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We propose a methodology for lidar super-resolution with ground vehicles driving on roadways, which

relies completely on a driving simulator to enhance, via deep learning, the apparent resolution of a

physical lidar. To increase the resolution of the point cloud captured by a sparse 3D lidar, we convert

this problem from 3D Euclidean space into an image super-resolution problem in 2D image space,

which is solved using a deep convolutional neural network. By projecting a point cloud onto a range

image, we are able to efficiently enhance the resolution of such an image using a deep neural network.

Typically, the training of a deep neural network requires vast real-world data. Our approach does not

require any real-world data, as we train the network purely using computer-generated data. Thus our

method is applicable to the enhancement of any type of 3D lidar theoretically. By novelly applying

Monte-Carlo dropout in the network and removing the predictions with high uncertainty, our method

produces high accuracy point clouds comparable with the observations of a real high resolution lidar.

We present experimental results applying our method to several simulated and real-world datasets.

We argue for the method’s potential benefits in real-world robotics applications such as occupancy

mapping and terrain modeling.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Light detection and ranging (lidar) is an essential sensing

capability for many robot navigation tasks, including localization,

mapping, object detection and tracking. Lidar uses light in the

form of pulsed laser to measure relative range to surrounding

objects. Unlike most cameras, which only function with sufficient

ambient light, lidar will function even at night, offering long-

range visibility and a wide horizontal aperture. 2D lidar is usually

cost-efficient and has been widely used in many indoor appli-

cations such as mapping, localization, and obstacle avoidance.

Recently, with the rapid development of self-driving vehicles, de-

mand for 3D lidar has grown significantly. Though a revolving 2D

lidar can mimic a 3D lidar by continuously changing the scanning

position, such systems are often inefficient. A typical 3D lidar has

multiple channels that revolve at different heights, producing a

3D point cloud with ring-like structure. The number of channels

in the sensor determines the vertical density of its point clouds. A

denser point cloud from a lidar with more channels can capture

the fine details of the environment; applications such as terrain

modeling and object detection can benefit greatly from a higher
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resolution lidar. However, increasing the number of channels can

be very costly. For example, the most popular 16-channel lidar,

the Velodyne VLP-16, costs around $4000. The 32-channel HDL-

32E and Ultra Puck, and the 64-channel HDL-64E cost around

$30,000, $40,000 and $85,000 respectively.

In this paper, we propose what is to our knowledge the

first dedicated deep learning framework for lidar super-resolution,

hich predicts the observations of a high-resolution (hi-res) lidar

ver a scene observed only by a low-resolution (low-res) lidar.

e convert the resulting super-resolution (super-res) point cloud

roblem in 3D Euclidean space into a super-res problem in 2D

mage space, and solve this problem using a deep convolutional

eural network. Unlike many existing super-res image methods

hat use high-res real-world data for training a neural network,

e train our system using only computer-generated data from

simulation environment. This affords us the flexibility to train

he system for operation in scenarios where real hi-res data is

navailable, and allows us to consider robot perception problems

eyond those pertaining specifically to driving with passenger

ehicles. We investigate the benefits of deep learning in a setting

here much of the environment is characterized by sharp dis-

ontinuities that are not well-captured by simpler interpolation

echniques. Furthermore, we use Monte-Carlo dropout [1,2] to

pproximate the outputs of a Bayesian Neural Network (BNN) [3],

hich naturally provides uncertainty estimation to support our

nference task.
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http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2020.103647&domain=pdf
mailto:shant@mit.edu
mailto:jwang92@stevens.edu
mailto:fchen7@stevens.edu
mailto:pszenher@stevens.edu
mailto:benglot@stevens.edu
https://doi.org/10.1016/j.robot.2020.103647


T. Shan, J. Wang, F. Chen et al. Robotics and Autonomous Systems 134 (2020) 103647

a
I
v
o

2

Fig. 1. Workflow for lidar super-resolution. Given a sparse point cloud from a 3D lidar, we first project it and obtain a low-res range image. This range image is
then provided as input to a neural network, which is trained purely on simulated data, for upscaling. A high-res point cloud is received by transforming the inferred
high-res range image pixels into 3D coordinates.
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To the best of our knowledge, this is the first paper to present
n approach for lidar super-resolution enabled by deep learning.
t produces accurate high-res point clouds that predict the obser-
ations of a high-res lidar using low-res data. The contributions
f this paper are as follows:

• A novel architecture for deep learning-enabled lidar super-
resolution;

• A procedure for training the architecture in simulation,
which is thoroughly evaluated using datasets recorded in
both simulated and real-world environments;

• A study of the framework’s suitability for enhancing relevant
robot mapping tasks, with comparisons against both deep
learning and simpler interpolation techniques.

