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The Disk-access Machine (DAM) model simpli!es reality by assuming that storage devices transfer data in
blocks of size B and that all transfers have unit cost. Despite its simpli!cations, the DAM model is reasonably
accurate. In fact, if B is set to the half-bandwidth point, where the latency and bandwidth of the hardware
are equal, then the DAM approximates the IO cost on any hardware to within a factor of 2.

Furthermore, the DAM model explains the popularity of B-trees in the 1970s and the current popularity
of Bε -trees and log-structured merge trees. But it fails to explain why some B-trees use small nodes, whereas
all Bε -trees use large nodes. In a DAM, all IOs, and hence all nodes, are the same size.

In this article, we show that the a#ne and PDAM models, which are small re!nements of the DAM
model, yield a surprisingly large improvement in predictability without sacri!cing ease of use. We present
benchmarks on a large collection of storage devices showing that the a#ne and PDAM models give good
approximations of the performance characteristics of hard drives and SSDs, respectively.

We show that the a#ne model explains node-size choices in B-trees and Bε -trees. Furthermore, the models
predict that B-trees are highly sensitive to variations in the node size, whereas Bε -trees are much less sensitive.
These predictions are born out empirically.

Finally, we show that in both the a#ne and PDAM models, it pays to organize data structures to exploit
varying IO size. In the a#ne model, Bε -trees can be optimized so that all operations are simultaneously
optimal, even up to lower-order terms. In the PDAM model, Bε -trees (or B-trees) can be organized so that
both sequential and concurrent workloads are handled e#ciently.

We conclude that the DAM model is useful as a !rst cut when designing or analyzing an algorithm or data
structure but the a#ne and PDAM models enable the algorithm designer to optimize parameter choices and
!ll in design details.

CCS Concepts: • Information systems → Record and block layout; Magnetic disks; Flash memory; •
Theory of computation → Data structures design and analysis;
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1 INTRODUCTION
Storage devices have complex performance pro!les, including costs to initiate IO (e.g., seek times in
hard drives), parallelism and bank con"icts (in SSDs), costs to transfer data, and !rmware-internal
operations.

The Disk-access Machine (DAM) model [2] simpli!es reality by assuming that storage devices
transfer data in blocks of size B and that all transfers have unit cost. Despite its simpli!cations, the
DAM model has been a success [4, 71], in part, because it is easy to use.

The DAM model is also reasonably accurate. If B is set to the hardware’s half-bandwidth size—
that is, the IO size where a request’s average initiation time and data-transfer time are equal—then
the DAM model predicts the IO cost of any algorithm to within a factor of roughly 2 on that
hardware. In other words, if an algorithm replaces all of its IOs with IOs of the half-bandwidth
size, i.e., by padding smaller IOs and breaking larger IOs into half-bandwidth-sized requests, then
that algorithm’s IO cost increases by a factor of roughly 2.

The DAM model explains some choices that software architects have made. For example, the
DAM model gives an analytical explanation for why B-trees [8, 33] took over in the 1970s and why
Bε -trees [17, 26], log-structured merge trees [15, 53], and external-memory skip lists [10, 19, 61]
are taking over now.
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But the DAM model has its limits. For example, the DAM model does not explain why B-trees
in many databases and !le systems use nodes of size 16 KiB [1, 50, 51, 55, 56], which is well below
the half-bandwidth size on most storage devices, whereas B-trees optimized for range queries use
larger node sizes, typically up to around 1 MB [57, 59]. Nor does it explain why TokuDB’s [69]
Bε -tree uses 4MiB nodes and LevelDB’s [42] LSM-tree uses 2MiB SSTables for all workloads. In a
DAM, all IOs, and hence all nodes, are the same size.

How can an optimization parameter that can vary by over three orders of magnitude have es-
caped algorithmic recognition? The answer is that the DAM model is too blunt an instrument to
capture these design issues.

In this article, we show that the a!ne [3, 63] and PDAM [2] models, which are small re!ne-
ments of the DAM model, yield a surprisingly large improvement in predictivity without sacri!c-
ing ease of use.

The a!ne and PDAM models explicitly account for seeks (in spinning disks) and parallelism
(in solid-state storage devices). In the a#ne model, the cost of an IO of k words is 1 + αk , where
α " 1 is a hardware parameter.1 In the PDAM model, an algorithm can perform up to P IOs of
size B in parallel.
Results. We show that the a#ne and PDAM models improve upon the DAM model in three ways.
The a!ne and PDAM models more accurately estimate IO costs. In Section 4, we present mi-
crobenchmarks on a large collection of storage devices showing that the a#ne and PDAM models
are good approximations of the performance characteristics of hard drives and SSDs, respectively.
We show that, for example, the PDAM is able to correctly predict the run-time of a parallel random-
read benchmark on SSDs to within an error of never more than 14% across a broad range of devices
and numbers of threads. The DAM model, on the other hand, overestimates the completion time
for large numbers of threads by roughly P , the parallelism of the device, which ranges from 2.9
to 5.5. On hard drives, the a#ne model predicts the time for IOs of varying sizes to within a 25%
error, whereas, as described above, the DAM model is o$ by up to a factor of 2.

Researchers have long understood the underlying hardware e$ects motivating the a#ne and
PDAM models. Nonetheless, it was a pleasant surprise to see how accurate these models turn out
to be, even though they are simple tweaks of the DAM model.
The a!ne and PDAM models explain software design choices. In Sections 5 and 6, we rean-
alyze the B-tree and the Bε -tree in the a#ne and PDAM models. The a#ne model explains why
B-trees typically use nodes that are much smaller than the half-bandwidth size, whereas Bε -trees
have nodes that are larger than the half-bandwidth size. Furthermore, the models predict that the
B-tree is highly sensitive to variations in the node size whereas Bε -trees are much less sensitive.
These predictions are borne out empirically.
The a!ne and PDAM models enable better data-structure designs. In a Bε -tree, small nodes
optimize point queries and large nodes optimize range queries and insertions. In Section 6, we
show that in the a#ne model, nodes can be organized with internal structure (such that nodes
have subnodes) so that all operations are simultaneously optimal, up to lower order terms. Since
the DAM model loses a factor of 2, it is blind to such !ne-grained optimizations.

