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Abstract—In this letter, we present research on the application
of deep neural networks to predicting macro basis functions for
complicated computational electromagnetics problems. We
provide error statistics and representative examples for networks
trained on simple and complicated datasets of method of
moments scattering problems. Notably, we demonstrate that the
networks learn generalizable knowledge applicable to problem
types on which they were not trained. We conclude that the
networks produce encouraging results, especially for cross-
validation, and larger training datasets will improve reliability
for general scattering problems.

Index Terms—method of moments, machine learning, neural
networks, macro basis functions, variational methods,
computational electromagnetics.

I. INTRODUCTION

REVIOUSLY, we proposed a robust application of deep

neural networks [1] for accelerating variational methods

like finite element method (FEM), method of moments
(MoM) and finite difference (FD) method for computational
electromagnetics (CEM) and computational science and
engineering (CSE) problems [2]. Rather than predicting a
solution directly, our approach learns a model to predict a set
of macro basis functions on which the problem is then re-
solved. We demonstrated in [2] that such an approach
meaningfully reduces the number of unknowns (and therefore
runtime) of simple 1-D FEM scattering problems while
producing solutions of comparable accuracy to classical
solutions of substantially higher dimensionality. Although the
1-D FEM slab scattering problem set explored in [2] was ideal
for proof of concept, we are unsatisfied with drawing
conclusions about the usefulness of our method from such a
simple case. In this paper, we explore the ability of neural
networks to predict macro basis functions for more-
complicated sets of 3-D MoM PEC scattering problems: a set
of 10,000 warped cylinders, tori, plates, and spheroids; and a
comparably simple set of bent plates. These datasets capture a
greater variety and complexity of the hypothetical set of all
scattering problems of interest to CEM practitioners,
advancing toward validation and a generalizable application of
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our method. This paper is a continuation of the research in [2],
so we present only a brief summary of related literature and
our method before detailing the key content of this paper.

Few studies have sought to apply machine learning to CEM
and CSE, especially in the modern context of deep learning.
Most prior work has focused on predicting quantities derived
from a numerical solution given a problem description such as
material parameters throughout a domain and an excitation
[3]-[7]. Others have focused on predicting the numerical
solution itself [8]-[9], effectively attempting to replace the
existing methodology (variational methods like MoM) with
learned models. Our predicted macro basis function approach,
in contrast, leverages learned models to reduce the
dimensionality of CEM and CSE problems, then solved by
classical methods like MoM, by decreasing the total number
of basis functions. This is inspired by some significant
advancements in application of neural networks to completing
challenging tasks with high accuracy. Such advancements, like
[10] and [11], have used existing mathematically formal
methods guided by the predictive capability of neural
networks. We believe this is critical to the application of
machine learning in most engineering contexts due to the
fragility of deep neural networks when faced with novel inputs
[12]-[14]. Although we have found little existing research that
couples neural networks with variational methods in a broadly
applicable way, [15]-[20] are in a similar vein of reasoning,
applying networks to predict bulk material parameters for
faster multi-scale FEM structural mechanics simulations.

II. BACKGROUND THEORY

As in [2], we consider a discretized linear integral or
differential equation-based problem with solution S, set of
basis functions F, and linear system of form [A]x = b, where
fi €F and x; denote the i basis function and associated
solution weight, respectively. The weak solution to such a
problem with N basis functions is of form

§=infiz5 )
F

We apply a neural network to predict solution weights, x,
given the solution, X, to a computationally inexpensive
analogue of the problem solved on a reduced basis, F, most
simply, a small subset of the complete basis, F. To
compensate for errors in predicted solution weights, we use x
predicted by the network not as the final solution, but to
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generate a set of macro basis functions that can be used to re-
solve the problem. To satisfy boundary conditions, we require
careful definition of the macro basis functions. Denoting by
Fyoundary € F the set of basis functions in the original basis
that are nonzero wherever a boundary condition is imposed in
the original problem and by Fremginger = F — Fpoundary the
remaining basis functions in the original basis, we impose a
simple constraint on macro basis functions:
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Note that this constraint is relaxed from that in [2], allowing
macro basis functions to include f; € Fyoyngary S0 long as
they do not include f; € Fromainger- We then solve the
problem for solution weights X using the modified basis F <
Fnacro» @ chosen subset of all macro basis functions using the
network’s prediction of x; as a; for each f; present in a macro
basis function. In summary, the envisioned method occurs in
three steps, where MoM_Solve rigorously computes solution
weights on the given basis and excitation, and DNN estimates
all solution weights given those for a known, reduced
problem:

1 X « MoM_Solve(F,b)

2 « DNN(X)

3 X « MoM_Solve(F,b)
Our simple approach to forming macro basis functions is
therefore limited by the network’s ability to predict x
accurately from X, so we seek to evaluate that ability (step 2
above) in this paper.