. Related work

Our work is most related to the image super-resolution prob-
lem, which aims to enhance the resolution of a low-res image.
Many techniques have been proposed over the past few decades
and have achieved remarkable results [4]. Traditional approaches
such as linear or bicubic interpolation [5], or Lanczos resam-
pling [6], can be very fast but oftentimes yield overly smooth
results. Recently, with developments in the machine learning
field, deep learning has shown superiority in solving many pre-
diction tasks, including the image super-res problem. Methods
based on deep learning aim to establish a complex mapping
between low-res and high-res images. Such a mapping is usu-
ally learned from massive training data where high-res images
are available. For example, a super-resolution convolutional neu-
ral network, SR-CNN, trains a three-layer deep CNN end-to-end
to upscale an image [7]. Over time, deeper neural networks
with more complex architectures have been proposed to fur-
ther improve the accuracy [8–11]. Among them, SR-GAN [11]
achieves state-of-the-art performance by utilizing a generative
adversarial network [12]. The generator of SR-GAN, which is
called SR-ResNet, is composed of two main parts, 16 residual
blocks [13] and an image upscaling block. A low-res image is first
processed by the 16 residual blocks that are connected via skip-
connections and then upscaled to the desired high resolution. The
discriminator network of SR-GAN is a deep convolutional network
that performs classification. It discriminates real high-res im-
ages from generated high-res images. It outperforms many other
image super-res methods, including nearest neighbor, bicubic,
SR-CNN and those of [8–10], by a large margin.

Another problem that is related to our work is depth comple-
tion. The goal of this task is to reconstruct a dense depth map with
limited information. Such information usually includes a sparse
initial depth image from a lidar or from an RGB-D camera [14,15].
Typically, an RGB image input is also provided to support depth
completion, since estimation solely from a single sparse depth
image is oftentimes ambiguous and unreliable. For instance, a
fast depth completion algorithm that runs on a CPU is proposed
 l

2

in [16]. A series of basic image processing operations, such as
dilation and Gaussian blur, are implemented for acquiring a dense
depth map from a sparse lidar scan. Though this method is fast
and does not require training on vast data, its performance is
inferior when compared with many other approaches. A self-
supervised depth completion framework is proposed in [17]. In
this work, a deep regression network is developed to predict
dense depth from sparse depth. The proposed network resembles
an encoder–decoder architecture and uses sparse depth images
generated by a lidar, with RGB images as optional inputs. Another
problem that is closely related to depth completion is depth
rediction, which commonly utilizes images from a monocular
r stereo camera [18–21]. Due to our focus here on a lidar-only
uper-resolution method, an in-depth discussion of this problem
ies beyond the scope of this paper.

Instead of solving the super-resolution problem in image
pace, PU-Net [22] operates directly on point clouds for up-
ampling, and adopts a hierarchical feature learning mechanism
rom [23]. However, this approach performs super-resolution on
oint cloud models of individual small objects, which differs
rom our approach that attempts to increase sensor resolution.
he upsampled high-res point clouds of our method retain the
‘ring’’ structure characterizing the output of a real lidar. This pre-
erves our approach’s compatibility with other lidar perception
lgorithms that operate directly on 3D lidar scans as input.

. Technical approach

This section describes the proposed lidar super-resolution
ethodology in detail. Since the horizontal resolution of a mod-
rn 3D lidar is typically high enough, we only enhance vertical
esolution throughout this paper. However, the proposed ap-
roach, without loss of generality, is also applicable for enhancing
he horizontal resolution of a lidar with only a few modifications
o the neural network. The workflow of the proposed approach is
hown in Fig. 1. Given a sparse point cloud from a 3D lidar, we
irst project it and obtain a low-res range image. This range image
s then provided as input to a neural network, which is trained
urely on simulated data, for upscaling. A dense point cloud is
eceived by transforming the inferred high-res range image pixels
nto 3D coordinates.