The PDAM model allows us to organize nodes in a search tree so that the tree achieves optimal
throughput when the number of concurrent read threads is both large and small. A small number
of read threads favors large nodes, and a large number favors small nodes. In Section 8, we show
how to organize nodes so that part or all of them can be read in parallel, which allows the data
structure to handle both workloads obliviously and optimally.

1In reality, storage systems have a minimum write size, but we ignore this issue, because it rarely makes a di$erence in the
analysis of data structures and it makes the model cleaner.
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Discussion. Taking a step back, we believe that the a#ne and PDAM models are important com-
plements to the DAM model. The DAM is useful as a !rst cut when designing or analyzing an
algorithm or data structure but the a#ne and PDAM models enable the algorithm designer to
optimize parameter choices and !ll in design details.

2 THE PDAM AND AFFINE MODELS
In this section, we present the a#ne model (most predictive of hard disks) and the PDAM model
(most predictive of SSDs). The DAM model assumes all IOs have the same size and cost, which is
a reasonable approximation for IOs that are large enough. The a#ne and PDAM models capture
what happens for small and medium IO sizes.

2.1 Disk Access Machine (DAM) Model
The DAM model [2] assumes a two-level cache hierarchy with a cache of M words, where the
cache is subdivided into M/B blocks; a slower storage device transfers data to and from cache in
these B-sized blocks. The model applies to any two adjacent levels of a cache hierarchy, such as
RAM versus disk or L3 versus RAM. Performance in the DAM model is measured by counting the
number of block transfers performed during an algorithm’s or data structure’s execution.

Note that B is distinct from the block size of the underlying hardware. B is a tunable parame-
ter that determines the amount of contiguous data transferred per IO: a bigger B means each IO
transfers more data but takes more time.

The DAM model counts IOs but does not assign a cost to each IO. The DAM model’s simplicity
is a strength in terms of usability but a weakness in terms of predictability. On HDDs, it does not
model the faster speeds of sequential IO versus random IO. On SSDs, it does not model internal
device parallelism or the incremental cost of larger IOs.

These inaccuracies limit the e$ectiveness of the DAM model for optimizing data structures. As
we will show, there are asymptotic consequences for these performance approximations.

For example, in the DAM model, the optimal node size for an index such as a B-tree, Bε -tree, or
bu$ered repository tree is B [17, 27, 33]. There is no advantage to growing smaller than B, since B
is the smallest granularity at which data is transferred in the data structure. But using nodes larger
than B also does not help.

Could the DAM be right? Maybe the right solution is to pick the best B as an extra-model
optimization, and from then on use B in all data-structure design. Alas no. The best IO size is
workload and data-structure dependent [17, 20].

2.2 SSDs and the PDAM Model
The PDAM model improves SSD performance analysis over the DAM model by accounting for the
IO parallelism. In its original presentation [2], the external-memory model included one more pa-
rameter, P , to represent the number of blocks that can be transferred concurrently. This parameter
was originally proposed to model the parallelism available in RAID arrays (arrays of cooperating
disks that masquerade as a single logical unit). Although there exist parallel and multicore IO mod-
els [5, 6, 24, 32, 72, 73], almost all theoretical work on external memory is parameterized by M , N ,
B, and not P , which means that implicitly P = 1.

We argue for reviving P to model the parallelism of SSDs, including fast NVMe SSD devices.
(NVMe, which stands for non-volatile memory express, is an interface speci!cation for connecting
non-volatile memory devices over the PCI express bus; NVMe SSDs typically have faster, higher-
end components.)

Internally, SSDs store data on units of NAND "ash, which the device controller may access in
parallel. To manage the complexities of the internal hardware, SSD controllers implement a "ash

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.



External-memory Dictionaries in the A!ine and PDAM Models 15:5

translation layer (FTL) that (among its many responsibilities) receives IO requests from the OS
and transparently maps those requests to physical locations on the SSD’s NAND "ash chips. The
FTL performs IOs at page granularity, typically 512 B–16 KB. Multiple NAND "ash pages form a
single write-erase block, and multiple write-erase blocks are grouped together into banks, which
can be independently accessed in parallel. The FTL typically manages multiple "ash chips, granting
even more parallelism [38, 43]. This internal parallelism is why applications must maintain deep
IO request queues to get full bandwidth out of an SSD [30, 41].

De!nition 1 (PDAM Model). In each time step, the device can serve up to P IOs, each of size
B. If the application does not present P IOs to the device in a time step, then the unused slots are
wasted. Within a time step, the device can serve any combination of reads and writes. Performance
is measured in terms of time steps, not the total number of IOs.

Thus, in the PDAM model a sequential scan of N items, which uses O(N /B) IOs, can be per-
formed in O(N /(PB)) time steps.

For the purposes of this article, IOs are concurrent-read-exclusive-write (CREW) [74] (i.e.,
if there is a write to location x in a time step, then there are no other concurrent reads or writes
to x .)

2.3 Hard Disks and the A!ine Model
When a hard drive performs an IO, the read/write head !rst seeks, which has a setup time of s
seconds, and once the disk head is in place, it reads data locally o$ the platter at bandwidth of t
seconds/byte, which corresponds to a transfer rate.

Parameters s and t are approximate, and vary based on disk geometry; the setup time can vary
by an order of magnitude. For example, a track-to-track seek may be ∼1 ms, while a full platter
seek is ∼10 ms. Nonetheless, it is remarkably predictive to view these as !xed [63].

