7 (4 & 5), a contradiction. Therefore A; > %
and 05°(v) < Aj. O
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Remark 9.4. Let m be generic, and suppose there is an H,,-stable exceptional bundle V of total
slope v and rank r. Here we show that 0%;°°(v) = £ < 655(v).
The bundle V is pp,,-stable, so an elementary modification

0=V ->vV—-0,—-0

is also pp,,-stable. Then

A(V) = % (1 - 712> and AV = % (1 _ l) 4L
and a straightforward computation shows
1
%
so V¥ =1 @ V' is pip, -semistable of discriminant 1. Therefore 6};°*(v) = 3. On the other hand,
we have

A(v@(?rfl) ® V’) _

1 1
(5;95(1/) > DLPHm(V) > DLPH"“];(I/) = 5 <1 + —2> .
r
Proposition 9.5. Suppose m is generic and there are H,,-semistable sheaves of character v =
(r,v,A). If A > %, then there are H,,-stable sheaves of character v. Therefore,

O (V) = 0y (V)

Proof. The argument is essentially the same as the argument given in [DLP85, Theorem 4.10] in
the case of P2, so we will be brief. One considers the characters gry,...,gr, of a hypothetical
length ¢ > 2 Jordan-Holder filtration of a general sheaf in PH, (v). Since m is generic, all these
characters have the same total slope v and discriminant A. Since A > %, it follows that x(gr;, grj) =

rir;(1 — 2A) < 0. But we can estimate that the codimension of the corresponding Schatz stratum
is at least

- Z x(gr;, gr;) > 0.

1<J
Therefore no such stratum is dense, and the general sheaf is H,,-stable.

If 655(v) > % or if 6:5(v) = 3 and the infimum is computed by a sequence of H,,-semistable
bundles with decreasing discriminants, then this shows that ¢5°(v) = 63,(v). Finally, it is possible
that 05°(v) = % is computed by an H,,-semistable bundle V of discriminant % But then since m
is generic any H,,-Jordan-Holder factor of V is H,,-stable of total slope v and discriminant %, SO
05 (v) = 3. O

The next fact completes the proof of Theorem 9.2.

Proposition 9.6. Suppose m is generic and there are Hy,-stable sheaves of character v.= (r,v, A).
Then there are g, -stable sheaves of character v. Therefore,

O (V) = 07 (V).

Proof. The result is clear if v is exceptional, so assume v is not exceptional. Again the argument
closely follows the argument in [DLP85, Theorem 4.11] for P2. If the H,,-stable sheaf of character
v is not pp,, -stable, then we can find characters gr;, gr, such that the general sheaf V admits a
filtration

0—gry —V—gry—0
where gr, is H,,-semistable of character gr, = (r;,v, A;). Here we will have A; > Ay since V is
H,,-stable. Estimating the codimension of the corresponding Schatz stratum as in [DLP85], we see
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that we must have x(gr;, gry) > 0 in order for the stratum to be dense. Riemann-Roch then implies
A1+ Ay < 1, and therefore Ay < % So, gry is an H,,-semistable semiexceptional bundle. But then

x(V,gry) = x(gry, gry) + x(gry, gry) > 0,
and this gives
A < DLPg,, g, (V).

By Proposition 6.15, this contradicts the H,,-stability of V since V is not exceptional. Therefore no
such stratum is dense, and the general sheaf is pp, -stable. (I

9.2. Existence of sheaves with discriminant above §},°(v). In this section we show that the
function d4,°(v) is reminiscient of the Drézet-Le Potier curve that appears in the classification of
semistable sheaves on P2. Specifically, there are always py, -stable sheaves if the discriminant lies
above 05,° (v).

Theorem 9.7. Let v = (r,v,A) € K(F.) and let m € Qsq be arbitrary.
(1) If
A > 5 (w),
then there are pp,, -stable sheaves of character v.
(2) If there is a non-exceptional pm,, -stable sheaf of character v, then

A > 0F5(v).
(8) If there is a ug,, -stable sheaf of slope v and discriminant A = §°(v) > 4

2
exceptional iy, -stable sheaves of character v exist if and only if A > 6" (v).

m

then non-

Since elementary modifications take slope-stable sheaves to slope-stable sheaves, it is clear that
there is a function f,(r,v) of the rank and slope such that H,,-slope stable sheaves of character
(r,v, A) exist if and only if A > f,,(r,v). So, the interesting part of Theorem 9.7 is that the
dependence on the rank is not necessary. The next result gives the key step.

Proposition 9.8. Let v = (r,v,A) € K(F.), let n be a positive integer, and suppose there are
H,,-semistable sheaves of character nv. Then there are H,,-semistable sheaves of character v.

Proof. Since there are H,,-semistable sheaves of character nv, there are Hf,,) -prioritary sheaves
of character nv. Therefore

A Z 5Z|_7m_|+1<y>7
and by Corollary 4.17 there are Hf,,)1-prioritary sheaves of character v. Suppose there are not
H,,,-semistable sheaves of character v, and consider the characters gry,...,gr, of the generic H,,-
Harder-Narasimhan filtration for v. Then by Theorem 5.3 the characters ngry,...,ngr, are the
characters of the generic H,,-Harder-Narasimhan filtration for nv. Therefore there are no H,,-
semistable sheaves of character nv, a contradiction. O

It is easy to deduce Theorem 9.7 from the case where m is generic, so we first focus on that case.
As is often the case, sheaves of discriminant % require some care.

Lemma 9.9. Suppose m is generic and there is a pp,, -stable sheaf V of character v.= (r,v, %)

Then for any k > 1, there is a pg,, -stable sheaf of character w = (rk, v, % + %)
Proof. Let V' be an elementary modification of V:
0>V —=V—-0,—0.

Then V' is pug,, -stable, and W = VO*—1) @ V' is iy -semistable of character w = (rk, v, % + %)

Therefore, there are H,,)1-prioritary sheaves of character w. Consider the characters gry,...,gry
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of the factors of the generic Hy,-Harder-Narasimhan filtration of sheaves in Pp, ., (w). Since the
generic sheaf is p g, -semistable and m is generic, all the factors gr; have the same total slope.
None of the factors gr; can have discriminant A; less than 1. Indeed, if one did then there would
be an exceptional bundle € of slope v. Then DLPy, (v) > DLPy,, ¢(v) > 3, contradicting the
stability of V and Proposition 6.15. On the other hand, we must have x(gr;,gr;) = 0 for all i < j,
and by Riemann-Roch this requires A; + A; = 1. Therefore all A; must be %, which contradicts
A(W) > L. Thus the generic Harder-Narasimhan filtration must have length 1, and there are H,,-
semistable sheaves of character w. By Propositions 9.5 and 9.6, there are pp, -stable sheaves of
character w. n

Lemma 9.10. If m is generic, then Theorem 9.7 holds.

Proof. (1) Suppose A > d0,°(v). Pick a up, -stable sheaf W with invariants w = (', v, A’) such
that A > A’ > I using Lemma 9.9 in case &}, (v) = 3. Then W®" is an H,,-semistable sheaf of
character rw, and by Propositions 9.5 and 9.6 there are up,, -stable sheaves of character rw; pick
one such sheaf U. Let
n=x(rw)—x(r'v).

