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Abstract—In this letter, we present research on the application 

of deep neural networks to predicting macro basis functions for 

complicated computational electromagnetics problems. We 

provide error statistics and representative examples for networks 

trained on simple and complicated datasets of method of 

moments scattering problems. Notably, we demonstrate that the 

networks learn generalizable knowledge applicable to problem 

types on which they were not trained. We conclude that the 

networks produce encouraging results, especially for cross-

validation, and larger training datasets will improve reliability 

for general scattering problems. 

 
Index Terms—method of moments, machine learning, neural 

networks, macro basis functions, variational methods, 

computational electromagnetics. 

I. INTRODUCTION 

REVIOUSLY, we proposed a robust application of deep 

neural networks [1] for accelerating variational methods 

like finite element method (FEM), method of moments 

(MoM) and finite difference (FD) method for computational 

electromagnetics (CEM) and computational science and 

engineering (CSE) problems [2]. Rather than predicting a 

solution directly, our approach learns a model to predict a set 

of macro basis functions on which the problem is then re-

solved. We demonstrated in [2] that such an approach 

meaningfully reduces the number of unknowns (and therefore 

runtime) of simple 1-D FEM scattering problems while 

producing solutions of comparable accuracy to classical 

solutions of substantially higher dimensionality. Although the 

1-D FEM slab scattering problem set explored in [2] was ideal 

for proof of concept, we are unsatisfied with drawing 

conclusions about the usefulness of our method from such a 

simple case. In this paper, we explore the ability of neural 

networks to predict macro basis functions for more-

complicated sets of 3-D MoM PEC scattering problems: a set 

of 10,000 warped cylinders, tori, plates, and spheroids; and a 

comparably simple set of bent plates. These datasets capture a 

greater variety and complexity of the hypothetical set of all 

scattering problems of interest to CEM practitioners, 

advancing toward validation and a generalizable application of 
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our method. This paper is a continuation of the research in [2], 

so we present only a brief summary of related literature and 

our method before detailing the key content of this paper.  

Few studies have sought to apply machine learning to CEM 

and CSE, especially in the modern context of deep learning. 

Most prior work has focused on predicting quantities derived 

from a numerical solution given a problem description such as 

material parameters throughout a domain and an excitation 

[3]-[7]. Others have focused on predicting the numerical 

solution itself [8]-[9], effectively attempting to replace the 

existing methodology (variational methods like MoM) with 

learned models. Our predicted macro basis function approach, 

in contrast, leverages learned models to reduce the 

dimensionality of CEM and CSE problems, then solved by 

classical methods like MoM, by decreasing the total number 

of basis functions. This is inspired by some significant 

advancements in application of neural networks to completing 

challenging tasks with high accuracy. Such advancements, like 

[10] and [11], have used existing mathematically formal 

methods guided by the predictive capability of neural 

networks. We believe this is critical to the application of 

machine learning in most engineering contexts due to the 

fragility of deep neural networks when faced with novel inputs 

[12]-[14]. Although we have found little existing research that 

couples neural networks with variational methods in a broadly 

applicable way, [15]-[20] are in a similar vein of reasoning, 

applying networks to predict bulk material parameters for 

faster multi-scale FEM structural mechanics simulations.  

II. BACKGROUND THEORY 

As in [2], we consider a discretized linear integral or 

differential equation-based problem with solution 𝑆, set of 

basis functions 𝐹, and linear system of form [𝐴]𝑥 = 𝑏, where 

𝑓𝑖 ∈ 𝐹 and 𝑥𝑖 denote the ith basis function and associated 

solution weight, respectively. The weak solution to such a 

problem with 𝑁 basis functions is of form 

 

𝑆̃ = ∑ 𝑥𝑖𝑓𝑖

𝐹

≈ 𝑆 

 
 

(1) 

 

We apply a neural network to predict solution weights, 𝑥, 

given the solution, 𝑥̌, to a computationally inexpensive 

analogue of the problem solved on a reduced basis, 𝐹̌, most 

simply, a small subset of the complete basis, 𝐹. To 

compensate for errors in predicted solution weights, we use 𝑥 

predicted by the network not as the final solution, but to 
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generate a set of macro basis functions that can be used to re-

solve the problem. To satisfy boundary conditions, we require 

careful definition of the macro basis functions. Denoting by 

𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⊂ 𝐹 the set of basis functions in the original basis 

that are nonzero wherever a boundary condition is imposed in 

the original problem and by 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐹 − 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the 

remaining basis functions in the original basis, we impose a 

simple constraint on macro basis functions: 