De!nition 2 (A"ne Model). IOs can have any size. An IO of size x costs 1 + αx , where the 1
represents the normalized setup cost and α ≤ 1 is the normalized transfer cost.

Thus, after normalizing, α = t/s for a hard disk.
The following lemma gives reductions between the a#ne and DAM models, even when IOs in

the DAM model need to be block-aligned.
Lemma 1. An a"ne algorithm with a"ne cost C can be transformed into a DAM algorithm with

DAM cost at most 4C , where blocks have size B = 1/α . If the a"ne algorithm has a RAM of size M ,
then the DAM algorithm has a RAM of size M + 2/α .

A DAM algorithm with DAM cost C and blocks of size B = 1/α can be transformed into an a"ne
algorithm with a"ne cost 2C . If the DAM algorithm has a RAM of size M , then the a"ne algorithm
also has a RAM of size M .

Proof. We !rst give the a#ne-to-DAM transformation. The idea is to round up any read or
write IO of size x into blocks of size 1/α . Whatever data is stored in memory in the a#ne algorithm
is also stored in the DAM algorithm. Because IOs are rounded up to aligned blocks, an IO of size x
in the a#ne algorithm may be rounded up to a block-aligned chunk of memory of size x + 2/α in
the DAM model. For an IO that is a read, this means that data of size nearly 2/α may be read into
memory and then immediately discarded. For an IO that is a write, this means that data of size
nearly 2/α may need to be read into memory before the aligned blocks can be written atomically.

We now consider IOs of size x . We separately address the cases of (1) x ≤ 1/α and (2) x > 1/α .
(1) When x ≤ 1/α , an IO costs at least 1 in the a#ne model, and requires at most two blocks to

be transferred. However, if these two blocks are writes, then up to two blocks may !rst also need
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to be read so that blocks can be written back atomically. Thus, an a#ne cost of between 1 and 2
may trigger a DAM cost of at most 4.

(2) When x > 1/α , an IO of size x transfers 1 + %αx& ≤ αx + 2 blocks in the DAM model. For
IOs that are writes, there are an additional two blocks that may need to be read in. Thus, when the
original a#ne cost is 1 + αx , the DAM cost is at most αx + 4.

The DAM-to-a#ne transformation is more direct. Every IO in the DAM algorithm has size 1/α .
The same IO of size 1/α has an a#ne cost of 2. !

Thus, if losing a constant factor on all operations is satisfactory, then the DAM is good enough.
What may be surprising is how many asymptotic design e$ects show up when optimizing to

avoid losing this last constant factor. A factor of 2 is a lot for an external-memory dictionary. For
example, even smaller factors were pivotal for a subset of authors of this article when we were
building and marketing TokuDB [69]. Additionally, losing a factor of 2 on large sequential write
performance was a serious setback on making BetrFS a general-purpose !le system [34, 47, 76–78].

3 BACKGROUND ON B-TREES AND Bε -TREES
A dictionary data structure maintains a set of key-value pairs and supports inserts, deletes,
point queries, and range queries. Here we review some common external-memory dictionaries.
B-trees. The classic dictionary for external storage is the B-tree [8, 33]. A B-tree is a balanced
search tree with fat nodes of size B, so that a node can have Θ(B) pivot keys and Θ(B) children. All
leaves have the same depth, and key-value pairs are stored in the leaves. The height of a B-tree is
Θ(logB+1 N ), where N is the number of elements in the tree. There are many algorithmic choices
for B-tree rebalancing. One simple mechanism is the following. Split any node that has greater
than B elements and merge any node that has fewer than B/4 elements with a sibling.

The following theorem gives the performance of a B-tree with a warm cache, that is, when the
top part of the tree is stored not only on disk but also is also cached in RAM:

Lemma 2 (Folklore). In a B-tree with size-B nodes and N elements, point queries, inserts, and
deletes take O(logB+1(N /M)) IOs. A range query scanning ! elements takes O(%!/B&) IOs plus the
point-query cost. The amortized IOs spent modifying the tree per insert/delete is O(1/B).

Proof. The B-tree can cache up toM/B of its nodes in RAM. Say that the top logB+1(M/B)±o(1)
levels of the tree are cached. Then accessing any node in this top part of the tree has zero IO cost.
The result is that a point query, which follows a path from the root of the tree to a leaf, makes
logB+1(N ) − logB+1(M) ± o(1) IOs.

A range query is just a point query plus a scan of the leaves. Since ! elements are stored in
O(%!/B&) leaves, the IO cost for the leaf scan is an additional O(%!/B&) IOs.

An insert or delete is a point query plus the cost to merge and split tree nodes. At most O(1)
nodes are merged/split per level, and so the bound follows.

In fact, the amortized rebalance cost is a low-order term. As we explain, in any sequence of
Θ(N ) inserts/deletes there areO(N /B) node splits/merges. In particular, after a leaf triggers a split
or merge, there are Ω(B) inserts/deletes before it can trigger another split/merge. A parent of a leaf
therefore needs Ω(B2) inserts/deletes into descendants between when it can trigger a modi!cation,
and in general a node at height h needs Ω(Bh+1) inserts or deletes. Thus, the total number of IOs
is Θ(N /B) for an amortized modi!cation cost of Θ(1/B) IOs. !

The systems community often evaluates data structures in terms of their write ampli"cation,
which we de!ne below [62].

De!nition 3. The write ampli"cation is the amortized amount of data written to disk per
update divided by the amount of data actually modi!ed by the update.
ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.
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Write ampli!cation is the traditional way of distinguishing between read IOs and write IOs.
Distinguishing between reads and writes makes sense, because with some storage technologies
(e.g., NVMe SSDs) writes are more expensive than reads, and this has algorithmic consequences
[9, 22, 23, 46]. Moreover, even when reads and writes have about the same cost, other aspects of the
system can make writes more expensive. For example, modi!cations to the data structure may be
logged, and so write IOs in the B-tree may also trigger write IOs from logging and checkpointing.