.1. Data gathering

Similar to the method proposed in [24], we leverage a rich
irtual world as a tool for generating high-res point clouds with
imulated lidar. There are many open source software packages,
.g. CARLA, Gazebo, Unity, that are capable of simulating various
inds of lidar on ground vehicles. Specifically, we opt to use the
ARLA simulator [25] in this paper due to its ease of use and
horough documentation.

The first step involves identifying the lidar we wish to simu-

ate. Let us assume we have a VLP-16 and we wish to quadruple
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Fig. 2. Illustration of high-res point clouds (64-channel) captured in CARLA Town 01 (a–f) and Town 02 (g–l). CARLA Town 01 features a suburban environment
ith roads, trees, houses, and a variety of variable-height terrain. Town 02 features an urban environment.
Fig. 3. Our proposed neural network architecture for range image super-resolution. The network follows an encoder–decoder architecture. Skip-connections are
denoted by solid lines with arrows.
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(4× upscaling (16 to 64)) its resolution. The VLP-16 has a vertical
ield of view (FOV) of 30◦ and a horizontal FOV of 360◦. The 16-
hannel sensor provides a vertical angular resolution of 2◦, which
s very sparse for mapping. We want to simulate a 64-channel
‘VLP-64’’ in CARLA, which also has a vertical and horizontal FOV
f 30◦ and 360◦ respectively. With the simulated lidar identified,
e can either manually or autonomously drive a vehicle in the
irtual environment and gather high-res point clouds captured
y this simulated lidar. An example of the lidar data produced in
ARLA is shown in Fig. 2.
We note that the simulated high-res lidar should have the

ame vertical and horizontal FOV as the low-res lidar. For exam-
le, we cannot train a neural network that predicts the perception
f HDL-64E using the data from VLP-16 because their vertical
OVs are different.

.2. Data preparation and augmentation

We then project the simulated high-res point cloud onto a
ange image, which can be processed by the neural network. A
can from the simulated ‘‘VLP-64’’ 3D lidar will yield a high-res
ange image with a resolution of 64-by-1024. This high-res range
mage will serve as the ground truth comprising our training
ata. Then, we evenly extract 16 rows from this high-res range
 T

3

mage and form a low-res range image, which has a resolution of
6-by-1024. This low-res range image is equivalent to the point
loud data captured by a VLP-16 after projection, and comprises
he input to the neural network during training. We note that
he resolution of the original range image from a VLP-16 sensor
aries from 16-by-900 to 16-by-3600 depending on the sensor
otation rate. For the purpose of convenience and demonstration,
e choose the horizontal resolution of all range images to be
024 to accommodate different sensors throughout the paper.
e also ‘‘cut’’ every range scan at the location facing the rear
f the vehicle, for the purpose of converting it to a flattened
D image. This is typically the region of least importance for
utomated driving and robot perceptual tasks, and is in many
ases obstructed by the body of the vehicle.
We then augment the data by performing top-down flipping,

orizontal flipping and shifting, and range scaling to account for
ifferent environment structures and sensor mounting heights
such as driving on different sides of the road, and underneath
tructures). To increase prediction robustness, we also vary sen-
or mounting attitudes during data gathering before augmen-
ation. Finally, the low-res and high-res range images are then
ormalized to 0 − 1 and sent to train the neural network. For
xample, the maximum detection range of the VLP-16 is 100 m.
hus we divide the ranges of the range image by 100 to obtain the
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Fig. 4. Smoothing effects after applying convolutions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

normalized range image. For objects that are outside the sensor’s
range, their corresponding ranges in the image are set to be 0 as
they yield no valid readings.

3.3. Neural network architecture

The lidar super-res problem can now be formulated as an
mage super-res problem. Adapted from the encoder–decoder
rchitecture of [26], we configure a neural network for range
mage super-resolution, shown in Fig. 3. The input, low-res range
mage is first processed by two transposed convolutions for in-
reasing the image resolution to the desired level. Then the en-
oder consists of a sequence of convolutional blocks and av-
rage pooling layers for downsampling the feature spatial res-
lutions while increasing filter banks. On the other hand, the
ecoder has a reversed structure with transposed convolutions
or upsampling the feature spatial resolutions. All convolutions
n the convolutional blocks are followed by batch normaliza-
ion [27] and ReLU [28]. The output layer produces the final
igh-res range image using a single convolution filter without
atch normalization.

