
1Scientific Reports |         (2020) 10:6977  | https://doi.org/10.1038/s41598-020-63773-3

www.nature.com/scientificreports

Circularity in fisheries data weakens 
real world prediction
Alfredo Giron-Nava1,2,3, Stephan B. Munch4,5, Andrew F. Johnson6, Ethan Deyle1, Chase C. James1, 
Erik Saberski1, Gerald M. Pao1,7, Octavio Aburto-Oropeza1 & George Sugihara1 ✉

The systematic substitution of direct observational data with synthesized data derived from models during 
the stock assessment process has emerged as a low-cost alternative to direct data collection efforts. What 
is not widely appreciated, however, is how the use of such synthesized data can overestimate predictive 
skill when forecasting recruitment is part of the assessment process. Using a global database of stock 
assessments, we show that Standard Fisheries Models (SFMs) can successfully predict synthesized data 
based on presumed stock-recruitment relationships, however, they are generally less skillful at predicting 
observational data that are either raw or minimally filtered (denoised without using explicit stock-
recruitment models). Additionally, we find that an equation-free approach that does not presume a specific 
stock-recruitment relationship is better than SFMs at predicting synthesized data, and moreover it can also 
predict observational recruitment data very well. Thus, while synthesized datasets are cheaper in the short 
term, they carry costs that can limit their utility in predicting real world recruitment.

Faced with budget reductions for fisheries science and management worldwide, fisheries programs have experi-
enced pressure to systematically replace or augment observational data programs with less expensive indirect data 
estimation programs that produce so called synthesized data1,2. These programs construct continuous time series 
from sparse observations of standing stock biomass (SSB) or catch data, using model-based estimates to filter 
noise from the raw observations and to fill in for times that were not directly sampled3. Thus, such estimates are 
necessarily the product of the model assumptions for how fish populations grow4. These synthetic time series 
are commonly used as a record of stock status and as input data for predicting recruitment (fisheries productiv-
ity) which in some cases can directly influence management strategies5,6.

A problem arises when data that were synthesized with explicit assumptions about the stock-recruitment rela-
tionship (SRR) are then used to make predictions about that relationship as it occurs in the real world. Although 
models can often be made to fit and predict model-generated data, the accuracy of such models at predicting real 
world observations is often very low. There is potential for circularity in the overall approach3,7, all of which casts 
doubt about whether a relationship between the SSB and recruitment in nature actually exists8–10. Recent studies that 
find evidence for such a relationship in principle, are beginning to question whether it can be used to improve our 
practical ability to predict recruitment11,12. For example, Pierre et al. find positive evidence of a causal relationship 
between stock size and recruitment, however, they also conclude that recruitment is largely unpredictable using clas-
sical models that are based on stock size alone11. This finding is supported by Deyle et al. who uses a non-parametric 
nonlinear EDM approach (Empirical DynamicModelling, see Box 1) to find that for Atlantic and Gulf Menhaden 
recruitment is indeed predictable from year to year, but only when allowing for realistic interdependence of adult 
stock size with other ecological factors13. More recently, Munch et al. analyzed a global database with EDM, to find 
that on average 40% of the variability in recruitment can be explained by previously observed recruitment fluctua-
tions12, which according to theory should contain information about the relevant environmental drivers12,13.

Here, we examine the Ransom Myers database14, a global repository of stock sizes and recruitment estimates 
for over 600 marine and freshwater fish populations (>100 species) to ask the following questions: (1) How 
well do standard fisheries models (SFMs) predict the number of recruits when the data are synthesized by an 
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BOX 1 Empirical dynamic modeling.  Empirical Dynamic Modeling (EDM) is a data-driven approach 
to understand mechanisms, identify causal variables and make predictions on complex systems. It relies on 
extracting system behavior directly from observed time series15–17. The rationale for this approach is that 
dynamical relationships that are too complex or subtle to capture in a simple set of equations can instead 
be recovered empirically from time series observations18. EDM is specifically capable of describing nonlin-
ear, state-dependent interactions (e.g. where the effect of one variable on another can depend on a third 
or fourth dynamically changing factor etc.). Such interactions are difficult to describe with models having 
constant coefficients and thus may not yield to standrad model-building approaches (e.g. those that use 
single-factor experiments to estimate fixed rate parameters)10. The essential ideas and concepts of EDM are 
briefly summarized in three 1-minute videos at http://tinyurl.com/EDM-intro.

