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Abstract. How can social and health researchers study complex dynamic systems
that function in nonlinear and even chaotic ways? Common methods, such as
experiments and equation-based models, may be ill-suited to this task. To address
the limitations of existing methods and offer nonparametric tools for character-
izing and testing causality in nonlinear dynamic systems, we introduce the edm

command in Stata. This command implements three key empirical dynamic mod-
eling (EDM) methods for time series and panel data: 1) simplex projection, which
characterizes the dimensionality of a system and the degree to which it appears to
function deterministically; 2) S-maps, which quantify the degree of nonlinearity in
a system; and 3) convergent cross-mapping, which offers a nonparametric approach
to modeling causal effects. We illustrate these methods using simulated data on
daily Chicago temperature and crime, showing an effect of temperature on crime
but not the reverse. We conclude by discussing how EDM allows checking the
assumptions of traditional model-based methods, such as residual autocorrelation
tests, and we advocate for EDM because it does not assume linearity, stability, or
equilibrium.

Keywords: st0635, edm, empirical dynamic model, convergent cross-mapping, sim-
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1 Introduction

How can researchers study complex dynamic systems that may not fulfill the assump-
tions of classic methods such as experiments or model-based regressions? Causal identi-
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fication is a difficult task in many contexts, including when studying complex dynamic
systems wherein experiments or model-based regressions may not be available or appro-
priate. Dealing with the complexity of real-world phenomena requires tools that can
characterize and test causality in nonlinear dynamic systems.

One promising method is called empirical dynamic modeling (EDM) (for an introduc-
tion, see Chang, Ushio, and Hsieh [2017]). This novel approach from the natural sciences
allows 1) characterizing a dynamic system, including its complexity, predictability, and
nonlinearity, as well as 2) distinguishing causation from mere correlation, while 3) mak-
ing minimal assumptions about nonlinearity, stability, and equilibrium (see Sugihara
and May [1990], Sugihara [1994], Sugihara et al. [2012]).

To complement approaches that are more classic, including experiments or model-
based regressions, in what follows we offer an overview of the conceptual logic of EDM

and then describe the new Stata command edm, which allows researchers to study the
nonlinear dynamic systems that may underlie observed time series and panel data—
consistent with approaches available in the R packages rEDM and multispatialCCM (see
Clark [2014], and see Ye et al. [2016], from which we have borrowed with permission
figures 1 and 2). We conclude by noting how these tools may be useful for checking
assumptions that underlie other approaches to time-series and panel-data modeling, in-
cluding by examining their residuals for nonlinear autocorrelation with EDM methods.1

2 Method

The logic of EDM is based on the fact that a dynamic system producing observed time
series or panel data can be modeled by reconstructing the states of the underlying
system as it evolves over time (Takens 1981). Consider a system that is characterized
by D variables over time, such as a national economy that changes along gross domestic
product, unemployment, and inflation, or a person characterized by evolving health and
well-being states. Over time, the D variables chart a trajectory of system states as they
change, as in figure 1 for D = 3 (showing the Lorenz or “butterfly” attractor and a
measure of it as x). As the national economies or individuals evolve, the trajectories
of the D variables will trace a D-dimensional “manifold” M in a D-dimensional state
space over time. The manifold M represents the system’s trajectory on all D variables
as they change over time so that at any time t the system’s state is a single point on
M that reflects the D system variables. If the variables are deterministically related
(that is, if they cause each other), M will reflect a set of typically unknown differential
equations that generate an “attractor” along which the points on M tend to fall. Of
course, the attractor may be chaotic rather than a fixed point (equilibrium) or set of
points (equilibriums) to which system states tend to converge. The term “dynamic”
refers to systems that function in this fashion.

1. Because EDM may be new to you and is perhaps best explained visually, Sugihara et al. (2012)
offer three 1–2 minute introductory videos, ordered as follows: 1) https://youtu.be/fevurdpiRYg,
2) https://youtu.be/QQwtrWBwxQg, and 3) https://youtu.be/NrFdIz-D2yM.

https://youtu.be/fevurdpiRYg
https://youtu.be/QQwtrWBwxQg
https://youtu.be/NrFdIz-D2yM
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Figure 1. An example of a dynamic system and its corresponding manifold

If the underlying equations of the attractor manifold M are known, it is elementary
to characterize the complexity and nonlinearity of the system; describe its deterministic
and stochastic features; and identify causal effects among the D variables. In practice,
however, M is unknown and all D variables are not measured. Therefore, M must be
reconstructed with an observed variable X from time series (single entity N = 1) or
panel data (multiple entities N > 1) with sufficient time length. If X is a projection
(that is, measure) of M as in figure 1, Takens’s theorem proves that the deterministic
behavior of the entire system can often be reconstructed using merely the lags of X
to form an E-dimensional shadow manifold MX (where D < E ≤ 2D + 1; see Takens
[1981] and Sauer, Yorke, and Casdagli [1991]).

This logic also applies to the multivariate case, such as if a stochastic input is also
needed to reconstruct a system (Deyle and Sugihara 2011). Figure 2 illustrates this
reconstruction process using E = 3 lags of X from figure 1. As figure 2 illustrates,
a set of E-length vectors formed by E lags of X are used to reconstruct the original
manifold as the shadow manifold MX (that is, vectors of data on X at each t, t − τ ,
. . . , t− (E − 1)τ , where the “time delay” parameter τ > 0).

Notably, this can also be done using panel data, and in our Stata implementation this
case is by default treated using the multispatial method of Clark et al. (2015), wherein
E-length vectors of lags on X are taken for each panel separately (so any given point
on MX does not mix data/lags drawn from different panels). Then all the E-length
vectors are pooled in analyses, which makes the assumption that all the panels share the
same underlying dynamic system while each panel’s longitudinal trajectory contributes
to the reconstruction of different sections of the manifold.
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Figure 2. An example of manifold reconstruction

Using lags to reconstruct a manifold is a delay embedding or lagged coordinate
embedding approach to state-space reconstruction, wherein E-length vectors of lags
on X define points on MX and the quality of the reconstruction is evaluated by the
correlation ρ between out-of-sample observed and predicted values (the hallmark of
deterministic systems is prediction). The measure ρ reflects the extent to which the
underlying system can be recovered by a deterministic manifold reconstructed as MX .
If the original D-dimensional manifold M is properly unfolded as MX in E-space, then
predictive ability ρ will be maximized, and thus ρ across different values of E (that is,
different numbers of lags for the embedding) can be used to infer about the underlying
system M .

This general approach to reconstructing M with MX is a useful method for many
reasons, including the following: 1) no additional variables beyond X may be needed to
capture the dynamics of the entire system; 2) it is unnecessary to control for determin-
istically coupled unmeasured variables; and 3) no assumptions are made about linearity,
stability, or equilibrium (see Glaser, Ye, and Sugihara [2013]).

The edm package takes this approach using three procedures: simplex projection,
S-mapping, and convergent cross-mapping (CCM). Simplex projection and S-maps are
typically used in an exploratory, diagnostic fashion to characterize the system producing
observed time series or panel data (Sugihara and May 1990; Sugihara 1994), whereas
CCM is used to evaluate causal effects among variables (Sugihara et al. 2012). We explain
each of these in turn, which can be supplemented by the videos noted previously and
the brief introductory article by Chang, Ushio, and Hsieh (2017).

2.1 Simplex projection

Simplex projection is a method for investigating the dimension of M and the extent
to which a system appears to behave deterministically (Sugihara and May 1990). Even
if data appear to be stochastic using typical methods, such as autocorrelation, simplex
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projection can help show if they are driven by deterministic processes causing chaotic
behavior that can masquerade as stochastic. This is done by forming an E-dimensional
reconstructed attractor manifold MX and assessing its characteristics. To reconstruct
M as MX , E lags of X are used to build an E-length vector of data that forms a
single point on MX (that is, an embedding), which is done for each t ≥ E. In our
approach, a random 50/50 split of the E-length vectors is used to first form a library
of training data to build MX by default. Note that this is a random split of vectors
in the reconstructed manifold rather than the original time-series data. This approach
avoids the possible problem of creating additional gaps in the original time-series data.
The library of training data therefore becomes a randomly determined set of E-length
vectors of lags on X that form points on a reconstructed E-dimensional manifold MX .

The other half of the data form a “prediction” or test and validation set, which
contains E-length target vectors falling somewhere on MX . Information in the recon-
structed manifoldMX can then be used to predict the future of each target. Specifically,
for each target xt in the prediction set, the k = E + 1 nearest neighbors (xt1 , . . . ,xtk)
on MX from the library set are found by Euclidean distances. These k neighbors form
a simplex on MX that is meant to enclose the target xt in E-space. The simplex of
neighbors enclosing the target is then projected into the future (x(t+1)1

, . . . ,x(t+1)k
) to

compute a weighted mean that predicts the future value of the target xt+1.

A weight wi associated with each neighbor i is determined by the Euclidean distance
of the target to each neighbor and a distance decay parameter θ. Specifically, the weight
wi can be written as

wi =
ui∑k
j=1 uj

where

ui = exp

(
−θ ‖xt − xti‖

‖xt − xt1‖

)
and the Euclidean distance measure is denoted ‖·‖, and xt1 is the nearest neighbor in
the manifold (that is, the most similar historical trajectory to the target). When θ = 0,
the distances are ignored and all neighbors are weighted equally. As θ increases, the
weight of nearby neighbors increases to represent more local states onMX (that is, more
similar historical trajectories on X). By default, θ = 1 to reflect greater weighting of
nearer neighbors and, thus, state-dependent evolution on the manifoldM . Furthermore,
in simplex projection, θ is typically not varied and, instead, is merely fixed to 1 for all
analyses. The current version of edm assumes the variables used in the mapping are
continuously distributed, but future versions will include updated algorithms to better
suit alternative distributions (for example, dichotomous variables).