 

𝑓𝑚𝑎𝑐𝑟𝑜 =  ∑ 𝛼𝑖𝑓𝑖

𝐹𝑎

, 

𝐹𝑎 = 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑟 𝐹𝑎 = 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

  

(2) 

 

Note that this constraint is relaxed from that in [2], allowing 

macro basis functions to include 𝑓𝑖 ∈ 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 so long as 

they do not include 𝑓𝑖 ∈ 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. We then solve the 

problem for solution weights 𝑥̅ using the modified basis 𝐹̅  ⊂
 𝐹𝑚𝑎𝑐𝑟𝑜, a chosen subset of all macro basis functions using the 

network’s prediction of 𝑥𝑖 as 𝛼𝑖 for each 𝑓𝑖 present in a macro 

basis function. In summary, the envisioned method occurs in 

three steps, where 𝑀𝑜𝑀_𝑆𝑜𝑙𝑣𝑒 rigorously computes solution 

weights on the given basis and excitation, and 𝐷𝑁𝑁 estimates 

all solution weights given those for a known, reduced 

problem: 

1 𝑥̌ ← 𝑀𝑜𝑀_𝑆𝑜𝑙𝑣𝑒(𝐹̌, 𝑏) 

2 ← 𝐷𝑁𝑁(𝑥̌) 
3 𝑥̅ ← 𝑀𝑜𝑀_𝑆𝑜𝑙𝑣𝑒(𝐹̅, 𝑏) 

Our simple approach to forming macro basis functions is 

therefore limited by the network’s ability to predict 𝑥 

accurately from 𝑥̌, so we seek to evaluate that ability (step 2 

above) in this paper. 

III. DATASETS AND NETWORKS 

Meshes used for general MoM problems are highly varied 

both geometrically and topologically, describing a broad range 

of surfaces and consisting of a variety of surface element types 

in a wide range of configurations. Our goal here is only to 

explore the ability of neural networks to predict 𝑥 for 

complicated MoM scattering problems, so we chose to 

constrain all models in our datasets to a single mesh topology: 

a 20x20 grid of rectangular surface elements. Each element 

was geometrically 2nd order and had basis function order of 5, 

with geometric order and basis function order as described in 

[21] and [22], respectively. Each model in our datasets 

therefore had the same number of elements and basis 

functions, all with the same relative ordering in two 

parametric dimensions. This allows us to leverage common 

network architectures used for image processing and 

circumvent challenges associated with mapping surface 

currents on arbitrary meshes to network inputs for the time 

being, although we note methods like [23] exist. Such a 20x20 

grid of rectangular elements is surprisingly versatile and can 

be warped and glued to describe a variety of surface types 

using parametric mappings.  

Fig. 1 shows representative objects from the complicated 

dataset of 10,000 plates, cylinders, tori, and spheroids. These 

objects vary in length scale from 0.1 to 10 λ and have a wide 

distribution of aspect ratios and deformations on multiple  

 

 
Fig. 1. Representative objects from the complicated dataset. Each object is 

viewed from the direction of the incident excitation. Planes shown top left; 

cylinders top right; tori bottom left; spheroids bottom right. 

 

 
Fig. 2. Representative objects from the simple dataset. Each object is viewed 

from the direction of the incident excitation.  
 

scales. Fig. 2 shows representative objects from the simple 

dataset of 1,000 bent plates. These objects have simple 

deformation patterns and length scales on the order of a 

wavelength. All objects in the simple dataset shared the same 

orientation with respect to the incident field and the same 

aspect ratio (square) in the non-vertical directions. Note that 

objects in Fig. 1 and Fig. 2 are rendered at the same scale, and 
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all objects are shown from the direction of the incident plane 

wave used as excitation.  