The basic premise of EDM is to view a dynamic system from a geometrical perspective – the attractor. The 
attractor can be generated from some underlying set of equations or from observational time series data, and 
describes how variables change with respect to each other. Thus, as the system changes over time, its trajectory 
moves across different points in the state-space, and over time the paths form a geometric attractor (Fig. B1). 
A time series of a state variable can then be viewed as a projection of the motion on an attractor onto the 
coordinate axes recording how that variable changes through time. A natural way to view the system is in 
its native state space where each coordinate axis is an essential active causal variable – this primary form of 
EDM attractor reconstruction requires multiple time series, one for each active causal variable16,19,20. However, 
Takens theorem21 also allows one to construct equivalent attractors using lags of just one time series. Here, 
time lags of a single variable can serve as proxies for the other variables (Fig. B1).

Again, the primary motivation for using EDM is to address nonlinear, non-equilibrium behavior. In con-
trast, many statistical methods (e.g. generalized linear models, structural equation modeling, dynamic linear 
models) rely on describing dynamics in terms of relationships that are constant or fixed in time, rather than 
in terms of relationships that are interdependent (state dependent) and that vary in time. For example, linear 
dynamics can occur with a static equilibrium when the dynamics are essentially viewed as stochastic pertur-
bations around a fixed point, as in a typical linear stability analysis. Because nonlinear behavior appears to 
be ubiquitous in nature, EDM has been applied broadly across domains, from astrophysics22, geophysics and 
climate23, to epidemiology24, cardiology25 and medicine26,27.

assessment method that incorporates an explicit stock-recruitment model (synthetic data, SD) versus data that 
come directly from surveys or statistically denoised estimates such as those that come from a sequential popula-
tion analysis that do not have density dependence built-in (direct data, DD)? And (2) can an equation-free EDM 
approach provide better predictions than SFMs? We selected all populations from this database with at least 25 
years of both stock size and recruitment, representing 134 populations from 36 species, spanning 8 orders. The 
datasets were classified according to their origin as SD or DD, see Materials and Methods for further details.

Figure B1.  Reconstruction of System Dynamics from a Time Series (using the canonical Lorenz attractor 
example) (A) Projecting the motion of the Lorenz attractor onto the x-axis yields a time series for variable x. (B) 
Successive lags (with time step τ) of the time series xt are plotted as separate coordinates to form a reconstructed 
(and visually similar) “shadow” attractor that preserves essential mathematical properties of the original system.
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Results
SFMs reported higher predictability (higher Pearson correlation coefficient between observed and predicted 
recruitment, ρ) when using SD as compared to DD. In the case of SD, the average Pearson correlation ρ values 
were equal to 0.35, 0.38 and 0.43 for the density independent, Ricker and Beverton-Holt models respectively 
(Fig. 1), with an overall average value of 0.39. In the case of the DD, average ρ values were equal to 0.08, 0.15 and 
0.15respectively for the same models (Fig. 1), with an overall average value of 0.13. This represents an overall 
average decrease of 65% in the predictive capacity of SFMs when using DD versus SD. When confronted with 
real-world direct data, the reduction in predictability was significant (P < 0.05) for each of the three SFMs.

Regardless of the type of data used, EDM outperformed the three SFMs in predicting the number of recruits. 
On average, EDM reported Pearson correlation ρ values equal to 0.59 and 0.62 for SD and DD respectively 
(Fig. 1). We found no significant differences in the predictability of EDM between both types of data (P > 0.05).

Discussion
The use of synthetic data (SD) can be misleading when SFMs are used to study the stock-recruitment problem. 
Circularity arises when SD estimated through models is used as input into SFMs to predict SD.

Nonetheless, SD filtered with an explicit Stock-Recruitment model has been a critically useful assessment 
procedure when applied consistently. The majority of our stock assessment records have been derived this way, 
which allows us, importantly, to track stock status and productivity, albeit ultimately with a proxy for actual 
recruitment. Thus the consistent use of this procedure allows for historical comparisons to be made, which has 
ongoing merit in a management context. However, issues arise in terms of the original objective if we literally 
want to be able to make forecasts of real-world recruitment to generate management advice. The inability of 
SFM’s to accomplish this original aim comes in part because the assumptions of the models are uncertain (e.g. 
the hypothesized functional form of the model, the classic assumption of near-equilibrium linear dynamics, 
etc. Box 1)3,9,28,29. Nonetheless the SFM’s usefulness to provide an internally consistent record on stock status 
and productivity, though the ability to predict data it has produced should not be taken as validation of the 
models, and the SD should not be used in place of more direct observations in studies of fisheries recruitment.