Then if we perform n general elementary modifications on U, we will get a py, -stable sheaf U’ of
character r'v. Proposition 9.8 then provides H,,-semistable sheaves of character v, and Propositions
9.5 and 9.6 give pp,, -stable sheaves of character v.

(2) If there is a non-exceptional pp, -stable sheaf then A > %, so this is clear.

(3) Repeat the argument in (1), except choose W so that A’ = 6,°(v). O

Now we can quickly deduce Theorem 9.7 for arbitrary m.

Proof of Theorem 9.7. (1) Since A > d0p,°(v), there is a up, -stable sheaf W with invariants w =
(r',v,A’) such that A > A’ > 1. Then since pip,,-stability is open in the polarization, if € > 0 is
small then W is both pp,, - and pg,, ., -stable, and therefore 6,7 (v) < A’. By Lemma 9.10, there
are [if,, . -stable sheaves of character v, and the irreducibility of the stack of F-prioritary sheaves
shows that there are sheaves of character v that are simultaneously pg,, .- and pg,, ., -stable. Such

sheaves are automatically slope stable stable for the convex combination H,, of Hy,—. and H, ..
(2) As in the proof of Lemma 9.10.
(3) The argument in (1) is easily adapted to this situation. O

It is worth pointing out that the function d},°(~) has a monotonicity property in the polarization.
Here we treat the del Pezzo case. See §11 when e > 2.

Corollary 9.11. Let e = 0 or 1, let v € Pic(F.) ® Q, and suppose either 1 — < < m < m’ or

0<m’§m§l—§. Then

3
515 (1) < 65 ().

Proof. By Corollary 8.17, if there are 1yy_,-stable sheaves of some character v = (r,, A), then there
are pp, -stable sheaves of character v. O

We can compare the function 8%,°(v) to DLPg,, ().

Corollary 9.12. Let e =0 or 1, let v € Pic(F) ® Q, and let m > 0. Then
0-3(v) > DLPg, (v).

e

Proof. Without loss of generality suppose m > 1 — §. Suppose V is up,,-stable with A(V) >
Then for € > 0 small it is also pg,,, -stable. Since it is not semiexceptional, Propositions 6.15
and 8.14 give

1
5-
2

(2)
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and therefore every sheaf used to compute 87, (v) has discriminant at least DLP _f,_(v). O

In the anticanonically polarized del Pezzo case, our previous results can be interpreted as follows.

Corollary 9.13. Ife =0 or 1 and v € Pic(F.) ® Q then
5?;‘% (v) =DLP_f_(v).

Proof. By Corollary 9.12 it remains to show that 6{" () < DLP_k, (v). Let v = (r,v, A) be any
2
integral character with A > DLP g, (v). If € > 0 is sufficiently small, then by Lemma 7.8 we have

A>DLP_g, (v) > DLP<} (v) = DLP<} | n(v),

so Theorem 7.5 shows there are (—Kp, + €F')-semistable sheaves of character v. We have A > %

by Corollary 7.12, so there are p_kg; 4er-stable sheaves of character v by Propositions 9.5 and 9.6.

Then there are p_, -stable sheaves of character v by Corollary 8.17. Therefore 6/, (1) < A. We
¢ 2

can choose the character v such that A > DLP_f, (v) is as close to DLP g, (v) as we want, so
this shows ¢}% (v) < DLP g, (v). O
2

10. HARDER-NARASIMHAN FILTRATIONS FROM KRONECKER MODULES

We let e = 0 or 1 throughout this section. We construct Chern characters v € K(F.) and
polarizations H,,, such that the general sheaf V € PHWW (v) has an H,,,-Harder-Narasimhan filtration

of length 2 and neither factor is semiexceptional. This is in direct contrast to the case of P? (see
Example 1.14) or an anticanonically polarized Hirzebruch surface (see Corollary 7.7).
Intuitively, we can construct such characters v as follows. First, take an exceptional collection

817 527 537 &q

of length 4, so that x(&;,&;) = 0 for i > j. Let K be a bundle constructed from & and &, (say by
taking extensions, kernels, or cokernels of direct sums of copies of £ and &) and let £ be a bundle
constructed from £ and &. Such bundles can be viewed as arising from Kronecker modules, which
are representations of a Kronecker quiver, and have previously been studied by Drézet [Dre87],
Karpov [Kar93], and others.

We observe that y(IC,£) = 0. If we can furthermore arrange that K and £ are H,,-stable and
wm,, (K) is slightly larger than pg,, (£), then by Theorem 5.3 the characters k = ch K and 1 =ch L
will be the characters of the factors of the generic H,,-Harder-Narasimhan filtration of sheaves in
PH (v), where v.= k+ 1. If £ and £ both have moduli, we will have constructed the desired
character v.

The main difficulty in the previous analysis is to determine when the bundles I and £ are H,,-
stable, but our study of stability intervals in the preceding sections makes this tractable. Karpov
previously studied the —Kp,-stability of many such bundles [Kar93], but for our purposes varying
the polarization is crucial. When combined with general results on stability intervals, our approach
also gives a new proof of the — K, _-stability of these bundles. We carry out this program in the case
where the starting exceptional collection is

Or (-E—(F), O, Or(F), Op(E-(l—-1-¢)F) (£=3)

and where we construct K as an extension and £ as a cokernel. Many of the arguments undoubtedly
generalize to more arbitrary exceptional collections, but as the computations are already considerable
we do not pursue this here.

In the final subsection of this section, we study how the parameters of our construction can be
varied to both construct stable sheaves of certain characters and see that stable sheaves of certain
characters cannot exist. In other words, we compute the function d&},°(v) for some values of m and



52 I. COSKUN AND J. HUIZENGA

v. In contrast with the functions DLPE’;H(V), which are locally constant in m and jump at special
values, we will see that it is possible for df,°(v) to increase continuously as m increases.

10.1. Stability of bundles from an inverse pair. Let £k > 3 — e be an integer, and let N =
2(k — 1) + e (so that N > 3). In this subsection, we consider the stability of bundles on F. that
arise as extensions

(1) 0— O, (E—kF)® - K — O£ =0

coming from the inverse exceptional pair (Of, (E — kF'),Op,). Let k = ch K. We have
hom(Op,, O, (E — kF))
ext!(Op,, Op, (E — kF))
ext?(Op,, Op, (E — kF))

0
N
0

so if K’ is another bundle
0— Op,(E — kF)® - K — Oﬁ?ﬁb/ — 0,

then we have

X(K',K) =b'b+d'a— Nba.
In the special case K' = K, we get

r(K)?(1 — 2A(K)) = b* + a* — Nab.
If we let n = g, then the right hand side will be negative when
n” —Nn+1<0.

Putting

N ++VN? -4
=

the two roots of n> — Nn+1 =0 are ¢Jj\[,1, and we conclude the following.

Lemma 10.1. We have A(K) > % if and only if

n:= g € (V5" ¥n).

Remark 10.2. The number 1y is irrational, since N > 3. So, we can never have A(K) = 1.
Remark 10.3. We can use left and right mutations on the exceptional pair (Op, (E — kF), Of,) to
generate an infinite sequence (&;, &11) of exceptional bundles. These can all be realized as general
extensions

0— Op,(E—kF)® - & — (’)E?eb —0

for appropriate a,b, and we will have n € [0,1/1;71) U (¢¥n, N]. But as we have already studied the
stability of exceptional bundles, in this section we are primarily interested in the case where K has
moduli, so A(K) > 3.