III. DATASETS AND NETWORKS

Meshes used for general MoM problems are highly varied
both geometrically and topologically, describing a broad range
of surfaces and consisting of a variety of surface element types
in a wide range of configurations. Our goal here is only to
explore the ability of neural networks to predict x for
complicated MoM scattering problems, so we chose to
constrain all models in our datasets to a single mesh topology:
a 20x20 grid of rectangular surface elements. Each element
was geometrically 2" order and had basis function order of 5,
with geometric order and basis function order as described in
[21] and [22], respectively. Each model in our datasets
therefore had the same number of elements and basis
functions, all with the same relative ordering in two
parametric dimensions. This allows us to leverage common
network architectures used for image processing and
circumvent challenges associated with mapping surface
currents on arbitrary meshes to network inputs for the time
being, although we note methods like [23] exist. Such a 20x20
grid of rectangular elements is surprisingly versatile and can
be warped and glued to describe a variety of surface types
using parametric mappings.

Fig. 1 shows representative objects from the complicated
dataset of 10,000 plates, cylinders, tori, and spheroids. These
objects vary in length scale from 0.1 to 10 A and have a wide
distribution of aspect ratios and deformations on multiple

Fig. 1. Representative objects from the complicated dataset. Each object is
viewed from the direction of the incident excitation. Planes shown top left;
cylinders top right; tori bottom left; spheroids bottom right.

9 oo Q. mm
w.m“..’?_ B

Fig. 2. Representative objects from the simple dataset. Each object is viewed
from the direction of the incident excitation.

scales. Fig. 2 shows representative objects from the simple
dataset of 1,000 bent plates. These objects have simple
deformation patterns and length scales on the order of a
wavelength. All objects in the simple dataset shared the same
orientation with respect to the incident field and the same
aspect ratio (square) in the non-vertical directions. Note that
objects in Fig. 1 and Fig. 2 are rendered at the same scale, and



all objects are shown from the direction of the incident plane
wave used as excitation.

Maximally orthogonal divergence-conforming quadrilateral
surface current basis functions from [22] were used to
discretize surface currents for simulation of scattering from
objects in Figs. 1 and 2. We note that, while [22] uses p and s
to denote element parametric coordinates in which basis
functions are defined, we instead use u and v in the
convention of [21]. For instance, using the P-expansion and S-
expansion functions from [22], the wu-oriented current
expansion over a quadrilateral is given by

n,—1 ny
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where a, is the u-directed unitary vector from [22] and J, is

the surface Jacobian. The current expansion orders n, = n, =
5 were chosen for all elements. Note that the expansion is one
order lower in the parametric direction perpendicular to its
orientation. An analogous form exists for the v-directed
expansion. The basis function weights for each element can be
displayed intuitively in a 6x5 grid. For symmetry, we present
weights in a 6x6 grid for both u- and v-directed current
expansions, with the rightmost column left empty (or set to
zero) to represent the column of missing basis functions in the
perpendicular direction due to the lower sum limit. The
complete basis F for each element therefore contains 60 basis
functions (30 for u and 30 for v). Per-element basis function
grid patterns are shown in Fig. 3. Note that each element will
have two such grids of complex-valued basis functions
weights associated with it: one for u- and one for v- directed
current expansions. Gray cells represent weights in F. Green,
orange, and blue cells represent weights to be predicted.
Weights in the first two rows in Fig. 3 constitute Fyoynaary, SO
either the first or second row of weights are zero for elements
without neighbors (present on plates and cylinders).

Fig. 3. Basis function weight grids. Function weights in A-G were given to
network as input. Weights in regions H, I, and J were predicted by the
network.

For such elements, zero-valued weights in the A and B or C
and D regions were still input to the network, but network
predictions for I or J, appropriately, were ignored when
computing error statistics (as they are necessarily set to zero
when re-solving the system).

Functions in cells H, I, and J are those intended to be
merged into MBFs weighted by network predictions. These
regions were chosen for simplicity. If we were attempting to
build a solution directly from the weights predicted by the
network, we would desire a network that predicted these

values on some common scale. However, we intend to use
these weights to form MBFs of form (2) for re-solving of the
problem on F, so, ignoring numerical constraints, we do not
care about the relative value of weights not in the same region.
For this purpose, we normalized all weights within regions H,
I, and J such that the value of highest magnitude in each
region has unit magnitude.

