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Abstract—This paper proposes an ensemble learning model
that is resistant to adversarial attacks. To build resilience, we
introduced a training process where each member learns a
radically distinct latent space. Member models are added one
at a time to the ensemble. Simultaneously, the loss function is
regulated by a reverse knowledge distillation, forcing the new
member to learn different features and map to a latent space
safely distanced from those of existing members. We assessed
the security and performance of the proposed solution on image
classification tasks using CIFAR10 and MNIST datasets and
showed security and performance improvement compared to the
state of the art defense methods.

Index Terms—Adversarial Examples, Ensemble Learning,
Knowledge Distillation

I. INTRODUCTION

In the past decade, the research on Neuromorphic-inspired
computing models, and the applications of Deep Neural Net-
works (DNN) for estimation of hard-to-compute functions, or
learning of hard-to-program tasks have significantly grown,
and their accuracy have considerably improved. Early research
on learning models mostly focus on improving the accuracy
of the models [1, 2], but as models matured, researchers
explored other dimensions, such as energy efficiency of the
models [3–8] and underlying hardware [9–15], as well as
wider adoption and application of learning solutions in many
other research fields including security applications [16–18]
for solving problems that either have no closed-form solution
or are too complex for developing a programmable solution.
The wide adoption of these capable solutions then started
raising concerns over their security.

Among many security aspects of learning solutions, the
vulnerability of models to adversarial attacks [19, 20], has
attracted lots of attention. Researchers have shown that subtle,
yet targeted adversarial perturbation to the input (i.e. image,
audio, or video input) of neural networks can dramatically
drop their performance [21, 22].

The vulnerability of DNNs to adversarial attacks has raised
serious concerns for using these models in critical applications
in which an adversary can slightly perturb the input to fool
the model [23]. This paper focuses on adversarial attacks on
image classification models where an adversary manipulates
an input image, forcing the DNN to misclassify.

Non-robust features are those features that strongly asso-
ciate within a specific class, yet have small variation across
categories [24]. Ilyas and et al. at [25] showed that the high

Fig. 1: In our proposed solutions, we train an auxiliary model(s) that tracks
the main model’s classification while learning a diverse set of features, latent
representation of which maps to space far apart from the teacher’s. LjM⊥⊥A
indicates the diversity between the jth feature space of the modelM and A
which are Fj

M and Fj
A, respectively.

sensitivity of the underlying model to the non-robust features
existing at the input dataset is a significant reason for the
vulnerability of the model to the adversarial examples. So an
adversary crafts a perturbation that accentuates the non-robust
features to achieve a successful adversarial attack.

From this discussion, a means of building robust classifiers
is identifying robust features and training a model using only
robust features (that have a sizeable intra-class variation),
making it harder for an adversary to mislead the classifier,
[25]. Motivated by this discussion, we proposed a simple
yet effective method for improving the resilience of DNNs,
by introducing auxiliary model(s) trained in the spirit of
knowledge distillation, while forcing diversity across features
formed in their latent spaces.

We argue that adversarial attacks are transferable across
models because they learn similar latent spaces for non-
robust features. This is either the result of using the 1) same
training set or 2) knowledge distillation that solely focused
on improving the classification accuracy. In other words, for
sharing the dataset or the knowledge of a trained network (on
a dataset), the potential vulnerabilities of models coincide.
Hence, an attack that works on one model is very likely to
work on the other(s). This conclusion is also supported by the
observations by Ilyas and et al. at [25]. From this argument,
we propose to augment the task of knowledge distillation
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with an additional and explicit requirement that the learned
features by the student (i.e. auxiliary) model(s) should be
distinct and independent from the teacher (i.e. main) model.
For this reason, as showed in Fig. 1, we introduce the concept
of Latent Space Separation (LSS), forcing the auxiliary model
to learn features with little or no correlation to those of the
teacher’s. Hence, an adversarial attack on the main model will
have minimal impact on the latent representation of features
learned by the auxiliary model(s).