For polarizations on one side of the anticanonical polarization, the stability of I is easy to analyze.

Theorem 10.4. Suppose n = g € (wg,l, YnN). Then the stability interval I of a general extension
(t) contains the interval [1 — §,k), and K is strictly pip, -semistable.
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Proof. The line bundles Op, (E — kF) and Op, are both stable of Hy-slope 0, so any bundle K
fitting as an extension as above is automatically strictly pp, -semistable. They are then also Hj -
prioritary by Proposition 3.9. If € > 0 is small, then the characters of Op_ (E — kF)®* and Oﬁb are
the characters of the Hy.-Harder-Narasimhan quotients of a general sheaf in Pr (k). Therefore the
general sheaf in Pr(k) fits as an extension of (9]%9:’ by Op,(FE — kF)®%. To complete the proof, we
need to show that the general such extension is pp, _-stable.

Let v =chK = (r,rv,A), and let € > 0 be small. Suppose we prove that A > DLPE;E(V). Then
by monotonicity of DLPF (v) in the polarization (Proposition 8.14) we have A > DLPf%Fd_EF(y).
By Theorem 7.5, there are (—KF, + €F')-semistable sheaves of character v, and by Lemma 10.1 and
Propositions 9.5 and 9.6 there are p_k;_+cp-stable sheaves of character v. Then the general sheaf
K in Pr(k) is both g, -semistable and - Kz, +er-stable. Then it is up, _ -stable, and Corollary
8.17 shows that Ix contains [1 — 5, k). 4

In order to prove A > DLPfIZ% (v), we let V be an exceptional bundle involved in the computation
of DLPEZ_E(V) and show that A > DLPy, _y(v). There are three cases to consider, depending on

whether pq, (V) is positive, negative, or zero. As t € [0,¢€) varies in a small interval there are only
finitely many exceptional bundles of interest in computing DLP flzit(l/) by Remark 6.14. Thus we

can shrink € as necessary to accommodate each exceptional bundle V.
Case 1: pp, (V) > 0. In this case we assume € is chosen small enough that

pr (V) >t (Or.) > pr (Or (B = kF))
Then since Oy, and Op, (E —kF) are pp, __-stable, we have x(V,Or,) < 0 and x(V, Op_ (E—kF)) <
0. Therefore also x(V,K) <0, and we find A > DLPy, _y(v).

Case 2: pp, (V) < 0. This is handled by a dual argument.

Case 3: pm, (V) = 0. In this case the total slope of V lies on the line spanned by v(Op,) and
v(Op,(E — kF)). Then there are a’,b' € Z such that the linear combination

k/ = a’ Ch((’)]}?fi (E — kF)) + b/ ch O]Fe

has r(k’) = r(V) and v(k’) = (V). This character satisfies

X(Op, (B = (k- D)F),kK) =0,
and we have .

pr - (Op (B — (k= 1)F)) =1~ e< o Kp, - Hi—e,
so Op,(E — (k —1)F)) is a line bundle involved in the computation of DLP g, _(v(V)) and the
character k' satisfies
A(K) < DLPp,_ (v(V)).

Since V is Hy_-semistable it must have A(V) > A(k/). Then A(k') < 1,507 :=V//a' ¢ (V5" ¥n).
There are then two further cases to consider:

Case 8a: 0 <’ <y’ or b <0anda’ > 0. In this case v(V) lies on the line spanned by v(Op,)
and v(Op, (E — kF)), but it lies down and to the right of v(K). Therefore, pm, (V) < pm,_.(K),
and we need to verify x(K,V) < 0 to show that A > DLPy, _y(v). But since A(k') < A(V), we
can use Riemann-Roch to estimate

(K, V) < x(K, k') = bb + aa’ — Nba'.
If o/ = 0, then we get

XV, k') = ad’ — Nba' = ad’(1 — Nn),
which is negative since 1 > 1/1;,1 > % Instead suppose b’ # 0. Then

X(K,X') = bb' + aa’ — Nba' = ad’(nm' +1 — Nn).
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Since a’ > 0, we have x(K,V) < 0 so long as
m' +1—Nn <0,
which holds when
W <N-—n"
But ¢' < N —n71 s0 7' < ¢y gives the required inequality.
Case 3b: Yy <n',or ' > 0 and o’ < 0. This time v(V) lies on the line spanned by v(Op,) and
v(Or, (E — kF)), but it lies up and to the left of v(K). Therefore, pp, (V) > pn,_.(K), and we

need to verify x(V, ) < 0 to show that A > DLPy, _y(v). The argument is similar to Case 3a, so
we omit it. 0

10.2. Stability of bundles from a regular pair. Let ¢ > 1, and let M = 2(£ + 1) — e, so that
M > 3. Here we instead consider the regular exceptional pair (Op, (—F — ¢F), Op,) and study the
stability of general bundles L fitting as cokernels

(1) 0— Op,(—E — tF)® — O — £ — 0.
Write 1 = ch £. We assume r(£) > 2; in this case, since
Hom(Op,(—E — (F),0r,) = Op, (FE + (F)
is globally generated we find that £ is a vector bundle by [Huil6, Proposition 2.6]. We have
hom(Op, (—E —(F),0r,) = M
ext! (Op, (—E — LF),Op,) =0
ext?(Op, (—E — LF),Op,) = 0,
and if £’ is another bundle given as a cokernel
0— Op,(—E —(F)® - (’)I?ed, — L' —0,
then we have
x(L',L)=dc+dd— Ndd.
As in the previous subsection, we deduce the following fact about discriminants.
Lemma 10.5. We have A(L) > % if and only if
%l € (Ypfdmr)-

Lemma 10.6. Any bundle L as above is Hyiq_c-prioritary, and the general sheaf in Pp(l) is a
cokernel as in (1).
Proof. The group Ext?(L, £L(—Hy11_.)) is a quotient of copies of
Ext*(L, Op, (=He1-c)) = Hom(Op, (—Hey1—c), £(KF,)) = H(L(—E + ({ — e — 1)F)),

which vanishes since

HY(Op,(—2F — (e +1)F)) = 0.
Let S = Hom(Op, (—F — (F)®, OS?ed). Then the family of cokernels £;/S parameterized by S is a
complete family since (Op, (—F — (F)®¢, Oﬁd) is an exceptional pair. Indeed, the Kodaira-Spencer
map

T,S = Hom(OF, (—E — (F)®, 02") — Ext'(L,, L)
factors as the composition of the natural maps
Hom(OF, (—E — (F)®¢, 0g) — Ext'(L,, 05%) — Ext!(L, L),

and both maps are surjective. O
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In contrast with the case of an inverse pair, the stability of a general bundle £ depends on the
exponents ¢ and d (or in particular, on their ratio d/c). However, for ratios d/c in a particular
range, if we increase the polarization, then the bundle £ is destabilized by the quotient line bundle
Or, (F). The destabilizing subbundle is a bundle coming from an inverse exceptional pair, which is
why we studied that phenomenon first in Section 10.1.

