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ABSTRACT

Probing magnetic fields in the interstellar medium (ISM) is notoriously challenging. Motivated by the modern
theories of magnetohydrodynamic (MHD) turbulence and turbulence anisotropy, we introduce the Structure-
Function Analysis (SFA) as a new approach to measure the magnetic field orientation and estimate the magne-
tization. We analyze the statistics of turbulent velocities in three-dimensional compressible MHD simulations
through the second-order structure functions in both local and global reference frames. In the sub-Alfvénic
turbulence with the magnetic energy larger than the turbulent energy, the SFA of turbulent velocities measured
in the directions perpendicular and parallel to the magnetic field can be significantly different. Their ratio has a
power-law dependence on the Alfvén Mach number M, which is inversely proportional to the magnetic field
strength. We demonstrate that the anisotropic structure functions of turbulent velocities can be used to estimate
both the orientation and strength of magnetic fields. With turbulent velocities measured using different tracers,
our approach can be generally applied to probing the magnetic fields in the multi-phase interstellar medium.
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1. INTRODUCTION

The interstellar medium (ISM) is permeated with turbu-
lence and magnetic fields (Larson 1981; Armstrong et al.
1995; Chepurnov & Lazarian 2010; Crutcher 2012; Han
2017; Hu et al. 2020c). The turbulent magnetic fields have
a significant impact on diverse astrophysical processes. They
are crucial in modeling the Galactic foreground (Clark et al.
2015; Hu et al. 2020a; Huffenberger et al. 2020), understand-
ing star formation (Mac Low & Klessen 2004; McKee &
Ostriker 2007; Li & Henning 2011; Crutcher 2012; Hu et
al. 2020b, 2021), and studying cosmic rays’ propagation and
acceleration (Fermi 1949; Bell 1978; Caprioli & Spitkovsky
2014; Brunetti & Jones 2014; Xu & Lazarian 2018). How-
ever, tracing the magnetic fields and characterizing the mag-
netized media are challenging.

The starlight polarization and thermal emissions produced
by aligned dust grains (Lazarian 2007; Lazarian & Hoang
2007; Andersson et al. 2015) are commonly used to trace
the magnetic fields in the plane-of-the-sky (POS). Using the
Davis—Chandrasekhar—Fermi method (Davis 1951; Chan-
drasekhar & Fermi 1953), one can employ the dispersion
of the directions of dust polarization and the information
of spectral broadening to estimate the POS magnetic field
strength in a turbulent medium (Falceta-Gongalves et al.
2008; Cho & Yoo 2016). The same data can also be used
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to measure magnetic field with the new technique that em-
ploys differential measures instead of the dispersions (Lazar-
ian et al. 2020). For the warm and hot phases of the ISM, the
POS magnetic fields can also be measured by the synchrotron
emission (Clarke & Ensslin 2006; Planck Collaboration et
al. 2016; Lazarian & Pogosyan 2016). Besides, the mag-
netic field strength along the LOS are commonly measured
by molecular line splitting (Zeeman effect; Crutcher 2004,
2012), which requires very high sensitivity and extremely
long integration time. Faraday rotation provides another
measurement for the LOS magnetic field strength (Minter
& Spangler 1996; Haverkorn et al. 2006; Oppermann et al.
2015; Xu & Zhang 2016; Tahani et al. 2018). The statistics
of Faraday Rotation Measure (RM), however, may be domi-
nated by density’s contribution (Akahori & Ryu 2010; Xu &
Zhang 2016).

Based on the development of MHD turbulence theory
(Goldreich & Sridhar 1995) and turbulent reconnection the-
ory (Lazarian & Vishniac 1999; Lazarian et al. 2020a), sev-
eral new methods have been proposed to probe the direction
of magnetic fields , for instance, the Correlation Function
Analysis (CFA; Lazarian et al. 2002; Esquivel & Lazarian
2011), the Principal Component Analysis of Anisotropies
(PCAA; Heyer et al. 2008), and the more recent Velocity
Gradients Technique (VGT; Gonzdlez-Casanova & Lazar-
ian 2017; Yuen & Lazarian 2017a; Lazarian & Yuen 2018a;
Hu et al. 2018). Some of the above methods employ the
anisotropy of MHD turbulence, i.e., the turbulent eddies are
elongated along the magnetic field and smaller eddied are rel-
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atively more elongated. Consequently, the eddy’s orientation
reveals the local magnetic field direction. Also, the mag-
netic field strength can be observationally estimated based
on the theoretical understanding of properties of MHD tur-
bulence (e.g. Li & Houde 2008; Esquivel et al. 2015; Xu &
Lazarian 2016; Lazarian et al. 2018a, 2020b; Yuen & Lazar-
ian 2020). In addition to the eddy’s anisotropic shape, the
amplitude of velocity fluctuations also shows the anisotropy
(Cho & Vishniac 2000; Maron & Goldreich 2001; Cho et al.
2002; Cho & Lazarian 2003). At the same distance away
from the eddy’s center, velocity fluctuations are maximum in
the direction perpendicular to the local magnetic fields, as the
turbulent motions, due to fast turbulent reconnection, are not
constrained to mix up magnetized media in the direction per-
pendicular to the local direction' of magnetic field (Lazarian
& Vishniac 1999). Such motions provide the minimal bend-
ing of magnetic field and therefore the cascade evolves in the
direction of the minimum resistance. The minimum ampli-
tude, therefore, indicates the magnetic field direction. This
property provides the theoretical foundation of our proposed
new approach, i.e., the Structure-Function Analysis (SFA) of
turbulent velocities, in tracing the magnetic fields.