In the DAM model, the write ampli!cation of a dictionary is just B times the amortized number
of write IOs per insertion.

Lemma 3. The worst-case write-ampli!cation of a B-tree is Θ(B).

Proof. We !rst give a B-tree workload that achieves a write ampli!cation of Ω(B). Let the
number of elements in the B-tree be N = Ω(BM). Suppose that random elements are inserted
into the tree. Divide the computation into phases, where, each phase consists of M random inserts.
Thus, in expectation, Θ(M) leaves are modi!ed. But only Θ(M/B) leaves can be cached in memory
at any time. Thus, each phase takes an expected Θ(M) IOs, writing Θ(M) leaves to disk. Since each
leaf has size Θ(B), each phase transfers an expected Θ(MB) data.

We now show that amortized write ampli!cation of a B-tree is O(B). Divide any workload into
phases of Θ(N ) inserts/deletes. By Lemma 2, in every Θ(N ) inserts/deletes, there may beO(N ) IOs,
but there are only O(N /B) node splits and merges. Thus, the amortized IO cost for modi!cations
to the tree per insert/delete is O(1) for a write ampli!cation of O(B). !

Bε -trees. The Bε -tree [13, 17, 26, 27, 48] is a write-optimized generalization of the B-tree. (A write-
optimized dictionary (WOD) is a searchable data structure that has (1) substantially better inser-
tion performance than a B-tree and (2) query performance at or near that of a B-tree.)

The Bε -tree is used in some write-optimized databases and !le systems [34, 39, 47, 47, 49, 58, 67,
68, 76–78]. A more detailed description of the Bε -tree is available in the prior literature [17].

As with a B-tree, the Bε -tree is a balanced search tree with fat nodes of size B. A Bε -tree leaf
looks like a B-tree leaf, storing key-value pairs in key order. A Bε -tree internal node has pivot keys
and child pointers, like a B-tree, but it also has space for a bu#er . The bu$er is part of the node and
is written to disk with the rest of the node when the node is evicted from memory. Modi!cations
to the dictionary are encoded as messages, such as an insertion or a so-called tombstone message
for deletion. These messages are stored in the bu$ers in internal nodes, and eventually applied to
the key-value pairs in the leaves. A query must search the entire root-to-leaf path, and logically
apply all relevant messages in all of the bu$ers.

Bu$ers are maintained using the flush operation. Whenever a node u’s bu$er is full (“over-
"ows”), then the tree selects (at least one) child v , and moves all relevant messages from u to v .
Typically v is chosen to be the child with the most pending messages. Flushes may recurse, i.e.,
when a parent "ushes, it may cause children and deeper decedents to over"ow.

The Bε -tree has a tuning parameter ε (0 ≤ ε ≤ 1) that controls the fanout F ≈ Bε + 1. Setting
ε = 1 optimizes for point queries and the Bε -tree reduces to a B-tree. Setting ε = 0 optimizes
for insertions/deletions, and the Bε -tree reduces to a bu$ered repository tree [27]. Setting ε to a
constant in between leads to point-query performance that is within a constant factor of a B-tree,
but insertions/deletions that are asymptotically faster. In practice, F is chosen to be in the range
[10, 20]; for example, in TokuDB, the target value of F is 16.

Theorem 4 ([17, 26]). In a Bε -tree with N elements, size-B nodes, and fanout 1+Bε , for ε ∈ [0, 1],
(1) insertions and deletions take O( 1

B1−ε logBε+1(N /M)) amortized IOs,
(2) point queries take O(logBε+1(N /M)) IOs, and
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(3) a range query returning ! elements takes O(%!/B&) IOs plus the cost of a point query,
(4) The write ampli!cation is O(Bε logBε+1(N /M)).

4 MICROBENCHMARKS TO VALIDATE THE AFFINE AND PDAM MODELS
We now experimentally validate the accuracy of the a#ne model for hard disks and the PDAM
model for SSDs. We show that the models are remarkably accurate, even though they do not ex-
plicitly model most hardware e$ects.

One of the messages of this section is that, even though the a#ne and PDAM models are only
tweaks to the DAM model, they have much more predictive power. We can even use them to make
predictions and reason about constants. As we will see in the next section, optimizing the constants
for various operations will cause some design parameters to change asymptotically.

Unless noted otherwise, all experiments in this article were collected on a Dell PowerEdge
T130 with a 3.0 GHz Intel E3-1220 v6 processor, 32 GiB of DDR4 RAM, two 500 GiB TOSHIBA
DT01ACA050 HDDs, and one 250 GiB Samsung 860 EVO SSD. Each experimental SSD was !rst
preconditioned according to the SNIA Solid State Storage (SSS) Performance Test Speci#ca-
tion (PTS), version 2.0.1 [66].

4.1 Validating the PDAM Model
The PDAM model ignores some issues of real SSDs, such as bank con"icts, i.e., when independent
IOs address the same bank and those IOs must be serialized, which can limit the parallelism avail-
able for some sets of IO requests. Despite its simplicity, we verify below that the PDAM model is
consistent with real SSD and NVMe SSD performance.

To test the PDAM model, we ran many rounds of IO read experiments with di$erent numbers
of threads. In each round of the experiment, we spawned p = {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64} OS
threads that each read 10 GiB of data. We selected 163,840 random block-aligned o$sets and read
64KiB starting from each. Thus, there were up to p outstanding IO requests at any time, and the
total data read was p × 10 GiB per round.

The PDAM model predicts that the time to complete the experiment should be the same for
all p ≤ P and should increase linearly in p for all p > P . Equivalently, the PDAM model pre-
dicts that the observed throughput should increase linearly with each additional thread for all
p ≤ P , and then remain "at for p > P . Figure 1 shows the observed throughput in MiB/second dur-
ing each round of IO read experiments. Each SSD exhibits two distinct performance regimes: the
throughput grows linearly until around p = 4–6, depending on the device, and it "attens sharply
thereafter.