Lemma 10.7. Suppose

d
0+2— ¢ < = <Py
2 c
Then
p—Ks, (L) < pi—x, (O, (F))
and
s = x(L,0r,(F)) > 0.
For 4
mp:=——£—1
c
we have
Let

k =ch(L) — s ch(Op,(F)).
Then there are [V H -stable sheaves of character k. More precisely, a general sheaf K € My, . (k)
fits as an extension

0— O, (E— (£ — e)F)®C K= @]F€<QF)@(C(2£+2—e)—d) -0,

and has a stability interval I containing the interval [1 — §,0 42 —e).

Proof. We compute
r(L)y=d-c and c1(L) =c(E+LF),
S0
c(E+UF)(E+(e+m)F) cim+Y)
pu, (L) = =
d—c d—c
and pm,, (Op, (F)) = 1. Then pg,, (L) < pm,, (O, (F)) is equivalent to

c(m+1) <d-—c,

or, dividing by ¢, to
d
Equality holds for m = m,, and we have m, > 1 - (corresponding to —KfF, ) since % > (+2— ze.
So, we also have i f, (L) < p—ky, (Or, (F))-
Next we compute x (£, Of,(F')). We have
s = X(£, Op (F)) = dx(Of., O (F)) — ex(Op. (= E - LF), OF (F))
=2d—c(2l+4—e).
Dividing by 2¢, we find that s > 0 since ‘El >04+2— %e.
The character k now satisfies
r(k)=d—c—s=c(20+3—¢)—d
cilk) =c(E+LUF)—sF=cE+ (c(3+4—¢)—2d)F
xX(k) =d—2s=c(40 + 8 — 2e) — 3d.
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On the other hand, if I is an extension
0= Op (E— (£ — )F)® W — Op, (2F)8@+2-0=d) _, o

then we easily verify ch = k. Notice that the number 2¢ + 2 — e is both M and the number N
of §10.1 applied to the inverse exceptional pair (Op, (E — ({ + 2 — €)F'),Op,). The transformation
(d,c) — (¢, Mc — d) takes pairs (d,c) such that % € (Y3/,%wm) to pairs with the same property.
Then since % € (1/11741, ¥ar), we find that A(k) > % By Theorem 10.4, the general F-prioritary sheaf
IC of character k is an extension as above, and has a stability interval Ix containing [1 —5,{+2—e¢).
But % < s implies my < £+ 2 — e, so the general such extension is pu Hun -stable. O

Now we can analyze how the bundles £ are destabilized as the polarization changes. First,
we recall a general lemma [CH18b, Lemma 6.1] that is often useful for studying the stability of
extensions. Recall that a simple object in an abelian category A is an object with no proper
subobjects, and a semisimple object is a (finite) direct sum of simple objets.

Lemma 10.8 ([CH18b, Lemma 6.1]). Let A be an abelian category, and let A, B € A. Consider an
extension E of the form
0—-—A—FEF—B-—0.

(1) If A is semisimple, B is simple, and Hom(E, A) = 0, then any proper subobject of E is a
subobject of A.

(2) If A is simple, B is semisimple, and Hom(B, E) = 0, then any proper quotient of E is a
quotient of B.

Proof. Part (1) is proved in [CH18b, Lemma 6.1]. Part (2) is dual to part (1). O
Theorem 10.9. Suppose
d
t+2-S< Sy
2 ¢
Then the general cokernel
0— Op,(—FE — (F)% — (’)ﬁd —L—-0

fits as an extension

0—K— L= Op(F)* =0,
where s = x(L£, Op,(F)) and K is a general bundle that fits as an extension
0 — O, (E — (£ — e)F)® — K — O, (2F)8C@H2-0=d) _ g

The stability interval Iy is an open interval that contains [1 — %,mg), where my = %l —¢—1, and
L is strictly [LH,,, . ~semistable.

Proof. If € > 0 is small, then by Lemma 10.7 and Theorem 5.3 the characters k and s-ch Op_(F) are
the characters of the generic H,,,t.-Harder-Narasimhan filtration of sheaves in Pp(1). Therefore
the generic sheaf in Pr(1) fits as an extension

0—K—L— Op,(F)* —0
for some K € My, (k). The general such K also fits as an extension
0= Op,(E — (£ — €)F)® — K — O, (2F)®2t+2-0-d) _,

Since the general sheaf in Pg(1) is a cokernel as in (1), we conclude that a general cokernel L fits as
an extension of the required form.
If € € Mpy,,, (k) is general (hence pup,, -stable), then any bundle £ fitting as an extension

0—=K—L— O (F)% -0
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is automatically p,, . -semistable. We will show that L is actually p H,,,—.-Stable for any sufficiently
small € > 0; then since L is a general sheaf in Pr(1), we find that the stability interval I, contains
[1 —§,mg) by Corollary 8.17.

Now let us show that L is p Hy, —-Stable for any sufficiently small € > 0. Since the walls for slope-
semistability are locally finite, we can let € > 0 be small enough that if £ - Q is a quotient such that
the total slopes v(£) and v(Q) are not proportional, and 0 < ¢’ < ¢, then HH,, (L) # pg ,(Q).
We claim that £ is ,uHmoﬂ,—stable for all such 0 < € < e. Let L — Q be a proper quotient
and suppose pig, (L) > '“Hmo—a(Q)' Then it follows from our choice of € that up,, (£) =
Pt (Q). Let A C Coh(Fe) be the full abelian subcategory of jip,, -semistable sheaves with the
same H,,,-slope as £. In this category, W is a simple object (by Lemma 10.7) and Op,(F)%* is
a semisimple object. The vanishing Hom(Op, (F), L) = 0 follows immediately from the expression
of £ as a cokernel (f). Therefore, by Lemma 10.8 (2), Q is a direct sum of copies of O, (F).
But pp,,, (L) < pu . ,(Op,(F)), contradicting our assumption that [H,, (L) > pg. ,(9Q).

mp—e€

Therefore £ is p Hmofe,—stable. O

mQg—e

mQo—e

10.3. Harder-Narasimhan filtrations from Kronecker modules. We can now combine the
previous two constructions to find characters v such that the generic Harder-Narasimhan filtration
has two factors, each of which corresponds to a space of Kronecker modules. Let

(>3
k={¢—e¢
N=2k-1)+e
M=2+1)—e
and consider bundles K and £ defined by sequences
0— Op (E—(k—1)F)® - K — Op,(F)®* -0
0— Op (—E —(F)% — (’)ﬁ@ed — L — 0.
So, K(—F) is a bundle coming from an inverse pair as in §10.1, and £ is a bundle coming from a
regular pair as in §10.2. Assume the exponents satisfy
vy < S < YN
2€—e+1<g<wM.
(Note that the lower bound on %l is stronger than the inequality %l > ( + 2 — 5 in Theorem 10.9,
since ¢ > 3.) The line bundles
Or (-E—(F), Ofp, Op/(F), Op(E—({—-1-¢)F)
form an exceptional collection, from which we get the orthogonality x (K, £) = 0. By Theorems 10.4
and 10.9, if mg =k and mp = ‘El — ¢ — 1, then the stability intervals satisfy

IIC D [1 - gamlc)

Ipo[1— g,mﬁ).