The same network architecture was used for both the simple
and complicated datasets. The architecture consisted of a
simple 16-block residual network [24] with no batch
normalization and a hyperbolic tangent nonlinearity after the
final convolutional layer. We used 128 filters per layer. This
architecture was not optimized for the problem but proved
sufficient for proof of concept. One version of the network
was trained exclusively on 800 examples from the simple
dataset, the other 200 held-out for testing. We denote this
Network A. Another version, Network B, was trained
exclusively on 9,800 examples from the complicated dataset,
evenly partitioned between the four subcategories. The
remaining 200 objects were held-out as a test set. Both
networks were trained using the Adam optimization algorithm
[25] with a batch size of 10 and learning rate of 1e-4 for 150
and 500 epochs, respectively. Interestingly, we noted
substantial overfitting for longer training runs, indicating these
networks will benefit from larger training datasets.

Input to each network was 20x20x28, the 28 channels
corresponding to real and imaginary values for both u- and v-
directed basis functions in cells A-G. The 20x20 spatial grid
corresponds to the 20x20 grid of quadrilateral elements
comprising each mesh. Similarly, the output was 20x20x92,
the 92 channels corresponding to real and imaginary values for
both u- and v- directed basis functions in H, I, and J. Network
loss was computed as mean squared error (MSE) between
predicted and actual values.

IV. NUMERICAL RESULTS AND DISCUSSION

To accurately assess network performance, both networks
were evaluated on their test sets after training. Both networks
were also tested on the other test set. To present results, we
split the 20x20x92 output for each test problem into 400
1x1x92 vectors of element-wise weights. We then further
subdivided each vector into four 1x1x23 vectors, for real u,
imaginary u, real v, and imaginary v, respectively. Each
vector was then rearranged and padded into a 6x6 grid
corresponding to weight assignments for H, I, and J in Fig. 3.
Values in these grids corresponding to input weights A-G and
values in the right-most column were set to zero for
presentation of representative examples. Error statistics were
computed between these grids and corresponding grids
constructed from the true solution weights (normalized in the
same way). Fig. 4 shows 15-bin root mean square error
(RMSE) histograms. Weight boundaries are the same for all
four sub-plots. Fig. 4(a) shows application of Network A to
the simple test set, while Fig. 4(b) shows application of
Network A to the complicated test set. Similarly, Figs. (c) and
(d) show application of Network B to the complicated and
simple test sets, respectively.

Figs 5 and 6 show representative examples for each bin,
corresponding to histograms in Fig. 4. Fig. 5 shows bin



examples for Figs. 4(a) and (b), while Fig. 6 shows bin
examples for Figs. 4(c) and (d). For each, the bin of highest
probability (mode) is highlighted green.
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Fig. 4. RMS error histograms for both networks on both validation datasets.
(a) Network A on simple set; (b) Network B on simple set; (c) Network B on
complicated set; (d) Network A on complicated set.
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Fig. 5. Representative bin examples for histograms in Fig. 4(a), left, and Fig.
4(b), right. Entries were left blank for Network A on the simple dataset, as no
examples fell in bins 10-11 for this case. Neither case produced examples that
fell in bins 12 or higher, so these bins were omitted from this plot.

Network A, trained only on the simple dataset, was able to
predict weights for objects in the simple test set accurately.
This is especially apparent in the representative mode example
(green) for Network A in Fig. 5. Network B, trained on the
complicated dataset, performed similarly well for the
complicated test set, although with somewhat higher error
overall. Both results are expected, but we are pleased with the
accuracy with which the network’s predicted basis function
weights on their corresponding test sets. More interestingly,
however, were the cross-validation results. Despite the
complicated dataset containing no objects similar to those
found in the simple dataset (evident by comparison of the
plates in Fig. 1 to those in Fig. 2), Network B performed better
on the simple test set than it did on its own (the complicated)
test set. This indicates that Network B learned generalizable
knowledge applicable beyond the complicated dataset on
which it was trained. Network A clearly also learned
generalizable knowledge, demonstrated in Figs. 4(d) and 6,
but at far higher error.
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Fig. 6. Representative bin examples for histograms in Fig. 4(c), left, and Fig.
4(d), right. Entries were left blank for Network B on the complicated dataset,
as no examples fell in bins 13-15 for this case. Color scale reused from Fig. 5.

V. CONCLUSION

This letter has presented research on the application of deep
neural networks to macro basis function prediction. Using
simple and complicated datasets of MoM PEC scattering
problems, we showed that deep neural networks are a
promising approach to macro basis function prediction for a
variety of CEM problems.
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