.4. Noise removal

We note that we have placed numerous dropout layers be-
ore and after the convolutional blocks in Fig. 3. This is because
erforming convolutional operations on a range image will un-
voidably cause smoothing effects on sharp and discontinuous
bject boundaries [29]. An illustrative example of this smoothing
ffect is shown in Fig. 4. Ten range measurements from a lidar
hannel are shown in a top-down view. The gray lines represent
wo walls, and the green dots indicate the true range measure-
ents. After convolution, the range measurements are smoothed

shown by the red curve) in places where environmental discon-
inuities occur. Incorporating smoothed range predictions, such
s the three red dots shown, into a robot’s point cloud will
eteriorate the accuracy of the resulting map.
To address this problem, we novelly apply Monte-Carlo

ropout (MC-dropout) for estimating the uncertainty of our range
redictions [2]. MC-dropout regularization approximates a BNN
y performing multiple feed-forward passes with active dropout
t inference time to produce a distribution over outputs [2]. Given
bservations D = {(xi, yi)i=1:N}, we seek to infer a probability
istribution of a target value parameterized on the latent space
:

(y∗
|x∗,D) ∝

∫
p(y∗

|θ∗)p(θ∗
|x∗,D)dθ∗, (1)
4

Fig. 5. A total number of 25 scans are obtained in this simulated office-like
environment for generating Octomaps using different methods.

where θ∗ are the latent parameters associated with the tar-
get input. More specifically, given a test image x∗, the network
performs T inferences with the same dropout rate used during
training. We then obtain:

p(y∗
|x∗) =

1
T

T∑
t=1

p(y∗
|x∗, θ∗

t ), (2)

where θ∗

t are the weights of the network for the tth inference,
and y∗ are the averaged predictions. We can evaluate the uncer-
ainty of our range predictions by inspecting the variance of this
robability distribution. The final prediction is as follows:

∗

f =

{
y∗, if σ < λy∗

0, otherwise
(3)

in which y∗ is the predicted mean from Eq. (2), and σ is its
tandard deviation:

=

√ 1
T

T∑
i=1

(y∗

i − y∗), (4)

where y∗

i is the value of the ith prediction.
The parameter λ causes the noise removal threshold to scale

linearly with the predicted sensor range, capturing the fact that
the noise level worsens with distance from the sensor. Through-
out this paper we choose a value of 0.03 for λ, as it is found to give
the most accurate mapping results, and we choose an inference
quantity T of 50 for all experiments. A larger T yields improved
results, as the true probability distribution p(y∗

|x∗) can be better
approximated with more predictions.

Since the predictions of this step are between 0 and 1, to
obtain the high-res point cloud, we first multiply the range image
by the normalization value used in Section 3.2. Then we project
the high-res range image back to a high-res point cloud. Note
that we do not generate points from the zero-valued pixels in
the range image, as they are yielded either from noisy predictions
deleted from the range image, occluded objects, or objects outside
the sensor’s range.

4. Experiments

We now describe a series of experiments to quantitatively
and qualitatively analyze the performance of our lidar super-
resolution architecture. We perform 4× upscaling (16 to 64) for
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Fig. 6. An example lidar input (a), predictions by linear and cubic interpolation
b and c), and our methods without and with MC-dropout (d and e) and ground
ruth (f). As is shown in (d), the inferred point cloud is noisy due to points
hat have high uncertainty, motivating our use of MC-dropout. Color variation
ndicates elevation change. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

ll experiments in this section. For more experimental results,
lease refer to the supplementary Appendix.
For network training, Adam optimizer [30] is used with a

earning rate of 10−4 and decay factor of 10−5 after each epoch.
1 loss, the sum of absolute differences between the true values
nd the predicted values associated with range image pixels,
s utilized for penalizing the differences between the network
utput and ground truth, as it achieves high accuracy, fast con-
ergence and improved stability during training. A computer
quipped with a Titan RTX GPU was used for training and testing.
he training framework was implemented in Keras [31] using
ensorflow [32] as a backend in Ubuntu Linux. The software
ackage of the proposed method is publicly available.1
Besides benchmarking various methods in 2D image space

sing L1 loss, we also show that our method is able to produce
ense Octomaps [33] with high accuracy in 3D Euclidean space.
D occupancy maps can support a variety of robotics applications,
.g., planning [34] and exploration [35,36]. However, sparsity in
he point cloud of a 3D lidar can leave gaps and inconsistencies in
raditional occupancy grid maps, which can be misleading when
pplied in planning and exploration scenarios. Intuitively, 3D
ccupancy mapping can benefit greatly from a higher resolution
idar. We use receiver operating characteristic (ROC) curves to
enchmark the predictive accuracy (with respect to the binary
lassification of occupancy) of each method. The ROC curves plot