The inequality % > 20 — e+ 1 implies my < m.
Theorem 10.10. With the notation in this subsection, consider a general extension V of the form

0O—-K—-V—L—0.
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There is a unique number my € (1 —5,k) such that pp,, (K) = pm,,, (L). The stability interval Iy
of V is an open interval containing [1 — §,my), and V is strictly P H -semistable.

Let v=chV, k =chK, and1 = ch L. The stack PHWV]H(
then for m € (my,my + €) the general sheaf in PH[mVHI(V) has a generic H,,-Harder-Narasimhan
filtration with quotients of characters k and 1.

v) is nonempty. If € > 0 is small,

Proof. To establish the existence of my, we only need to verify the inequalities
H—Kg, (K) < H—Kg, (£)
HH, (K) > HH, (L).

For m € Q we compute

p,, (K) = 15
fo,, (L) = T+€-
d_1
For m =k, we get
pa, (K) =1
pi (0) = 55,

and the inequality pm, () > pm, (L) follows from % > 2{ — e + 1. On the other hand, taking

m = 1 — §, the slope u_g, (£) will be as small as possible when % is as large as possible, and
p—rcp, (K) will be as large as possible when % is as small as possible. So, we can verify the inequality
p—rce, (K) < p—r, (£) when 4 =4 and & = ¢y'. In this case, after simplifying we get

15 1—yy(e—2-%)
CoYm—1 1+ Yyt

(Val—e¢- (Val+d—ec—2l—d—¢) —4)°
T 4l—e (V2 td—c—2l—d-¢)

H—Kp, (£) - H—Kp, (K)

which is visibly positive.

Since 1 —§ < my < my < mg, the general sheaves of the form of K and £ are both Hiny, -stable,
and so V is strictly pp,,  -semistable. We can now show that Vis pup,, . -stable for any sufficiently
small € > 0 by an argument similar to the proof of Theorem 10.9, and then it similarly follows
that V is ppg,, -stable for any m € [1 — §,my); the only difference is in the proof of the vanishing
Hom(L,V) = 0.

We claim that if V is not a split extension then Hom (£, V) = 0. Consider the exact sequence

Hom(L, K) — Hom(L,V) — Hom(L, £) — Ext' (£, K).

By assumption C = Hom(L, L) — Ext!(L£,K) is injective. Also, Hom(L,K) = 0 since there are
polarizations where £ and K are both slope-stable and £ has greater slope than K. Therefore,
Hom(L,V) = 0.

To guarantee that there are non-split extensions of £ by K, we show x(£,K) < 0. We already
observed the vanishing Hom(£, K) = 0, and Ext?(£, K) = 0 can be proved by a similar argument and
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Serre duality. So, x(£,K) < 0 and we need to prove the inequality is strict. Suppose x(L,K) = 0.
Since x (K, £) = 0, Riemann-Roch gives
Pw(L) —v(K)) = P(v(K) —v(£)).
But

so this would require
— K, - (v(£) —v(K)) = 0.

This contradicts pu— g, (£) > p—re_ (K). Therefore x(£,K) < 0, there are non-split extensions V' of
L by K, we have Hom(L, V) = 0, and the stability interval Iy, of V contains (1 — §,my).
Finally, the stack PHrmle(v) is nonempty by Proposition 3.9. Let € > 0 be small enough that

/’LHmV+5 (’C) - /’LHmv+e ([:) < 1'

Then for m € (my, my.), the characters k and 1 satisfy all the criteria of Theorem 5.3, so they are

the characters of the Hy,-Harder-Narasimhan filtration of the general sheaf in Pg, . (V). O

10.4. Sharp Bogomolov inequalities from Kronecker modules. As in §10.3, we continue to
consider extensions V of the form

0—-K—=V—-L—-0
0— Op,(E—(k—1)F)® - K — Op, (F)% — 0
OHOFE(—E—EF)@CHO%?%EHO

where the exponents a, b, ¢, d satisfy

by < = <Yy

ol o

2—e+1< - <.

The ratios b/a and d/c determine and are determined by the total slopes v(K) and v (L) respectively.
As b/a increases along the interval (¢/5', ¥ ), the total slope v(K) = xE +yF = (z,y) travels along
the open line segment P; Py of slope —k with endpoints

P _< vy 1—w;&<k—1>>
1= 1> 1
1+9y 1+9y

P—< (N 1—¢N(k—1))
T \lton Ttdny )

Rational ratios b/a correspond to rational total slopes on this segment. As d/c decreases along the
interval (2¢ — e + 1,157) the total slope v(L) travels along the open line segment P3Py of slope ¢
with endpoints

1 V4
Pg:(T/JM—l’wM—l)

1 l
p=(—0
: <2€—e’2€—e>’

again with rational points corresponding to rational points. The point P; lies on the line segment
P,P,. Let R be the triangular region with vertices P, Ps, Pj.
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Theorem 10.11. Let v = xoFE + yoF = (x0,y0) be a rational total slope in the triangular region
R. Suppose m € Q is a number such that the line through v of slope —m intersects the open line
segments P1 Py and PsPy. Then

wes() — _E.2 L _loe e
O3 (v) 2x0+woyo+k+£yo+ 14 272 3+ 0) x0
n (m — k) (yo — £xo)

(k+0)* (yo + maxg — %)
Note that the geometry of R implies that 1 — § <m < k.

Example 10.12. In Figure 9 we sketch the setup of the theorem in one of the simplest cases. We

take e = 1 and ¢ = 3, and let v = (%,%) and m = 1—72 Then the line through v of slope —m

meets PPy at v = (%, 0) and meets P3Py at vy = (1—21, %) See Example 10.15 for more analysis of
this example. For appropriate choices of m, the theorem can be applied to any slope v lying in the
triangle with vertices Ps, P, Py.

Remark 10.13. Since e € {0,1}, the formula for §},°(v) can be made more transparent in each
case. If e =0 (so £ = k), we have

! Lg>%+ (m — £)(yo — f0)

) 1
wﬂwzmm+—m+(
20

Since m < £ and (xg,yo) € R, the final term is negative. So in particular, we have a bound

; 1 1
3w) <o+ g+ (£- 3 ) 20
A similar analysis can be made when e = 1.

Proof of Theorem 10.11. Let Lx be the line through P; and P, let L, be the line through Ps and
Py, and let L, be the line through v with slope —m. These lines have equations

Li:y=—-kx+1
Ly :y={x
Ly 1y —yo=—m(z — xo).