The quality of predictions is evaluated by the correlation ρ of the future realizations
of the targets in the prediction set with the weighted means of the projected simplexes.
The mean absolute error (MAE) of the predictions, a measure that focuses more on the
absolute gap between observed and predicted data instead of the overall variations like
ρ, can also be used as a complement to ρ with the inverse property (that is, higher
value indicates poorer prediction) and will range between 0 and 1 when variables are
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prestandardized (we implement a special z. prefix for this as noted below). When ρ and
MAE disagree, some authors have recommended using the lower of the two embedding
dimensions E (Glaser et al. 2011), but this often occurs only with noisy data, including
shorter time series where ρ may be more sensitive to outliers and thus MAE can be used
(Deyle et al. 2013, S1). A familiar term ρ2 may also be used as a type of coefficient of
determination (akin to R2). Whatever the measure of prediction accuracy, by default
predictions are out-of-sample because the data used to reconstruct a manifold and make
predictions is unshared with the data being predicted (Sugihara and May 1990; Sugihara
1994; Sugihara et al. 2012; Ye et al. 2016).

To simplify prediction, only the first observation in each target vector’s future re-
alization (at t + 1) is used for ρ and MAE (rather than, for example, a multivariate
correlation using the entire set of E observations). The resulting ρ and MAE offer in-
sight into how well the reconstructed manifold MX makes out-of-sample predictions of
the future. When the original manifold M is properly unfolded in E-space as MX ,
the neighbors of a target point on MX will provide information about the future of the
target (Deyle and Sugihara 2011), meaning ρ > 0 at a given E.

To infer about the underlying system (for example, its dimensionality D), ρ and
MAE are evaluated at different values of E, and the functional form of the ρ –E and
MAE–E relationships can be used to infer about the extent to which the system appears
to be deterministic within the studied time frame (Sugihara and May 1990). Unlike
typical regression methods, increasing the dimensionality of a reconstructed manifold by
adding additional lags (that is, larger E) will hurt predictions when this adds extraneous
information, thus making maximum ρ and minimum MAE useful for choosing E. In
low-dimensional systems, adding additional lags by increasing E will add extraneous
information that hurts predictions so that ρ is maximized at a moderate E and falls as
E increases. In high-dimensional or stochastic systems with autocorrelation, this will
not be the case, and ρ may increase with E or appear to approach an asymptote as E
increases, which is why the E–ρ and E–MAE relationship is diagnostically useful.

Ideally, a system can be described by fewer than 10 factors (dimensions), such that
prediction is maximized when E < 10. In this case, the system may be considered
low-dimensional and deterministic to the extent that predictive accuracy is high (for
example, ρ > 0.7 or 0.8). In other words, deterministic low-dimensional systems should
make good predictions that are maximized when E is relatively small. If prediction
continues to improve or improves and then stabilizes as E increases, the system may be
tentatively considered stochastic. This may be due to either stochasticity with autocor-
relation (for example, an autoregressive process) or high-dimensional determinism that,
practically speaking, may be treated as stochastic. To describe such systems parsimo-
niously, an E may be chosen that does not lose too much information compared with
an E that maximizes predictions (for example, by hypothesis tests we describe later),
because “it is also important not to overfit the model, and in some cases it may be
prudent to choose a smaller embedding dimension that has moderately lower predictive
power than a higher dimensional model. . .We do this both to prevent overfitting the
model, and to retain a longer time series” (Clark et al. 2015, s3–s16).
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Finally, this general approach can also be made multivariate by including additional
observations from different variables in each embedding vector (see Deyle et al. [2013,
2016a,b], Deyle and Sugihara [2011], and Dixon, Milicich, and Sugihara [1999, 2001]).
This is useful when an attractor manifold cannot be fully reconstructed with a single
variable, such as with external forces stochastically acting on a system (Stark 1999;
Stark et al. 2003). In such a case, simplex projection can be conducted by adding
additional variables to the embedding and testing for improved predictive ability—with
special considerations for producing similar prediction conditions noted in the work
cited here, specifically by using the same number of nearest neighbors when including
versus excluding the additional variable in the lagged embedding. Conveniently, if an
additional variable participates in an alternative deterministic system, then only a single
observation from the alternative system may need to be included in the embedding. If
prediction does not improve, then no new information is being provided by the additional
variable (as Takens’s theorem implies for coupled deterministic systems). Notably, in
any multiple-variable case, standardizing the variables helps ensure an equal weighting
for all variables in the embedding (for example, using z scores).

2.2 S-maps

S-maps or “sequential locally weighted global linear maps” are tools for evaluating
whether a system evolves in linear or nonlinear ways over time (Sugihara 1994; Hsieh,
Anderson, and Sugihara 2008). This is useful because linear stochastic systems such
as vector autoregressions (VARs) can be predictable because of autocorrelation, which
would appear as a high-dimensional system with ρ > 0 using simplex projection. There-
fore, a tool is needed to evaluate whether the system is actually predictable because of
deterministic nonlinearity, even if it is high-dimensional. S-maps function as this tool.

A nonlinear system evolves in state-dependent ways, such that its current state
influences its trajectory on a manifold M (that is, an unstable process). Conversely,
linearity exists if the trajectory on M is invariant with respect to a system’s current
state (as assumed in typical VAR and dissipative particle dynamics models). This is
evaluated by taking the E chosen from simplex projection and estimating a type of
autoregression that varies the weight of nearby observations (in terms of system states
rather than time) with a distance decay parameter θ as in simplex projection.

Although we use the term “autoregression”, we are not describing a time-series or
panel-data model equation, and instead, the S-map procedure should be interpreted as
reconstructing and interrogating a manifold (rather than modeling a series of predictor
variables). As with simplex projection, S-maps use a 50/50 split of data into library and
prediction sets of E-length embedding vectors by default. The library set represents a
reconstructed manifold MX , and the k nearest neighbors on the manifold in the library
set are used to predict the future of each target vector in the prediction set. For S-maps,
each of the k neighboring library vectors has E elements that can be thought of as akin
to predictors—consider k rows of data with E columns of predictor variables—such that
the predictor set includes k neighbors at E occasions t, t − τ , . . ., t − (E − 1)τ . With
a constant term c included by default, this is similar to a local regression with E + 1
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predictors and k observations, where E + 1 coefficients are computed to predict each
target in the prediction set. Unlike simplex projection (where the number of neighbors
k = E + 1), in S-maps, k is often chosen to include the entire library of points on MX

(that is, the entire reconstructed manifold).

Numerically, the predicted value y at point t (from the prediction set) is calculated
as

ŷt =

E∑
j=0

Ct(j)xt(j)

The coefficient vector Ct can be calculated using singular value decomposition in the
form B = AC, where B is a k-dimensional vector of the weighted future value for
all the neighboring points and A is a weight matrix of the k neighboring points from
the library set (that will contain both past and future values from the original time
series used to form the randomly determined library used to reconstruct the manifold
as MX), as well as the constant term (Sugihara 1994). Mathematically, Bi = wiyi and
Ai = wixi. The weight wi in S-map is defined as

wi = exp

(
−θ ‖xt − xi‖

1
k

∑k
j=1 ‖xt − xj‖

)
When θ = 0 in the weight function, there is no differential weighting of neighbors on
MX , so in the univariate case the S-map is simply an E-order autoregression with a
random 50/50 split of training versus prediction data (that is, the mapping is global
rather than local). However, as the weight θ increases, predictions become more sensitive
to the nonlinear behavior of a system by increasing the weight on nearby neighbors to
make predictions. In other words, predictions become more state-dependent by using
more information from historical trajectories on MX that are more similar to targets
in a prediction set. If a system evolves in state-dependent ways, more information from
nearby neighbors should increase predictive ability.

Again, using ρ and MAE, and looking at the functional form of the ρ–θ and MAE–θ
relationships, the nature of a system can be evaluated. If state-dependence is observed
in the form of larger ρ and smaller MAE when θ > 0, then EDM tools can be used to
model the nonlinear dynamic behavior of the system. If nonlinearity is not observed,
EDM tools can still be used to evaluate causal relationships in a nonparametric fashion
by using CCM (although CCM may be less efficient than more traditional methods in
this case). Here again, S-maps may be useful diagnostically because a linear stochastic
system with autocorrelation should show optimal predictions when θ = 0, if for no other
reason than increasing local weighting because θ > 0 may increase sensitivity to local
noise.

As with simplex projection, S-mapping can also be done in a multivariate fashion
(see Deyle et al. [2013], Deyle et al. [2016a], Deyle et al. [2016b], and Dixon, Milicich,
and Sugihara [1999, 2001]). Here the interest is in determining whether additional infor-
mation about a system is contained in other variables because of external forces acting
on the system, and tests for improved predictions are possible to evaluate this (with in-
formation on how to conduct and interpret such tests described in the work just cited).
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In the multivariate case, S-maps are more similar to autoregressive-distributed lag or
dissipative particle dynamics models, but strictly only when θ = 0. As θ increases, it
becomes a more local regression wherein neighbors are identified and predictions increas-
ingly rely on the local information in a reconstructed manifold. Again, standardization
can help ensure an equal weighting for the different variables in the model, but remem-
ber that the S-map is not a traditional regression model, and instead, is a reconstructed
attractor manifold MX .