The SFA proposed in this work employs the second-order
structure function of turbulent velocities. It measures the am-
plitude of velocity fluctuations along different directions in
the global reference frame. The direction corresponding to
the minimum amplitude reveals the direction of the mean
magnetic field. This idea was earlier implemented in sta-
tistical studies of velocity centroids to reveal the direction of
the POS mean magnetic field (Lazarian et al. 2002; Esquivel
& Lazarian 2005, 2011). Burkhart et al. (2014) later per-
formed a parameter study showing the degree of anisotropy,
i.e., the ratio of velocity centorid fluctuations measured in
the perpendicular and parallel directions (with respect to the
POS mean magnetic field), is related primarily to magnetic
field strength. The relation of the anisotropy degree and the
magnetic field strength is analytically quantified by Kandel
et al. (2017). In this work, we use 3D velocity of point
sources rather than velocity centroid to calculate the degree
of anisotropy. We analytically and numerically show that
the degree of anisotropy has a power-law dependence on the
Alfvén Mach number M, in sub-Alfvénic turbulence. In-
stead of using 2D velocity centroids as an indirect measure-
ment of velocity fluctuations, the SFA can utilize 3D veloci-
ties of point sources to trace 3D magnetic field and measure
the magnetization Mgl.

The paper is organized as follows. In § 2, we analyze the
anisotropy of the velocity structure functions and discuss its

! The notion of the local direction of magnetic field is the key concept of the
MHD turbulence theory. This concept was missing in the original (Goldre-
ich & Sridhar 1995) study. However, it trivially follows from the theory
of turbulent reconnection. The Goldreich-Sridhar relation between the ve-
locities of parallel and perpendicular to magnetic field are only valid in the
system of reference related to the local direction of magnetic field. This
was first demonstrated by (Cho & Vishniac 2000) and confirmed by the
subsequent numerical studies.

differences in the local and global reference frames. In § 3,
we provide the details of the numerical data used in this work.
In § 4, we perform numerical experiments to test our analyt-
ical results. In § 5, we discuss the observational applications
of SFA. We present discussion in § 6 and summary in § 7.

2. THEORETICAL FORMULATION OF THE SFA
2.1. Anisotropy of MHD turbulence

Several attempts to describe statistics of MHD turbulence
have been achieved in decades. Iroshnikov (1963) and
Kraichnan (1965) proposed an isotropic model of turbulence
despite the presence of the magnetic field. However, a num-
ber of theoretical and numerical studies later revealed that
sub-Alfvénic MHD turbulence is indeed anisotropic instead
of isotropic (Montgomery & Turner 1981; Shebalin et al.
1983; Higdon 1984; Montgomery & Matthaeus 1995). A
cornerstone of the anisotropic MHD turbulence theory was
given by Goldreich & Sridhar (1995), denoted as GS95. By
considering the critical balance” condition, i.e., equating the
cascading time (ki v;)”" and the wave periods (kjva)~',
GS95 obtained the anisotropy scaling in the global reference
frame: )

k” x k}i/s (1)

where k|| and k| are the components of the wavevector par-
allel and perpendicular to the magnetic field, respectively.
vy is turbulent velocity at scale [ and v, is Alfvén speed.
The GS95 scaling indicates that turbulent eddies are elon-
gating along the large-scale mean magnetic fields. This
scale-dependent anisotropy, however, is not observable in the
global reference frame. Only the largest eddy appears in
the global frame due to the averaging effect (Cho & Vish-
niac 2000). The study of fast turbulent reconnection done by
Lazarian & Vishniac (1999) demonstrated that the eddy-like
description of sub-Alfvénic turbulence is only valid if the ed-
dies axes are aligned with the local magnetic field direction.
They derived the anisotropy relation for the eddies in the lo-
cal reference frame:

h= Lo MM <1 @

nj

where [ and [ are the perpendicular and parallel scales of
eddies with respect to the local magnetic field, respectively.
L;y; is the turbulence injection scale. Using the “critical
balance” condition expressed in the local frame, Lazarian &
Vishniac (1999) obtained the corresponding scaling of veloc-
ity fluctuation:

Iy

1ar1/3
Ty M .

U = Ving(
where v;,,; is the injection velocity. Cho & Vishniac (2000)
and Maron & Goldreich (2001) later numerically demon-
strated this scale-dependent anisotropy in the local reference
frame.
The above picture of eddy-like sub-Alfvénic turbulence
is valid only at scales from dissipation scale [4;ss to transi-
tion scale l;,, = Lijf\ (Lazarian 2006). The turbulence
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Figure 1. Panel (a): the definition of structure-function in the global reference frame. We adopt a cylindrical coordinate system in which
the z-axis is parallel to the mean magnetic field Bo. Panel (b): an example of structure-function SF in the global reference frame using
simulation A7. Panel (c): an example of structure-function SF} in the local reference frame using simulation A7.

within this regime [lg;ss, 4] is called strong MHD turbu-
lence. The turbulence in the range from L;y,; to ¢, is termed
weak Alfvénic turbulence, which is described as wave-like
rather than eddy-like. The turbulent velocity at the transition
scale vy, = v, ;M4 leads to the expressions:

] .1
v = vtr(li)§
ir @)

2 2 1
=M L
which at [/;,, becomes:

v
L = flm (5)

because of l;, ~ l;,, 1 . It shows that the anisotropy of strong
MHD turbulence is scale-dependent. The velocity fluctuation
v; can also be expressed as:

l
o = v Ma(70)3 ©)
tr
When [ of one eddy (eddy 1) is equal to /|| of another eddy
(eddy 2), the corresponding velocity fluctuations v 1 and v; 2
are:

Iy 2 _
(U)S = Ulz,l’utr2
" 7
bivz  ayz —agzyc —ays @
(U)s = V2 Vr Ma

By equating these two expressions, one gets:

Ul2,1/vl2,2 = (Ul,2/vtr)_2/3MA_4/3
= (I /L) "ML, ®)

= (I/Ling) " Y3Ma 3 My < 1

which is valid in the local reference frame. This ratio is called
the degree of anisotropy. In the global reference frame, the
observed anisotropy is determined by the anisotropy of the
largest eddy at l4,..