1 https://github.com/RobustFieldAutonomyLab/lidar_super_resolution.
5

Fig. 7. Full occupancy mapping results generated using the simulated indoor
dataset. Color variation indicates elevation change. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

the true positive rate against the false positive rate. We compare
all methods to the ground-truth occupancy (0 — free, 0.5 —
unknown, 1 — occupied) for all cells in the map. The area under
the curve (AUC) is provided for each method for comparison of
prediction accuracy. We treat the underlying 64-channel range
scan as ground truth, rather than a complete map with all cells
filled, because our specific goal is to truthfully compare the range
prediction accuracy of each method.

For the simulated experiments described in Sections 4.1 and
.2, we use the exact same neural network to demonstrate that
he proposed method is capable of performing accurate predic-
ion for sensors with different mounting positions in different
nvironments. The training data for the neural network is gath-
red from CARLA Town 02, which features an urban environment,
y simulating a 64-channel lidar ‘‘VLP-64’’ that has a vertical FOV
f 30◦. A low-res 16-channel lidar scan is obtained by evenly
xtracting 16-channel data from the high-res data. The low-res
ata here is equivalent to the scan obtained from the VLP-16. The
raining dataset contains 20,000 scans after data augmentation.

Since the real-world Ouster lidar used in Section 4.3 has a dif-
erent FOV (33.2◦), we gather a new training dataset for network
raining (see Section 3.1). Similarly, we simulate a 64-channel
idar, the OS-1-64, in CARLA Town 02 and gather high-res data.
he 16-channel data is extracted in the same way as described

https://github.com/RobustFieldAutonomyLab/lidar_super_resolution
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Fig. 8. Receiver operating characteristic (ROC) curves and area under the curve (AUC) for all competing methods. The results are obtained by comparing the Octomaps
f each method with the ground truth Octomap. Though the neural network is trained using the data from a completely different map (CARLA Town 02), our proposed
ethod produces dense Octomaps with the highest AUC among all methods evaluated in all experiments. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of this article.)
t
l

Fig. 9. Two representative scenes from CARLA Town 01. The resulting Octomaps
are shown in Figs. 10 and 11.

Fig. 10. Occupancy mapping results for scene shown in Fig. 9(a). Color variation
ndicates elevation change. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

efore. The low-res data here is equivalent to the scan obtained
rom an OS-1-16 sensor. The training dataset also contains 20,000
cans after data augmentation.
6

Fig. 11. Occupancy mapping results for scene shown in Fig. 9(b). Color variation
indicates elevation change. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4.1. Simulated indoor dataset

We first demonstrate the benefits of applying MC-dropout.
We simulate a 64-channel lidar ‘‘VLP-64’’ and gather 25 high-
res scans in an office-like environment in Gazebo. The lidar is
assumed to be installed on top of a small unmanned ground
vehicle (UGV). The sensor is 0.5 m above the ground. As is shown
in Fig. 5, the environment is populated with desks and boxes.
The low-res 16-channel testing scans are obtained by evenly
extracting 16-channel data from the high-res data. Note that none
of these scans are used for network training, nor is the height at
which the sensor is mounted.

A representative low-res scan is shown in Fig. 6(a). Using
his scan as input, the predicted high-res scans using the naive
inear and cubic interpolation methods are shown in Fig. 6(b)
and (c). The predictions using our method with and without the
application of MC-dropout are shown in Fig. 6(d) and (e). Without
applying MC-dropout, the range prediction is noticeably noisy
due to the smoothing effect caused by convolution, hence the
scan shown in Fig. 6(d). After noise removal by applying MC-
dropout, the predicted scan shows significantly less noise and
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Fig. 12. Occupancy mapping results using the Ouster dataset. Color variation indicates elevation change. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
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able 1
uantitative results for the experiments discussed in Sections 4.2 and 4.3.
Dataset Method L1 loss Removed

points (%)