2.3 CCM

CCM is a nonparametric method for evaluating causal association among variables, even
if they take part in nonlinear dynamic systems (Sugihara et al. 2012). This method is
based on the fact that if X is a deterministic driver of Y , or X → Y , then the states of
Y must contain information that can contribute to recovering or “cross-mapping” the
states of X (Schiff et al. 1996). This method is an extension of simplex projection, such
that an attractor manifold M is reconstructed using one variable and this is used to
predict a different variable. If variables share an attractor manifold M , then predictions
can be made using the reconstructed manifold.

To elaborate, CCM is based on the fact that if variables X and Y participate in the
same dynamic system with manifold M , then reconstructed manifolds MX and MY

can be mapped to each other. In turn, it is possible to test whether X and Y share
information about a common dynamic system, and it is possible to test the extent to
which the variables causally influence each other in a directional sense (that is, X → Y
and Y → X). This is based on a counterintuitive fact: if X → Y in a causal sense,
then historical information about X is contained in Y and thus it is possible to use MY

to predict X via simplex projection (see Sugihara et al. [2012]), which we symbolize as
X|MY .

This is counterintuitive because in typical time-series or panel-data methods, causes
are used to explain or predict outcomes rather than the reverse. However, in CCM,
the outcome Y cross-maps or “xmaps” the causal variable X, with a shadow manifold
MY predicting X (that is, X̂ = X|MY , which heuristically can be read left to right as
implying a potential X → Y effect). The outcome is used to predict the causal variable
because searching for causes requires starting with an outcome and seeing if its dynamic
structure MY carries the signature of a cause X (Schiff et al. 1996). Counterintuitively,

even if X → Y causality exists (that is, X̂ = X|MY works well), if Y does not cause
X, then MX will function poorly when predicting Y because MX will be a function of
variables other than Y (that is, Ŷ = Y |MX will not work well; Sugihara et al. 2012).

The term “convergent” in CCM describes the criterion by which causality is assessed.
This term reflects that if X → Y causality exists then prediction accuracy (for exam-

ple, a correlation ρ among X and X̂) will improve as the library size L of points on
MY increases. Larger libraries improve predictions in this case because they make
the manifold MY denser, and therefore nearest neighbors become nearer, which im-
proves predictions if causal information exists in the local manifold (Sugihara et al.
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2012). However, if X–Y associations are merely statistical, then increasing L should
not improve prediction accuracy because denser manifolds will not provide additional
predictive information. In sum, if X → Y causality exists, then MY will cross-map
X in the form of prediction accuracy for X|MY , and also, as the number of points L
on MY increases, prediction accuracy will improve—as tested and graphed via L–ρ (or
L–MAE) relationships (see Ye et al. [2015b]).

2.4 Missing data and sample-size considerations

Missing data are currently treated in a way that may aid in a general understanding of
EDM. Currently, missing data are by default dealt with using a deletion method, such
that a single missing datum causes up to E missing points on a reconstructed manifold
MX . Consider a dataset wherein the t = 10 observation on X is missing. In this case,
with E = 3, the embedding vectors at times 8, 9, and 10 will all contain the missing
datum (for example, when t = 8, the missing datum takes on the last element in the
embedding vector; when t = 10, the missing datum takes on the first element in the
embedding vector). Deletion of all E = 3 embedding vectors (that is, points on MX)
is done because finding nearest neighbors and estimating S-map coefficients requires
information in all three dimensions.

Thus, because the manifold exists in E dimensions, any points on the manifold that
would include a missing datum cannot be used for computations. Therefore, similar to
time-series and panel-data models with lagged regressors wherein the lag order dictates
the amount of information lost in the regression, current EDM implementations lose
information as a function of E and, of course, the missing-data patterns. Optimally,
missing-data rates are low and missing data are missing adjacently in time rather than
spread throughout a dataset.

In cases where significant missing values are present, appropriate imputations could
help the reconstruction of the manifold as shown in van Dijk et al. (2018). However,
we caution the reader to carefully consider typical multiple-imputation or interpolation
methods for missing data. The problem with imputation is that typical methods are
not sensitive to the nonlinear dynamics that EDM is meant to allow studying. When
linear associations are assumed or parametric nonlinear approaches are used, then this
can obscure a dynamic signal. The study of how to impute missing values in nonlinear
dynamic systems is beyond the scope of our article, but the reader should know that it
is not trivial and we are considering various options.2

2. Future versions of the edm program will implement two methods: 1) a method that fixes distances
for missing values based on an estimated expected distance so that missing values do not require
deleting any observed data (an allowmissing option); and 2) a method that concatenates all
available data so that none is deleted, and then includes the patterns of the missingness as part
of the dynamics (a dt option). Notably, this second method may be used when time is measured
continuously, causing uneven intervals between occasions of measurement (hence, the dt term).
Because the work is still in progress, this is not discussed within this article.
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Many readers may next be considering required sample sizes for EDM analysis. There
is no simple cutoff in terms of sample size, but one assumption for EDM is that a dynamic
system of interest has been observed across a relevant range of its states over time, by
which we mean it has evolved through relevant regions of its state space over time.
Preferably, the system will have been observed evolving through these locations more
than once to help in the process of determining its proper dimensionality during simplex
projection and maximizing predictability in CCM (see Sugihara et al. [2012] and Ye et al.
[2015b]). For example, if a system tends to dynamically fluctuate over a 10-year period
in terms of some substantive phenomena of interest, then measuring the system over
at least a period of 10 years and preferably 20 with adequate resolution would be
needed to capture its dynamic behavior patterns—this can be understood as a typical
concern about generalizability when considering sampling issues. When describing the
edm command options in the following section, we note that using the full dataset for
manifold reconstruction and predictions (rather than a 50/50 split) may be useful for
smaller datasets.

3 Syntax

The edm command implements a series of tools that can be used for EDM in Stata.
The core algorithm is written in Mata to achieve reasonable execution speed—although
due to nearest-neighbor search and distance computations, the program slows down
considerably as sample sizes increase beyond a few thousand. The command keyword,
edm, should be immediately followed by one of the main subcommands explore or xmap.
A dataset must be declared as time series or panel data by the tsset or xtset command
prior to using the edm command, and time-series operators including l., f., d., and
s. can be used (the last for seasonal-differencing). Standardizing variables used in the
main analysis can also be done with the prefix z., which uses z scores for analysis
instead of the original variable. When combined with time-series operators such as
first-differencing with z.d. (the z. must appear first), the z scores are computed after
the first-differencing.

The first main subcommand, explore, follows the syntax below and supports one
main variable for exploration using simplex projection or S-mapping. In the case of mul-
tivariate embedding, the option extraembed(), or simply extra(), can be used. A mul-
tivariate embedding is constructed as follows: the main variable forms an E-dimensional
lagged embedding starting at t, and a single observation at t from the additional vari-
ables are added as the last elements in the embedding (in S-maps this will mean the
last columns of data in the regression will belong to the additional variables).
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edm explore varlist
[
if
] [

, e(numlist) tau(integer) theta(numlist) k(integer)

algorithm(string) replicate(integer) dot(integer) tp(integer) seed(integer)

predict(varname) copredict(varname) copredictvar(varlist)

crossfold(integer) ci(integer) extraembed(varlist) allowmissing

missingdistance(real) dt dtweight(real) dtsave(varname) details full

force reportrawe
]

The second main subcommand, xmap, performs CCM and follows the syntax below.
It requires a varlist of two variables to follow immediately after xmap. It shares many of
the same options with the explore subcommand, although there are some differences
given the different purpose of the analysis.

edm xmap varlist
[
if
] [

, e(integer) tau(integer) theta(real) library(numlist)

k(integer) algorithm(string) replicate(integer) dot(integer) tp(integer)

direction(string) seed(integer) predict(varname) copredict(varname)

copredictvar(varlist) ci(integer) extraembed(varlist) allowmissing

missingdistance(real) dt dtweight(real) dtsave(varname) oneway details

force savesmap(string)
]

Both main subcommands support the if qualifier. The options are detailed in the
next section, and additional options will be introduced while the package is under active
development.

Additionally, the edm command has the utility subcommands version and update,
with syntax as follows:

edm version

edm update
[
, develop replace

]
edm version reports the current version number.

edm update allows the user to update the ado-file. The update subcommand sup-
ports the options develop and replace. develop updates the command to its latest
development version. The development version usually contains more features but may
be less tested compared with the version available through the Statistical Software Com-
ponents Archive. replace allows the update to override your local ado-files. Together,
these allow the user to update the edm program to the latest development version by
running edm update, develop replace.
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3.1 Options

e(numlist) specifies in ascending order the number of dimensions E used for the main
variable in the manifold reconstruction. If a list of numbers is provided, the command
will compute results for all numbers specified. The xmap subcommand only supports
a single integer as the option, whereas the explore subcommand supports a numlist.
The default is e(2), but in theory E can range from 2 to almost half of the total
sample size. The actual E used in the estimation may be different if additional
variables are incorporated. An error message occurs if the specified value is out of
range. Missing data will limit the maximum E under the default deletion method.

tau(integer) allows researchers to specify the time delay, which essentially sorts the
data by the multiple τ . This is done by specifying lagged embeddings that take the
form t, t − τ , . . . , t − (E − 1)τ , where the default is tau(1) (that is, typical lags).
However, if tau(2) is set, then every other t is used to reconstruct the attractor
and make predictions—this does not halve the observed sample size because both
odd and even t would be used to construct the set of embedding vectors for analysis.
This option is helpful when data are oversampled (that is, spaced too closely in time)
and therefore very little new information about a dynamic system is added at each
occasion. The tau() setting is also useful if different dynamics occur at different
time scales and can be chosen to reflect a researcher’s theory-driven interest in a
specific time scale (for example, daily instead of hourly). Researchers can evaluate
whether τ > 1 is required by checking for large autocorrelations in the observed data
(for example, using Stata’s corrgram command). Of course, such a linear measure
of association may not work well in nonlinear systems, and thus researchers can also
check performance by examining ρ and MAE at different values of τ .