II. BACKGROUND

Prior researches on adversarial learning have produced dif-
ferent explanations on why leaning models are easily fooled by
adversarial input perturbation. The early investigations blamed
the non-linearity of neural networks for their vulnerability
[20, 26]. However, this perception was later challenged by
Goodfellow and et. al. [20], who developed the Fast Gradient
Sign Method (FGSM), explaining how neural network linearity
can be exploited for rapidly building adversarial examples.

Building robust learning models that could resist adversarial
examples has been a topic of interest for many researchers.
Some of the most notable prior art on this topic includes 1)
Adversarial Training, 2) Knowledge Distillation (KD), and 3)
de-noising and refinement of the adversarial examples.

Adversarial Training: It is the process of incremental
training of a model with the known adversarial examples
to improve its resilience, see Fig2. The problem with this
approach is that the model’s resilience only improves when
the model is attacked with similarly generated adversarial
examples [27, 28].

Fig. 2: Adversarial training in a nutshell.

Knowledge Distillation (KD), see Fig. 3: In this method,
a compact (student) model learns to follow one or more
teacher’s models behavior. It was originally introduced to
build compact models (students) from more accurate yet larger
models (teachers). Later, it was also used to diminish the
sensitivity of the student’s output model concerning the input’s
perturbations [29]. However, the work in [30] showed that
if the attacker has access to the student model, with minor
changes, the student model could be as vulnerable as the
teacher. Specifically, knowledge distillation can be categorized
as a gradient masking defense [31] in which the magnitude of
the underlying model’s gradients are reduced to minimize the
effect of changes in the model’s input to its output. Although
grading masking defenses can be an effective defense against
white-box attacks, they are not resistant against black-box
evasion attacks [30]. Our proposed solution is motivated by
KD. However, we do not force the auxiliary (i.e. student)
network(s) to follow the output layers of the main network
(i.e. teacher); in contrary to the KD, the auxiliary network has
to learn a different latent space while being trained for the
same task and on the same dataset.

Refining the Input Image, see Fig 4: The adversarial
defenses that rely on refining the input samples try to denoise
the input image using some sort of autoencoder (variational,
denoising, etc.) [32]. In this approach, the image is first

Fig. 3: Defensive Distillation in a nutshell.

encoded using a deep network to extract a latent code (a
lossy, compressed, yet reconstructable representation of the
input image). Then the image is reconstructed using a decoder.
Next, the decoded image is fed to the classifier [32]. However,
this approach suffers from two main weaknesses: (1) The
reconstruction error of decoder can significantly reduce the
classifier’s accuracy and such reconstruction error increases as
the number of input classes increases; (2) the used encoder-
network is itself vulnerable to adversarial attacks which means
new adversarial examples can be crafted on the model which
also include the encoder-network.

Fig. 4: Autoencoders for defense.

III. THE PROPOSED METHOD

Our objective is to formulate a knowledge distillation pro-
cess in which one or more auxiliary (student) models Ai are
trained to closely follow the prediction of a main (teacher)
model M, while being forced to learn substantially different
latent spaces. For example, in Fig. 5, let’s assume three auxil-
iary models A1, A2, A3 have been trained alongside the main
model M to have the maximum diversity between their latent
space representations. Our desired outcome is to assure that
an adversarial perturbation that could move the latent space
of the input sample x out of its corresponding class boundary,
F j

M, has a negligible or small impact on the movement of the
corresponding latent space of x in the class boundaries of the
auxiliary models A1, A2, A3. Hence, an adversarial input that
could fool model M, becomes less effective or ineffective on
the auxiliary models. This objective is reached by the way the
loss function of each model is defined. The details of M and
Ai network(s), learning procedure and objective function of
Ai are explained next:

Fig. 5: Fj
M is the latent space regards to jth layer of the main model, Fj

A1
,

Fj
A2

, Fj
A3

are the corresponding latent spaces of the auxiliary models 1, 2,
and 3. X is the latent feature of an input sample X i.e., X = Fj

M(x). The red
arrow at the main model shows the direction of the adversarial perturbation,
the red arrows for the auxiliary models show the projection of the perturbation
on the latent spaces of the auxiliary model.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 05:40:43 UTC from IEEE Xplore.  Restrictions apply. 