As we move forward, if one of our main scientific management objectives is to improve our ability to predict 
recruitment as a real-world quantity, the potential problems with data circularity need to be recognized and 
constructively addressed, and alternatives such as EDM need to be considered. EDM derives the dynamic mecha-
nisms and causes directly from the data – a capability that allowed it to accommodate the dynamics introduced to 
the SD by the SFM’s (Fig. 1). More importantly, EDM was able to perform well with the DD and thus presumably 
is able to predict recruitment in the real fishery (Fig. 1). EDM methods have previously been used to improve 
recruitment predictability for a variety of stocks, for example: tuna in the North Pacific30, sockeye salmon in the 
Fraser River system in British Columbia10, red snapper in the Gulf of Mexico31, and menhaden from the Gulf of 
Mexico and the Atlantic menhaden13. Although these results seem promising, the challenge remains to integrate 
these benchmark predictions more broadly into specific enacted management schemes, and particularly ones that 
are sustainably adaptive to non-stationary harvest targets12.

Methods
Ransom myers database.  We compared the predictions of the numbers of recruits through time from 
stock assessments using Standard Fisheries Models (SFMs)4 and an Empirical Dynamic Modelling (EDM) tech-
nique known as S-maps16,19,32. To do this, we used the Ransom Myers database14, a global repository of stock sizes 
and recruitment estimates for over 600 marine and freshwater fish populations (>100 species). All populations 

Figure 1.  Potential circularity arises when models predict model output (SD). Comparison of predictability 
of spawner-recruit relationships for three standard fisheries models (Linear, Ricker, and Beverton-Holt) to 
equation-free EDM (S-maps). The y-axis represents the average predictability as measured by the correlation 
coefficient between 25 observed data points and their corresponding modeled predictions. The error bars 
represent the standard error. Asterisk labels next to the assessment method labels indicate a significant 
difference (P < 0.05) between thepredictability for SD as compared to DD.
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from this database with at least 25 years of both stock size and recruitment data were included in our analysis, 
representing 134 populations from 36 species, spanning 8 orders. We classified each time series into one of two 
categories based on the nature of the data: data reanalyzed with an explicit Stock-Recruitment model (synthetic 
data, SD) (n = 53) and data from direct or statistically denoised observations (direct data, DD) (n = 81). The SD 
included datasets derived from Biomass Dynamic Models (BDM), while the DD included datasets derived from 
Sequential Population Analyses (SPA) or Direct Observations (DO). SPA datasets were classified as DD given 
that they only make an assumption about constant natural mortality to back calculate recruitment from landings 
data, which does not introduce an explicit assumption for the SR relationship. There were 3 datasets derived from 
Statistical Catch-at-Age (SCA) analyses that also met the requirement of having at least 25 years of data, however, 
because no information about whether explicit assumptions about the SR relationship was given, they were not 
included in our analyses. Supplementary Table I presents a summary of the original method used in each stock 
assessment, the classification as either SDor DD, and time series’ length.

Predictability–standard fisheries models (SFMs).  We evaluated the performance of three SFMs to pre-
dict the spawner-recruit relationship in the 134 populations from the Ransom Myers database: density independ-
ence, Ricker, and Beverton-Holt4. These models assume that the number of recruits is a function of the current 
stock size. All models can be written in the general form α=R S g S( )t t t , where R is recruitment, S is stock size, α 
is the maximum rate of reproduction, and g S( )t  is a function that accounts for density-dependent processes14. In 
the case of the density-independent model, the function =g S( ) 1t  and the model is a straight line that intercepts 
the origin (0,0) with slope α. The Ricker and Beverton-Holt models introduce the term β, which is proportional 
to the product of fecundity and density-dependent mortality (see e.g. Quinn & Deriso33). The three models are 
presented below.