CARLA Town 01

Linear 0.0184 N/A
Cubic 0.0303 N/A
SR-ResNet 0.0089 12.37
Ours 0.0087 4.13

Ouster

Linear 0.0324 N/A
Cubic 0.0467 N/A
SR-ResNet 0.0211 17.70
Ours 0.0214 8.37

resembles the scan of ground truth. The resulting maps are shown
in Fig. 7. All the Octomaps have a resolution of 0.05 m. We refer to
the approach of using low-res lidar scans to produce an Octomap
as the baseline approach. The ground truth Octomap is obtained
y using the high-res scans. The map of baseline approach is
parse, as no inference is performed. As is shown in Fig. 7(e),
he proposed method is able to produce a dense Octomap that
esembles the ground truth Octomap. The receiver operating
haracteristic (ROC) curves and area under the curve (AUC) for
ach method are shown in Fig. 8(a). The AUC is improved when
pplying MC-dropout.
We also note that though the network is trained using data

rom an outdoor environment — CARLA Town 02, our method
s capable of producing meaningful and accurate predictions for
ndoor usage, with a different sensor mounting scheme. This
emonstrates that the network is able to learn the complex map-
ing between low-res input and high-res output while properly
aintaining the structure of surrounding objects. More compar-

sons of this experiment can be found in the Appendix.

.2. Simulated outdoor dataset

In this experiment, we compare our method with various
pproaches, which include the standard linear and cubic inter-
olation techniques and also the state-of-the-art super-resolution
pproach — SR-ResNet [11], using a simulated large scale outdoor
ataset that is gathered in CARLA Town 01. CARLA Town 01
eatures a suburban environment with roads, trees, houses, and
variety of terrain. The same sensor that is used in 4.1 is used
ere. The ‘‘VLP-64’’ sensor, which has a height of 1.8 m from the
round, is mounted on top of a full-sized passenger vehicle. We
7

rive the vehicle along a trajectory of 3300 m and gather a lidar
can every 10 m. Thus this dataset contains 330 scans.
The L1 loss of each method is shown in Table 1. The deep

earning approaches outperform the traditional interpolation ap-
roaches by a large margin. For fair comparison, we also ap-
ly MC-dropout on SR-ResNet by adding a dropout layer to the
nd of each residual block for noise removal. The losses of SR-
esNet and our method are very close. However, the amount
f noise removed per scan from SR-ResNet is much larger than
ur method. Though we can adjust λ in Eq. (3) to retain more
oints, the mapping accuracy deteriorates greatly as more noisy
oints are introduced. We can also decrease the value of λ for
R-ResNet to filter out more noise. The mapping accuracy then
lso deteriorates, as more areas in the map become unknown.
The Octomaps of the competing methods using a low-res scan

s input are shown in Figs. 10 and 11. The baseline approach
aturally yields the most sparse map. Though offering better
overage, the Octomaps of the linear and cubic methods are
ery noisy due to range interpolation between different objects.
he deep learning-enabled approaches, SR-ResNet and our pro-
osed method, outperform the interpolation-based approaches
y offering true representation of the environment. Though SR-
esNet outperforms linear and cubic interpolation methods in 2D
mage space by yielding smaller L1 loss, its predictions, when
hown in 3D Euclidean space, still contain a great deal of noise
t object boundaries. Our proposed approach introduces much
ess noise into the map. As a result, our method produces a map
hat is easier to interpret visually, and which also achieves the
ighest AUC among all methods. The AUC and ROC curves for each
ethod using 330 scans are shown in Fig. 8(b).

.3. Real-world outdoor dataset

In this experiment, we evaluate the proposed method over one
ublicly available driving dataset, which we refer to as Ouster .2
he Ouster dataset, which consists of 8825 scans over a span
f 15 min of driving, is captured in San Francisco, CA using an
uster OS-1-64 3D lidar. This 64-channel sensor naturally gives
s the ground truth for validation, as we only need to extract a
ew channels of data for generating low-res range image inputs.
gain, the networks evaluated here are purely trained using a
imulated dataset gathered from CARLA Town 02. As is shown in

2 https://git.io/fhbBt.

https://git.io/fhbBt
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Fig. A.13. A local region of the environment shown in Fig. 5.

Fig. A.14. Mapping results of the area shown in Fig. A.13 using several compet-
ing methods. Color variation indicates elevation change. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1, both SR-ResNet and our method achieve similar L1 loss,
which is evaluated over 8825 scans. We note that the L1 loss of
SR-ResNet is slightly smaller than that of our proposed method.
This is because we compute the L1 loss using all the predicted
ranges without applying Eq. (3), to ensure a fair comparison.
However, the percentage of removed points of our approach is
much less when compared with the results of SR-ResNet. This is
because the predictions of SR-ResNet are more influenced by the
smoothing effects discussed in Section 3.4. In other words, the
predictions of our approach are of lower variance.