Main Model (M:) In this paper, we evaluated our proposed
method on two datasets MNIST [33] and CIFAR10 [34]. So
depending on the underlying dataset, the structure of the main
model (teacher) M is selected as showed in Table I. We also
employed cross-entropy loss C, see Eq. 1, as the objective
function for training the model M.

LM = C(Y,M(X)) = −
i=N∑
i=1

Yi log(M(Xi)) (1)

In this equation, Xi and Yi are ith training sample and its
corresponding label, respectively.

Auxiliary Model (A): Each auxiliary model is a structural
replica of the main model M. However, model A is trained
using a modified KD training process: let’s denote the output
of jth layer of model A (i.e. latent space of model A) and
M by F j

A and F j
M respectively. Our training objective is to

force model A to learn very different latent space compared
to M where both do the same classification task on the same
dataset. To achieve this, the term Lj

M⊥⊥A which shows the
similarity of the jth layer of model A to jth layer of model
M is defined as follows:

Lj
M⊥⊥A =

F(X)jM . F(X)jA
|F(X)jM||F(X)jA|

, X ∈ T (2)

In this objective function, T is the dataset, and the (.) is the inner
product function. This similarity measure then is factored to define
the loss function (LA) for training the model A, which increases the
dissimilarity of the layer j of the model A with respect to the M:

LA = (1− ζ)LC(Y,A(X))︸ ︷︷ ︸
targets the accuracy

+ ζLj
M⊥⊥A︸ ︷︷ ︸

targets the diversity

(3)

In this equation, ζ is a regularization parameter to control the
contribution of each term.

Let’s assume the adversarial perturbation δ, when added to the
input X , forces the model M to misclassify X , or more precisely
M(X+ δ) 6=M(X). For this misclassification (evasion) to happen,
in a layer j (close to the output) the added noise has forced some
of the class-identifying features outside its related class boundary
learned by model M. However, the class boundaries learned by A
and M are quite different. Therefore, as showed in Fig. 5, although
noise δ can move a feature out of its learned class boundary in model
M, it has very limited power in displacing the features learned by
model A outside of its class boundary in layer j. In other words,
although the term F(X)jM . F(X)jA between the main and the
auxiliary models has a low value, the term F(X + δ)jA . F(X)jA
between the auxiliary model before and after adding perturbation
δ has a high value, subsequently the student model A has a low
sensitivity to the perturbation δ, meaning A(X + δ) = A(X).

A. Black and White-Box defense:
The auxiliary models could defend against both white and black

box attacks, description and explanation for each is given next:
Black-box Defense: In black box attack, an attacker has access

to model M, and can apply her desired input to the model and
monitor the model’s prediction for designing an attack and adding
the adversarial perturbation to the input X . Considering no access to
the model A, and for having very different feature space, the model
A remains resistant to black-box attacks and using a single A is
sufficient.

White-box Defense: In white-box attack, the attacker knows
everything about the model M and A, including model parameters
and weights, full details of each model’s architecture, and the dataset
used for training the network. For this reason, using a single model
A is not enough, as that model could be used for designing the

TABLE I: The Architecture of the ensemble models
MNIST Architecture CIFAR10 Architecture

Relu Convolutional 32 filters (3×3) Relu Convolutional 96 filters (3×3)
Relu Convolutional 32 filters (3×3) Relu Convolutional 96 filters (3×3)

Max Pooling 2×2 Relu Convolutional 96 filters (3×3)
Relu Convolutional 64 filters (3×3) Max Pooling 2×2
Relu Convolutional 64 filters (3×3) Relu Convolutional 192 filters (3×3)

Max Pooling 2×2 Relu Convolutional 192 filters (3×3)
Relu Convolutional 200 units Relu Convolutional 192 filters (3×3)
Relu Convolutional 200 units Max Pooling 2×2