Let v1 = (x1,y1) be the point of intersection LxNL, and let 1o = (x2,y2) be the point of intersection
L, N L,. We compute

Yo + mxg — 1
rH=""—
m—k
. _y0+m$0
2 m+l

and y; and yo are readily determined (although we won’t need them). Next we find the ratios b/a
and ¢/d such that the corresponding bundles K and £ have v(K) = 11 and v(L£) = vy; it is enough
for the z-components of the slopes to agree, so comparing the z-components we need

;2 :yo+ma:o—1
1—1—2 m—k
1

Yo +mxo
d_ 1 m+/

)
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FiGURE 9. The setup of Theorem 10.11. See Example 10.12.
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from which we get

Yo + mxg — 1
_yo-i—mxg—f—k:—m—l
_yot+mzot+m+L
N Yo + mxo '

ol 2o

Pick arbitrary positive integers a, b, ¢,d such that the ratios b/a and d/c take the above values, and
let K and L be the corresponding bundles, with characters k and 1. Normalize the ranks to be 1 by
considering the characters

,_ ch(k) ,_ ch(l)
ST
We compute
W ox(k) 2-2(2k—4d+e)
X(k) - ’I"(k) 1 +g
m_ ¢

Let 0 < A < 1 be the number such that v = Avy + (1 — A)ve; again this equality will hold if equality
holds for the z-components, and we compute
(k —m)(yo — Lxo)
(k + 0)(yo + mzo) —m — £
Now consider the character v/ = Ak’ + (1 — A\)l' which has total slope v(v’) = v. Then substituting
for A, x(k), x(1"), g, ‘El, and performing considerable simplification we get

X(v) = Ax(K) + (1 = \)x (1)

N R s
(m +0)(yo + kxo — 1)

(k+10)? (yo + maxo — %) .

By Riemann-Roch,
AWV') =P(v(v') = x(v')

= (z0+1) (yo +1- %ro) - x(v)

e aopor ——got (=2 V-
=TT Yo T T 2 2 2k+0))"" ke
(m +£)(yo + kxo — 1)
* 4
(k+0)2 (yo + mxg — %)
SOV SRR ST (S ). S, P
— 0T ode T T 25 2 2k+0))"

(m —F)(yo — fwo)
(k4 0)2 (yo + mxo — %)

We claim that &},°(v) = A(V'). Pick an integer s such that the characters sA\k’ and s(1 — \)l’
are integer multiples of k and 1 respectively. Replace k with sAk’ and 1 with s(1 — A\)I. Then the
character v = k + 1 is integral and a multiple of v/, so A(v) = A(v'). By construction, m is the
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number my of Theorem 10.10. By Theorem 10.10, it follows that the general sheaf V € PH 1 (V)
has a stability interval that contains interval [1 — §,m), is strictly jp,,-semistable, and is not
KH,, . -semistable for any € > 0.

Furthermore, if we let ¢ € Q be sufficiently close to m, we can carry out the above discussion
using ¢ in place of m. Let A; be the discriminant of the corresponding character v/. Then by
our formula for A(v’), we see that A; is a continuous function of ¢ for ¢ close enough to m. By
considering t = m+ € slightly larger than m, we find that there are p g, -stable sheaves of total slope
v and discriminant A, ¢, so 8,°(v) < Apie. On the other hand, by considering ¢t = m — e slightly
smaller than m, we find that there are no pp,, -stable sheaves of total slope v and discriminant
Ayy—e. Therefore by Theorem 9.7, we have A,, . < 6h,°(v), and

Ap—e < 5%-8(7/) < Am—i—e-

Letting € — 0 we get 01,°(v) = A, which completes the proof. O
Example 10.14. Let e = 0 and take ¢ = 3. Consider the total slope v = 1E+ zF, and let m = 295
Then the point (1, 1) lies in the triangular region R, and the line of slope —25/ 9 through (4, 3)

intersects the open line segments P; P, and P3P; at the points ( —2) and (13, 163) respectively. (In

fact, these rational points on these open line segments have the smallest possible denominators.) In
the notation of the proof, the ratios % and % satisfy % =1 and %l = % Consider general extensions
of the form

0-K—-V—->L—-0
0— Op,(E—2F)—= K — Op,(F)—0
0 — Op,(—E —3F)®* - Of1® — £ — 0,
and let v.=chV, k =ch K, 1 =ch/L. Then writing characters as (r,v, A), we have

1. 1.3
= (15,-E+-F,=
( 573 ’5)

k=(21p-1p>2
2 2 4

6 90
1_<13 B+ 3F,@>

The stability interval Iy, is an open interval containing [1, 2 ) and V is strictly pg,, 5/9 -semistable. For

€ > 0 small, the generic sheaf in Pg,(v) has an Has E—Harder—Naras1mhan filtration with quotients
9

of characters k and 1. We have

s 3
655/9< E+3F> = =006

On the other hand, considering exceptional bundles of rank smaller than 15 we can use a computer
to compute

1.1 19
<15
DLPj <5E + 3F> 57 ~ 0543

If we increase the polarization a little bit we will still have
1 1 3 1 1
DLPjY (ZE+<-F)<Z<éy’ (cE+ZF).
s, \57 73 52+ \57 73
There are no Has_ -semistable sheaves of character v, so the exceptional bundles of rank less than
9

r(V) are not sufficient to control the existence of p Hos -stable sheaves V on Fjy.
‘g €
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Example 10.15. Let e =1 and take £ = 3, so k = 2. Then N =3 and M = 7. Consider the total
slope v = %E + %F, and let m = 12 Then the point (13, 13) lies in the triangular region R, and
the line of slope —m meets the open hne segments P P> and P3P, at the points ( 0) and (— 1%),

respectively. Then 2 =1 and % = % We consider general extensions of the form

0-K—-V—->L—-0
0—Op(E—F)—K—Op(F)—0
0— Op,(—E —3F)®* - O — £ — 0,

and let v.=chV, k =chK, 1 =ch/L. Writing characters as (r,v,A), we get

3 6 . 98
13, —E+—F,—
(3 13 +13’169>

k= (2 g 5)
'8
1=1(11 —E—f—EF,E .
11 11 " 121
Then the stability interval I, is an open interval containing [% 72) and V is strictly pm,, -

semistable. For € > 0 small, the generic sheaf in Pg,(v) has an H 12, .-Harder-Narasimhan filtration
with quotients of characters k and 1. Finally,

3 6 98
O (15 + 5 ) = 169 © O
12/7<13 + 13 > Lo~ 0-580,

but computer calculations show

3 6 523
DLP;® (SFE+ —F)=-—-~0.516.
Huz/7 (13 * 13 ) 1014

So again,
3 6 3 6
<13 U-s
DLPH12/7 <13E+ 13F) < 512/7 <13E+ 13}7‘)

and similar conclusions follow.
We conclude the section with the following more qualitative fact.

Corollary 10.16. If v and m are as in Theorem 10.11 and m is generic, then for any r > 2 we
have

DLPy (v) < 04%(v).

Proof. Let m’ € Q be close to m. As m/ varies, DLP} (v) only changes values at special values.
Since m is generic, DLP}  (v) remains constant if we "\L/ary m’ by a little bit. But for generic m’
we have 0/"7(v) > DLPE?L/(V), and 0/7(v) is strictly increasing in m/. This is only possible if
DLP; (v) < di(v). O

11. REDUCTION TO Fy AND [y

Finally, we deduce results on an arbitrary Hirzerbruch surface F, by reducing our problems to
the del Pezzo case.
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11.1. The reduction. In this section, consider a Hirzebruch surface F, with e > 2. Write PicF, =
ZE & ZF and PicF._o = ZE' & ZF' for clarity, and for m € Q let H,,, € K(F.) ® Q and H], €
K(F._2) ® Q be the usual polarizations. Consider the linear map

T:K(Fe) ®Q — K(Fe2) ®Q
given by the formula

7(r,aE + bF,d) = (r,aE’ + (b—a)F’',d)

in (chg, chy, chy)-coordinates. (We will see later that 7 carries integral characters to integral char-
acters.) Since 7 only affects the chi-term, we may also abuse notation and write

n(aE +bF) =aE + (b—a)F’

for a class aFE + bF € Pic(F.) ® Q. A different normalization of our polarization is useful. For
m € Q, let

1
Ay =—= Fe+mF:E+(m+§+1>F:Hm—g+1

2
P tmF =E + (m+S\F = H
m - 2 ]Fe—2 - 2 - m_%+2.

Thus, A, € PicF, ® Q and A;, € PicF._» ® Q are both ample if and only if m > § — 1. Write
[A;,] and [A! ] for the line bundles

[Am1:E+{m+§+1]F
(A =E' + {m+; F

Observe that 7 carries the class of A,, (resp. [Ay,]) to the class of A/, (resp. [A],]). In this section
we prove the following theorem.

