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Confined buckling in thin sheets and its correlation to ripplocations:
A deformation mechanism in layered solids
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Recently, we have established that, when loaded in compression, edge-on, atomic layers in layered solid
can fail by buckling. The resulting structure is termed a ripplocation. When more than one layer buckles, they
outline standing waves with boundaries that we labeled ripplocation boundaries that are nearly fully recoverable.
In this paper, we examine buckling of layers at the centimeter level to explore continuum buckling theory and
its applicability to atomic layers. Specifically, we examine buckling by confining and cyclically loading thin
steel sheets, edge-on, determining that increasing confining pressure, sheet thickness, and/or decreasing the
number of layers increases the buckling load. Concomitantly, the resulting wavelengths and amplitudes are
reduced. A nonlinear, folding mechanics model, which accounts for frictional bending and foundation energies,
is adapted and verified on our experimental results. We also demonstrate that Coulombic friction between the
layers can account for the energy dissipated per cycle. The predicted values of buckling nucleation loads and
number of modes from the model are in good agreement—at low levels of confinement—with continuum and
atomistic scale results. The wavelength estimates from the model correlate surprisingly well with the continuum
buckling results; however, likely due to the complex mechanics at the lower length scales and limiting theoretical
assumptions in the derivation, the accuracy decreases at the atomistic scale and at higher confining pressures.
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I. INTRODUCTION

Buckling, on the one hand, and layered materials, solids,
and formations, on the other, have been most intimately in-
tertwined since humanity started thinking about how they
deformed. It has long been appreciated that, under the right
conditions, compressively loading a layered system—be they
layered solids [1-4], geologic formations [5-7], or laminated
composites [8—10], card decks [11], etc.—edge-on will result,
more often than not, in a buckling of the layers that, in turn,
leads to kink band (KB) formation.

At the macroscale, the commonalities between layered ma-
terials and geologic formations have been long appreciated
and well covered in a recent theme issue [4]. The question
of folding of parallel layers has also been one of study in
layered crystalline solids (LCSs); after all, LCSs such as
graphite, the MAX phases, mica, and other layered silicates
also unambiguously fail by the formation of KBs when the
layers are compressively loaded edge-on. Crucially, the com-
monalities across the micro- to macrolength scales have never
been addressed. This disconnect came about because it has
long been assumed that LCSs deformed via the nucleation and
propagation of basal dislocations (BDs) [12] that are senseless
in the macroworld.

Recently, we showed that, in layered systems in general
and LCSs in particular, between linear elasticity and KB for-
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mation, there is an important kinking nonlinear elastic (KNE)
regime where ripplocations (see below) play an important
role [11,13-18]. Ripplocations, at least in graphite, are highly
mobile, fully recoverable, dissipative waves that form—down
to the single atomic layer scale—because of confined buck-
ling. If one layer buckles, it is termed a ripplocation. When
multiple layers buckle, they form standing waves, the crests
and troughs of which define ripplocation boundaries (RBs)
[11,14]. In contrast to KBs that are irreversible, RBs are
fully reversible/recoverable. Moreover, the friction associated
with the to-and-fro motion of the ripplocations was assumed
to account for the energy dissipated observed when layered
solids are cyclically loaded [11,15]. In our previous work,
we assumed that BD-based incipient KBs were responsi-
ble for this energy dissipation [12,19], which in retrospect
is at the very least incomplete and, more likely than not,
incorrect.

The term ripplocations was coined by Kushima et al.
[20] to describe surface/near-surface defects in van der Waals
solids. They elegantly showed via a combination of density
functional theory (DFT) and molecular dynamics (MD) mod-
eling that ripplocations were different than BDs because two
ripplocations of the same sign attracted [20]. They also im-
aged with a high-resolution transmission electron microscope
(HRTEM) near-surface ripplocations in MoS, [20].

We used a combination of MD modeling on graphite at
10 K and nanoindentation (NI) experiments on TizSiC,—a
layered, machinable ceramic—to show that ripplocations are
probably the operative deformation mechanism in most LCSs
and that, at least in graphite, they have no polarities [15,16].
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In the same work, we provided indirect TEM evidence for
ripplocations. Aslin et al. [17] provided direct HRTEM evi-
dence for microscopic features that were incompatible with
BDs but in line with ripplocations in naturally deformed bi-
otite. In previous work, we confined and aluminum thin sheets
and cyclically indented them with a cylindrical indenter and
presented evidence of buckling that scaled with bulk RBs [11].
We carried out the same experiment in silico on graphite at 10
K and showed that the exact same response occurred at the
atomic level and that ripplocations appear to be a widespread
mechanism for the deformation of LCSs. Mérz et al. [21]
conducted similar experiments by indenting graphite single
crystal in silico using a sharp quadratic indenter and by
introducing voids/defects to the simulation cell. Following
these conditions, they presented an elucidating image for the
initiation and evolution of KBs in graphite. Moreover, they
provided experimental evidence for basal plane bending/RBs
in graphite using HRTEM [21,22]. Alaferdov et al. [23] pre-
sented further TEM evidence for ripplocations that formed
in graphite nanoplatelets because of sonication-assisted liquid
phase exfoliation.