We used segmented linear regression to estimate the device parallelism (P ) and the through-
put (β) of each thread up until the device parallelism is saturated. Segmented linear regression is
appropriate for !tting data that is known to follow di$erent linear functions in di$erent ranges.
Segmented linear regression outputs the boundaries between the di$erent regions and the parame-
ters of the line of best !t within each region. Table 1 shows the experimentally derived parallelism,
P , and the device saturation, ∝ Pβ , for a variety of "ash devices.

To verify the goodness of !t, we report the R2 value. An R2 value of 1 means that the regression
coe#cients perfectly predicted the observed data. Our R2 values are all within 4% of 1.

4.2 Validating the A!ine Model
In this section, we empirically derive α = t/s for a series of commodity hard disks, and we con!rm
that the a#ne model is highly predictive of hard disk performance.
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Table 1. Experimentally Derived PDAM
Values for Real Hardware

Device P ∝ Pβ R2

Sandisk Ultra II 5.5 240 0.964
Samsung 860 EVO 4.5 530 0.989
Samsung 970 EVO 5.4 900 0.971
Samsung 980 Pro 5.6 2,300 0.963

We used segmented linear regression to calculate P .
After P threads, throughput remains nearly constant
at ∝ P β .

Fig. 1. Random-read throughput as a function of the number of threads (p).

For our experiments, we chose an IO size, I , and issued 64 I -sized reads to block-aligned o$sets
chosen randomly within the device’s full LBA range. We repeated this experiment for a variety of
IO sizes, with I ranging from 1 disk block up to 16 MiB. Table 2 shows the experimentally derived
values for each HDD. To verify the goodness of !t, we report the R2 value. R2 values are all within
0.1% of 1, and we conclude that the a#ne model is an excellent !t for hard disks.

ACM Transactions on Parallel Computing, Vol. 8, No. 3, Article 15. Publication date: September 2021.



15:10 M. A. Bender et al.

Table 2. Experimentally Derived α Values for Commodity HDDs

Disk Year s (s) t (s/4K) α R2

250 GB Seagate 2006 0.015 0.000033 0.0022 0.9997
1 TB Hitachi 2009 0.013 0.000041 0.0031 0.9999
1 TB WD Black 2011 0.012 0.000035 0.0029 0.9997
2 TB Seagate 2012 0.018 0.000021 0.0012 0.9994
6 TB WD Red 2018 0.016 0.000026 0.0017 0.9972

We issued 64 random block-aligned reads with IO sizes ranging from 1 disk
block to 16 MiB. We conducted linear regression to get the setup cost s and
bandwidth cost t . We calculated α by t/s .

Table 3. A Sensitivity Analysis of Node Sizes for Bε -trees and B-trees

Insertion/Deletion Query
B-trees Θ

(
1+α B
log B log N

M

)
Θ
(

1+α B
log B log N

M

)
Bε -tree (F =

√
B) Θ

(
1+α B√
B log B

log N
M

)
Θ
(

1+α
√

B
log B log N

M

)
Bε -tree Θ

(
F (1+α B)
B log F log N

M

)
Θ
(

F+α F 2+α B
F log F log N

M

)
The cost of B-tree update operations grows nearly linearly as a function of
B—speci!cally 1+α B

log B . Bε -trees should optimize F (1+α B)
B log F for inserts, deletes,

and updates and 2F+α F 2+α B
F log F for queries. The cost for inserts and queries

increases more slowly in Bε -trees than in B-trees as the node size increases.

5 B-TREE NODES IN THE AFFINE MODEL
In this section, we use the a#ne model to analyze the e$ect of changing the size of B-tree nodes.
In the next section, we will perform the analysis for Bε -trees.

5.1 Large Nodes Optimize Lookups, Updates, and Range "eries
The following lemma follows immediately from the de!nition of a B-tree and the de!nition of the
a#ne model.

Lemma 5. The a"ne IO cost of a lookup, insert, or delete in a B-tree with sized-B nodes is
(1 + αB) logB+1(N /M)(1+o(1)). The a"ne IO cost of a range query returning ! items isO(1+!/B)(1+
αB) plus the cost of the query.

Proof. A B-tree node has size B and the cost to perform an IO of size B is 1+αAsB. The height
of the B-tree is logB+1(N )(1+o(1)), since the target fanout is B, and the fanout can vary by at most
a constant factor. The top Θ(logB+1 M) levels can be cached so that accesses to nodes within the
levels are free. Thus, the search cost follows from the structure of the tree.

As described in Lemma 2, during the course of N inserts/deletes, there are O(N /B) node splits
or merges. Thus, the tree-rebalance cost during inserts/deletes is a lower-order term, and so the
insert/delete cost is the same as the search cost.

A range query returning ! items !ts in Θ(%!/B&) leaves and each block access costs 1 + αB. !

Corollary 6. In the a"ne IO model, search, insert/delete, and range queries are asymptotically
optimized when B = Θ(1/α).

Proof. Setting the node size to B = 1/α matches the half-bandwidth size. !
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Corollary 6 seems de!nitive, because it says that there is a parameter setting such that both
point queries and range queries run within a constant factor of optimal. It is not.

It may be surprising that the half-bandwidth size is not what people usually use to optimize
a B-tree. In particular, B-trees in many databases and !le systems use nodes of size 16KiB [1, 50,
51, 55, 56], which is too small to amortize the setup cost. As a result, range queries run slowly,
underutilizing disk bandwidth [34, 35, 65]. In contrast, B-trees in databases that are more focused
on analytical workloads use larger block sizes, typically up to around 1 MB [57, 59], to optimize
for range queries.
B-tree nodes are often small. The rest of this section gives analytical explanations for why
B-tree nodes are generally smaller than the half-bandwidth size.