Softmax 10 units Relu Convolutional 192 filters (3×3)
Relu Convolutional 192 filters (1×1)
Relu Convolutional 192 filters (1×1)

Global Avg. Pooling
Softmax 10 units

System Configuration and training hyper parameters
OS: Red Hat 7.7, Pytorch: 1.3, FoolBox: 2.3.0, GPU: Nvidia Tesla V100, EPOCH:
100, MNIST Batch Size: 64, CIFAR10 Batch Size:128, Optimizer: ADAM, learning
rate: 1e-4

attack. However, we can make the attack significantly more difficult
(and improve the classification confidence) by training and using
multiple robust auxiliary models. However, each of our A models
learns different features compared with all other auxiliary models.
Then, to resist the white-box attack, we create a majority voting
system from the robust auxiliary models.

Let’s assume we want to train k > 1 auxiliary models, Ai=k
i=1 , each

having a diverse latent space (i.e. M ⊥⊥ A1 ⊥⊥ A2 ⊥⊥ · · · ⊥⊥ Ak).
To learn these networks, firstly, based on Eq. 3, the A1 is learned
aiming M ⊥⊥ A1. Then, the A2 is learned to be diverse of both
A1 and M. This process continues one by one, reaching the Ai

model, till its latent space is diverse from all previous models (i.e.
Ai ⊥⊥ {M,Aj=i−1

j=1 }). According to this discussion for learning the
ith auxiliary model, the loss function is defined as:

LA = (1−ζ)LC(Y,Ai(X))+(ζ/i)Li
M⊥⊥Ai

+(ζ/i)

y=i−1∑
j=1

Lj
Ay⊥⊥Ai

(4)
Finally, to increase the confidence of the prediction, instead of a

simple majority voting system for the top-1 candidate, we consider
a boosted defense in which the voting system considers the top n
candidates of each model A for those cases that majority on top-
1 fails (there is no majority between the top-1 predictions). This
gives us two benefits 1) if a network misclassifies due to adversarial
perturbation, there is still a high chance for the network to assign
a high probability (but not the highest) to the correct class. 2) if a
model is confused between a correct class and a closely related but
incorrect class and assigns the top-1 confidence to the wrong class,
it still helps identify the correct class in the voting system.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
defense against various white and black-box attacks. We trained all
models using Pytorch framework [35], and all attack scenarios using
Foolbox [36] (which is a toolbox for crafting adversarial examples).
The details of the hyperparameters and system configuration are
summarized in Table I.

A. Enforcing Latent Space Hetromorphisim
To quantify the diversity of the latent space representations of the

ensemble trained on a dataset D, we first define the Latent Space
Separation (LSS) measure between latent spaces of two models A1

and A2 as:

LSSD(Fj
A1
,Fj
A2

) =
2

‖W‖ . (5)

In which Fj
A1

, Fj
A2

are latent space representations of the dataset
D for the jth layer of models A1 and A2, respectively. W is
the normal vector of the hyperplane obtained by Support Vector
Machine (SVM) classifier [38] for linearly separate the latent spaces
obtained on the dataset D. More precisely, LSS between two latent
spaces is obtained by following these 4 steps: 1) training both
models A1, A2 on a dataset i.e., MNIST. 2) generating the latent
space of each model on the evaluation set i.e., Fj

A1
and Fj

A2
.

3) turning the latent representations into a two-class classification
problem tackled by SVM classifier 4) using SVM margin as LSS
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Fig. 6: training method of the DKD for training an ensemble of m auxiliary
modelsA1 toAm from a reference modelR. FNR , FNA1

, and FNAm
are latent

space of the reference model and auxilary models A1 and Am, related to
output of Nth layer of each one, respectively. Cross-Entropy [37] and Cosine-
Similarity are the objective functions that have been used for obtaining the
total loss.

distance between two latent representations of the dataset MNIST,
LSSMNIST (Fj

A1
,Fj
A2

). This process can be expanded for obtaining
LSS of more than two models. For instance Fig. 7 shows the LSS
between model A1 for two models A2 and A3 regards to their jth

layer, i.e., LSSD(Fj
A1
, (Fj
A2
,Fj
A3

)). Note that the SVM classifier
should be set in the hard margin mode, meaning no support vector
can pass the margins. When the SVM classification fails, it means
that the latent spaces were not linearly separable i.e., there is either
an overlap between latent spaces or the decision boundary cannot be
modeled linearly. So in both cases, the more the marginal distance
between latent spaces are, the higher is the diversity of formed latent
spaces.