The mechanics of buckling instabilities leading to KB
formation of layered structures at the continuum scale has
received considerably more attention, particularly in the ar-
eas of classical laminate composite theory and geological
formations. Regular period waveforms have been habitually
documented in layered geological outcrops [24-26]. Their
formation has been considered theoretically from an elastic
perspective (e.g., Currie et al. [27] and Johnson and Honea
[28], among others), as well as in the laboratory-scale ex-
periments (Kuenen and de Sitter [29] and Blay et al. [30],
among others). However, many of these studies concen-
trated on perfectly adhered (ignoring the layers) or freely
sliding layer assumptions. Budd er al. [31], with the con-
sideration of overburden (confinement) pressure, developed
a formulation of a frictional model for folding. The buck-
ling model presented here stems from the efforts of Budd
et al. [31], in addition to work by Wadee er al. [1], the
multilayer folding models of Wadee and Edmunds [2], and
Wadee [32].

In the composite community, the mechanics of buckling
growth and development was well studied by Chai [33], Katz
and Givli [34], Roman and Pocheau [35], and others [36,37]
using polycarbonate and steel single beams/plates. This paper
was developed to understand the buckling-induced subsurface
delaminations in laminated composites. In the same respect,
seminal efforts by Budiansky and Fleck [38], among oth-
ers, examined KB propagation in layered fiber composites
both experimentally and analytically. In polymer matrix com-
posites, evidence was presented to suggest that the kinking
compressive strength is governed by fiber misalignment (i.e.,
an initiating defect). There are numerous general reviews of
the kinking phenomena in composites [38—41]. Additionally,
complementary finite element analysis has also been exten-
sively used to study the initiation and evolution of KBs in
composites [42-46]. While on a different material system
and length scale, these studies provide useful insight on KB
formation, with relevant commonalities to our investigation.

In this paper, we investigate the fundamental mechanics
of buckling instabilities of a layered system. In doing so, we

explored the effects of confinement, friction, and geometry on
salient buckling features at the continuum level. To this end,
we cyclically loaded, edge-on, decks of thin steel sheets and
measured the critical stress at which buckling nucleated ogp,
which herein we take as the nucleation stress of the RBs, for
the sake of comparing our result with atomistic-level buckling
phenomena we observed previously. We also measured the
wavelengths Agp and amplitudes Agg of these RBs and the
energy dissipated per unit volume per cycle W, as a function
of (i) number of sheets per deck (spd), (ii) individual sheet
thicknesses, t, and (iii) initial confining pressure Py . It should
be noted that, in the geological literature, Py ¢ is referred to as
an overburden pressure. Our results clearly show that increas-
ing the effective Py ¢ increases ogg and W, but decreases Arg
and ARB .

We further adopted, developed, and verified a mechanics
model that was found to be robust in capturing the physics
of the deformation of layered solids at the macroscale but,
most importantly, also at the atomic layer scale. In that, the
features of RBs, nucleation load, and wavelength were well
predicted at both the continuum and the atomistic scale. We
also demonstrate that Coulombic friction between the layers
can account for Wy.

II. EXPERIMENTAL DETAILS

The experimental configuration, imaging, and measure-
ment systems used are described in detail in an earlier work
[11]. In brief, various decks of thin steel sheets were placed
between a fixed and a translating block, as shown schemati-
cally in Fig. 1(a). The height H of the deck was 40 + 0.1 mm,
and the number of layers per deck varied. Once set, an initial
lateral overburden pressure was applied. A subset of the layers
was then loaded, edge-on, with a 2.34 mm-diameter cylin-
drical indenter, with its axis parallel to the indented layers
[Fig. 1(a)]. All experiments were carried out using a Shimadzu
AG-IS Load Frame equipped with a 50 kN load cell, and an
Epsilon LVDT deflectometer. In situ images were recorded at
a frame rate of 5 fps using a Stingray F-504 camera (2452 x
2056 pixels) with a Nikon 105 mm lens and 8W LED lights. In
a typical experiment, the indenter is thrust into the layers—in
a displacement-controlled mode—to a maximum indentation
depth of 2.5 mm hy 5 [point Y in Fig. 1(b)], retracted to a
h < hy 5 [point X in Fig. 1(b)], reloaded to 4, s, and unloaded
to progressively lower 4 values. This protocol results in nearly
fully recoverable nested loops, as shown schematically in
Fig. 1(b).

In addition to recording the indentation loads and displace-
ments, we also measured the confining pressure Py using a
load cell attached to the translating block holding the layers
with initial confining pressure Py o [Fig. 1(a)]. The confining
pressure was displacement controlled so that it could evolve
with the indentation load [Figs. 1(c) and 1(d)].