In the global reference frame, we have:

l lyr
Tt ©)
1 tr, L Uty
vy can be expressed in terms of [:
JIRY!
v = ()3 (10)
tr,||

Comparing the above expression with Eq. 4, we find that to
have [ = [, the turbulent velocities should satisfy:

l 2 VA
VP, fviy = (ﬁ)s = )

~Ma 3 My <1

2
3

It shows that the ratio measured in the global frame of mean
magnetic field is a power-law relation with M for sub-
Alfvénic turbulence. Velocity fluctuation in the direction per-
pendicular to the magnetic field has more significant ampli-
tude. Therefore, once the ratio v}, /v7, in the global is mea-

sured, one can could get the magnetization level Mgl from:

Ma ™" = (v7/v70) 4 Ma < 1 (12)

In super-Alfvénic (Ma > 1) condition, the transition to
strong MHD turbulence happens at scale I, = L;y,; MK3 with
transition velocity vs; = v4 (Lazarian 2006). Similarly, we
can express /| and v; in terms of [4:

= MR
l

v = v (-5) MY = vy, (L
la lo

Consequently, we can obtain the ratio v7 | /v7| in the local
reference frame:

vifoty = (/1) AMAT B My > 1 (1)



4 Hu, XU & LAZARIAN

which can return to Eq. 8 by replacing [, with [, =
Lin;My>. In the global reference frame, super-Alfvénic is
isotropic:

vfy /vy =1,Mp > 1 (15)

Above we follow the consideration of incompressible turbu-
lence used by GS95 and LV99. Cho & Lazarian (2003) later
confirmed that these scaling relations are still valid for com-
pressible turbulence when the Alfvénic mode dominates the
turbulence.

2.2. Structure functions of turbulent velocities in the local
and global reference frames

As discussed above, the ratio between the two components
vf; and v, can be used to estimate the Alfvén Mach num-
ber. To calculate v, , and Uz 5, we employ the second or-
der structure-function in both the local and global reference
frames. The definition of the structure-function in the local
reference frame is given by Cho & Vishniac (2000):

B, = %(B(rl) — B(r3)) (16)

(lo(re) —v(r2)]?)

where B defines the local magnetic fields. R and z are co-
ordinates in a cylindrical coordinate system in which the z-
axis is parallel to B;. Explicitly, R = |2 x (r1 — r2)|,
z = 2%2-(ry —72), and 2 = B;/|By|. Similarly, we can
replace the local magnetic fields B; by the mean magnetic
fields By, we obtain the structure-function in the global ref-
erence frame:

SFYR,z) =

SFY(R,z) = (|lv(r1) —v(r2)[*) a7
where z = 2 - (r; — r2) and 2 = Bg/|Bo|, as shown in
Fig. 1. The local structure-function is more anisotropic to-
ward smaller scale. In both frames, U12,1 and U12,2 are obtained
from (Cho et al. 2002):

2 _
) : (18)

The scale-dependent anisotropy scaling of Eq. 3 can be
observed in a local reference frame, which is defined with
respect to the local mean magnetic field (Cho & Vishniac
2000; Maron & Goldreich 2001). In the global reference
frame, the anisotropy is dictated by the largest eddy (i.e.,
the eddy at scale [; for sub-Alfvénic turbulence) so that the
observed anisotropy is scale-independent. However, due to
the isotropic driving, it is possible to observe ( an artificial)
scale-dependent anisotropy in the global frame of reference,
which is aligned with the mean magnetic field (see Vestuto et
al. 2003; Yuen et al. 2018). This artificial anisotropy comes
from the isotropic driving instead of turbulence’s cascade.
The isotropic driving produces large-scale isotropic struc-
tures. Small-scale structures, however, are anisotropic. The
structure-function in the global reference frame continuously
measures the velocity fluctuations from small scales to large

’ Model ‘ Mg ‘ Ma ‘ Resolution ‘ B8 lst or 1 [pc]

Al 0.63 | 0.37 7923 0.69 0.68
A2 | 0.60 | 0.78 7923 3.38 3.05
A3 0.60 | 1.02 7923 5.78 4.71
A4 1.27 | 0.50 7923 0.31 1.25
A5 | 555 | 1.71 7923 0.19 1.00
A6 | 10.81 | 0.26 7923 0.001 0.34
A7 | 10.61 | 0.68 7923 0.007 2.30

Table 1. Description of our MHD simulations. Ms and M are the
instantaneous values at each the snapshots are taken. The compress-
ibility of turbulence is characterized by 8 = 2( 1;44—‘;)2.

scales. Therefore, there should be transition scales on which
we observe an artificial scale-dependent anisotropy. With
sufficiently long inertial range (longer than the transitional
range), we expect to see scale-independent global anisotropy
on scales far smaller than the driving scale (Kalberla & Kerp
2016).