We use 15 scans from this dataset to obtain real-world low-res
and high-res lidar scans, which are then used to obtain Octomaps,
in the same way that is described in our previous experiments.
The scans are registered using LeGO-LOAM [37]. The mapping
results at two intersections are shown in Fig. 12. All the Octomaps
have a resolution of 0.3 m. The AUC and ROC curves for each
method using these 15 scans are shown in Fig. 8(c). Again, our
8

Fig. B.15. Visualization of several representative point clouds from the Ouster
dataset. The low density point clouds before inference are shown in (a), (d) and
(g). The inferred high-res point clouds (4× upscaling) are shown in (b), (e) and
(h). The ground truth point cloud captured by the lidar is shown in (c), (f) and (i).
Color variation indicates lidar ‘‘ring’’ index. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

proposed approach outperforms all methods by achieving the
highest AUC. For the mapping visualization using all 15 scans,
please refer to the Appendix. A visualization of the inference
performed throughout the dataset can be found in our video
attachment.3

5. Conclusions and discussion

We have proposed a lidar super-resolution method that pro-
duces high resolution point clouds with high accuracy. Our
method transforms the problem from 3D Euclidean space to an
image super-resolution problem in 2D image space, and deep
learning is utilized to enhance the resolution of a range image,
which is projected back into a point cloud. We train our neural
network using computer-generated data, which affords the flex-
ibility to consider a wide range of operational scenarios. We fur-
ther improve the inference accuracy by applying MC-dropout. The
proposed method is evaluated on a series of datasets, and the re-
sults show that our method can produce realistic high resolution
maps with high accuracy. In particular, we evaluate the super-
resolution framework through a study of its utility for occupancy
apping, since this is a widely useful perceptual end-product that
obots may use to support planning, exploration, inspection, and
ther activities. In addition to the appealing generalizability of
p-scaling at the front end, by predicting the measurements of

3 https://youtu.be/rNVTpkz2ggY.

https://youtu.be/rNVTpkz2ggY
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Fig. B.16. Range images of the projected point clouds shown in Fig. B.15.
a higher-resolution sensor, our approach also achieves superior
accuracy in the end-stage maps produced, as compared with both
deep learning methods and simpler interpolation methods.

Future work may involve using a generative adversarial net-
work to further improve the inference quality. We conducted
tests using SR-GAN, which is proposed in [11]. However, we
did not obtain additional benefits from using this network for
our tests. The discriminator is not able to distinguish generated
high-res range images from real high-res range images with an
accuracy of more than 40%. We suspect the low accuracy is
caused by the lack of texture details in range images, as SR-GAN
is proposed for photo-realistic images. We also encounter noisy
predictions on irregular objects, such as trees and bushes. One
cause of this problem is that the simulated environment is rela-
tively simply structured. Though vegetation appear in simulation,
they are only represented by simple geometries. Thus the train-
ing data gathered in the simulation possesses significantly less
noise when compared with data from real-world environments.
Another potential direction for future work may involve training
with a combination of real and synthetic data.
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Appendix A. Supplements for Section 4.1

We show detailed Octomaps produced by several methods
introduced in Section 4.1. The scene shown in Fig. A.13 is located
at the top corner of Fig. 5. A lidar mounted on top of a small
unmanned ground vehicle (UGV), located in the center of the
image, is used for capturing the data. The Octomaps for the entire
environment are shown in Fig. 7. The resulting Octomaps of this
region are shown in Fig. A.14. Note that, when using linear or
cubic interpolation, the ‘‘ring’’ structure that covers the ground
at the top-right corner differs greatly from the structure of (f).
This is because these methods are interpolating over Euclidean
space rather than the sensor’s field of view. Naive interpolation
methods are not able to retain the real range measurements
characterizing the output of a real lidar. As is visible in (b) and (c),
these methods also introduce erroneous range measurements by
interpolating among the returns from distinctly different objects
(such as the floor and above-ground objects). Our proposed deep
learning method does not encounter this problem.