α= –R S Density independent (1)t t

α= β− –R S e Ricker (2)t t
St
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β
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
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1
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(3)
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t

The Ricker and Beverton-Holt models were fitted on a log scale, re-written so that =y R Sln[ / ]t t t
33. All models 

were fit using the function ‘fminsearch’ in Matlab R2015b.
To calculate the predictability achieved by each model, we performed leave-one-out cross validation.The min-

imum length of any time series in our dataset was 25 years; thus, to ensure sample sizes were consistent across 
models, for time series with more than 25 points, we randomly selected 25 points as targets to be predicted. For 
each prediction on a target, the point one timestep before the target and 23 other, randomly selected points were 
used to fit model parameters, and used to make a prediction on the target. For time series with exactly 25 points, 
all points were used as targets to be predicted, and the other 24 points were used to fit model parameters on each 
iteration. Even though the Ricker and Beverton-Holt models were fitted on a log scale, all predictions were made 
in the original recruitment scale. We then calculated the predictability (ρ) as the Pearson correlation coefficient 
between the 25 observations and their respective predicted values.

Predictability–empirical dynamic modelling (EDM).  EDM is based on the idea that time series 
are one-dimensional projections (a time record of some coordinate or variable) of a dynamic system (see intro-
ductory video https://youtu.be/fevurdpiRYg). If there are “n” relevant variables the trajectory produced as the 
system evolves in this n-dimensional space would produce a geometric shape or an “attractor”. Following the 
trajectories at locations on an attractor nearby to a current state allows one to predict future states15,16. Because in 
practice we may not know what all the relevant variables are or even how many relevant variables there are (the 
“n” of the n-dimensional coordinate space), we can use Takens’ Theorem21 to construct a shadow version of the 
original attractor from a single time series or single variable that we want to predict. Thus, assuming that the 
single time series is xt, one can reconstruct a “shadow” version of the original attractor by using lagged time series 
(eg. −xt 1, −xt 2) as proxies for other unknown time series of the same system and predict future values of xt. Again, 
the number of time-lagged proxies required (the embedding dimension) corresponds to the number of active 
causal variables – or number of coordinates required to embed the attractor. The principles and mechanics of 
Takens’ theorem and EDM are illustrated in Box 1 and further explained in Deyle and Sugihara34 and Sugihara  
et al.17 and in a series of short animations (http://tinyurl.com/EDM-intro).

Although it is possible to construct an attractor from a single time series (univariate reconstruction), predict-
ability can often be improved by using multiple time series of different active causal variables measured from the 
same system (multivariate reconstruction)16,35. For example, for modelling fish stocks a useful multivariate recon-
struction may involve a time series for fish stock biomass (St), another time series for the number of recruits (Rt), 
as well as time-lagged time series of both St and Rt. We tested all the possible combinations of these 6 time series 
(Rt, − − − −R R S S S, , , ,t t t t t1 2 1 2) to make multivariate reconstructions, going from using 1 to 6 time series at a 
time.

This generalized embedding scheme is used to make forecasts using S-maps32, which is a standard weighted 
kernel regression scheme that controls local weights with a tuning parameter θ. When θ = 0 all the points on the 
attractor are equally weighted to generate a single global linear map. When θ > 0 more weight is given to points 
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nearby each predictee on the attractor, so that the map produced for each forecast differs with location on the 
attractor (map varies with the system state). Finding that prediction improves for any θ > 0 indicates curvature 
(nonlinearity) in the attractor. All our results report the predictability (ρ) achieved when θ is optimized.

Thus, as with the SFMs, to avoid overfitting we perform a leave-one-out cross validation by excluding the 
single time point that we are trying to predict from the data used to build the forecast model. We calculate ρ as 
the maximum Pearson correlation coefficient between the observations and their respective predicted values for 
each of the 134 analyzed fish stocks. All analyses were performed using the rEDM package in CRAN (v. 0.7.2).

Differences in predictability between SD and DD.  An unpaired t-test was used to test whether a particu-
lar model’s predictions were significantly different when using SD versus DD. In Fig. 1 an asterisk indicates when the 
differences in predictability (ρ) between SD versus DD for each model type are significant (P < 0.05).

Data availability
Should the manuscript be accepted, the data supporting the results will be archived in an appropriate public 
repository such as Dryad or Figshare and the data DOI will be included at the end of the article.
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