Theorem 11.1. Let v € K(F.) satisfy A(v) > 0, and suppose m € Q. Then there is an [Ay,, |-
prioritary sheaf of character v on F. if and only if there is an [A] |-prioritary sheaf of character
m(v) on Fe_o.

Additionally assume m > § — 1 and that there are [Ay,| prioritary sheaves of character v on Fe.
Then the A,,-Harder-Narasimhan filtration of a general sheaf in 73% (V) has factors of characters
gry,...,gr, if and only if the Al -Harder-Narasimhan filtration of a general sheaf in P}I::E*Q (m(v))
has factors of characters w(gry),...,m(gry).

In the particular case of length 1 Harder-Narasimhan filtrations, we immediately conclude the
following result. Since A/ is ample whenever A,, is ample, it follows that a solution to the existence
problem for Fy and F; gives a solution to the existence problem on all Hirzebruch surfaces F..

Corollary 11.2. Let v € K(F.) and let m > § — 1. Then Mye (v) is nonempty if and only if
ME:Q(T((V)) is nonempty.

We saw that there is a numerical criterion for the existence of prioritary sheaves, and a numerical
criterion for a list of characters to be the generic Harder-Narasimhan filtration. Thus we simply
have to check that these criterions transform appropriately under the map 7.

Lemma 11.3. The map 7 : K(F.) — K(F._3) has the following properties.

(1) It preserves the intersection pairing: ci(vi) - c1(ve) = ci(m(vy)) - c1(m(va)).

(2) It preserves discriminants: A(v) = A(w(v)).

(3) It preserves the class of the canonical bundle and trivial bundle: we have w(ch Kp,) =
ch Ky, , and m(chOp,) = ch O, ,.
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(4) It preserves Euler characteristics x(v) and Euler characteristics of pairs x(v,w). In partic-
ular, ™ carries integral characters to integral characters, and it carries primitive characters
to primitive characters.

(5) We have m(ch(A,,)®") = ch(A! )®t. Therefore m transforms A, -slopes to Al -slopes:

1A, (V) = pay, (7(v)).
It also transforms A,,-Hilbert polynomials to Al -Hilbert polynomials:
X((A7)%v) = x((A)%", m(v))
(6) For n € Z, it carries the character of the direct sum
Or,(~E+ (n—-1)F)*® Of @ Oy, (-F)°
to the character of the direct sum
O, ,(—E'+nF* @ OF @ Op,_,(-F)°.
Proof. (1) Say c1(v1) = a1 E + b1 F and ¢1(vy) = agE + boF'. Then
ci(m(v1)) - c1(m(va)) = (a1 E' + (b1 — a1)F') - (a2 E" + (ba — a2) F')
= al(b2 — CLQ) + ag(bl — CLl) — (6 — 2)(&10,2)
= a1by + asby — eajas
= (alE + blF)(GQE + bQF)
= Cl(Vl) . Cl(Vg).
(2) The map preserves chg, chy, and the intersection pairing, so since
A(V) _ Chl (V)2 _ ChQ(V)
2cho(v)  chy(v)

it follows that it also preserves discriminants.
(3) Clear by a direct computation.
(4) Follows from Riemann-Roch and (1), (2), (3).
(5) Use (1), (2), and (4).
(6) It is clear that 7 acts on the factors in the indicated way, and the result follows by linearity. O

The proof of Theorem 11.1 is now easy.

Proof of Theorem 11.1. For the first part, without loss of generality we may assume m € Q is such
that A,, and A/, are integral. Let

e
frnd _ — 1
n=m 2—1—,

so that A,, = [A,| = H, and A}, = [A],] = H)_ ;. Suppose there is an H,-prioritary sheaf
V of character v on F.. By Proposition 4.15, after taking twists and/or duals of v there is an
H,,-prioritary direct sum of line bundles

W=0p (-E+(n-1)F)*®0f & Op, (-F)°
with r(W) =r(V), cc(W) = c1(V), and AW) < A(V). Then
W' =0p,_,(—E' +nF)* & Of & Op,_,(-F)°
is an H, ,,-prioritary bundle with r(W’) = r(n(v)), cc(W') = c1(7(v)), and
AW =AW) < AV).
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By taking elementary modifications of W' we get an H, ,-prioritary sheaf of character 7(v), as
required. A similar argument shows that if there is an H], | -prioritary sheaf of character 7(v) on
F._o, then there is an H,-prioritary sheaf of character v on F.

We prove the second part by induction on the rank. The result is clear for rank one characters,
so suppose it holds for characters of rank less than r(v). Let m € Q satisfy m > § — 1, and let
gry,...,gr, (resp. gri,...,gr}) be the characters of the factors in the A,,- (resp. A, -) Harder-

Narasimhan filtration of a general sheaf in P%‘M(V) (resp. 77%‘721 (m(v))). We have to show that

¢ ={ and 7(gr;) = gr;. If £ = ¢ =1 then this is immediate, so the remaining possibilities are that
¢>2and/or V' > 2.

First suppose ¢ > 2. In this case gr; + --- + gr, = v, the corresponding reduced A,,-Hilbert
polynomials ¢, ..., g satisfy g1 > --- > qu, by Lemma 5.1 we have u4, (gr;) — pa,,(gr;) <1, and
x(gr;,gr;) = 0 for i < j by Lemma 5.2. By Lemma 11.3, the transformed list m(gr;),...,m(gry)
still satisfies all these properties for the character 7(v) and polarization A/ . By induction on the
rank, we know that the moduli spaces M ]Ff”(ﬂ'(grl-)) are nonempty. Therefore by Theorem 5.3,
these are the characters of the factors of themA'm—Harder—Narasimhan filtration of a general sheaf in
PIEZ;Q] (v), and we conclude ¢ = ¢’ and 7(gr;) = gr}.

If instead ¢’ > 2, we repeat the above argument but use 7! instead of 7. This shows that ¢ = ¢
and gr; = 7 !(gr}). O

It is useful to have the result analogous to 11.2 for slope stability.

Corollary 11.4. Let v € K(F.) and let m > § — 1. Then there is a ja,,-stable sheaf of character
v on F. if and only if there is a pa; -stable sheaf of character w(v) on F._.

If the generic stability interval Ir(yy of w(v) is (mo,m1), then the generic stability interval Iy of
v is (0,my — 1).
In particular, if e > 2 and there are slope-stable sheaves of character v then the generic stability

interval Iy is always an interval of the form (0,m) with m € (0, cc]. This is an analog of Corollary
8.17, with the anticanonical class —%KFe = —Hl_% no longer being ample.