The coordinate system used is shown in Fig. 1(a). Most of
the work was carried out with steel sheets with thicknesses ¢
of 0.127 mm. To explore the effect of sheet thickness, in two
runs, t was 0.0508 mm. In the remainder of this paper, these
values will be rounded off to 0.13 and 0.05 mm, respectively.
A spring steel (1095 spring steel, MacMaster Carr, New Jer-
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FIG. 1. (a) Experimental setup and coordinate system used. (b) Schematic showing typical loading/unloading protocol. In all cases, a
cylindrical indenter was indented to a displacement corresponding to the maximum strain Y, unloaded to strain X, and reloaded to Y to yield a
fully recoverable loop designated by hatched area. The process was then repeated for increasing values of unloading strains, resulting in fully
recoverable nested loops sharing a single unloading trajectory (see Fig. 4). Before dismantling the setup, one last cycle (colored yellow) was
carried out. (c) Plot of constraining loads as a function of indentation depth. (d) Actual constraining load as a function of time during cycling.

Horizontal dashed red lines connect (c¢) and (d).

sey) was used for all seven experiments carried out. As noted
above, all experiments were imaged.

To convert the indentation loads to stresses, the indenter
was assumed to be flat with an area Ajpg given by the product
of n x t x b, where n is number of buckled layers (counted
from image still frames at the point of maximum indentation
depth), and b is their width (30 £ 0.2 mm). This value of n was
double checked macroscopically by counting the number of
plastically deformed layers after complete load unloading and
removal of the layers from the frame (see below). To calculate
the strain due to the RBs, egrg, the recorded indentation depths
in millimeters were divided by the initial deck height, viz.
40 £ 0.1 mm.

The load at which the RBs were first observed was deter-
mined from the camera images. This load was then converted
to a ogp [Fig. 1(b)] in the same way as described above.
The values of Agrg and radius of curvature R were measured
from still frames at the onset of buckling (Figs. S1(a)-S1(g)
in the Supplemental Material [47]) using the image analysis
software IMAGEJ [48], while the values of Agg and number
of modes g were obtained following the same measurement
protocol but at the point of maximum indentation depth (Figs.
S1(a”)-S1(g") in the Supplemental Material [47]). Note that

g (i.e., where the curvature of the ripple changes sign) did not
change with indentation, and the point of maximum depth was
chosen as a clear point for accurate counting.

As in our previous work, W; was calculated from the area
enclosed by each nested loop. Referring to Fig. 1(b), the area
of the first unloading loop is given by the hatched area, and
the nonlinear strain associated with this cycle is simply the
difference between X and Y. The maximum stress associated
with this loop is the difference between the stresses at A and
B in Fig. 1(b). Said otherwise, as in our previous work, the
origin is shifted to Point A.

III. THEORETICAL CONSIDERATIONS
OF MULTILAYER BUCKLING

The model used for our continuum investigation is based
on the original models of nonlinear folds by Budd ez al.
[31] and Edmunds et al. [3] These models use an energetic
approach, where the nonlinear effect of friction is consid-
ered, and the critical load at buckling (i.e., fold formation)
and resulting Agp are predicted from a Galerkin approxima-
tion substituted into a linearized potential energy function.
Specifically, this approach uses a linearized differential equa-
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FIG. 2. (a) Initial configuration where layers are confined by force Py ¢, (b) Configuration at maximum indentation 5, s, showing vertically
loaded four layers that buckled into four modes. (c) Definitions of w, wavelength A = 2L, and amplitude Agg.

tion under nonlinear boundary conditions that capture most
of the significant buckling mechanisms (vs. a full nonlinear
formulation). Budd et al. [31] described parallel folding be-
havior of two layers under compression that are allowed to slip
relative to one another, as well as folding along a center line of
finite curvature due to overburden pressure (here, we term this
confinement). Edmunds et al. [3] tackled multilayer structures
that are more relevant to our experiments. However, both
investigations considered the buckling layers to be embedded
in a soft foundation. Here, we differ, as the compressed layers
are held in stiff confinement, and thus, we use a slightly
different means to extract our transverse stiffness parameter
(see below). We proceed through the details of the model used
in this investigation, schematically shown in Figs. 2(a)-2(c),
as follows.

Consider n incompressible layers of thickness ¢ and width
b [Fig. 2(a)], and the total thickness of n buckled layers is
T = nt formed from a material with flexural rigidity EI. These
layers are compressed axially by a load P [Fig. 2(b)], and the
flexural rigidity of each layer is given by

_ Ebt?

El = —,
12

ey

where E is Young’s modulus of the material comprising the
layers (herein referred to as sheets). We assume that all the
buckled layers bend about the same central line of the curva-
ture, and slip is constant between layers and no voids develop.

