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Abstract—Logic locking has been widely evaluated as a
proactive countermeasure against the hardware security threats
within the IC supply chain. However, the introduction of
the SAT attack, and many of its derivatives, has raised big
concern about this form of countermeasure. In this paper,
we explore the possibility of exploiting chaos computing as
a new means of logic locking. We introduce the concept of
chaotic logic locking, called ChaoLock, in which, by leveraging
asymmetric inputs in digital chaotic Boolean gates, we define
the concept of programmability (key-configurability) to the
sets of underlying initial conditions and system parameters.
These initial conditions and system parameters determine
the operation (functionality) of each digital chaotic Boolean
gate. Also, by proposing dummy inputs in chaotic Boolean
gates, we show that during reverse-engineering, the dummy
inputs conceal the main functionality of the chaotic Boolean
gates, which make the reverse-engineering almost impossible.
By performing a security analysis of ChaoLock, we show
that with no restriction on conventional CMOS-based ASIC
implementation and with no test/debug compromising, none
of the state-of-the-art attacks on logic locking, including the
SAT attack, could reformulate chaotic Boolean gates while
dummy inputs are involved and their parameters are locked.
Our analysis and experimental results show that with a low
number of chaotic Boolean gates mixed with CMOS digital
gates, ChaoLock can guarantee resiliency against the state-of-
the-art attacks on logic locking at low overhead.

Keywords-Hardware Security, Reverse Engineering, Logic
Locking, Chaos Computing

I. INTRODUCTION

The ever-increasing globalization of the design and im-

plementation of integrated circuits (IC) has enforced the

steps of IC manufacturing to be distributed over different

facilities to different parties [1]. This is when one or more

intellectual properties (IPs) from third-party IP vendors are

used to reduce time-to-market, or a post-layout verified

design will be sent to a high-tech foundry to be fabricated, or

an offshore test entity will be used for test/debug purposes.

Due to the lack of trustworthiness and reliable monitoring

on the offshore entities, numerous supply chain security

threats have raised, such as IC overproduction, Trojan in-

sertion, reverse engineering, IP theft, and counterfeiting [2].

Over the years, amongst different proposed Design-for-Trust
(DfTr) techniques, logic locking [3], [4], as one of the

promising solutions, have achieved significant consideration

by researchers/designers to combat these threats. By using

Logic locking, the designer can add programmability (key-

programmable gates) into the design using programming

values, referred to as the key, which are driven by an on-

chip tamper-proof non-volatile memory [5], and the content

of the memory (the key inputs to the key gates) would be

initiated after fabrication via a trusted party. Hence, when the

logic locking is in place, the adversary in the manufacturing

supply chain cannot recover the correct functionality of the

chip without the correct key.

Shortly after the introduction of the primitive logic lock-

ing solutions [3], [4], [6], the Satisfiability (SAT) attack, was

proposed [7], [8]. Assuming that the adversary has access to

the scan chain, the SAT attack could be applied to each com-

binational part of the circuit separately. In the SAT attack,

the adversary has obtained a reverse-engineered yet locked

netlist. Also, (s)he has access to one unlocked/activated chip.

Then, as an oracle-guided attack, the SAT attack could

iteratively rule out the incorrect keys using input queries

found by the SAT solver, called discriminating inputs (DIPs).

Since the main strength of the SAT attack comes from

the pruning power of each DIP, as well as the access to the

scan chain, researchers have investigated and introduced a

few main categories in the literature to show the possible

countermeasures against this attack:

(1) Some techniques try to exponentially increase the

number of required SAT iterations (the number of required

DIPs) [9]–[11]. In such techniques, the SAT attack, similar to

a brute force attack, faces an exponential runtime. However,

new attacks like signal probability skew (SPS), removal, and

functional analysis (FALL) attack [12]–[15] show that these

techniques suffer from various structural vulnerabilities that

were eventually exploited to break them. Besides, due to the

structure of obfuscation parts in these techniques, they suffer

from very low output corruption that makes them vulnerable

to approximate-based attacks [16], [17].