Fig. 7: LSSD(Fj
A1
, (Fj
A2
,Fj
A3

)) in which A1, A2 and A3 are three
models with latent space representations Fj

A1
, Fj
A2

, and Fj
A3

, respectively.
W is the norm vector of a hard margin support vector machine (SVM) in
two class classification model.

Using Eq. 5, we define more generalized formula of LSS using an
ensemble model comprised of N models, see Eq. 6. In fact the total
LSS of an ensemble model is obtained by averaging the LSS of each
model latent space versus all other models’. For instance, let’s imag-
ine the ensemble model comprised of three models A1, A2, and A3.
Then the total LSS is calculated by 1/3(LSSD(F j

A1
, (F j

A2
, F j

A3
))+

LSSD(F j
A2
, (F j

A1
, F j

A3
)) + LSSD(F j

A3
, (F j

A1
, F j

A2
))). LSS mea-

sures the marginal distance of SVM in a two-class-classification task,
so LSSD(A1, (A2, A3)), indicates that a SVM classification has
been performed between the latent space of the model A1 and an
aggregation of latent spaces of other two models A2 and A3.

1

N

N∑
i=1

LSSD(F j
Ai
, (F j

A1
, ..., F j

Ai−1
, F j

Ai+1
, ..., F j

AN
)). (6)

To investigate the effectiveness of LSS, as a metric for measuring

TABLE II: The number of failed majority between an ensemble of the three
models at the original and boosted version, indicated with *, of KD, DKD, and
RI on the datasets MNIST and CIFAR10. The accuracy improvement using
the boosted version is shown with Accuracy Improved (A.I). We investigated
our proposed method against well-know attacks like DeepFool [39], C&W
[40], JSMA [21], and FGSM [20].

Param. MNIST CIFAR10
KD KD* DKD DKD* RI RI* KD KD* DKD DKD* RI RI*

Deep Fool Deep Fool
1 4 0 15 0 16 0 576 6 1234 51 891 33

200 7 1 93 0 61 0 628 5 1319 52 959 32
A.I.(%) 0.02 0.12 0.35 1.36 2.88 7.16

C&W C&W
1 188 3 172 0 225 6 584 1 1201 2 859 13

200 560 5 794 2 921 16 630 2 1322 2 942 12
A.I.(%) 0.01 0.33 0.22 13.97 1.47 2.79

JSMA JSMA
1 0 0 15 0 16 6 584 8 1201 51 859 31

200 4 1 52 0 42 8 654 8 1410 56 999 35
A.I.(%) 0.01 0.26 0.15 1.39 2.94 4.18

FGSM FGSM
0.04 190 5 342 16 235 20 821 3 1801 106 1560 66
0.08 239 6 589 27 349 34 924 9 1842 71 1872 77
0.1 349 3 844 36 504 46 950 12 1829 79 2053 105

A.I.(%) 0.03 0.21 0.12 1.33 3.74 2.94

the diversity between different latent spaces, we considered three
different scenarios for training an ensemble of 3 models with the
same structure: I) Random Initialization (RI) where 3 models trained
independently with a random initial value. II) Knowledge Distillation
(KD), where three models trained collaboratively, as shown in Fig.
III) Diversity Knowledge Distillation (DKD), where three models are
trained in a collaborative yet different manner of KD, see Fig. 6. Note
that KD and RI methods deal with the softmax probabilities, How-
ever, DKD uses a mix of softmax and the latent spaces. Alongside
each one of the designs DKD, KD, and RI, a boosted version of
each one is implemented and denoted by DKD∗, KD∗, and RI∗,
respectively. Both KD and DKD are trained in a one-by-one manner,
meaning the ith model considers the i−1 previously trained models
at its training phase while those i − 1 models are frozen i.e., their
parameters (weights) are not updated while the ith model is being
trained.