Our !rst explanation is simply that even small constant factors can matter.
The following corollary shows that in the a#ne model, when we optimize for point queries,

inserts, and deletes, then the B-tree node size is smaller than indicated in Corollary 6—that is,
B = o(1/α). For these smaller node sizes, range queries run asymptotically suboptimally. In con-
trast, if range queries must run at near disk bandwidth, then point queries, inserts, and deletes are
necessarily suboptimal in the worst case.

Corollary 7. Point queries, inserts, and deletes are optimized when the node size is
Θ(1/(α ln(1/α))). For this node size, range queries on the B-tree are asymptotically suboptimal.

Proof. From Lemma 5, !nding the optimal node size for point queries means !nding the mini-
mum of the function

f (x) = 1 + αx
ln(x + 1) .

Taking the derivative, we obtain

f ′(x) = α

ln(x + 1) −
1

ln2(x + 1)
1 + αx
1 + x .

Setting f ′(x) = 0, the previous equation simpli!es to

1 + αx = α ln(x + 1)(1 + x).
Given that α < x < 1, we obtain x lnx = Θ(1/α), which means that x = Θ(1/(α ln(1/α))). Second
derivatives con!rm that we have a minimum.

We now adapt the information-theoretic lower bound on the cost of searching to the a#ne
model. Consider a successor/predecessor query for an element x that is not stored in the B-tree.
(The argument is essentially the same when x is present.) There are N + 1 possible answers to the
query. This means that it takes at least lg(N + 1) bits to specify the answer to a query.

An IO of size B contains at most B pivots, and therefore there are at most B + 1 possible outcomes
from comparing the target element to the pivots. Therefore, we can learn at most lg(B + 1) bits
from doing an IO of size B, so that the resulting search needs lg(N+1)

lg(B+1) = lgB+1(N + 1) IOs.
Since the cost of such an IO is 1+ αB, the IO cost per bit learned is 1+α B

lg(B+1) . Minimizing this cost
means !nding the maximum of the function lg(X+1)

1+α B , as before. !

As Corollary 7 indicates, the optimal node size x is not large enough to amortize the setup
cost. This means that as B-trees age, their nodes get spread out across the disk, and range-query
performance degrades. This is borne out in practice [34, 35, 37, 65].

A second reason that B-trees often use small nodes has to do with write ampli!cation, which
is large in a B-tree; see Lemma 3. Since the B-tree write ampli!cation is linear in the node size,
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there is downward pressure towards small B-tree nodes. A third reason is that big nodes pollute
the cache, making the cache less e$ective.

As mentioned above, database practice has lead to a dichotomy in B-tree uses: Online Transac-
tion Processing (OLTP) databases favor point queries and insertions; Online Analytical Processing
(OLAP) databases favor range quieres. As predicted by the analysis in this section, OLTP databases
use small leaves and OLAP databases use large leaves.

We believe that the distinction between OLAP and OLTP databases is not driven by user need
but by the inability of B-trees to keep up with high insertion rates [36], despite optimizations
[7, 11, 16, 18, 21, 28, 29, 44, 45, 52, 54, 64, 70, 75].

We next turn to the Bε -tree, which can index data at rates that are orders of magnitude faster
than the B-tree.

6 Bε -TREE NODES IN THE AFFINE MODEL
In this section, we use the a#ne model to analyze Bε -trees. We !rst perform a naïve analysis of
the Bε -tree [17, 26] in the a#ne model, assuming that IOs only read entire nodes—e$ectively the
natural generalization of the DAM model analysis.

The analysis reveals that Bε -trees are more robust to node-size choices than B-trees. In the a#ne
model, once the node size B becomes su#ciently large, transfer costs grow linearly in B. For a Bε -
tree with ε = 1/2, the transfer costs (and write ampli!cation) of inserts grow proportionally to

√
B.

This means Bε -trees can use much larger nodes than B-trees, and that they are much less sensitive
to the choice of node size.

However, the transfer costs of queries in a Bε -tree still grow linearly in B, which means that,
in the a#ne model and with a standard Bε -tree, designers face a trade-o$ between optimizing for
insertions versus optimizing for queries.

We describe three optimizations to the Bε -tree that eliminate this trade-o$.
This result is particularly exciting because, in the DAM model, there is a tight tradeo$ between

reads and writes [26]. In the DAM model, a Bε -tree (for 0 < ε < 1) performs inserts a factor of
εB1−ε faster than a B-tree, but point queries run a factor of 1/ε times slower. While this is already a
good tradeo$, the DAM model actually underestimates the performance advantages of the Bε -tree;
the Bε -tree has performance advantages that cannot be understood in the DAM model.

We !rst give the a#ne IO performance of the Bε -tree:
Lemma 8. Consider a Bε -tree with nodes of size B, where the fanout at any nonroot node is within

a constant factor of the target fanout F . Then the amortized insertion cost is

O
( ( F

B + αF
)

logF (N /M)
)
.

The a"ne IO cost of a query is
O
(
(1 + αB) logF (N /M)

)
.

The a"ne IO cost of a range query returning ! items is O(1 + !/B)(1 + αB) plus the cost of the query.

Proof. We !rst analyze the query cost. When we perform a query in a Bε -tree, we follow a
root-to-leaf path. We need to search for the element in each bu$er along the path, as well as in the
target leaf. The cost to read an entire node is 1 + αB.