3. NUMERICAL DATA

We perform 3D MHD simulations through ZEUS-MP/3D
code (Hayes et al. 2006), which solves the ideal MHD equa-
tions in a periodic box:

Op/ot+V - (pt) =0

2
D)0t + 5 - o5 + (p + )T %1 —f 19

dB/ot —V x (G x B) =0

where f is a random large-scale driving force, p is the den-
sity, U is the velocity, and B is the magnetic field. We also
consider a zero-divergence condition V - B = 0, and an
isothermal equation of state p = c2p, where p is the gas
pressure. We consider single fluid and operator-split MHD
conditions in the Eulerian frame. The simulation is staggered
grided to 7923 cells. The turbulence is solenoidally injected
at a spatial scale k ~ 2.

The MHD simulation of astrophysical turbulence is scale-
free and we may assign any desired physical scales. Here
we specify temperature T = 10.0 K, sound speed ¢, = 187
m/s and cloud size L = 10 pc to emulate an isothermal cloud.
The magnetic field is considered as B = B} + 65, where
By is the uniform background field and §B is the magnetic
fluctuation. B, is assumed to be perpendicular to the LOS.
We vary the sonic Mach number Mg = v;,,; /¢ and Alfvénic
Mach number My = v;,,;/v4 to explore different physical
conditions. Here v;,,; is the isotropic injection velocity and
v4 is the Alfvénic velocity. We refer to the simulations in
Tab. 1 by their model name or parameters.

4. RESULTS
4.1. Probing the direction of magnetic fields
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Figure 2. Panel (a): the structure-function in the local reference
frame. The simulation A7 is used here. Panel (b): an example of
structure-function in the global reference frame. k denotes the slope
of the reference line. l4iss and ls; represent dissipation scale and
transition scale, respectively.

Fig. 2 presents an example of the local structure-function
and the global structure-function. We use the sub-Alfvénic
simulation A7 (Ma = 0.68 and Mg = 10.61). The corre-
sponding sonic scale [; = Lijsf3 ~ 4 x 1073 pc, consid-
ering Kolmogorov-type cascading. Based on the probability
distribution functions of velocity, we adopt the Monte Carlo
method to select one million points to calculate structure-
function. In the local frame, we observe that at scales
laiss < 1 < lg, the velocity field follows v? o li/B and
v% ox | I At scales larger than [, the turbulence becomes
weak, i.e., wave-like, and the driving effect gets significant.
This agrees with the numerical results of Cho & Vishniac
(2000). In molecular cloud, the scales from L;,; ~ 5.0 pc
to lg;ss =~ 0.1 pc typically correspond to volume density of
non-self-gravitating gas from ~ 1x 102 gcm =3 to ~ 1 x 10°
g cm~3 (Parmentier & Pfalzner 2013).

In real scenario, measurement of the local structure-
function requires the knowledge of 3D position, 3D veloc-
ity, and 3D magnetic field distribution. This requirement is

1.0r

0.8 -

0.6

SFa(v)/max(SFa(v))

Ms =10.61, Mg =0.68
—o— Ms=0.63, My=0.37
—e— Ms5=0.60, M4=0.78

0.4

0 10 20 30 40 50 60 70 80 90
Relative angle [degree]

Figure 3. The correlation of normalized structure function and the
relative angle between 7 and mean magnetic field By. SF>(v) takes
the value at 0.1 pc.

only accessible for in-situ measurements in the solar wind,
where local anisotropy is indeed confirmed (Wang et al.
2016). The global frame, however, can be more easily ac-
cessed in observations as we will discuss. In the global

frame, we also find v% x li/ 3, and the two velocities get
overlapped when scales larger than [;. Ideally, the structure-
functions of v? and v3 should exhibit identical slope since
the global anisotropy is scale-independent. However, as dis-
cussed above, the isotropic driving produces isotropic veloc-
ity fluctuations so that v and v3 are transited to the same
amplitude on a large scale. This transition induces an artifi-
cial anisotropy in the global reference frame.

Additionally, v? consistently exhibits a higher amplitude
than v3 in both frames, which implies the turbulence cas-
cade is preferentially along the direction perpendicular to the
magnetic fields. Theoretically, it was explained by the tur-
bulence reconnection theory (Lazarian & Vishniac 1999). In
the sub-Alfvénic regime, Alfvén waves initially evolve by
the so-called weak turbulence cascade increasing the perpen-
dicular wavenumber while keeping the parallel wavenumber
the same (Lazarian & Vishniac 1999; Galtier et al. 2000,
2005). The perpendicular wavenumber’s increase makes the
Alfvénic wave vectors more and more perpendicular to the
magnetic field. The weak cascade proceeds until the critical
balance condition, namely, I /va ~ [1 /vy is fulfilled. The
critical balance is the cornerstone of the theory of strong tur-
bulence (Goldreich & Sridhar 1995). From the point of view
of turbulent reconnection, the critical balance corresponds to
the condition that the turbulent eddies aligned with the local
direction magnetic field perform their turnover in the time
I, /v, and this time is equal to the period of the wave that
the eddy motion excites, i.e., to [ I /va. Such motions occur
as the fast turbulent reconnection changes the topology of
the interacting magnetic flux tubes within one eddy turnover
time (Lazarian & Vishniac 1999). Consequently, in the local
reference frame, the fluid motions perpendicular to magnetic
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Figure 4. The correlation of M and vﬁl / vﬁQ. The calculation
is performed in the global reference frame, selecting the veloc-
ity fluctuations at the scale [ ~ 0.1 pc, below which the turbu-
lence starts numerically dissipating. The analytical expressions are
Vi Vi = Ma %3 for Ma < 1 and vi1/vig = 1for Ma > 1.

fields are not constrained by magnetic tension. This perpen-
dicular direction, therefore, provides the path of least resis-
tance for turbulent cascade.