Fig. 8-top shows the LSS for an ensemble of three models (for
MNIST and CIFAR10 datasets), with the structures described in
Table. I. Fig. 8-A and C show that for the MNIST dataset, increasing
the value of the ζ causes 1) rapid increase at the LSS 2) slight drop
at the classification accuracy. Considering the Eq. 4, increasing the ζ
means putting less emphasis on the cross-entropy term, which reflects
the slight drop of accuracy and increases the LSS of the latent spaces
of the ensemble models. A similar pattern happens for the CIFAR10
dataset, Fig. 8-B and D, in which LSS increases to its maximum
at the ζ = 0.5 while the classification accuracy slightly increases.
Between all the different values for acceptable accuracy, the ζ value
that leads to a higher LSS is selected as the parameter. In other
words, to have a diverse latent space, the LSS between them should
be maximized while the accuracy is kept in the acceptable range.
For example, in Fig. 8-B, when ζ is 0.5, the LSS is at the maximum
level while accuracy is also at an acceptable level. Accordingly, the
evaulations has been done when the parameters ζ is set to 0.5 and
0.9 for the CIFAR10 and MNIST datasets.

One instant observation in Fig. 8 is that the LSS between the latent
spaces obtained by DKD approach is noticeably larger than RI, and
the LSS between latent spaces obtained by RI is slightly larger than
KD. This observation is aligned with our expectations because the
DKD is designed to increase the diversity between the latent spaces
while the KD in essence, increases the similarity between models
and this is because the student model(s) imitates the behavior of the
teacher(s).

B. Resistance to Black-Box Attacks
For launching a black-box attack, the adversary uses a reference

model and trains it based on the available dataset. Then knowing
the transferability of the adversarial example, the adversary extracts
the adversarial sample on the reference model and applies it to the
models under attack. Assume the adversary used LENET and VGG16
as the reference model for MNIST and CIFAR10, respectively. The
underlying models under attack are an ensemble of three models with
the structure shown in Table I. For investigating the performance of
the proposed method (DKD) on black-box attacks, we also considered
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Fig. 8: (A), (B) show the LSS of an ensemble of three models on the MNIST, and CIFAR10 datasets. (C), (D) show the classification accuracy of the ensemble
model on the MNIST, and CIFAR10 datasets. In this figure, three method Random Initialization(RI), Knowlege Distillation (KD), and Diversity Knowledge
Distillation(DKD) are shown.

TABLE III: Black Box adversarial attack on an ensemble of three models. The bold numbers show the most resistant defense mechanism. The perturbation
size, ε, is set to 0.1 and 0.2 for MNIST, and 0.04, and 0.08 for CIFAR10. The initial constant C is set to 10 and 0.1 for MNIST and CIFAR10 respectively.
Iterative attacks are executed for 200 iterations.

MNIST CIFAR10

Param. 3 Ensemble Models Ref. Param. 3 Ensemble Models Ref.KD KD* DKD DKD* RI RI* KD KD* DKD DKD* RI RI*
DeepFool [39] DeepFool

1 0.9510 0.9542 0.9721 0.9726 0.962 0.9682 0.9754 1 0.8355 0.8475 0.92 0.9463 0.8596 0.92 0.6505
200 0.864 0.8642 0.8904 0.8916 0.8433 0.8768 0.5835 200 0.7972 0.8108 0.8981 0.9269 0.8265 0.8981 0.1586

C&W [40] C&W
1 0.9612 0.9614 0.988 0.9882 0.9721 0.9726 0.9841 1 0.8475 0.959 0.9534 0.9575 0.9326 0.9571 0.9516

200 0.7829 0.783 0.8587 0.862 0.8127 0.8149 0.2 200 0.8014 0.9311 0.9245 0.9321 0.9022 0.9301 0.1543
JSMA [21] JSMA

1 0.9612 0.9614 0.9882 0.9884 0.9721 0.9726 0.9854 1 0.8475 0.8599 0.9326 0.9571 0.8348 0.8703 0.9516
200 0.8147 0.8148 0.9086 0.9112 0.8403 0.8418 0.4322 200 0.7804 0.7943 0.8851 0.9145 0.7644 0.8062 0.1564