We next analyze the amortized insertion/deletion cost. The a#ne IO cost to "ush the Θ(B) mes-
sages in one node one level of the tree is Θ(F + αFB). This is because there are Θ(F ) IOs (for the
node and all children). The total amount of data being "ushed to the leaves is Θ(B), but the total
amount of data being transferred from the IOs is Θ(FB), since nodes that are modi!ed may need
to be completely rewritten. Thus, the amortized a#ne IO cost to "ush an element down one level
of the tree is Θ(F/B + αF ). The amortized "ushing cost follows from the height of the tree.
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The impact of tree rebalancing turns out to be a lower-order e$ect. If the leaves are maintained
between half full and full, then in total, there are onlyO(N /B)modi!cations to the Bε -tree’s pointer
structure in Θ(N ) updates. Thus, the amortized a#ne IO contribution due to rebalances is O(α +
1/B), which is a low-order term. !

We now describe three a#ne-model optimizations of the Bε -tree. These optimizations use
variable-sized IOs to improve the query cost of the Bε -tree without harming its insertion cost,
and will enable us to get our robustness and B-tree dominance theorems.

Theorem 9. There exists a Bε -tree with nodes of size B and target fanout F with the following
bounds. The amortized insertion cost is

O
( ( F

B + αF
)

logF (N /M)
)
.

The a"ne IO cost of a query is at most(
1 + α B

F + αF
)

logF (N /M) (1 + 1/log F ).
The a"ne IO cost of a range query returning ! items isO((1+ !/B)(1+αB)) plus the cost of the query.

Proof. We make three algorithmic decisions to obtain the target performance bounds.
(1) We specify an internal organization of the nodes, and in particular, how the bu$ers of the

nodes are organized.
(2) We store the pivots of a node outside of that node—speci!cally in the node’s parent.
(3) We use a rebalancing scheme in which the nonroot fanouts stay within (1 ± o(1))F .

Our objective is to have a node organization that enables large IOs for insertions/deletions and
small IOs for queries—and only one per level.

We !rst describe the internal node/bu$er structure. We organize the nodes/bu$er so that all
of the elements destined for a particular child are stored contiguously. We maintain the invariant
that no more than B/F elements in a node can be destined for a particular child, so the cost to read
all these elements is only 1 + αB/F .

Each node u has a set of pivots. However, we do not store node u’s pivots in u, but rather in u’s
parent. The pivots for u are stored next to the bu$er that stores elements destined for u. When
F = O(

√
B), storing a nodes pivots in its parent increases node sizes by at most a constant factor.

Finally, we describe the rebalancing scheme. De!ne the weight of a node to be the number of
leaves in the node’s subtree. We maintain the following weight-balanced invariant. Each nonroot
node u at height h satis!es

Fh · (1 − 1/log F ) ≤ weight(u) ≤ Fh · (1 + 1/log F ).
The root just maintains the upper bound on the weight, but not the lower bound.

Whenever a nodeu gets out of balance, e.g.,u’s weight grows too large or small, then we rebuild
the subtree rooted at u’s parent from scratch, thus maintaining the balancing invariant.

We next bound the minimum and maximum fanout that a node can have. Consider a node u
and parent node v of height h and h + 1, respectively. Then, since weight(v) ≤ Fh+1(1 + 1/log F )
and weight(u) ≥ Fh(1 − 1/log F ), the maximum number of children that v can have is

F ·
(

1+1/log F
1−1/log F

)
= F +O

(
F

log F

)
.

By a similar reasoning, if v is a nonroot node, then the minimum fanout that v can have is F −
O( F

log F ).
As in Lemma 8, the amortized a#ne IO cost to "ush an element down one level of the tree is

O(F/B + αF ), and so the amortized insert/delete cost follows from the height of the tree.
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The amortized rebalance cost is determined as follows. The IO cost to rebuild the subtree rooted
at u’s parent v is O(weight(v)) = O(F · weight(u)), since nodes have size Θ(1/α) and the cost
to access any node is O(1). The number of leaves that are added or removed before v needs to be
rebuilt again is Ω(weight(u)/log F ). There are Ω(1/α) inserts or deletes into a leaf before a new leaf
gets split or merged. Thus, the number of inserts/deletes into u’s subtree between inserts/deletes
is Ω(α weight(u)/log F ). Consequently, the amortized cost to rebuild, per element insert/delete is
O(α log F ), which is a low-order cost.

The search bounds are determined as follows. Because the pivot keys of a node u are stored
in u’s parent, we only need to perform one IO per node, and each IO only needs to read one set
of pivots followed by one bu$er—not the entire node. Thus, the IO cost per node for searching is
1 + αB/F + αF , and the search cost follows directly. !

Theorem 9 can be viewed as a sensitivity analysis for the node size B, establishing that Bε -trees
are less sensitive to variations in the node size than B-trees. This is particularly easy to see when
we take F =

√
B.

Corollary 10. When B > 1/α , the B-tree query cost increases nearly linearly in B, whereas the
B1/2-tree (F = Θ(

√
B)) increases nearly linearly in

√
B.

We now give a more re!ned sensitivity analysis, optimizing B, given F and α .

Corollary 11. When B = Ω(F 2) and B = o(F/α), there exists Bε -trees where the a"ne IO cost to
read each node is 1 + o(1), and the search cost is (1 + o(1)) logF (N /M).

Proof. For a search, the IO cost per node is

1 + αB/F + αF = 1 + o(1).

This means that the search cost is (1 + o(1)) logF (N /M). !

We can now optimize the fanout and node size in Corollary 11. In particular, say that F =
√
B.

Then it is su#cient that B < o(1/α2).
What is interesting about this analysis is that an optimized Bε -tree node size can be nearly the

square of the optimal node size for a B-tree for reasonable parameter choices. In contrast, in the
DAM model, B-trees and Bε -trees always have the same size, which is the block-transfer size. Small
subconstant changes in IO cost can have asymptotic consequences in the data structure design.

This analysis helps explain why the TokuDB Bε -tree has a relatively large node size (∼4 MB),
but it also has sub-nodes (“basement nodes”), which can be paged in and out independently on
searches. It explains the contrast with B-trees, which have much smaller nodes. It is appealing
how much asymptotic structure you see just from optimizing the constants and how predictive it
is of real data-structure designs.