The confining force Py is applied along the height H of lay-
ers with an initial confinement Py o [Fig. 2(a)]. The remaining
unbuckled layers, together with the rigid fixture on each side,
act as the foundation and are modeled by two springs in series,
each with a spring constant k per unit length. Experimentally,
plots of the confinement force vs displacement [Fig. 1(c)]
were nominally straight, indicating linear stiffnesses. For all
experiments, the transverse stiffness of the foundation c is
determined assuming

- PN70 2c

APN _ PN,max k=2 (2)

c= = ,
Ad Agp

where Py, max is the confinement load at maximum indentation.
The horizontal deflection of the spring Ad is the difference
between the initial and final (viz. at maximum load) amplitude
of buckling [see Figs. 2(a) and 2(b)], which we equate to Aggp.
The measured unit stiffness results from two springs in series,
and as such, k is twice ¢ divided by H. This manipulation is
performed to obtain a stiffness per unit length.

Assuming small deformations, with a coordinate of ar-
clength x and relatively small deflection w [Fig. 2(c)], the
nonlinearity of the geometry is not considered dominant and
is neglected. The total potential energy function V for this
case includes the bending energy Ug, the work done by the
vertical load Up, the foundation energy Up, and the work
done by friction U,,. Working under the assumption of T? «
4n’R*/(n—1)? (i.e., that the radius of curvature R over the
number of buckled layers during buckling is greater than
T = nt), V over a periodic half-wavelength L can be written
as the balance of

V =Us—U,+Ur +U,,

where, as shown by Edmunds ez al. [3] is

— W — —w
2 2 2 n

Vo /L [nEI 2 Puey ke (= DxugTlol] o
0
3)
For this paper, u is the friction coefficient that we obtained
experimentally using the inclined plane method [11]. The p«
values measured for the thick and thin steel sheets used herein
are 0.23 and 0.27, respectively. Moreover, x is a friction
indicator, where x = +1 designates that the direction of the
friction force is opposite to the external load and hence resists
the release of strain energy. Said otherwise, the friction energy
contribution to V is positive. Conversely, when x = —1, a
negative contribution to V is designated, where the direction
of the friction force is the same as the loading direction.
Using a Galerkin approximation and assuming a deflection
shape of w(x) = A cos (wx/L), where A is the amplitude of the
wave, the linear eigenvalue analysis of V provides the critical
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FIG. 3. Pictures of steel decks at maximum indentations for runs (a) 120-0.13-400, (b) 60-0.13-400, (c) 30-0.13-400, (d) 30-0.13-1200,
(e) 30-0.13-6500, (f) 160-0.05-400, and (g) 70-0.05-6500. The vertically stacked panels differ in the thicknesses of sheets used (top = 0.13;
bottom = 0.05). Horizontal red arrows denote lateral confining loads, while the vertical ones denote indentation direction.

load [3]:

kL?
Feh

nwlEl
12
Minimizing the critical load with respect to the half-
wavelength yields
>1 /4

The theoretical buckling modes g are obtained by assuming
_2H H
ST

Interestingly, u does not factor into any of these expres-
sions, despite being explicitly considered in the model.

The theoretical Py, L, and g values determined from
Egs. (4) to (6), respectively, are then compared with exper-
imentally measured ones. Empirically, g is determined by
counting the number of inflection points (i.e., where the cur-
vature of the ripple changes sign) in the still images.

Note that the assumption

Py =

“

nEIN\'* nEbt?
) = n( 5)

L= n(—
k 12k

(6)

indicates that the difference among the bending energy in n
layers are negligible, and the total bending energy can be
represented as n times the bending energy measured from the
middle of layers. When tested, this simplification worked well
at low confinement levels with a rigid foundation, with only
2% error when compared with the sum of n terms. While at
higher confinement levels, this simplification underestimates
the total energy by values up to 30% because the curvatures
decrease to on the order of, or less than, the overall thickness
of the buckled layers. Attempting to get a measuring scale, we
introduced the following term:

4n2R?

T e

which is essentially a nondimensionalized ratio of the curva-
ture and overall thickness of the buckled layers as an indicator
of how well the aforementioned inequality holds based on the
model assumptions. The higher the n value, the higher the R
values, and the better the model predictions and experiments
align. In other words, agreement between theory and experi-
ment is best at large 1 values and becomes increasingly less
so at higher levels of confinement, i.e., for n < 112.
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FIG. 4. Indentation stress-strain curves as a function of (a) number of sheets per deck at Py 400 N and ¢t = 0.13 mm, (b) Py, for a deck
of 30 sheets, 0.13 mm thick, (c) ¢ at Py of 400 N and 60 and 160 sheets for the thick and thin sheets, respectively, and (d) same as (c) but at
a Py of 6500 N with 30 and 70 sheets for the thick and thin sheets, respectively. Note that, in all cases, after the nested loops were obtained,
the indenter load was fully removed and then reapplied to obtain a second full cycle. The yield stress of the steel is shown in all plots as a

horizontal dashed line.