Initially, we consider the situation that 7 direction? of the
velocity structure-function is parallel to the mean magnetic
field By. Next, we vary the relative angle between # and By
when calculating the structure-function. In Fig. 3, we plot the
relation of measured structure-function SF5(v) and relative
angle between 7 and B,. To avoid the artificial anisotropy
(see § 2), the SFy(v) takes the value at 0.1 pc, below which
the turbulence starts numerically dissipating. In the real ob-
servation, one can take the SFy(v) at larger scale as there
exists scale-independent global anisotropy in an extended in-
ertial range. Consequently, one can average the anisotropy
over the inertial range to reduce the uncertainty introduced
by insufficient sampling. For visualization purposes, the re-
sulting SF5(v) is normalized so that the maximum value is
1. We find generally the normalized SF»(v) is increasing
when the relative angle gets large. The increment is more
rapid when the relative angle is less than 70 degrees. Never-
theless, the normalized S F5(v) achieves its maximum when
7 is perpendicular to B'O (e, = fi) and has its minimum
value when 7 is parallel to EO (i.e., 7 = 2). The direction 7
corresponding to minimum value of SF;(v), therefore, gives
the magnetic field direction.

4.2. Measuring magnetization

In the above section, we discussed how to probe the mag-
netic field direction using the structure-function. The maxi-

21n Eq. (18), we define 2 is parallel to Bp and R is parallel to By. Here
we use 7 to represent an arbitrary direction for calculating the structure-
function.

mum velocity fluctuation appears in the direction perpendic-
ular to the magnetic fields. Once the magnetic field direc-
tion is known, the corresponding ratio v?,/v?, can reveal

the magnetization Mxl (see Eq. 11 and Eq. 15).

Fig. 4 presents the correlation of M and v, /v?, in the
global reference frame. To avoid this driving effect, we only
consider the velocity fluctuations at the scale [ = 0.1 pc, be-
low which the turbulence starts numerically dissipating. Un-
certainty is given by the standard deviation of the mean. We
see that the measured ratio well follows the theoretical corre-
lation:

—4/3
7)121/7)[22 _ {MA ) (glObalv MA < 1) (20)
1, (global, My > 1)

The change in power-law index for My > 1 cases is ex-
pected. When the injection velocity becomes higher than
the Alfvén speed, the large-scale motions are dominated
by hydro-type turbulence, and the directions of the mag-
netic field within the flow are significantly randomized so
that the power-law gets shallower. Note that in observa-
tions, the structure-function can only be calculated in the
global reference frame. The measure velocity fluctuations
are only correlated to Ma in this frame. Therefore, Mx
can be inferred from vj 2 Jv? jo, Which are measured by the
global structure- function. We call this approach as Structure-
Function Analysis (SFA). In practice, one should measure
the velocity structure-function from different position angle
to find the maximum and minimum values of velocity fluc-
tuations. The magnetic field strength can be calculated from
By = /4mpv;p; /Ma, where p is the gas mass density.

5. OBSERVATIONAL APPLICATIONS
5.1. Application to young stars

We give an example of using SFA to trace the 3D magnetic
field. Here we use the simulation Mg ~ 10.81, M ~ 0.26,
in which the mean magnetic field is inclined to the LOS with
angle v = /2. We split the 792 x 792 x 792 velocity cube
into 64 sub-cubes. Each sub-cube contains 198 x 198 x 198
data points. Following the recipe presented in § 4.1, for each
sub-cube, we vary the 3D direction of 7 in space and calculate
its corresponding velocity structure-function S F»(v) along 7.
We randomly select 1 x 10° data points for the calculation.
The direction of 7 corresponding to the minimum value of
SF;(v) at separation = 0.1 pc gives the measurement of 3D
magnetic field direction. As shown in Fig. 5, the 3D magnetic
fields measured from SFA agree with the real magnetic fields
in the simulation. Both of them have a mean magnetic field
approximately perpendicular to the LOS.

Besides, we rotate the simulation so that the mean mag-
netic field is inclined to the LOS with angle v # 7/2. Simi-
larly, we also vary the direction of  in space and calculate its
structure-function of velocity. The direction corresponding
to the minimum value of the structure-function (i.e., vle) re-
veals the magnetic field orientation, while the direction with
maximum structure-function (i.e., Uz2,1) is perpendicular to
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Figure 5. Panel a: An example of the 3D magnetic field traced by SFA (red segments) comparing with the real 3D magnetic fields (blue
segments) in numerical simulation. Mean magnetic field is perpendicular to the LOS (x-axis), i.e., ¥ = 7/2. Panel b: The relative angle
of numerically measured mean vysra and real mean ~y (x-axis). Color of the point represents the numerically measured mean Ma for the
simulation Mg = 10.81, Ma = 0.26. The dashed line represents the equality between the measured and real values.

the magnetic field. Then we derive M4 from:
My = (v7/v7,) "3/ 1)

Fig. 5 presents the difference of numerically measured mean
vsr4 from the SFA and real mean . The relative angle of
vsra and v is smaller than =~ 5°, which represents an excel-
lent alignment. The real Ms = 0.26 and we have the mea-
sured My =~ 0.24. The full 3D magnetic field information
gets retrieved.