theta(numlist) specifies in ascending order the distance weighting parameter for the
local neighbors in the manifold. It is used to detect the nonlinearity of the system
in the explore subcommand for S-mapping. Of course, as noted above, for sim-
plex projection and CCM, a weight of theta(1) is applied to neighbors based on
their distance, which is reflected in the default of theta(1). However, this can be
altered even for simplex projection or CCM (two cases that we do not cover here).
Particularly, values for S-mapping to test for improved predictions as they become
more local may include the following option: theta(0 .00001 .0001 .001 .005

.01 .05 .1 .5 1 1.5 2 3 4 6 8 10).

library(numlist) is only available with the xmap subcommand. library() specifies in
ascending order the total library size L used for the manifold reconstruction. Varying
the library size is used to estimate the convergence property of the cross-mapping,
with a minimum value Lmin = E + 2 and the maximum equal to the total number
of observations minus sufficient lags (for example, in the time-series case without
missing data, this is Lmax = T + 1 − E). An error message is given if the L value
is beyond the allowed range. To assess the rate of convergence (that is, the rate at
which ρ increases as L grows), the full range of library sizes at small values of L
can be used, such as if E = 2 and T = 100, with the setting then perhaps being
library(4(1)25 30(5)50 54(15)99).
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k(integer) specifies the number of neighbors used for prediction. When set to k(1), only
the nearest neighbor is used. As k increases, the next-closest nearest neighbors are
included for making predictions. In the case of k(0), the default value, the number
of neighbors used is calculated automatically (typically as k = E + 1 to form a
simplex around a target). When k < 0 (for example, k(-1)), all possible points in
the prediction set are used (that is, all points in the library are used to reconstruct
the manifold and predict target vectors). This latter setting is useful and typically
recommended for S-mapping because it allows all points in the library to be used
for predictions with the weightings in theta(). However, with large datasets this
may be computationally burdensome, and therefore k(100) or perhaps k(500) may
be preferred if T or NT is large.

algorithm(string) specifies the algorithm used for prediction. By default, simplex
projection (a locally weighted average) is used. Valid options include simplex and
smap, the latter of which is a sequential locally weighted global linear mapping
(S-map). With the xmap subcommand, where two variables predict each other,
algorithm(smap) invokes something analogous to a distributed lag model with E+1
predictors (including a constant term c) and, thus, E+1 locally weighted coefficients
for each predicted observation/target vector—because each predicted observation
has its own type of regression done with k neighbors as rows and E + 1 coefficients
as columns. As noted below, special options are available to save these coefficients
for postprocessing, but again, it is not actually a regression model and instead should
be seen as a manifold.

replicate(integer) specifies the number of repeats for estimation. The explore sub-
command uses a random 50/50 split for simplex projection and S-maps, whereas the
xmap subcommand selects the observations randomly for library construction if the
size of the library L is smaller than the size of all available observations. In these
cases, results may be different in each run because the embedding vectors (that is,
the E-dimensional points) used to reconstruct a manifold are chosen at random. The
replicate() option takes advantage of this to allow repeating the randomization
process and calculating results each time. This is akin to a nonparametric bootstrap
without replacement and is commonly used for inference using confidence intervals
(CIs) in EDM (Tsonis et al. 2015; van Nes et al. 2015; Ye et al. 2015b). When, for
example, replicate(50) is specified, mean values and the standard deviations of
the results are reported across the 50 runs by default. As we note below, it is pos-
sible to save all estimates for postprocessing using typical Stata commands, such as
allowing the graphing of results with the svmat command or finding percentile-based
measures with the pctile command.

dot(integer) controls the appearance of the progress bar when the replicate() or
crossfold() option is specified. The default is dot(1) or one dot for each completed
cross-mapping estimation. dot(0) removes the progress bar.

tp(integer) adjusts the default forward-prediction period. By default, the explore

mode uses tp(1) and the xmap mode uses tp(0). To show results for predictions
made two periods into the future, for example, use tp(2).
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direction(string) is only available with the xmap subcommand. direction() allows
users to control whether the cross-mapping is calculated bidirectionally or unidi-
rectionally (which reduces computation times if bidirectional mappings are not re-
quired). Valid options include oneway and both, the latter of which is the default
and computes both possible cross-mappings. When oneway is chosen, the first vari-
able listed after the xmap subcommand is treated as the potential dependent vari-
able, so edm xmap x y, direction(oneway) produces the cross-mapping Y |MX ,
which pertains to a Y → X effect. This is consistent with the beta1 coefficients
from the savesmap(beta) option. On this point, the direction(oneway) option
may be especially useful when an initial edm xmap x y procedure shows convergence
only for a cross-mapping Y |MX , which pertains to a Y → X effect. To save time
with large datasets, any follow-up analyses with the algorithm(smap) option can
then be conducted with edm xmap x y, algorithm(smap) savesmap(beta) di-

rection(oneway). To make this easier, there is also a simplified oneway option that
implies direction(oneway).

seed(integer) specifies the random-number seed for reproducibility.

predict(varname) allows saving the internal predicted values as a variable, which could
be useful for plotting and diagnostics as well as forecasting.

copredict(varname) allows you to save the coprediction result as a variable. You must
specify the copredictvar(varlist) option for this to work.

copredictvar(varlist) is used together with the copredict() option and specifies the
variables used for coprediction. The number of variables must match the main
variables specified.

crossfold(integer) asks the program to run a cross-fold validation of the predicted
variables. crossfold(5) indicates a 5-fold cross validation. Note that this cannot
be used together with replicate(). This option is only available with the explore
subcommand.

ci(integer) reports the CI for the mean of the estimates (MAE and ρ), as well as the
percentiles of their distribution when used with replicate() or crossfold(). The
first row of output labeled Est. mean CI reports the estimated CI of the mean
ρ, assuming that ρ has a normal distribution—estimated as the corrected sample
standard deviation (with N − 1 in the denominator) divided by the square root of
the number of replications. The reported range can be used to compare mean ρ
across different (hyper) parameter values (for example, different E, θ, or L) using
the same datasets as if the sample were the entire population (such that uncertainty
is reduced to 0 when the number of replications → ∞). These intervals can be used
to test which (hyper) parameter values best describe a sample, as might be typical
when using cross-fold validation methods. The row labeled with Pc (Est.) follows
the same normality assumption and reports the estimated percentile values based
on the corrected sample standard deviation of the replicated estimates. The row
labeled Pc (Obs.) reports the actual observed percentile values from the replicated
estimates. In both Pc (Est.) and Pc (Obs.), the percentile values offer alternative
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metrics for comparisons across distributions, which would be more useful for testing
typical hypotheses about population differences in estimates across different (hyper)
parameter values (for example, different E, θ, or L), such as testing whether a
dynamic system appears to be nonlinear in a population (that is, testing whether ρ
is maximized when θ > 0).

The number specified within the ci() bracket determines the confidence level and
the locations of the percentile cutoffs. For example, ci(90) instructs edm to return
90% CIs as well as the cutoff values for the 5th and 95th percentile values (because ρ
and MAE values cannot or are not expected to take on negative values, we typically
prefer one-tailed hypothesis tests and therefore would use ci(90) to get a one-tailed
95% interval). These estimated ranges are also included in the e() return list as
a series of scalars with names starting with ub for upper bound and lb for lower
bound values of the CIs. These return values can be used for further postprocessing.

extraembed(varlist) allows incorporating additional variables in the embedding (that
is, a multivariate embedding), for example, extraembed(z l.z) for the variable z

and its first lag l.z. The special prefix for standardization, z., also works here.

allowmissing allows observations with missing values to be used in the manifold. Vec-
tors with at least one nonmissing value will be used in the manifold construction.
When allowmissing is specified, distance computations are adapted to allow miss-
ing values.

missingdistance(real) allows users to specify the assumed distance between missing
values and any values (including missing) when estimating the Euclidean distance
of the vector. This enables computations with missing values. missingdistance()
implies allowmissing. By default, the distance is set to the expected distance of
two random draws in a normal distribution, which equals 2/

√
π×standard deviation

of the mapping variable.

dt allows automatic inclusion of timestamp-differencing in the embedding. Generally,
there will be E − 1 dt variables included for an embedding with E dimensions. By
default, the weights used for these additional variables equal the standard deviation
of the main mapping variable divided by the standard deviation of the time differ-
ence. This can be overridden by the dtweight() option. The dt option will be
ignored when running with data with no sampling variation in the time lags.

dtweight(real) specifies the weight used for the timestamp-differencing variable.

dtsave(varname) allows users to save the internally generated timestamp-differencing
variable.

oneway is equivalent to the direction(oneway) option and is also available only with
the xmap subcommand.

details asks the program to report the results for all replications instead of a summary
table with mean values and standard deviations when the replicate() or cross-
fold() option is specified. Irrespective of using this option, all results can be saved
for postprocessing.
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full is available only with the explore subcommand. full asks the program to use all
possible observations in the manifold construction instead of the default 50/50 split.
This is effectively the same as leave-one-out cross-validation because the observation
itself is not used for the prediction. This may be useful with small samples (for ex-
ample, T < 50), where a random split would result in a manifold with an insufficient
number of data points (neighbors) used for calculations when conducting a search
for optimal up to roughly 20. Sample-size considerations, however, extend beyond
this and include whether data contain runs of repeated values that offer no unique
information for prediction. Furthermore, as noted previously, one assumption for
EDM is that a system has been observed across a relevant range of locations in its
state space over time (and preferably, the system will have evolved through these
locations more than once). When in doubt, use the full option to take advantage
of all information available in a dataset for manifold reconstruction and prediction.

force asks the program to try to continue even if the required number of unique neigh-
boring observations is not sufficient given the default or user-specified k(), such as
when there are many repeated values that must be excluded. This is a common
case in past research, where E-length runs of zeros have been excluded by default
because they add no unique information (see Deyle et al. [2016a]).

reportrawe is available only with the explore subcommand. reportrawe asks the
program to report the number of dimensions constructed from the main variable
that is associated with the requested e(). By default, the program reports the
actual E used to reconstruct the manifold, which will include any variables used
with the extraembed() option.

savesmap(string) is available only with the xmap subcommand. savesmap() allows
S-map coefficients to be stored in variables with a specified prefix. For example,
specifying savesmap(beta) will create a set of new variables with the prefix beta,
such as beta1 b0 rep1. The specified prefix must not be shared with any variables
in the dataset, and the option is valid only if the algorithm(smap) option is also
specified.