 

Maximally orthogonal divergence-conforming quadrilateral 

surface current basis functions from [22] were used to 

discretize surface currents for simulation of scattering from 

objects in Figs. 1 and 2. We note that, while [22] uses 𝑝 and 𝑠 

to denote element parametric coordinates in which basis 

functions are defined, we instead use 𝑢 and 𝑣 in the 

convention of [21]. For instance, using the P-expansion and S-

expansion functions from [22], the 𝑢-oriented current 

expansion over a quadrilateral is given by  

 

𝐉
𝑢
(𝑢, 𝑣) =  

𝐚𝑢

𝐽
2

∑ ∑ 𝛼𝑗𝑘𝑃𝑗(𝑣)𝑆𝑘(𝑢)

𝑛𝑢

𝑘=0

𝑛𝑣−1

𝑗=0

 

 

(3) 

where 𝐚𝑢 is the 𝑢-directed unitary vector from [22] and 𝐽
2
 is 

the surface Jacobian. The current expansion orders 𝑛𝑢 = 𝑛𝑣 =

5 were chosen for all elements. Note that the expansion is one 

order lower in the parametric direction perpendicular to its 

orientation. An analogous form exists for the 𝑣-directed 

expansion. The basis function weights for each element can be 

displayed intuitively in a 6x5 grid. For symmetry, we present 

weights in a 6x6 grid for both 𝑢- and 𝑣-directed current 

expansions, with the rightmost column left empty (or set to 

zero) to represent the column of missing basis functions in the 

perpendicular direction due to the lower sum limit. The 

complete basis 𝐹 for each element therefore contains 60 basis 

functions (30 for 𝑢 and 30 for 𝑣). Per-element basis function 

grid patterns are shown in Fig. 3. Note that each element will 

have two such grids of complex-valued basis functions 

weights associated with it: one for 𝑢- and one for 𝑣- directed 

current expansions. Gray cells represent weights in  𝐹̌. Green, 

orange, and blue cells represent weights to be predicted. 

Weights in the first two rows in Fig. 3 constitute 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, so 

either the first or second row of weights are zero for elements 

without neighbors (present on plates and cylinders). 
 

 
Fig. 3. Basis function weight grids. Function weights in A-G were given to 

network as input. Weights in regions H, I, and J were predicted by the 

network. 

 

For such elements, zero-valued weights in the A and B or C 

and D regions were still input to the network, but network 

predictions for I or J, appropriately, were ignored when 

computing error statistics (as they are necessarily set to zero 

when re-solving the system).  

 Functions in cells H, I, and J are those intended to be 

merged into MBFs weighted by network predictions. These 

regions were chosen for simplicity. If we were attempting to 

build a solution directly from the weights predicted by the 

network, we would desire a network that predicted these 

values on some common scale. However, we intend to use 

these weights to form MBFs of form (2) for re-solving of the 

problem on 𝐹̅, so, ignoring numerical constraints, we do not 

care about the relative value of weights not in the same region. 

For this purpose, we normalized all weights within regions H, 

I, and J such that the value of highest magnitude in each 

region has unit magnitude.   

 The same network architecture was used for both the simple 

and complicated datasets. The architecture consisted of a 

simple 16-block residual network [24] with no batch 

normalization and a hyperbolic tangent nonlinearity after the 

final convolutional layer. We used 128 filters per layer. This 

architecture was not optimized for the problem but proved 

sufficient for proof of concept. One version of the network 

was trained exclusively on 800 examples from the simple 

dataset, the other 200 held-out for testing. We denote this 

Network A. Another version, Network B, was trained 

exclusively on 9,800 examples from the complicated dataset, 

evenly partitioned between the four subcategories. The 

remaining 200 objects were held-out as a test set. Both 

networks were trained using the Adam optimization algorithm 

[25] with a batch size of 10 and learning rate of 1e-4 for 150 

and 500 epochs, respectively. Interestingly, we noted 

substantial overfitting for longer training runs, indicating these 

networks will benefit from larger training datasets. 

 Input to each network was 20x20x28, the 28 channels 

corresponding to real and imaginary values for both 𝑢- and 𝑣- 

directed basis functions in cells A-G. The 20x20 spatial grid 

corresponds to the 20x20 grid of quadrilateral elements 

comprising each mesh. Similarly, the output was 20x20x92, 

the 92 channels corresponding to real and imaginary values for 

both 𝑢- and 𝑣- directed basis functions in H, I, and J. Network 

loss was computed as mean squared error (MSE) between 

predicted and actual values. 