FGSM [20] FGSM
0.04 0.9553 0.9555 0.9842 0.9846 0.9638 0.9644 0.952 0.04 0.8412 0.8548 0.899 0.933 0.8296 0.8676 0.4822
0.08 0.9247 0.9249 0.9619 0.9629 0.9333 0.9341 0.864 0.08 0.7476 0.7615 0.7393 0.7763 0.7267 0.7627 0.2534
0.1 0.8937 0.894 0.9374 0.9395 0.9059 0.9071 0.7847 0.1 0.6998 0.7131 0.6839 0.7213 0.6817 0.7111 0.0867

No Attack No Attack
- 0.9612 0.9614 0.9882 0.9884 0.9721 0.9726 0.9854 - 0.9501 0.9512 0.9561 0.9580 0.9385 0.9523 0.9607

TABLE IV: white box attack on the ensemble of three models. Bold numbers at each column show the most resistant method against white-box attacks. The
perturbation size, ε, is set to 0.1 and 0.2 for MNIST, and 0.04, and 0.08 for CIFAR10. The initial constant C is set to 10 and 0.1 for MNIST and CIFAR10
respectively. Iterative attacks are executed for 200 iterations.

MNIST CIFAR10
Defense Clean FGSM 0.1 FGSM 0.2 JSMA C&W DeepFool Clean FGSM 0.04 FGSM 0.08 JSMA C&W DeepFool

No Defense 0.9661 0.651 0.119 0.2421 0.4409 0.0 0.9304 0.2033 0.1846 0.2525 0.2548 0.1441
DKD*Prj 0.9884 0.9835 0.9681 0.8849 0.9594 0.8991 0.9604 0.7377 0.7188 0.7788 0.8878 0.7934
DKD*Agg 0.9884 0.9756 0.9329 0.9725 0.9808 0.9605 0.9604 0.8923 0.8623 0.9221 0.9538 0.8751

Yu et al. [41] 0.984 0.916 0.703 0.8014 0.791 0.6518 0.9421 0.485 0.382 0.824 0.629 0.721
Ross et al. [42] 0.992 0.916 0.604 0.9191 0.753 0.7394 0.9491 0.395 0.205 0.836 0.478 0.751
Pang et al. [43] 0.995 0.963 0.528 0.9465 0.781 0.7921 0.9219 0.716 0.474 0.882 0.549 0.695
AdvTrain [44] 0.991 0.73 0.527 0.645 0.392 0.627 0.905 0.446 0.314 0.781 0.501 0.73

two other methods RI, and KD for training an ensemble of three
models.

We used the majority voting between the ensemble models. How-
ever, in some cases, each one of the models results in a different
prediction regards to other models. We refer to these cases as failed
majorities. So for each one of the possible attacks and two datasets
(MNIST and CIFAR10) we counted the number of failed majorities.
Table II, shows the difference between the regular and boosted version
of each benchmark with regard to the number of the failed majority
voting. From this table, we observe that 1) the number of majority
voting failures at the DKD is always higher than the other two regular
methods. This confirms that our objective function could successfully
train diverse models because the majority voting fails whenever the
models couldn’t agree on a label. So at the presence of the adversarial
example, the disagreement between the models trained with DKD is
higher than the others 2) The number of majority failures drops by
going from a regular to a boosted model. The effect of this drop is
shown by Accuracy Improvement percentage, A.I.

Table III shows the results of applying some of the state-of-art
attacks on the DKD, KD, and RI on the MNIST, and CIFAR10
datasets. Investigating these two Tables two trends reveals 1) Boosted
version has better performance than the regular version 2) Almost at
all attack scenarios, DKD∗ outperform the other defense scenarios.