In the newly created variables, the first number immediately after the prefix is 1

or 2 and indicates which of the two listed variables is treated as the dependent
variable in the cross-mapping (that is, it indicates the direction of the mapping). If
the command is, for example, edm xmap x y, algorithm(smap) savesmap(beta)

k(-1), then variables starting with beta1 contain coefficients derived from the
manifold MX created using the lags of the first variable x to predict Y , or Y |MX .
This set of variables, therefore, store the coefficients related to x as an outcome
rather than a predictor in CCM. Any Y → X effect associated with the beta1

prefix is shown as Y |MX , because the outcome is used to cross-map the predictor,
and thus the reported coefficients will be scaled in the opposite direction of a typical
regression (because in CCM, the outcome variable predicts the cause).

Variables starting with beta2 in the above example store the coefficients (which
will be locally weighted) estimated in the other direction, where the second listed
variable y is used for the manifold reconstruction MY for the mapping X|MY ,
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testing the opposite X → Y effect in CCM but with reported S-map coefficients
that map to a Y → X regression. This may be unintuitive, but because CCM

causation is tested by predicting the causal variable with the outcome, to get more
familiar regression coefficients requires reversing CCM’s causal direction to a more
typical predictor outcome regression logic. This can be clarified by reverting to the
conditional notation, such as X|MY , which in CCM implies a left to right X → Y
effect, but for the S-map coefficients will be scaled as a locally weighted regression
in the opposite direction, Y → X.

Following the beta1 or beta2 is the letter b and a number. The numerical labeling
scheme follows the order of the lag for the main variable and then the order of the
extra variables introduced in the case of multivariate embedding. b0 is a special case
that records the coefficient of the constant term in the regression.

The final term, rep1, indicates that the coefficients are from the first round of repli-
cation (if the replicate() option is not used, then there is only one round). Finally,
the coefficients are saved to match the observation t in the dataset that is being pre-
dicted, which allows plotting each of the E estimated coefficients against time and
the values of the variable being predicted. The variables are also automatically
labeled for clarity.

4 Output and stored results

Typical output from using the explore subcommand is shown below.

. edm explore x

Empirical Dynamic Modelling
Univariate mapping with x and its lag values

Actual E theta rho MAE

2 1 .99908 .0071967

Note: Number of neighbours (k) is set to E+1
Note: Random 50/50 split for training and validation data

The output includes the selected range of system dimensions E and θ values, and it
reports the corresponding mapping/prediction accuracies in the form of ρ (correlation
coefficient) and MAE. By prestandardizing the variables used, MAE can be understood
as the conceptual inverse of ρ (that is, 1−MAE), and these can then be plotted together.



238 The edm package for empirical dynamic modeling in Stata

Typical output from using the xmap subcommand is shown below.

. edm xmap x y

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables x and y

Mapping Library size rho MAE

y ~ y|M(x) 150 .23019 .19673
x ~ x|M(y) 150 .69682 .13714

Note: The embedding dimension E is 2

The output shows a table listing the direction of the mapping. The notation x ~
x|M(y) indicates a comparison between the observed x values and the predicted x values
using a manifold reconstructed from y. Recall that because of the counterintuitive
nature of CCM, a prediction X|MY allows testing for a causal effect in an X → Y
fashion. ρ and MAE are reported. By default, the maximum library size is used unless
the library() option is specified. Users should expect significant computation time
when a large library is used.

In addition to the table output, the edm command also stores the results in e() as
matrices for postprocessing. Notably, return matrices include the following:

e(explore result) stores the ρ and MAE values for each combination of the parameters
in the exploration mode.

e(xmap 1) and e(xmap 2) store the ρ and MAE values in the cross-mapping results, with
one matrix per direction of potential causality. The suffix of the matrix indicates
the direction of the implied causality. In the case of e(xmap 1), it stores the result
where the observed value of the first variable was considered as the dependent vari-
able; if the command edm xmap x y is used, this will be the mapping y ~ y|M(x)

pertaining to a Y → X effect (that is, the first listed variable is caused by the
second). Alternatively, the matrix e(xmap 2) contains the results associated with
the mapping x ~ x|M(y), which would pertain to an X → Y effect (that is, the
second listed variable is caused by the first). The numbering in the return matrix is
consistent with the saved coefficients in the savesmap() option, as well as the intent
of the direction(oneway) option, where the first listed variable is treated as an
outcome of the second (as in regress x y).

5 Examples

5.1 Creating a dynamic system

The logistic map has often been used to demonstrate a nonlinear dynamic system,
displaying regular periodic behavior as well as deterministic chaos (May 1976). This
particular system has been widely cited in EDM literature (see Perretti, Munch, and
Sugihara [2013], Ye and Sugihara [2016], and Mønster et al. [2017]). Here we create an
arbitrary dynamic system with two logistic maps coupled through linear coefficients to
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illustrate the use of the edm command. Our focus is mostly on the statistical properties
of the data and the EDM results for a model:

xt = xt−1 {3.79 (1− xt−1)− 0.00yt−1}
yt = yt−1 {3.79 (1− yt−1)− 0.20xt−1}

A logistic map is well known to exhibit chaotic patterns with a specific combination
of parameters (Jackson and Hübler 1990). The values in the equations were chosen
to exploit this property, creating a dynamic system. The two variables x and y both
depend on their own past values and are coupled with each other through the last term
of the equation. In this case, x is set to be determined by its own past values only, while
y is determined by past values of both y and x.

Figure 3 plots the values for x and y over time, when x1 and y1 are set to 0.2 and 0.3,
respectively. Observations with a t smaller than 300 were burned to allow the dynamics
to mature.3 The pairwise correlation coefficient between x and y is 0.15, and it is not
significant at the 0.05 level, giving the appearance of two unrelated variables. Indeed,
the plot from figure 3 shows that the variables could appear positively or negatively
correlated depending on the temporal window in which data were collected from the
system. This case mimics a potentially common scenario wherein “mirage correlations”
can exist in a dataset and, more importantly, causation can be inferred without the
presence of a linear correlation (which, using typical linear indices such as correlation
coefficients, would be missed).
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Figure 3. Plot of a nonlinear dynamic system

3. The code for reconstructing this dataset is available in the edm help file.
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5.2 Exploring the system’s dimensionality

The first step in EDM analysis is to establish the dimensionality of the system, which
can be understood as approximating the number of independent variables needed to
reconstruct the underlying attractor manifold M that defines the system (Sugihara and
May 1990; Sugihara et al. 2012). This is done by simplex projection with the explore

subcommand, using the range of dimensions specified in the e() option.

Using the explore subcommand, the data are randomly split into two halves,
wherein one half is used as the library (or training) dataset to construct the shadow
manifold MX , and the other half is the prediction (or test) dataset used to evaluate
the out-of-sample predictive ability of the projections on MX . The optimal E is often
selected based on the highest ρ or lowest MAE between the predicted and the observed
values (while also attempting to keep the model somewhat parsimonious). These two
measures generally agree, but if they do not, then the one indicating the lowest embed-
ding dimension E may be used (Glaser et al. 2011). In the case of small samples, MAE

may be preferred because it is less sensitive to outliers (Deyle et al. 2013).

In this example, we explore all dimensions between 2 and 10 using simplex projection
to identify the optimal E.4 Because the library set is randomly selected, we replicated
the method 50 times through the option replicate(50) to estimate the average per-
formances across the 50 runs. The command and the output are shown below.

. edm explore y, e(2/10) replicate(50)
Replication progress (50 in total)
.................................................. 50

Empirical Dynamic Modelling
Univariate mapping with y and its lag values

rho MAE
Actual E theta Mean Std. Dev. Mean Std. Dev.

2 1 .97818 .0087775 .033184 .0054952
3 1 .96243 .015995 .042502 .0063758
4 1 .94326 .019242 .051377 .0067221
5 1 .91181 .029522 .062658 .0086431
6 1 .87719 .043446 .072902 .010937
7 1 .8273 .053334 .085823 .011906
8 1 .77604 .055847 .099908 .012017
9 1 .73687 .060581 .1096 .011713

10 1 .7062 .061469 .11721 .010954

Note: Results from 50 runs
Note: Number of neighbours (k) is set to E+1
Note: Random 50/50 split for training and validation data

The standard deviations are bias-corrected, using N − 1 in the denominator. Note
that the reported standard deviation values are summary statistics instead of the stan-
dard error of the ρ and MAE estimates. The ci() option can be used to report the
estimated CIs for the mean value of ρ derived from multiple replications. The edm com-
mand can also be used in combination with the jackknife prefix for additional controls.