The SFA usually requires the knowledge of 3D positions,
which is challenging to obtain in observation. Nevertheless,
the flow motion can be traced by placing point-like objects
into the turbulent flow (La Porta et al. 2001). It means the
calculation of the structure-function is applicable to point
sources, which are similar to the points selected by the Monte
Carlo method in § 4. Therefore, one way to measure turbu-
lent velocities is using velocities of point sources, as their
motions are coupled to the background turbulent motions,
or they inherit the turbulent motions from the parent turbu-
lent gas in the case of young stars (see Ha et al. 2021). The
6D phase-space information of stars can be obtained from
the Gaia survey (Gaia Collaboration et al. 2016, 2018). By
calculating the velocity fluctuations of stars, the SFA could
reveal the 3D magnetic fields, including both LOS and POS
components.

One important question is how many point sources are re-
quired to give an accurate measurement. In Fig. 6, we vary
the number of point sources used for a single bin in SFA’s cal-
culation. We consider the bin centred at 0.1 pc (spans from
0.09 pc to 0.11 pc) as above. We see the resulting ratio of ve-
locity fluctuations v}, /v?,, gets statistically stable when the
sample size is larger than one thousand. The required number
of point source also depends on the property of the turbulent
system. In observation, usually all point sources fall into the
inertial range. It is likely the turbulent properties can be re-
flected by fewer point sources. In Fig. 6, we also investigate

the effect of noise by introducing the Gaussian noise to the
velocity field. Its amplitude varies from 0% to 30% of mean
velocity. We selected one million points still. We see the
ratio v}, /v?, gets decreasing in the presence of noise. Com-
paring with the theoretical value &~ 1.7, the SFA still works
when the noise level is less than 10%. Note here the am-
plitude of noise depends on the mean velocity, which is also
the injection velocity at injection scale. The scale-depend ve-
locity fluctuation (see Fig. 2) at small scale is more sensitive
to noise. Therefore, in practice, one should use the velocity
fluctuations at large scales to suppress the noise.

5.2. Application to spectroscopic data

The SFA can also apply to dense molecular cores, which
has volume density more than an order of magnitude higher
than its surroundings (Qian et al. 2018). The emission lines,
i.e., the PPV cubes, of dense core provide the information of
the POS projected separation and LOS velocity. For instance,
we can define the thickness of a cloud as its length scale along
the LOS. In the case of its thickness being far smaller than its
length scale on the POS, the cloud is thin. Otherwise, it is a
thick cloud. In the limit of very thin cloud, the projected sep-
aration calculated approximately equivalents to the real sep-
aration between two dense cores in 3D. For instance, Qian
et al. (2015) found Taurus is a nearly face-on thin molec-
ular cloud and Qian et al. (2018) successfully obtained the
structure function of velocities using Taurus’ dense cores. In
Fig. 6, we test the similar idea for the SFA. We vary the thick-
ness of the cloud from 0.1 pc to 5.0 pc and use only the pro-
jected separation and LOS component of velocity. 1 x 10°
points are selected by Monte Carlo method for the analysis.
We find the measured velocity fluctuation ratio decreases for
a thick cloud. When the cloud is thinner than 3% of the in-
jection scale, the measured value is close to the theoretical
value. Therefore, as we expected, the SFA is applicable to
dense molecular cores when the cloud is thin. Note search-
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thickness of cloud. L;y; is the injection scale.

ing for dense cores usually requires optically thin emission
lines, which trace high-density regions (Qian et al. 2018).

6. DISCUSSION

6.1. Tracing 3D magnetic fields and scale-dependent
anisotropy

The anisotropy of turbulence is widely observed in the
ISM, including transparent diffuse gas and dense molecular
gas (Heyer et al. 2008; Kalberla & Kerp 2016). Crovisier
& Dickey (1983) and Kalberla & Kerp (2016) found that
H I emission’s power spectra exhibit a typical slope value
around —3, which is independent of position angle. In par-
ticular, Kalberla & Kerp (2016) observed that the spectral
power in the direction perpendicular to the magnetic field in-
ferred from Planck polarization gets maximum value. This
observational evidence confirms our theoretical expectation
and numerical results.

In this work, we propose a novel approach to probe
the magnetic fields and estimate magnetization using the
second-order structure function of turbulent velocity, i.e.
the Structure-Function Analysis (SFA). The SFA is obser-

vationally motivated by turbulence measurements with point
sources. For example, Ha et al. (2021) found that the veloc-
ities of young stars formed in a molecular cloud show sig-
natures of turbulence of the parent cloud. The velocity field
sampled by stars is expected to be anisotropic in the pres-
ence of magnetic fields and thus contains the magnetic field
information. As we discussed in § 2, the ratio of the ve-
locity fluctuations measured in the parallel and perpendicu-
lar directions (with respect to the mean magnetic field) has a
power-law dependence on Alfvén Mach number M, . In this
paper, we discuss the application of the SFA to the turbulent
velocities measured with point sources, e.g., dense molecu-
lar cores (Qian et al. 2018), dense filaments (Li et al. 2020),
young stars (Ha et al. 2021). As the Gaia survey (Gaia Col-
laboration et al. 2016, 2018) provides 3D positions and 3D
velocities of young stars, the SFA can directly employ this
information to reveal the 3D magnetic fields.