Proof of Corollary 11.4. We simultaneously prove the second claim by induction on e.

(=) Suppose there is a p4,,-stable sheaf V of character v on F.. Then for € > 0 small it is both
HA,,,.-stable, so there are A . -semistable sheaves on F._y of character m(v). We claim there are
frar,, -stable sheaves of character 7(v). There are three cases to consider, depending on A = A(v).

Case 1: A > 3. Since A},
sheaves of character m(v).

. is generic, Propositions 9.5 and 9.6 show there are Al +€—stable

Case 2: A = % Since there is a fi4,, .-stable sheaf V of character v, the moduli space My, , (V)
is smooth at V and irreducible of dimension 1 = r%(2A — 1) + 1. The character v must then be
primitive, since if v = nv’ with v/ primitive, then Proposition 9.8 shows there are p4,,, -stable
sheaves of character v/ (here we again use that A, ;. is generic). So, the moduli space My, (V')
is smooth of dimension 1. Taking direct sums of such sheaves, we see that every sheaf in My, (V)
must be strictly semistable, a contradiction. Therefore v is primitive. But then by Lemma 11.3 (4),
we find that 7(v) is also primitive, and it follows that there are ji4,,, -stable sheaves of character
m(v).

Case 3: A < % By Lemma 6.7 (4), V must be an exceptional bundle, v is primitive, 7(v) is
primitive, and there are pu4/ +5—stable sheaves of character m(v).

Now in any case, let V' be a general Al +€-stable sheaf of character 7(v). By induction (or by

Theorem 6.6 if e — 2 € {0,1}) we know that V' is additionally slope stable for any polarization
between Hy = A% | and Aj, , .. The polarization A, is between these, so V' is p4, -stable. Thus
2 m
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there are 14, -stable sheaves of character 7(v), and we must have m < m; — 1. We conclude that
the stability interval of v is contained in (0,m; — 1).

(<) Let V' be a pa; -stable exceptional bundle on F. o of character m(v). Then for e > 0
small it is both pu Al - and u Al +€—stable, so there are A,,_.- and A,,+-semistable bundles on F,
of character v. By the same analysis as in the other direction we see that there are p4,, .- and
KA, -stable sheaves of character v, and therefore there are sheaves that simultaneously p4,, .- and
HA, . -stable. They are p4,,-stable, too. By induction on e (using Theorem 6.6 if e—2 € {0,1}), the
stability interval of 7(v) contains [1,m), and therefore there are p 4, -stable sheaves of character v
on [F, for any m € (0,m; — 1). So, the stability interval of v contains (0,m; — 1). O

Therefore, the function 57’7‘;}6 (v) only needs to be studied in the del Pezzo case.

Corollary 11.5. Ife > 2, m >0, and v € Pic(F) ® Q, then
O, (V) =0, (T(V)).
Monotonicity in the polarization then follows from the del Pezzo case. (See Corollary 9.11.)

Corollary 11.6. Ife > 2, 0 <m < m/, and v € Pic(F.) ® Q, then
St (v) < 687 (v).

The results of §10 can all be translated to get similar results on F, for e > 2. We do not dwell on
this here.

11.2. Exceptional bundles on F.. The stable exceptional bundles on F, can now be described
by passing to the del Pezzo case. Since Theorem 8.8 computes the stability intervals of exceptional
bundles on Fy and Fy, the next result computes the stability interval of any exceptional bundle on
a Hirzebruch surface.

Corollary 11.7. Let v € K(F.) be a potentially exceptional character, where e > 2, and let m >
§ — 1. There is a pa,,-stable exceptional bundle V on F. of character v if and only if there is an
par -stable exceptional bundle V' on F._o of character m(v).

If Iy = (mg,my), then Iy = (0,m; — 1).

Proof. Both v and 7(v) are potentially exceptional, and a j4,,-stable (resp. pa: -stable) bundle of
character v (resp. m(v)) is exceptional. So this follows from Corollary 11.4. O

Repeatedly applying the map 7 to reduce all the way to Fy or [F1, we have the following.

Corollary 11.8. If e = 2k + ¢’ with €' € {0,1}, there is a bijection between the exceptional bundles
on Fe which are slope-stable for some polarization and the exceptional bundles on F. which are
H, -stable.

The sets of characters of p4,,-stable exceptional bundles are preserved by m, so it follows that
the Drézet-Le Potier functions also transform appropriately.

Corollary 11.9. Let e > 2, let v > 2, and let v € Pic(F.) ® Q. For any m > § — 1 we have
DLPj;,Fe (v) = DLPZ;7F6_2 (m(v)) and DLPg4,, r.(v) = DLPA: ., (m(v)).
Consequently, the monotonicity properties of DLP also carry over from Proposition 8.14.
Corollary 11.10. Let e > 2, let r > 2, and let v € Pic(F.) @ Q. If 0 <m < m’, then
DLPy (v) < DLPE;/(V) and DLPg,, (v) < DLPg ,(v).

Corollary 8.15 has the following final generalization.
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Corollary 11.11. Let v € Pic(F.) ® Q and let H be an arbitrary polarization. Then
1
DLPy(v) > .

The Drézet-Le Potier functions for F. can also be used to inductively compute the pp-stable
exceptional bundles on F. directly, without passing to the del Pezzo case. This generalizes Corollary
8.16.

Corollary 11.12. Let H be an arbitrary polarization. If v = (r,v,A) € K(F¢) is potentially
exceptional, then there is a pg-stable exceptional bundle V of character v if and only if

A > DLP} (v).
Corollary 9.12 also generalizes immediately.

Corollary 11.13. Let v € Pic(F.) ® Q, and let m > 0. Then
dt-%(v) > DLPg,, (v).

Example 11.14. The correspondence between exceptional bundles on F. and F._o only holds for
the slope-stable exceptional bundles.

For example, on Fy consider the potentially exceptional character v = (r,v, A) = (3, lE+F %).
It transforms to the character w = 72(v) = (3,1F + %F , %) of an exceptional bundle W on [y,
with stability interval Iy = (%,2). Thus there are no slope-stable sheaves on [y of character
v, for any polarization H. Furthermore, there is no exceptional bundle on F4 of character v.
Indeed, we use Corollary 4.18 to compute pgen(v) = 1, but if there were an exceptional bundle
of character v we would have pgen(v) > 2 by Proposition 6.3 (1). Although 7 carries potentially
exceptional characters to potentially exceptional characters, it can carry non-exceptional characters
to exceptional characters.

We make the following conjecture. If it is true, the exceptional bundles on F. can be readily
determined from the stability intervals of exceptional bundles on Fy and F;.

Conjecture 11.15. Let e > 2. If V is an exceptional bundle on Fe, then V is ppy,-stable for e > 0
sufficiently small.

Arguments as above and computer computations of stability intervals (as in Example 8.10) show
that the conjecture is true for exceptional bundles of rank less than 107. The first potential coun-
terexample is given by the character

25 76 5724
(&) = (107’ w07 o7l —11449>

on F3; the stability interval is empty, so to verify the conjecture in this case one needs to show there
is no exceptional bundle of this character.
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