4. With large datasets, this can be extended to E = 20 or beyond.
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It is common to select the E value with the highest ρ or lowest MAE, because its re-
constructed manifold best matches the observed data (Sugihara et al. 2012; Ye et al.
2015b).

The results show that ρ drops and MAE increases as E increases. This suggests
that the optimal E is 2, which is the exact number of independent variables we used
to create the dynamic system. The result can also be plotted using the contents of the
stored e(explore result) matrix, as shown in figure 4. Also, hypothesis tests can be
performed on ρ and MAE at different values of E by using methods we describe below,
which may be useful for selecting E with an interest in maintaining model parsimony
(that is, smaller E) as is often done in autoregressions.
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Figure 4. ρ –E plot of variable y

5.3 Nonlinearity detection using S-map

We next evaluate the system for nonlinearity by using S-maps or “sequentially locally
weighted global linear maps” (Sugihara 1994; Hsieh, Anderson, and Sugihara 2008).
Linearity exists if the trajectory on a manifold M is invariant with respect to a system’s
current state, whereas nonlinearity exists if system evolution is state-dependent. This is
evaluated by taking the optimal E chosen from simplex projection and fitting a type of
regression model that varies the weight of nearby observations (in terms of system states
rather than time) with a distance decay parameter θ. Again, however, we emphasize that
it should not be interpreted as a typical regression model, but rather as a reconstructed
manifold.

When θ = 0 in the option theta(0), there is no differential weighting of neighbors
on MX , so the S-map reduces to a type of autoregressive model with a random 50/50
split of library versus prediction data. However, as θ increases, predictions become more
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sensitive to the nonlinear behavior of a system by drawing more heavily on nearby obser-
vations to make predictions. In other words, predictions become more state-dependent.
Again using ρ and MAE and forming ρ–θ and MAE–θ plots, the nonlinearity of the sys-
tem can be evaluated. If nonlinearity or state-dependence is observed in the form of
larger ρ and smaller MAE when θ > 0, EDM tools are needed to model system behavior.
If the system is linear, ρ would not increase as θ goes above zero. In this case, models
with linearity assumptions may also be appropriate such as, potentially, autoregressive
approaches.

Both the explore and xmap subcommands support S-mapping instead of simplex
projection for the local predictions. An example is given below to analyze the nonlinear-
ity of the variable y in the previous example. In this case, we explore possible θ values
between 0 and 5 with an increment of 0.01. Additionally, we include all observations
for the local prediction by specifying a negative number in the k() option. This allows
for more stable results with low E or in low data-density regions of MY .

. edm explore y, e(2) algorithm(smap) theta(0(0.01)5) k(-1)

(output omitted )

The result from the command above can also be plotted graphically using the return
matrix e(explore result) as shown in figure 5. The increase of ρ as θ increases is
consistent with the characteristics of a highly nonlinear system such as the logistic
map. As we show below, hypothesis tests of change in ρ or MAE can be done to test
for improvements in predictive ability when θ = 0 versus maximum ρ or minimum MAE

(that is, a test of ∆ρ or ∆MAE; Hsieh and Ohman [2006], Glaser, Ye, and Sugihara
[2013], Ye et al. [2015a]).

.7
.8

.9
1

ρ

0 1 2 3 4 5
θ

Figure 5. Nonlinearity diagnosis (ρ–θ plot) of variable y
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5.4 Causality detection using CCM

In the earlier steps, the analysis suggests that the optimal E for this example is 2,
which is what we expect given the data generation. We now use the xmap subcommand
to derive the bivariate (overall) causal effect between the variables x and y using the
previously observed E = 2 value. In most cases, we would recommend standardizing
variables to put them on the same scale, however, in this hypothetical example it is less
relevant.

In CCM, the causal link between variables is evaluated by predicting values of one
variable—the potential cause—using the reconstructed manifold of another—the poten-
tial outcome—which is based on Sugihara et al. (2012). In essence, this is a kind of
two-variable simplex projection wherein the library set is formed using one variable and
contemporaneous predictions are made for another variable. Using the predicted versus
observed values, ρ and MAE are calculated. It should be noted that bivariate cross-
mapping captures the overall causal effect, combining both the direct effect (X → Y )
and the possible indirect effects (X → Z → Y ).5

Simplex projection may show that different E values characterize different variables.
If this were the case, the E chosen for reconstructing a manifold can be used with the
direction(oneway) option to run separate CCM procedures for each variable. Then the
causal variable’s E can be used because its signal is being predicted by the outcome. For
example, if E = 2 for y but E = 4 for x, the following CCM could be run: edm xmap x

y, e(2) direction(oneway) for the Y |MX or Y → X case; or edm xmap y x, e(4)

direction(oneway) for the X|MY or X → Y case. Here the manifold reconstructed
by the first variable is used to predict the second, so the E from simplex projection
applies to the second variable listed.

The xmap subcommand facilitates CCM. An example is as follows:

. edm xmap x y, e(2)

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables x and y

Mapping Library size rho MAE

y ~ y|M(x) 150 .23019 .19673
x ~ x|M(y) 150 .69682 .13714

Note: The embedding dimension E is 2

Without specifying a value for library(), by default the entire dataset is used as
the library. In other words, all possible information from one variable is used to make
predictions of another. This will often be a useful first step in CCM because it is not
always easy to know beforehand what the maximum library size is (for example, in the
panel-data case with imbalanced data, etc.), and this value can then be manually added
later as the maximum library size when evaluating results across L. Furthermore, if CCM

5. It is possible to use EDM results to estimate the direct and the indirect causal effect when all
variables in the causal pathways are observed. See Leng et al. (2020) for details.
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at the maximum L shows no meaningful predictability, then the question of convergence
is moot. Specifically, if there is a causal X → Y relationship (that is, X|MY ), then we
expect meaningful predictions at maximum L and prediction should improve as more
data points are used in the library. To assess this, the library() option specifies the
range of the library sizes, and the replicate() option allows repeating the estimations
to show the impact of random sampling at the lower library lengths. When the specified
library size is smaller than the maximum available size, a random subsample is selected
for the manifold reconstruction and the replicate() option becomes possible.

The example below estimates ρ at library sizes between 5 and 150, and repeats the
process 10 times (taking a random draw to form the manifold 10 times at each library
size). Multiple repeats are used to ensure enough point estimates (number of repeats
for each step in library size) to clearly identify any trends in predictability ρ as the
library size increases, as well as differences in these trends between both directions for
the mappings (both x–y and y–x; see figure 6). For the maximum library size, this
replication process does not produce different results because all observations are used.
Because this maximum library size is the most computationally demanding, with large
datasets it may be prudent to separately run the xmap procedure at the maximum
library size only once, and then use the replicate() option at small library sizes only
to assess uncertainty.

. edm xmap x y, e(2) replicate(10) library(5/150)

(output omitted )

The detailed results are stored in two return matrices, e(xmap 1) and e(xmap 2),
which can be converted to variables for easy manipulations using Stata’s svmat com-
mand. Recall that e(xmap 1) treats the first-listed variable, x, as the outcome of the
second, y (that is, Y |MX), and e(xmap 2) treats the second-listed variable, y, as the
outcome of the first, x (that is, X|MY ). The example below stores the results and plots
the ρ –L convergence graph as in figure 6. Each plotted dot represents a point estimate,
and there are 10 estimates for each library size as specified by replicate(10). The local
polynomial smoothing lines show the general trend of the ρ values as the reconstructed
manifold gets denser (that is, as L increases).

. matrix c1= e(xmap_1)

. matrix c2= e(xmap_2)

. svmat c1, names(xy)

(output omitted )

. svmat c2, names(yx)

. label variable xy3 "y|M(x)"

. label variable yx3 "x|M(y)"
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. twoway (scatter xy3 xy2, mfcolor(%30) mlcolor(%30))
> (scatter yx3 yx2, mfcolor(%30) mlcolor(%30))
> (lpoly xy3 xy2)(lpoly yx3 yx2), xtitle(L) ytitle("{it:{&rho}}")
> legend(col(2))
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Figure 6. ρ –L convergence diagnosis

The ρ –L diagnosis figure suggests that the predicted x from the manifold constructed
from y (that is, x|My) consistently outperforms the reversed pair, suggesting the data
series y contains more information about x than the other way around. This indicates
that x CCM-causes y (that is, X → Y ), which matches the reality of the model wherein
y is caused by x but x is entirely determined by its lagged values rather than y. As
we now show, this and other hypotheses can be tested directly in various ways. Also
note that the results do not necessarily rule out the possibility of a bidirectional causal
relationship, especially when both predictions are similar and at a relatively high level.
In such a case, the relative difference in the prediction performances may be used to
determine the more dominant causal direction without precluding an inference of bidi-
rectional causality. When prediction performances from both directions are poor,6 it
is also reasonable to consider the possibility that the variables are causally indepen-
dent. Alternatively, when predictability is high for both variables but no convergence is
observed, then an exogenous third variable may potentially be driving both variables.

5.5 Hypothesis testing with CIs and null distributions

There are three primary ways to test hypotheses about causal effects and dominant
causal direction in our edm package that we treat here: jackknifing, multiple replications

6. While there is no strict cutoff value, the cross-mapping correlation (ρ) between two random variables
that are independent generally does not exceed 0.2.
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with the replicate() option (using the ci() option to enable automated reporting of
the CI for the mean ρ), and surrogate-data methods that use permutations on t to
form null distributions. The first two rely on the random selection of observations to
reconstruct a manifold, creating variation in results.