Note that the global reference frame discussed above (see
§ 2) is defined in terms of a given size of the sample turbu-
lent volume. Multi-scale magnetic fields can be measured by
varying length scales. The SFA therefore provides the possi-
bility to study the predicted scale-dependent anisotropy in the
local reference frame. The full 6D phase-space information
of stars from the Gaia survey, together with the SFA, can si-
multaneously give the local 3D magnetic fields and 3D turbu-
lent velocities. The magnetic field information defines the lo-
cal reference frame. By employing the approach proposed by
Cho & Vishniac (2000), the velocity fluctuations calculated
in the local reference frame will exhibit a scale-dependent
anisotropy. In addition, Cho & Lazarian (2003) decompose
the turbulence into fast, slow, and Alfvénic modes in the lo-
cal reference frame. The similar idea of defining the local
reference frame through the Gaia survey and SFA can also
be implemented in the decomposition method.

In addition, turbulence and magnetic fields play important
roles in the formation of density filaments (Tahani et al. 2018,
2019; Xu et al. 2019) and the origin of core-mass function
(Hopkins 2012; Krumholz & Federrath 2019). Our study
provides a unique way to trace 3D magnetic fields through
turbulence’s anisotropy. It may give new insight into ex-
plaining the balance between turbulence, magnetic fields, and
gravity in these processes.

6.2. Application with 2D velocity information

The application to probe the 3D magnetic fields associ-
ated with stars is straightforward. The Gaia survey provides
3D position and 3D velocity information for calculating the
structure function. However, obtaining the velocity informa-
tion of either multi-phase atomic gas or cold molecular gas
is non-trivial in observations. For sub-Alfvénic turbulence,
the velocity fluctuation is also preserved with the averag-
ing along the LOS (Esquivel & Lazarian 2005; Kandel et
al. 2017). Thus, one of the most common ways to extract
velocity information is using the Position-Position-Velocity
(PPV) cube to obtain velocity centroid map. A 2D velocity
centroid map C(x,y) can be produced by integrating the PPV
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cube along the LOS:

Cleny) = Jv-ple,y,v)dv 22)

J p(z,y,v)dv

where v is the LOS component velocity at the position (X,y),
including both the turbulent velocity and the residual veloc-
ity due to thermal motions. p(x,y,v) is the gas density or
radiation temperature. The integration eliminates the effect
of temperature so that C(x,y) is only regulated by gas density
and turbulent velocity (Esquivel & Lazarian 2005; Kandel et
al. 2017; Hu et al. 2020d). The statistics of velocity centroid
has been earlier developed to reveal the anisotropy (Lazarian
et al. 2002; Esquivel & Lazarian 2005, 2011; Burkhart et al.
2014; Kandel et al. 2017). Therefore, the SFA is also ap-
plicable to the 2D velocity information provided by velocity
centroid (Xu & Hu 2021). This provides a possibility to test
the Gaia related results (see § 6.1) with spectroscopic data.
The second way to extract velocity fluctuations comes
from the velocity caustic effect in PPV cube (Lazarian &
Pogosyan 2000). This effect reveals that turbulent veloci-
ties along the LOS can significantly distort the density struc-
ture. The distorted density structure is dominated by ve-
locity fluctuations instead of density fluctuations. Lazarian
& Pogosyan (2000) quantified the significance of velocity
caustics in PPV cubes in terms of the density spectral in-
dex. When the density power spectrum is steep, i.e., the
slope is shallower than -3, the velocity fluctuation dominates
the PPV cube’s emissivity spectrum. The importance of this
velocity fluctuation is correlated to the width of the velocity
channel Av. When the channel is thin, i.e., Av < 1/§(v?)

where \/d0(v?) is the velocity dispersion, the velocity fluc-
tuations are most prominent in corresponding velocity chan-
nels. When the channel is thick, i.e., Av > /d(v?), density
fluctuations are dominated the velocity channels (Lazarian &
Pogosyan 2000). Several authors (Clark et al. 2019; Kalberla
& Haud 2020; Murray et al. 2020) argue that Cold Neutral
Medium (CNM) is responsible for shallower spectral index
observed in the thin velocity channel maps of H I emission
rather than the velocity caustics effect. We stress that the ve-
locity caustics is a natural effect of nonlinear spectroscopic
mapping from real PPP space to PPV space, which also in-
evitably presents in CNM. This issue will be discussed in
detail elsewhere.

In multi-phase ISM, the velocity information provided by
either the velocity centroid map or thin velocity channel is
partially contaminated by density’s contribution. For sub-
sonic or trans-sonic warm ionized medium (WIM, Kulkarni
& Heiles 1987; Hill et al. 2008) and warm neutral medium
(WNM, Chepurnov et al. 2010), the compression of turbu-
lence is insignificant so that density statistics passively fol-
low velocity statistics (Cho et al. 2002; Cho & Lazarian 2003;
Xu et al. 2019). Consequently, the velocity centroid map
and thin velocity channel can directly reveal velocity fluctu-
ations in WIM and WNM. When the turbulent compression
is significant, i.e., for supersonic CNM and molecular clouds
(Zuckerman & Palmer 1974; Larson 1981; Chepurnov et al.

2010), the situation is more complicated. Density fluctua-
tions here are subjected to not only the Alfvénic mixing but
also the shock compression. The latter results in a shallow
density spectrum (Beresnyak et al. 2005; Kowal et al. 2007).
To eliminate the shock effect, one could select the velocity
channel width as thin as possible, as the significance of ve-
locity fluctuations is negatively related to the channel width.