Appendix B. Supplements for Section 4.3

We give further detailed benchmarking results by comparing
four metrics using different upscaling factors: (1) L1 loss, which
is the inference loss tested on the Ouster dataset using the net-
work trained with simulated dataset from CARLA Town 02. (2)
Removed pixels, which indicates the mean percentage of pixels
deleted from the range images of each dataset. (3) Training time,
which is the processing time for each range image during training
on the simulated dataset from CARLA Town 02. (4) Testing time,
which is the processing time for each range image during testing

on the Ouster dataset.
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Table B.2
Quantitative results for testing using Ouster dataset with different upscaling factors.
Upscaling
factor

Method L1 loss Removed
pixels (%)

Training time
per image (ms)

Testing time
per image (ms)

8x (8 to 64)

Linear 0.0455 N/A N/A N/A
Cubic 0.0595 N/A N/A N/A
SR-ResNet 0.0320 30.70 21 7
Ours 0.0318 15.71 18 6

4x (16 to 64)

Linear 0.0324 N/A N/A N/A
Cubic 0.0467 N/A N/A N/A
SR-ResNet 0.0211 17.70 25 7
Ours 0.0214 8.37 18 6

2x (32 to 64)

Linear 0.0213 N/A N/A N/A
Cubic 0.0346 N/A N/A N/A
SR-ResNet 0.0118 8.92 29 9
Ours 0.0117 2.38 17 6
Fig. B.17. Lidar super-resolution using Velodyne VLP-16 data. The low-res point
clouds shown in (c) and (d) are captured using a Velodyne VLP-16 lidar. The
high-res point clouds shown in (e) and (f) are predicted by our approach (4×
upscaling). Color variation indicates lidar ‘‘ring’’ index. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

As is shown in Table B.2, We have observed that the predic-
tion accuracy degrades when less resolution is provided. Both
SR-ResNet and our method achieve similar loss over different
upscaling factors. However, the percentage of removed pixels of
our method is much less when compared with the results of SR-
ResNet. In other words, the predictions of our approach are of
lower variance. Additionally, the proposed approach requires up
to 45% less time to train the neural network. Note that all the
results in the table are evaluated and averaged over 8825 scans.
10
We also note that the testing time of our proposed frame-
work per image, which does not exceed 10 ms for any of the
upscaling factors considered, is compatible with real-time per-
formance over the lidars considered in this paper. Scanning at
10 Hz, these lidars would require the testing time not to exceed
100 ms, but our framework is well within this real-time perfor-
mance envelope using the arrangement of hardware described in
Section 4.

We also show qualitative results of performing 4× upscaling
inference using our method on the Ouster dataset in Fig. B.15.
The three representative point clouds are captured from a narrow
street, an open intersection, and a slope surrounded by vegeta-
tion, respectively. We can observe that objects such as buildings,
roads and pillars are inferred well.

The corresponding range images of the projected point clouds
are shown in Fig. B.16. Black color indicates a range value of
zero, for which no points are added to the point cloud. Since
performing convolutional operations on a range image will un-
avoidably cause smoothing effects on sharp and discontinuous
object boundaries, we apply MC-dropout to identify these erro-
neous predictions. Accordingly, the range predictions with high
variance are removed.

Appendix C. Stevens dataset

We show qualitative results from our own dataset, which we
refer to as the Stevens dataset, which was collected using a Velo-
dyne VLP-16 mounted on a Clearpath Jackal UGV on the Stevens
Institute of Technology campus. This dataset features numerous
buildings, trees, roads and sidewalks. Two representative scans
from the dataset are shown in Fig. B.17. A satellite photo of the
Stevens campus is shown in Fig. C.18(a). A total number of 278
scans, which are registered with LeGO-LOAM [37], are used for
generating a 3D map. The neural network that is used for testing
here is the same as the network that is used in Sections 4.1 and
4.2. Fig. C.18(b) and (c) show the 3D map created by the raw lidar
scans and the inferred lidar scans (4× upscaling) respectively. The
map produced by our inferred scans includes better structural and
terrain coverage without using a real high-res lidar.

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2020.103647.

https://doi.org/10.1016/j.robot.2020.103647
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Fig. C.18. Lidar super-resolution using Velodyne VLP-16 data. The low-res point clouds shown in (c) and (d) are captured using a Velodyne VLP-16 lidar. The high-res
point clouds shown in (e) and (f) are predicted by our approach (4× upscaling). Color variation indicates lidar ‘‘ring’’ index. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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