One way to estimate the standard error of the estimates due to the resampling
process is with the jackknife prefix, which generates estimates for ρ. A CCM example is
as follows:

. quietly jackknife: edm xmap x y, e(2)

. ereturn display

Jackknife
Coef. Std. Err. t P>|t| [95% Conf. Interval]

y|M(x) .2301938 .1681661 1.37 0.173 -.1021046 .5624921
x|M(y) .6968181 .0722177 9.65 0.000 .5541151 .8395212

This is particularly useful in CCM because it offers a CI around ρ at the maximum
library size, which is arguably the best estimate of ρ in CCM applications. The repli-
cate() option cannot do this because the full dataset is used to construct the library in
this case. Jackknifing can also be used for simplex projection and S-maps by using the
explore subcommand, but other methods are also available. For the jackknife, users
should fix E, L, and τ prior to the jackknife process because the results only contain
the last set of estimates in the jackknife mode (that is, common E, L, and τ). However,
this method does not evaluate convergence in CCM, which implies an increase in ρ as
the library size L increases.

To evaluate convergence for CCM at library sizes smaller than the maximum and
for any result from the explore subcommand, a second approach is possible using the
replicate() option because the edm program randomly forms the library that defines
a reconstructed manifold. Because ρ is expected to increase as L increases during
cross-mapping when causality is present, here we give an example testing whether the
mean prediction accuracy with a library size of 140 gives statistically significantly better
predictions compared with a library size of 10 (that is, a test of convergence).

We randomly sample the dataset 100 times using the replicate() option and test
whether the two ρ values stored in rho140 3 and rho10 3 are equal. As shown below,
a t test rejects the hypothesis that the mean value of the prediction strength when
L = 10 is the same as when L = 140, and in fact the mean ρ of 0.103 increases to
0.675 when increasing L to 140. This indicates that increasing the library size of the
reconstructed manifold improves prediction, which can be understood as rejecting a
null hypothesis of equivalent predictive ability at small and large library sizes, with an
alternative hypothesis of improved prediction at a larger library size (which is consistent
with what one may expect for a causal relationship X → Y ).
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. foreach l of numlist 10 140 {
2. edm xmap x y, library(`l´) replicate(100)
3. matrix cyx= e(xmap_2)
4. svmat cyx, names(lib`l´_yx)
5. }

(output omitted )

. ttest lib10_yx3 == lib140_yx3, unpaired unequal

Two-sample t test with unequal variances

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

lib10_~3 100 .1032279 .0102391 .1023911 .0829113 .1235445
lib140~3 100 .6751515 .0012912 .0129119 .6725895 .6777135

combined 200 .3891897 .0209145 .2957763 .3479471 .4304323

diff -.5719236 .0103202 -.5923933 -.5514538

diff = mean(lib10_yx3) - mean(lib140_yx3) t = -55.4178
Ho: diff = 0 Satterthwaite´s degrees of freedom = 102.148

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

Also relying on the replicate() and i() options, another more common and gen-
erally recommended way to test for convergence is to form intervals around ρ or MAE at
the minimum L, and see if ρ or MAE at the maximum L is excluded to test for improved
prediction (a test for ∆ρ and ∆MAE; see Ye et al. [2015b] and Ye et al. [2015c]). In
such a case, because the test is directional, the estimated ρ and MAE at the maximum
library size can be evaluated against whether they fall above the 95% of the distribution
at the smallest (or very small) L, perhaps by using replicate(1000), saving all results
by using svmat, and then comparing the distributions. Alternatively, one may use the
ci() option to get the CIs for the mean values of the ρ estimates.

In the example below, the ci(90) option is used to produce the CI for the mean value
of ρ, assuming a normal distribution, as well as the percentile values of the distribution.
The first listed CI values for the mean ρ capture the sampling variations associated with
the replication or cross-validation estimation process, thus enabling comparisons and
hypothesis testing (such as t testing) across different edm (hyper) parameters, including
E or L, using the same dataset (that is, making inferences only about the sample itself
rather than an external population). The example below shows that even the upper
bound of the estimate with a library size of 10 is much lower than the estimate derived
at the full library size. The upper bound of 0.1160 for the estimated mean CI and 0.2736
for the observed percentile are well below the observed 0.6968 at the maximum library
size—an encouraging sign of convergence for the sample and population, respectively.
The percentile values offer a set of alternative metrics, describing the dispersion of
the entire distribution of the estimates, which better reflect the expected variation
associated with the population.
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. edm xmap y x, library(10) replicate(1000) ci(90) direction(oneway)

(output omitted )

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables y and x

Mapping Lib size Mean rho Std. Dev.

x ~ x|M(y) 10 .11004 .11533
Est. mean 90% CI [ .10403, .11604 ]

5/95 Pc (Est.) [ -.07967, .29974 ]
5/95 Pc (Obs.) [ -.10107, .27357 ]

Note: Results from 1000 replications
Note: The embedding dimension E is 2

. edm xmap y x, direction(oneway)

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables y and x

Mapping Library size rho MAE

x ~ x|M(y) 150 .69682 .13714

Note: The embedding dimension E is 2

Similar tests are possible using replicate(1000) with simplex projection at differ-
ent values of E, and for S-maps to test nonlinearity when θ = 0 versus θ at maximum
ρ (or minimum MAE) if these exist when θ > 0 (again, a test of ∆ρ and ∆MAE; see
Hsieh and Ohman [2006], Glaser, Ye, and Sugihara [2013], and Ye et al. [2015a]). For
these latter tests, using a common seed() setting will allow pairing the sets of 1,000
replications for θ = 0 versus θ at maximum ρ (or minimum MAE).

Finally, rather than forming intervals around specific ρ or MAE, a third approach
forms a null distribution for ρ or MAE by using permutation-based randomization. Typ-
ically called a surrogate-data method, this procedure shuffles the data across a time
variable (that is, randomizes the time variable) and reestimates the model each time
(for example, see Deyle et al. [2016a], Hsieh, Anderson, and Sugihara [2008], and Tsonis
et al. [2015]). This is a useful approach because it keeps the observed data intact but
ruins its temporal aspects that are essential for modeling system evolution in EDM. With
this method, a null distribution can be generated for ρ and MAE in simplex projection,
S-mapping, or CCM by simply generating a random sequence of numbers, sorting the
data by them, and then generating a new n variable that is tsset as a time indicator
(in the panel-data case, using the bysort command with a panel-identifier variable and
then xtset).

As an example, we can compare figure 6 with the ρ –L convergence in figure 7,
which is derived from a permutation test using the original xmap procedure with E = 2
but with randomized timestamps. The figure shows a noisier result with much lower
values for ρ, and convergence does not follow a consistent trajectory along the increase
of L until very late (close to maximum L). Additionally, the ρ at the full library size
still fall within range of the ρ when L is smaller than 50, showing no clear sign of
improvement for both directions. (ρ will eventually diverge numerically as estimations
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become deterministic when the full library is used; thus, the relative differences between
the prediction performances in both directions near the full library size alone cannot be
used to assess convergence.)
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Figure 7. ρ -L convergence diagnosis in a permutation test

Using this same basic logic, if seasonality or other periodic effects are a concern,
permutation can be done in ways that reflect such periodic coupling to test whether
these are biasing results (see Deyle et al. [2016a] and Deyle et al. [2016b]).

Beyond these three methods, it is also possible to implement a more traditional
nonparametric bootstrap with replacement (see Clark et al. [2015] and Ye et al. [2015c]).
Yet, care must be taken in the resampling process because the data must be in a
valid time-series or panel format to form the proper E-length vectors without creating
missingness. The edm package for Stata does not have this approach built in and it is
not planned.

5.6 Evaluating time-delayed causal effects

Another interest when investigating causality is to test for time-delayed causal effects
over a specific time frame. Ye et al. (2015b) proposed an extension of CCM to determine
whether a driving variable acts with some time delay on a response variable by explicitly
considering different lags for cross-mapping. In this approach, one implication is that
direct effects among variables should have the highest cross-map skill (that is, largest
ρ and smallest MAE) and the most immediate effects (no or few lags). On the other
hand, indirect effects should be weaker and have longer time delays. Furthermore, and
rather curiously, in cases where bidirectional causality appears to exist because of what
is actually strong unidirectional forcing, an impossible positive lag showing a maximum
effect can indicate false convergence (see Ye et al. [2015b])—in this case, the test for
time-delayed effects is thus an assumption test.
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The edm command supports such reverse- and forward-lagged analyses with minimal
input changes by relying on time-series operators (prefixes l. and f.). To illustrate this,
we introduce a new variable z,

zt = zt−1 {3.77 (1− zt−1)− 0.4yt−1}

which is a function of its own past values and the lagged values from y, thus forming
an indirect x → y → z effect. We use edm to test direct causation between x, y, and z
by estimating their time-delayed CCM performance.

As shown in the cross-mapping results7 in figure 8, x→ y and y → z seem to exhibit
higher ρ values and fewer delays. The link between x and z has much weaker cross-map
skill and longer delays in observing the peak ρ, suggesting an indirect time-delayed
causal effect that by design exists in our model: x→ y → z.
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Figure 8. Time-delayed causal detection

5.7 Visualizing the strength of causation

To demonstrate the usefulness of EDM in estimating the impact of causal variables, in
this section we use a real-world dataset (available with the article files) that reflects
daily temperature and crime levels in Chicago. Compared with the previous logistic
map example, where the marginal effects of the two variables are highly unstable over
time by construction, this example showcases how edm can be applied in a real-world
dataset.

We first use the steps we recommended above: explore the data series 1) using
simplex projection to find optimal E and 2) using S-maps to examine for nonlinearity.