Finally, we show that in the a#ne model, we can make a Bε -tree whose search cost is optimal
up to low-order terms—see Corollary 7 for an a#ne optimized B-tree—but whose insert cost is
Θ(log(1/α)) times faster than the insert cost of the optimal B-tree.

Corollary 12. There exists a Bε -tree with fanout F = Θ(1/α log(1/α)) and node size B = F 2

whose query cost is optimal in the a"ne model up to low-order terms over all comparison-based
external-memory dictionaries. The Bε -tree’s query cost matches the B-tree up to low-order terms, but
its amortized insert cost is a factor of Θ(log(1/α)) times faster.
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Fig. 2. Microseconds per query/insert with increasing node size for BerkeleyDB. The fi"ed line (black) has
an alpha of 1.58357435 × 10−04 and a root-mean square (RMS) of 8.4.

7 EMPIRICAL VALIDATION OF B-TREE AND Bε -TREE NODE SIZE
We measured the impact of node size on the average run time for random queries and random
inserts on HDDs. We used BerkeleyDB [56] as a typical B-tree and TokuDB [67] as a typical Bε -
tree. We !rst inserted 16 GiB of key-value pairs into the database. Then, we performed random
inserts and random queries to about a thousandth of the total number of keys in the database. We
turned o$ compression in TokuDB to obtain a fairer comparison, and we limited the memory to 4
GiB to ensure that most of the database contents were outside of RAM.

Figure 2 presents the BerkeleyDB query and insert performance on HDDs. We see that insert and
query costs grow once nodes exceed 64 KiB, which is larger than the default node size. After the
optimal node size for inserts—64 KiB—the insert and query costs start increasing roughly linearly
with the node size, as predicted.

Figure 3 gives performance numbers for TokuDB, which are consistent with Table 3 where
F =

√
B. The optimal node size is around 512 KiB for queries and 4 MiB for inserts. In both cases,

the next few larger node sizes decrease performance, but only slightly compared to the BerkeleyDB
results.

8 PDAM DICTIONARIES
We now give some observations on how the PDAM model can inform external-memory dictionary
design.

Consider the problem of designing a B-tree for a database that serves a dynamically varying
number of clients. We want to exploit the storage device’s parallelism, regardless of how many
clients are currently performing queries.

If we have P clients, then the optimal strategy is to build our B-tree with nodes of size B and
let each client perform one IO per time step. If the database contains N items, then each client
requires Θ(logB N ) time steps to complete a query (Technically Θ(logB+1 N ), but we use Θ(logB N )
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Fig. 3. Number of microseconds per query/insert with increasing node size for TokuDB. The fi"ed lines have
an alpha value of 1.58357435 × 10−03 and the RMS is 18.7.

in this section to keep the math clean). We can answer P queries every Θ(logB N ) time-steps, for
an amortized throughput of Θ(P/logB N ) queries per time-step.

Now suppose that we have a single client performing queries. Since walking the tree from root
to leaf is inherently sequential, a B-tree with nodes of size B is unable to use device parallelism.
The client completes one query each Θ(logB N ) time steps, and all device parallelism goes to waste.
Now the B-tree performs better with nodes of size PB. The client loads one node per time step, for
a total of Θ(logP B N ) time-steps per query, which is a signi!cant speed-up when P = ω(B).

In summary, to optimize performance, we want nodes of size B when we have many clients, and
nodes of size PB when we have only one client. But B-trees have a !xed node size.

The point is that the amount of IO that can be devoted to a query is not predictable. Dilem-
mas like this are common in external-memory dictionary design, e.g., when dealing with system
prefetching [20, 31].

One way to resolve the dilemma uses ideas from cache-oblivious data-structures [14, 40]. Cache-
oblivious data structures are universal data structures in that they are optimal for all memory-
hierarchy parameterizations. Most cache-oblivious dictionaries are based on the van Emde Boas
layout [14, 60].

In the B-tree example, we use nodes of size PB, but organize each node in a van Emde Boas lay-
out. Now suppose there are k ≤ P clients. Each client is given P/k IOs per time slot. Thus, a client
can traverse a single node in Θ(logP B/k PB) time steps, and hence traverses the entire root-to-leaf
path in Θ(logP B/k N ) time steps. When k = 1, this matches the optimal single-threaded B-tree
design described above. When k = P , this matches the optimal multi-threaded client through-
put given above. Furthermore, this design gracefully adapts when the number of clients varies
over time.

Lemma 13. In the PDAM model, a B-tree with N elements and nodes of size PB has query through-
put Ω( k

logP B/k N ) for any k ≤ P concurrent query threads.
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This strategy also !ts well into current caching and prefetching system designs. In each time
step, clients issue IOs for single blocks. Once the system has collected all the IO requests, if there
are any unused IO slots in that time step, then it expands the requests to perform read-ahead. So,
in our B-tree example with a single client, there is only one IO request (for the !rst block in a
node), and the system expands that to P blocks, e$ectively loading the entire node into cache. As
the client accesses the additional blocks of the same B-tree node during its walk of the van Emde
Boas layout, the blocks are in cache and incur no additional IO. If, however, there are two clients,
then the system sees two one-block IO requests, which it will expand into two runs of P/2 blocks
each.

This basic strategy extends to other cache-oblivious data structures; see e.g., [15, 25] for write-
optimized examples. The PDAM explains how these structures can always make maximal use of
device parallelism, even as the number of concurrent threads changes dynamically.

9 CONCLUSION
As the analyses in this article illustrate, seemingly small changes in the DAM model have substan-
tial design and performance implications. The more accurate computational models that we have
considered are more predictive of running times and software practice. We posit that these models
are an essential tool for algorithmists seeking to design new algorithms for IO-bound workloads.
The simplicity of the DAM model is a strength but also has let important design considerations
slip through the cracks for decades.
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