C. Resistance to White-Box Attacks
We evaluated 2 white-box attacks: 1) Projected attack, in which

the adversary obtains adversarial perturbation on one model and
applies it to the target model(s). 2) The Aggregated attack, in which
the adversary obtains the adversarial perturbation on each model

Fig. 9: White Box attack scenarios for an ensemble of two models A and
B in which Fj

A and Fj
B are corresponding embedded features for layer jth

of each model respectively. VA and VB are the adversarial perturbations on
input sample x, i.e., X∗ = Fj

A(x) + VA and X∗∗ = Fj
B(x) + VB . The

angle between two vectors VB and VA is annotated with θ, while β is the
magnitude of projected or aggregated perturbation for Projected or aggregated
attack, respectively.
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independently, then aggregates them to form one perturbation to
apply to all models simultaneously. These two scenarios have been
explained through a toy example on two models A and B in Fig.
9. For the projected attack, the adversary finds the direction τB
as an adversarial perturbation for the input x of the model B, i.e.,
Fj
B(x + τB) = X + VB = X∗∗. In the second step, the adversary

applies the obtained perturbation τB on the sample of the model A,
with the hope that it may transfer to model A. Noted, projected attack
is similar to black box scenario with only difference that attacker
knows about the structures of auxiliary models and in this paper
the auxiliary models have a same structure. Hence, based on the
angle between the perturbations in the latent spaces of models A
and B which are VA and VB three scenarios are possible, see Fig.
9. When both perturbations VA and VB are orthogonal (case III), a
successful adversarial perturbation of one model does not transfer to
the other model, and vice versa. In two other cases (I, II), the smaller
the perturbations’ angle, the more likely the adversarial perturbation
transfer across models. Note that the projection of the perturbation
τB on the embedded feature plane A, Fj

A(τB), shows the direction
of the adversarial perturbation for the model A. If this projection is
large enough to move the data point X out of its class boundary then
input X misclassifies as X∗.

For the aggregated attack, the adversary obtains the adversarial
perturbation of input sample x on the model A, τA, and separately
obtains the adversarial perturbation B, τB . Then, the adversary calcu-
lates the aggregated perturbation by adding up these two perturbations
i.e., τA + τB . In this scenario, let’s assume VA, and VB are the
corresponding mapping of τA and τB on embedded feature planes
A, and B, respectively. Based on the value of θ between VA, and
VB , three different outcomes can be assumed, 1) Fig.9 Aggregated-
II, θ > 90, in which the aggregated perturbation i.e., β is smaller
than either of perturbations VA, and VB . In this case, β as an
adversarial perturbation cannot be a successful attack on either of
the models. 2) Fig.9 Aggregated-I, θ < 90, in which β is greater
than either of perturbations VA, and VB , which means β as an
adversarial perturbation leads to a misclassification in both models A,
and B. However the resulted adversarial perturbation in this scenario
is large and most likely perceptible to human. 3) Fig.9 Aggregated-
III, θ = 90, in which β is equal to either of perturbations VA,
and VB , which means β as an adversarial perturbation lead to a
misclassification on both models A, and B and most likely β is
imperceptible to the human eyes.

Table IV captures the result of various adversarial attacks on our
proposed solution. DKD∗Prj shows the evaluation of DKD* when
the adversary uses the projected attack and DKD∗Agg shows the
aggregated attack. As indicated in this table, our proposed solutions
outperform prior art defense, illustrating the effectiveness of learning
diverse features using our proposed solution.
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VI. CONCLUSION

To build robust models that could resist adversarial attacks, we
proposed a solution for building an ensemble learning solution in
which member models are forced to extract different features and
learn radically different latent spaces. We also introduced Latent
Space Separation (which is defined as the distance between the latent
space representations of models in the ensemble) as a metric for
measuring the ensemble’s robustness to adversarial examples. The
evaluation of our proposed solutions against the white and black box
attacks indicates that our proposed ensemble model is resistant to
adversarial solutions and outperforms prior art solutions.
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