7. The figure only plots the mapping results in the directions that exhibit a dominating causal effect
(three out of six cross-mappings).
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Then 3) use the xmap subcommand to conduct CCM and examine for convergence to
test causality among the series. Following this, we can 4) run the xmap subcommand
with the algorithm(smap) option to derive regression coefficients that can be used to
estimate bivariate overall causal effects.

In the exploration phase, edm suggests that temperature and crime have an optimal
E of 7, which was determined by using the command edm explore temp, e(2/20)

crossfold(5) to find the largest ρ. The crossfold() option offers more refined control
over the training/testing data split ratio and in this case reports the results from a
five-fold cross-validation.8 Similar to the replicate() implementation, training/test
data split applies at the manifold instead of at the observation level to avoid introducing
additional gaps in the time series, allowing more refined control over the split ratio.

Figure 9 shows the ρ –L convergence plot derived from the edm xmap return matri-
ces.9 As shown, CCM suggests the likely causal direction is that an increase in tem-
perature leads to a change in crime rate rather than the reverse (and impossible) case
of crime affecting temperature. Consistent with existing findings using more typical
methods, this analysis suggests that temperature CCM-causes crime.
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Figure 9. ρ –L convergence plot for Chicago crime dataset (10 replications)

To estimate the size of causal effects in addition to predictive ability in CCM, we
proceed with cross-mapping using the S-map algorithm and the savesmap() option,
which saves estimated coefficients that indicate the marginal effects of the variables.
The command used in the analysis is as follows, where the k(-1) option is used to
recruit all available neighbors in the reconstructed manifold for prediction with a default
weighting theta(1). Specifying a positive number in the k() option would restrict the

8. See Rodriguez, Perez, and Lozano (2010) for a discussion on the sensitivity of k-fold cross-validation.
9. To save space here, we do not show this command, but you can find it in the included do-file.
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number of neighbors, reducing computation times. However, a low value results in less
stable results given the smaller sample size in the local regressions.

. edm xmap temp crime, algorithm(smap) savesmap(beta) e(7) k(-1)

In addition to the standard reporting, this command generates new variables named
with the prefix beta that provide marginal regression coefficients across all points in the
prediction library for the variables listed. Recall from above that to obtain the marginal
regression coefficients in the typical predictor → outcome direction for regression will
require reversing the order of the variables, because CCM causality is evaluated in the
opposite direction. Thus, in this example, we only use variables starting with beta1

given that our interest is in the marginal effect of temperature in a manifold when
predicting crime, and the command edm xmap temp crime will generate the prediction
crime|M temp for the beta1 coefficients. This differs from the CCM causal exploration
earlier, where we used the manifold constructed by the crime variable to infer the causal
effect of temperature on crime, or temp|M crime.

10 Because no replicate() option is
specified, all beta variables share the same suffix, rep1 (first replication), and replication
is not relevant because the library size is at a maximum.

As explained earlier, the S-map process uses what can be thought of as a locally
weighted distributed lag model with E predictors (and a constant term c), and each
of the coefficients can be stored as variables with the savesmap() option. Recall the
naming convention detailed in the savesmap() option description in section 3, wherein
numbers after b indicate the length of the lag (from 0 to E − 1). Recall also that these
coefficients are saved for each predicted value and are appropriately matched in a dataset
to the observation t that is being predicted. In other words, each observation in a dataset
at t ≥ E will have E + 1 regression weights associated with it, where each reflects the
E weights on the k neighbors from the library set and the constant used for prediction.
In this example, e(7) produces eight coefficients11 (seven for lags and one constant)
for each predicted observation in the dataset at t ≥ 7. Other possible embedding
combinations may lead to different estimates for the same variable, although the results
are expected to be broadly consistent because they reflect the same underlying dynamic
system. Again, we emphasize that results should be understood in this light rather than
in terms of a typical regression model.

10. As mentioned before, this may be unintuitive, but the key to keeping the setup and interpretation
simple is remembering that the direction of typical regression-oriented prediction is reversed for
investigating CCM causation. When in doubt, the conditional notation will be helpful, such that
temp|Mcrime implies a CCM effect of temp → crime (reading the notation left to right); but
in a regression logic, the S-map coefficients reflecting this effect are obtained from the reverse
crime|M temp mapping.

11. The coefficients are derived from one possible manifold reconstruction, where a series of lags is used
to reconstruct the manifold.
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Figure 10 plots the contemporaneous effect of temperature on crime (beta1 b1 rep1)
in the local S-map prediction together with the temperature. The contemporaneous
effect, as shown, is distributed between 2 and 5 and suggests an average increase of
approximately 3.3 crimes12 per degree of temperature rise. This is akin to the marginal
contemporaneous effect of temperature on crime in a local regression. Each dot in the
figure represents one estimate in the local state space of an observation. Given the
nonlinearity of the model, the coefficients from different states are not necessarily the
same. In this case, we observe a gradually declining effect of temperature on crime as the
weather becomes warmer. These coefficients describe expected changes in crime rates
at different temperatures rather than expected crime rates themselves (which tend to be
higher during warmer days). Similar to a standard regression, the coefficient size should
be interpreted in the context of the unit of measurement for the observed variables. If
the z. prefix is added to the variable names, the results should be interpreted as changes
in the standardized score, similar to a standardized regression coefficient.
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Figure 10. Scatterplot of the S-map coefficient (contemporaneous effect)

Depending on the context of the analysis, it could also be important to emphasize the
dynamic nature of the model, because any change at t−τ would affect the observations at
time t. To predict the impact of a lagged temperature shock, one may consider running
the prediction iteratively over time (a step-ahead prediction) to estimate its long-term
impact on crime rate. The prediction via this dynamic process may be different than the
reported coefficients because of the nonlinear nature of the system. The more common
practice in autoregressive or VAR models of using the sum of the average effects across
all E lags may ignore the nonlinear dynamics in the marginal effects over time.

12. We also carried out a variety of secondary analyses controlling for linear and seasonal trends, and
our results are largely unchanged in magnitude. Our do-file shows how to reproduce these analyses
either by controlling for trends and analyzing residuals or by including trend information in the
manifold directly and computing conditional coefficients on temperature predicting crime.



254 The edm package for empirical dynamic modeling in Stata

To illustrate the use of the command, we also provide three template do-files as
part of the supplementary materials for the article. These cover three common analysis
types for time-series data, “multispatial” panel data (a shared dynamic system using
the default multispatial approach), and “multiple EDM” panel data (distinct dynamic
systems where each panel is analyzed separately; similar to van Berkel et al. [Forthcom-
ing]). These do-files automatically analyze data using the primary EDM tools of simplex
projection, S-maps, and CCM but also produce various plots and automate additional
postprocessing, including hypothesis tests of various types. These do-files will also be
updated over time to include additional features and fix bugs.

6 Concluding remarks

The new edm package for Stata offers nonparametric tools for characterizing and mod-
eling causality in nonlinear dynamic systems. It allows users to explore the bivariate
overall causal relationships among variables with minimal assumptions on the data-
generation process. The package includes the common tools for causal explorations for
a typical end user. For advanced users, the command exports several useful Stata locals
and matrices for postprocessing. Combined with the capacity of Stata’s other built-in
and community-contributed commands, the new edm command offers a relatively easy
interface for relatively complex EDM computations as well as the ability to fine-tune
the critical parameters behind EDM analyses. Thus, the procedure implemented in this
package can be applied in datasets collected in many different fields, including health
science, psychology, economics, sociology, and the natural sciences.

This is an important addition to Stata’s existing capabilities for multiple reasons,
including checking the assumptions that underlie many existing time-series and panel-
data methods. For example, most of these methods assume stability or stationarity in
random residuals, but tests for these conditions are typically based on assumptions of
linearity and therefore may not be sensitive to nonlinear dynamics. To evaluate this,
residuals from typical approaches can be subjected to the methods we propose here
to check for structure from nonlinear dynamic systems (Dixon, Milicich, and Sugihara
[2001]; see also Glaser et al. [2011]). Specifically, simplex projection can be used to test
for low-dimensional determinism that may masquerade as random noise, and S-maps
can be used to test for nonlinearity. Furthermore, residuals and observed predictors
can be used in CCM to test for causal effects missed in other approaches, whereas all
residuals from VAR models can be used in CCM for the same purpose. This allows for
more robust tests of assumptions regarding residual dynamic structures.

Like many community-contributed programs, edm is a work in progress with new
features to appear in future versions (along with bug fixes). As a nonparametric method,
the command may require considerable computing time when running on large datasets,
even with the core algorithm coded in the Mata language and run on multiple CPU cores
in Stata/MP. Future updates will explore further optimization possibilities and better
leverage the multiple cores in modern architectures, including on graphics processing
units. Additionally, the integration of imputation techniques will also be considered and
implemented in future versions. The help file of the edm command will describe these
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improvements as we proceed, elaborating on this important initial work for nonlinear
dynamic systems modeling in Stata. Our goal is to provide the kinds of tools required
to address the complex systems that social and health scientists increasingly recognize
as being ubiquitous in their fields of study (for example, Atkinson et al. [2018] and
Rutter et al. [2017]), while improving computation times to better tackle the “big data”
problems that are increasingly found across the social, health, and natural sciences.

7 Acknowledgments

This research was supported partially by the Australian Government through the Aus-
tralian Research Council’s Discovery Projects and Future Fellowship funding scheme
(projects DP200100219 and FT140100629). The views expressed herein are those of
the authors and are not necessarily those of the Australian Government or Australian
Research Council.

8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0635 (to install program files, if available)

. net get st0635 (to install ancillary files, if available)
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