IV. NUMERICAL RESULTS AND DISCUSSION 

To accurately assess network performance, both networks 

were evaluated on their test sets after training. Both networks 

were also tested on the other test set. To present results, we 

split the 20x20x92 output for each test problem into 400 

1x1x92 vectors of element-wise weights. We then further 

subdivided each vector into four 1x1x23 vectors, for real 𝑢, 

imaginary 𝑢, real 𝑣, and imaginary 𝑣, respectively. Each 

vector was then rearranged and padded into a 6x6 grid 

corresponding to weight assignments for H, I, and J in Fig. 3. 

Values in these grids corresponding to input weights A-G and 

values in the right-most column were set to zero for 

presentation of representative examples. Error statistics were 

computed between these grids and corresponding grids 

constructed from the true solution weights (normalized in the 

same way). Fig. 4 shows 15-bin root mean square error 

(RMSE) histograms. Weight boundaries are the same for all 

four sub-plots. Fig. 4(a) shows application of Network A to 

the simple test set, while Fig. 4(b) shows application of 

Network A to the complicated test set. Similarly, Figs. (c) and 

(d) show application of Network B to the complicated and 

simple test sets, respectively. 

Figs 5 and 6 show representative examples for each bin, 

corresponding to histograms in Fig. 4. Fig. 5 shows bin 
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examples for Figs. 4(a) and (b), while Fig. 6 shows bin 

examples for Figs. 4(c) and (d). For each, the bin of highest 

probability (mode) is highlighted green. 

 

 

 

 

 
Fig. 4. RMS error histograms for both networks on both validation datasets. 

(a) Network A on simple set; (b) Network B on simple set; (c) Network B on 

complicated set; (d) Network A on complicated set. 
 

 Network A Network B 

Bin# Predicted/Actual Error Predicted/Actual Error 

1 
    

2 
    

3 
    

4 
    

5 
    

6 
    

7 
    

8 
    

9 
    

10   
  

11   
  

 
Fig. 5. Representative bin examples for histograms in Fig. 4(a), left, and Fig. 

4(b), right. Entries were left blank for Network A on the simple dataset, as no 

examples fell in bins 10-11 for this case. Neither case produced examples that 

fell in bins 12 or higher, so these bins were omitted from this plot. 

Network A, trained only on the simple dataset, was able to 

predict weights for objects in the simple test set accurately. 

This is especially apparent in the representative mode example 

(green) for Network A in Fig. 5. Network B, trained on the 

complicated dataset, performed similarly well for the 

complicated test set, although with somewhat higher error 

overall. Both results are expected, but we are pleased with the 

accuracy with which the network’s predicted basis function 

weights on their corresponding test sets. More interestingly, 

however, were the cross-validation results. Despite the 

complicated dataset containing no objects similar to those 

found in the simple dataset (evident by comparison of the 

plates in Fig. 1 to those in Fig. 2), Network B performed better 

on the simple test set than it did on its own (the complicated) 

test set. This indicates that Network B learned generalizable 

knowledge applicable beyond the complicated dataset on 

which it was trained. Network A clearly also learned 

generalizable knowledge, demonstrated in Figs. 4(d) and 6, 

but at far higher error. 

 

 Network B Network A 

Bin# Predicted/Actual Error Predicted/Actual Error 

1 
    

2 
    

3 
    

4 
    

5 
    

6 
    

7 
    

8 
    

9 
    

10 
    

11 
    

12 
    

13   
  

14   
  

15   
  

Fig. 6. Representative bin examples for histograms in Fig. 4(c), left, and Fig. 

4(d), right. Entries were left blank for Network B on the complicated dataset, 

as no examples fell in bins 13-15 for this case. Color scale reused from Fig. 5. 

V. CONCLUSION 

This letter has presented research on the application of deep 

neural networks to macro basis function prediction. Using 

simple and complicated datasets of MoM PEC scattering 

problems, we showed that deep neural networks are a 

promising approach to macro basis function prediction for a 

variety of CEM problems.  
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