6.3. Comparison with other works

The anisotropic properties of turbulence have been widely
used to study magnetic fields. The first attempt was achieved
by the Correlation Function Analysis (CFA) of velocity
(Lazarian et al. 2002; Esquivel & Lazarian 2011). CFA
was further extended to determine magnetization (Esquivel
& Lazarian 2011; Esquivel et al. 2015) and the contribution
of the fast, slow, and Alfvén modes in observed turbulence
(Kandel et al. 2016, 2017). Heyer et al. (2008) provides a dif-
ferent way to trace magnetic fields using the Principal Com-
ponent Analysis of Anisotropies (PCAA). The Velocity Gra-
dients Technique (VGT; see Gonzdlez-Casanova & Lazarian
2017; Yuen & Lazarian 2017a; Lazarian & Yuen 2018a; Hu
et al. 2018, 2019a) also employs the velocity anisotropy cal-
culated for a given separation between the points. The largest
velocity gradient is perpendicular to the eddy’s orientation
so that the velocity gradient is perpendicular to the magnetic
fields. Similar to the present technique, in Lazarian & Yuen
(2018a) the difference between the maximum and minimum
velocity gradient was used to obtain M 5. The advantage of
the SFA is that using the 3D information on turbulent veloc-
ities and distances, one can obtain the actual 3D magnetiza-
tion.

We note that the VGT approach can also be implemented
with intensity gradients, i.e. without the velocity informa-
tion (Yuen & Lazarian 2017b; Hu et al. 2019¢, 2020c). In
this case, one can obtain M4 employing the Lazarian et al.
(2018a) approach and relating the dispersion of intensity gra-
dients with M to estimate the magnetization. In general,
these approaches detect the eddy’s contour. Since the eddy is
elongated along with the local magnetic field, the semi-major
axis reveals the magnetic field direction. These techniques
mentioned above usually employ spectroscopic data to ex-
tract the turbulent velocity of plasma gas in scales from pro-
tostars to galaxy clusters. Their application for velocities of
point sources is not yet explored. The SFA, however, instead
of directly detecting the eddy’s contour, focuses on the ve-
locity of point sources. The amplitude of velocity fluctuation
gets maximum when the measuring direction is perpendicu-
lar to the magnetic fields. Also, the anisotropy degree, which
correlates with magnetization in a power-law behavior, can
be used to estimate the magnetization.

An important advantage of SFA is that it requires much
less valid data points. For instance, the selected one million
points occupy only a small fraction 106/7923 ~ 0.2% of the
entire cube. This method directly calculates the velocity fluc-
tuation between each pair of points. At a given separation,
the velocity fluctuation gets its minimum value in the direc-
tion parallel to the magnetic fields. It naturally raises a ques-
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tion: how many samples do we need to have a statistically
stable velocity fluctuations at a fixed separation? The answer
is presented in Fig. 6, in which we vary the number of points
used to calculate the velocity fluctuation with the separation
~ 0.1 pc. We found the velocity fluctuation becomes sta-
ble when the sample size is larger than approximately 1000
points. The idea of finding a stable velocity fluctuation at a
fixed separation is similar to the sub-block averaging method
implemented in VGT. The sub-block averaging method uses
a statistically stable histogram of velocity gradients to find
the direction of magnetic fields (Yuen & Lazarian 2017a).

The CFA method detects a compact iso-contour of veloc-
ity fluctuations. The semi-major-axis of the iso-contour in-
dicates the direction of the magnetic field. If the correlation-
function is calculated directly between each pair of points.
The required number of point sources to find a single veloc-
ity iso-contour for CFA and a single-separation iso-contour
for SFA is similar. However, since the value of velocity iso-
contour cannot directly be fixed in observation, one has to
try a number of point sources at different separations. This
results in multiple iso-contours of velocity fluctuations and
significantly increases the required data number. Yuen et al.
(2018) use the open-boundary Fast Fourier Transform (FFT)
to improve the calculation of CFA. The FFT decreases the
required computational time. However, because the FFT is
also sensitive to the number of data points, the FFT-based
CFA requires even more data points than directly computing
the correlation function. As shown in Yuen et al. (2018), this
improved CFA requires at least 60% valid data points of the
entire system to trace the magnetic fields. Comparing with
the CFA method, the iso-contour of separations required by
SFA are directly available in observations. One can easily fix
the two-point separation value to obtain a single iso-contour
of separations. Therefore, SFA requires fewer data points
in practice and gives advantageous in probing the magnetic
fields associated with point sources and dealing with low-
resolution or sparse-pixel spectroscopic data.

7. SUMMARY

Anisotropy is an intrinsic property of sub-Alfvénic MHD
turbulence. A number of studies have employed anisotropy
to study the magnetic field in the ISM. In this work, based
on also the turbulence anisotropy, we propose the Structure-
Function Analysis (SFA) as a novel approach to probe the
magnetic fields and estimate the magnetization. This new
approach is complementary to the other ways of tracing the
magnetic field. Our main results are summarized as follows.

1. Based on the analytical model of MHD turbulence and
numerical experiments, we showed that in both the lo-
cal and global reference frames, the velocity fluctua-
tions are the most significant in the direction perpen-
dicular to the magnetic field.

2. We find that the ratio of velocity fluctuations in per-
pendicular and parallel directions with respect to mag-
netic field direction has a power-law relation with

Ma, which is inversely proportional to magnetic field
strength.

3. We show that the turbulent velocities traced by point
sources can be used to study the 3D magnetic fields.
With turbulent velocities measured by spectroscopic
data, the SFA can probe the magnetic fields in multi-
phase interstellar medium.

4. We discuss the possibility of tracing 3D magnetic
fields and actual magnetization using the SFA and the
Gaia survey.
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