IV. RESULTS

It is important at the outset to point out what the camera
images of all experiments demonstrate: At a critical load,
a confined, collective, rapid buckling of the layers directly
under the indenter occurs. The deformation is delocalized and
appears (at least with the framing rates used during experi-
mentation) rather instantaneously, reaching the bottom platen
forming a standing wave with a clear number of modes. With
further penetration of the indenter, there is little change in
ARrB, but Arp increases. Changes of Agrg with indentation are
discussed in detail in the Supplemental Material [47].

A total of seven indentation experiments were conducted
under various confinement conditions. For brevity, these ex-
periments will be henceforth referred to as: xx-yy-zz, where
the first number denotes the spd, the second ¢ in mm, and
the third Pyo in N. The first three experiments compared
three runs (i.e., 120-0.13-400, 60-0.13-400, and 30-0.13-400),
where the only variable was the spd. The results in Figs. 3(a)—
3(c), respectively, clearly show that by increasing, in this case,
the “effective” constraining pressure by reducing spd, both
Arp and Agp decrease. This comes about because increasing
the deck width introduces more microscopic air gaps between

the sheets that effectively render the system more compliant
in the z direction. This is best seen in Fig. 1(c), where Py is
plotted vs indentation depth. For the 120-sheet deck [black
half-filled squares in Fig. 1(c)], Py is significantly lower
throughout the experiment than the other decks. Using the
same logic, decreasing the initial deck width and/or increasing
Py o results in a significant decrease in the spread of Py values,
as shown in Fig. 1(c).

The second set (30-0.13-400, 30-0.13-1200, and 30-0.13-
6500) varied Py o from 400 to 1200 to 6500 N, while keeping
everything else constant. The results shown in Figs. 3(c)-3(e),
respectively, demonstrate that increasing Py ¢ decreases both
ARB and ARB~

In a third set, we compared runs 60-0.13-400 and 160-
0.05-400, shown in Figs. 3(b) and 3(f), respectively. Here, we
varied ¢ but kept Py o at 400 N and the total deck thicknesses
constant at ~7.83 £ 0.17 mm. To accomplish the latter, we
had to start with more spd for the thinner sheets. Lastly, we
compared 30-0.13-6500 and 70-0.05-6500. In this case, Py,
at 6500 N and the total deck thickness was held at 3.87 +
0.01 mm, and ¢ was varied. Comparing the vertically stacked
Figs. 3(b) and 3(f) or 3(e) and 3(g), it is clear that decreasing
t resulted in decreases in both Agg and Agrg.
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FIG. 5. (a) op, as a function of decreasing number of sheets 120, 60, and 30 at Py of 400 N. (b) Same as (a) but with Py of 400, 1200,
and 6500 N for the same total number of sheets (30). (c) op, as a function of ¢ and Py, of 400 N (two left columns) and 6500 N (two right
columns), while keeping total thickness of decks constant. (d) Arg for same variables as (a). (e) Arp for same variables as (b). (f) Agrp for same
variables as (c). (g) Arg for same variables as (a). (h) Agp for same variables as (b). (i) Agg for same variables as (c). Horizontal arrows denote

direction of increasing effective and/or direct constraining pressure.

Figure 4 plots, on the same scale, the indentation stress-
strain curves obtained as a function of the variables listed
above. Like in our previous work [11], the stress-strain curves
are composed of three regimes: an initial generally linear
regime, a second region where the stress appears to plateau or
level off, and lastly, a set of nearly fully recoverable nested
loops. The point at which the behavior changes from lin-
ear to nonlinear elastic manner is defined as the point of
buckling nucleation stress op,. At that stress, a buckling in-
stability occurred, and collective, oppositely signed RBs were

nucleated below the perturbation source and rapidly spanned
in a wavelike manner away from the indenter. That can be
clearly noticed in the cases where Py was 6500 N [e.g.,
Figs. 4(b) and 4(d)], where a clear and distinct drop in stress
is observed at the end of the linear regime.

The experimentally determined op, values obtained as
a function of the aforementioned variables are summa-
rized in Fig. 5. Note that, in all plots, moving to
the right corresponds to higher confining stresses, effec-
tive and/or direct. The results are also summarized in
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TABLE I. Comparison of theoretical and experimental results. In first column, first number refers to the number of layers per deck, the
second # in mm, and the third Py . Last column lists 7. The percent difference is the experimental minus the theoretical by the experimental
value. Number of layers deformed by the indenter are shown in brackets in first column.

Continuum scale results

Theory Experiment Difference (%) n
Test conditions 2L (mm) P (N) Mode A (mm) Pgx (N) Mode A (mm) P (N) Mode
120-0.13-400 (19) 15.6 6632 5.1 15.5 6190 5 —1% —7% —3% 120
60-0.13-400 (12) 11.9 7309 6.7 11.7 9497 6 —2% 23% —12% 239
30-0.13-400 (10) 10.8 7277 7.4 10.8 10241 8 0% 29% 7% 265
30-0.13-1200 (10) 10.7 7354 7.5 8.6 9975 9 —24% 26% 16% 112
30-0.13-6500 (11) 11.1 7649 7.2 7.7 17470 11 —43% 56% 34% 62
70-0.05-6500 (35) 6.5 4459 12.3 4.9 12197 16 —33% 63% 23% 20
160-0.05-400 (23) 7.1 2499 11.3 7.6 3138 10 7% 20% —13% 168
Atomistic scale results
Theory MD simulation Difference (%)
Initial confining pressure (bar) 2L (nm) P, (nN) Mode A (nm) Pgx (nN) Mode A (nm) P (nN)  Mode
0 10.4 16.9 9.6 4.5 15 19 —133% —13% 49% 12
1000 10.5 18.5 9.6 4.3 15.5 20 —143% —20% 52% 8
5000 10.5 21.9 9.5 4.2 17.5 21 —150% —25% 55% 3

Table I. From the findings, the following observations become
apparent:

(1) Increasing the effective confining stresses on the decks
increases op, [Figs. 5(a) and 5(b)] and the number of modes
(Table I) but decreases both Arg and Agrp [Figs. 5(d), 5(e),
5(g), and 5(h)].

(i1) For the same deck thickness and Py, decreasing ¢
decreases op, [Fig. 5(c)], Ars [Fig. 5(f)], and Arg [Fig. 5(1)].

(iii)) For the same deck thickness and Py, decreasing ¢
changes the shape of the stress-strain envelope from lenticular
to almost rectangular, especially at high Py ¢ [Fig. 4(d)].

(iv) At the highest Py of 6500 N, nucleation of buck-
ling boundaries results in a clear drop in indentation stress
[Figs. 4(b) and 4(d)]. Not surprisingly, this drop correlates
exactly with the onset of buckling in the images.

V. DISCUSSION

From the totality of our results, confinement plays a key
role in the buckling wavelengths and nucleation stresses. The
other key factor that is fully consistent with buckling theory
is that the individual thickness of the layers also highly influ-
ences the results.

A. Buckling loads and wavelengths

Table I compares the theoretically and experimentally de-
termined values of buckling loads, wavelengths, and modes.
Figures 6(a) and 6(b) plot the same information together with
those of Edmunds ef al. [3] on thin paper sheets confined
by foam as well as calculated vs observed values based on
graphite indentations performed at the nanoscale from MD
simulations [11]. To model verification at the atomistic scale,
Egs. (4) and (5) were used to calculate the critical load
and wavelength values for graphite. The elastic modulus of
graphite was obtained from the slope of the initial linear por-

tion of force after conversion to stress-strain curves (Fig. 5(c)
in [11]) to be 800 GPa. The number of buckled layers n was an
input to the model and was visually counted at /i, = 2.5 nm
from the simulation images. For the calculation of the moment
of inertia, Eq. (1), the width b = 1 nm and ¢ were taken to be
equal to the thickness of an individual graphene layer or 0.335
nm. The spring constant k was calculated, as explained by
Eqg. (2), from the slope of confinement pressure vs indentation
depth (see Fig. 4(f) in [11]) which is a direct output of the
MD code. The values of wavelength, amplitude, and number
of buckled layers of MD simulated graphite were measured
from still frames using IMAGEJ.

Based on the continuum results with the experiments con-
ducted in this paper, when Py is 400 N, or at low levels of
confinement, the agreement between theory and experiment
is good (i.e., for n > 112, all but one prediction of the critical
load, amplitude, and buckling mode are within 23% of the
experimental findings). Interestingly, the model predictions
are relatively insensitive to ¢ or the total number of layers in
the deck (listed in the first three and last entries in Table I).
This is especially true since, experimentally, our method of
calculating stress is less than ideal.

At higher Py values, the agreement is less satisfactory.
One of the main reasons for the discrepancy is the breakdown
in the assumption than n >> 1 (last column in Table I). From
the results shown in Table I and Fig. 6, it appears that our
model is less predictive when n < 112. We purposely plot
the high confinement results to show where the current theory
breaks down. Future work will explore either a correction
for higher confinement or a full nonlinear solution to remove
the limiting geometric assumption of the curvature embedded
in the model. These comments notwithstanding, the agree-
ment between theory and experiment in our case and that of
Edmunds et al. [3] is significant, especially given the very dif-
fering materials tested (steel vs paper) and radically different
levels of support (quite stiff steel support vs foam).
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plot.

By looking at the atomistic scale results, the agreement of
the analytical model with MD ripplocation results suggests
the model applies to atomic layers as well. Noteworthily, like
the continuum tests, the agreement between theory and MD
results is best at large n values, at which no/low confining
pressure was applied, and becomes increasingly less good
when Py o is 5000 bar (last row in Table I). Notably, the model
is robust in that it can predict the buckling nucleation stress
with a maximum difference of 25% relative to the simulation
outputs. However, due to the complex and differing mechanics
at the nanoscale, the continuum theory poorly predicts the
wavelength at which these instabilities occur and is a topic
of future study.

B. Energy dissipated per cycle

All the nested loops shown in Fig. 4 are fully re-
coverable. Figure 7(a) plots W; as a function of erp
for the variables tested here. Under these conditions and

4.0

—0— 120/0.13mm/400N (a)
35} —— 60/0.13mm/400N
—— 30/0.13mm/400N

3. L4 30/0.13mm/1200N

| —m—30/0.13mm/6500N

70/0.05mm/6500N

=@ = 160/0.05mm/400N

259

20F

W, (MJ/m’)

0.010 0.015 0.020

Ripplocation strain

0.025

further assuming ogrp & 21gp, the following relationship is
approximately valid:

Wy = 21rYRB ~ (1 + V)ORBERB, @)

where yrp, €rp, and v are the applied shear, normal strains,
and Poisson’s ratio, respectively. Also, Trg and ogrp are the
shear and normal stresses needed to move the RBs. Here, 1rp
can be considered a critical resolved shear stress for RBs.
The factor of 2 accounts for energy dissipated during loading
and unloading. If we further assume Coulombic friction, viz.
Ps = uPy, where Py and Ps are the average loads acting
normal and parallel to the layers during a cycle, respectively,
then combining the fact that org = Ps/Ajng—where Ajyq is the
indented area—together with Eq. (7), it follows that
Pyerp

Wd%(l-i-v)MA . (3)
ind

If this equation is valid, and u is not a function of Py, then
plots of W, vs (Py X erp)/Aing should yield straight lines with

4.0
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FIG. 7. (a) W, vs egp for various variables shown on panels, and (b) W, vs (Py X egr)/Aing for all nested loops shown in Fig. 4. Slopes of
lines &~ (1 + v). The two lines with higher slopes (circles) were obtained on decks with thinner sheets.
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TABLE II. Least squares of slopes of lines shown in Fig. 7(b). The u values are calculated assuming v = 0.3.

120/1.3/400 60/1.3/400 30/1.3/400 30/1.3/1200 30/1.3/6500 70/0.05/6500 160/0.05/400
Slope 0.28 £ 0.03* 0.28 +0.03 0.28 £ 0.05 0.28 £0.11 0.28 £ 0.10 0.33 +0.08* 0.35 +0.07*
“ 0.21 £0.03 0.22 £0.03 0.22 £ 0.05 0.21 £0.11 0.22 £0.10 0.26 £ 0.08 0.27 £0.07

“Only first three points in Fig. 7(b) were used to calculate these values since, beyond these points, the curves are quite nonlinear, when all our

assumptions are for a linear system.

slopes equal to ;(1 + v). Figure 7(b) shows that to indeed be
the case. Least squares fit of the lines yield the slopes listed
in the second row of Table II. If one assumes v to be 0.3, then
the w values listed in the last row in Table II are obtained.

Given the simplicity of the model used to derive Eq. (8),
the results shown in Fig. 7(b) are quite gratifying for several
reasons:

(i) The fact that the p values listed in the last row in
Table II, averaging 0.23 + 0.03, are in excellent agreement
with the experimentally measured p values of 0.23 and 0.27
for the thick and thin sheets, respectively, is remarkable and
lends credence to our experiments, analysis and relatively
simple model.

(i1) The fact that the quite different—in terms of the abso-
lute stress levels, shapes, confining loads, etc.—recoverable
hysteretic loops shown in Fig. 4 collapse onto a universal
curve [compare Fig. 7(a) to 7(b)] suggests our simple model
captures the physics of W, surprisingly well indeed. This in
turn implies that Coulombic friction, viz. Ps = uPy;, is appli-
cable and that w is not a strong function of Py.

(iii) The slight curvature seen in the curves, however, sug-
gest that 4 may not be totally independent of Py. Strictly
speaking, one should therefore only take the initial slopes
of the lines plotted in Fig. 7(b). However, doing so may
slightly change the values listed in Table II but not shed
more light on the problem and was eschewed—except in the
two cases where ¢t = 0.05 mm, where the curvature was more
pronounced—to avoid any subjectivity in determining how
many points to include in calculating the initial slopes.

These results suggest that a straightforward method to in-
crease W is to start with thinner sheets.

C. Plastic deformation vs energy dissipated per cycle

In all experiments conducted herein, after the nested loops
were obtained, the indenter was totally retracted and then
indented into the deck one last time to obtain a second full
cycle [denoted by the area colored yellow in Fig. 1(b)] before
its ultimate retraction, which accounts for the two largest
loops observed in Fig. 4. In all cases, the area of the second
full or last cycle is a fraction of the first. The difference
between areas of cycles 1 and 2—given by the area colored
yellow in Fig. 1(b)—represents the energy dissipated in the
first cycle in plastically deforming the sheets labeled W), in
Fig. 8. From the totality of the results plotted in Fig. 8, the
following observations can be made:

(i) Wy increased with Py (horizontal arrows), whether
actual or effective [Figs. 8(a) and 8(b)].

(ii) Another important factor is ¢. Under comparable con-
ditions, W, values for the thicker sheets are ~3 times those

of the thinner ones [Figs. 8(c) and 8(d)]. Thick sheets that
are highly confined are more heavily deformed in the first
cycle than loosely confined thinner ones. Said otherwise, for
the same Py and deck thicknesses, W,,;/W; increases as ¢
increases. It follows that, to minimize the W,,/W;, ratio, thin
sheets that are not too highly constrained should be used.

Lastly, images of postcycling thin and thick sheets, in-
dented with a Py of 6500 N, are shown in Fig. 9(a), from
which it is clear the thin sheets (top) are less deformed than
their thicker (bottom) counterparts. The corresponding W,;/W;
ratios for these thick and thin sheets were 1.6 and 0.8. One
of the consequences of this plastic deformation is a large
decrease in o upon reloading. Once the sheets have been
deformed the first time, the nucleation of subsequent RBs
occurs at significantly lower stresses (Fig. 4).

Unlike the thin steel sheets, the thick sheets buckled lo-
cally, forming a KB near the indenter [see red circle in
Fig. 9(c)]. Before converting to a KB, the same location sus-
tained a RB. The same behavior was observed when thin Al
sheets were loaded by the same indenter used in this paper. At
shallow depths, the response was fully reversible and like the
response described in this paper. When the indenter was thrust
deeper into the layers, RBs close to the indenter converted to
KBs that were no longer reversible [11]. In other words, these
results demonstrate that RBs appear to be KB precursors in
the continuum sense.

D. Initial slopes of stress-strain curves

In our NI work on various layered and nonlayered solids,
the initial slopes of the NI stress vs strain were in most cases
equal to the operative elastic constants [18,49-52]. The situa-
tion here is fundamentally different since the initial slopes in
Fig. 4 are orders of magnitude lower than Young’s moduli of
our spring steel (E ~ 200 GPa). What occurs here instead is
an almost immediate bending of the sheets [Fig. 9(b)] up to
the point when the RBs nucleate. Vestiges of this bending can
be clearly seen in the postindented thin [Fig. 9(c)] and thick
[Fig. 9(d)] sheets. This bending was verified from careful
examination of images in the linear regime. It is important
to note this is not a buckling but bending mode.

Lastly, before concluding, we note that there is a signifi-
cant amount of work on buckling mechanics in the literature.
The following points, however, differentiate this paper from
previous work and are thus crucial considerations: (i) In the
mechanics literature, the main emphasis is on predicting the
buckling stresses; here, buckling is just the start of the phe-
nomenon of interest. (ii) We are more interested in the KNE
regime, where nearly reversible/recoverable RBs are opera-
tive. As far as we are aware, the buckling community rarely
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addressed the reversible stress-strain curves, either on the
macroscale or under various nanoindenters. (iii) Herein, we
show that W; can be simply modeled by Coulombic friction
between the sliding sheets.

We also show a strong correlation between the predicted
and actual buckling load and number of buckle modes at mul-
tiple length scales (across material systems). Ultimately, we
hope to understand buckling and energy dissipation phenom-
ena which may share commonalities with atomic buckling in
layered solids.

VI. CONCLUSIONS

In graphite and other layered solids, the application of
compressive loads can result in the formation of RBs. Little is
currently known about the mechanics of RBs or why they are
essentially fully recoverable and dissipative. To explore this
energy dissipation at the continuum scale, we studied laterally
confined thin steel sheets, indenting them with a cylindrical
indenter as a function of effective confining pressure and the

thicknesses of individual sheets. We found that increasing the
confining pressure, thicknesses of individual sheets, and/or
reducing the number of layers or spd increased the load at
which ripplocations nucleate. Concomitantly, the wavelengths
and amplitudes of the ripples decreased.

We applied a confined buckling folding mechanics model
that considered frictional, bending, and foundation energies
to predict the nucleation stresses and associated wavelengths
of the steel layers. The predictions agreed with our exper-
imental results, especially at low confining pressures, and
were surprisingly good at predicting nucleation loads even
down to the atomistic level with graphite ripplocation MD
results. Interestingly, ;« between the steel sheets did not affect
these parameters. Where w played a crucial role in these
experiments, however, was in accounting for the energy dis-
sipated per unit volume per cycle. By assuming Coulombic
friction, we recovered the experimentally measured values
of u.

Lastly, and while there is still much to be learned, the
results of our experiments place the mechanics of ripplocation
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(b)

(c) (d)

FIG. 9. (a) Picture of postcycling thin (top) and thick (bottom) sheets indented for Py, = 6500 N. (b) Schematic of buckling mode
responsible for linear regime in Fig. 4. (c) Same as (a) but showing full deck for # = 0.13 mm, and (d) same as (c) but for # = 0.05 mm.

nucleation, propagation, and energy dissipation at the atomic
scale in a degree of correlation with the results from buckling
of continuum layered systems. The work to discover the extent
of the commonalities, mechanism differences, and potential
universality of the buckle/ripple phenomenon across length
scales is currently ongoing.
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