(2) The main aim of some techniques is to make the

locked circuit not translatable to a SAT problem, or to trap

the SAT attack in an infinite loop, or deceive the SAT

attack towards wrong decisions, such as delay locking [18],

or cyclic locking [19]–[22]. In these techniques the non-

Boolean behavior of the circuit is targeted for obfuscation.

However, some of the existing techniques in this category

are already broken [23]–[26].

(3) Some techniques try to significantly increase the

run-time (the complexity) of each iteration of the SAT

attack, such as Cross-lock [27] and Full-lock [28]. In such

techniques, the wiring (routing) is targeted to be locked

978-1-7281-7641-3/21/$31.00 ©2021 IEEE                            387                    22nd Int'l Symposium on Quality Electronic Design  

20
21

 2
2n

d 
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n 

Q
ua

lit
y 

El
ec

tro
ni

c 
D

es
ig

n 
(I

SQ
ED

) |
 9

78
-1

-7
28

1-
76

41
-3

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IS
Q

ED
51

71
7.

20
21

.9
42

43
21

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:20:44 UTC from IEEE Xplore.  Restrictions apply. 



using crossbars or permutation networks. The main idea of

this category is to increase the complexity of the SAT circuit

that must be solved by the SAT solver. When the complexity

of the SAT circuit is high, the number of recursive calls

(decisions) on decision tree of the SAT solver would be

maximized. However, these techniques are recently broken

using new SAT-driven attacks applicable on routing modules

[29], [30] suffer from the incurred area that makes them

almost impractical for a wide range of circuits.

(4) Apart from categories 1-3, since the SAT attack re-

quires access to the scan chain, some techniques lock/block

the scan to restrict any unauthorized access [31]–[35]. The

SAT attack is only applicable to combinational circuits;

hence, by blocking/locking the scan chain, the adversary is

no longer capable of engaging the SAT attack. However,

these techniques are broken using unrolling-based SAT

attacks as well as the SAT attack integrated with bounded

model checkers (BMC) [37]–[39]. Also, blocking the scan

chain enforces the tester to rely on the (primary) output

pins for any test/debug purpose, which might reduce the

test coverage considerably.

In this paper, we explore the characteristics and principles

of chaotic Boolean gates to introduce the concept of chaotic
logic locking, called ChaoLock. Since initial conditions and

system parameters in basic chaotic Boolean gates determine

the operation (functionality) of each gate, in ChaoLock,

we engage these underlying parameters as the source of

ambiguity for logic locking. In ChaoLock, these underlying

parameters must be initiated as the programming values at

a trusted party, thus identifying the exact functionality of

chaotic Boolean gates would be impossible during fabrica-

tion/test or even after reverse engineering.

In ChaoLock, we also exploit the concept of asymme-

try in chaotic Boolean gates. Asymmetric chaotic Boolean

gates are capable of distinguishing between the permuted

input sets, such as {0,1} and {1,0} and therefore can treat

asymmetric logic functions correctly. By using asymmetric

chaotic Boolean gates, we introduce undetectable dummy
inputs in chaotic Boolean gates. In ChaoLock, a regular

chaotic Boolean gate with N inputs would be transformed

to the same gate with N+d inputs, where d is the number of

dummy inputs. Using dummy inputs in asymmetric chaotic

Boolean gates will conceal the main inputs of the chaotic

Boolean gate. Hence, the adversary is not able to reveal

the main functionality of the chaotic Boolean gates. By

performing the SAT attack on ChaoLock, we demonstrate

that this attack could not scale for compromising designs

even while the equivalent SAT model of ChaoLock has been

formulated during the attack. Also, we demonstrate that the

incapability of the SAT for scaling this approach allows us

to easily engage this new locking technique at low overhead

with minimal changes.

The rest of this paper is organized as follows. The

structure of chaotic Boolean logic has been reviewed in

Section II. By listing the threat model in this work in Section

III, Section IV shows how we engage parameters and initial

conditions as well as asymmetric chaotic Boolean gates as

the means of logic locking. Section V presents the results

of engaging ChaoLock and its resiliency to the SAT attack.

Finally, we conclude this paper in Section VI.

II. BACKGROUND

Chaos-based (chaotic) computing is very well-known for

the richness of their dynamic. Unlike a conventional FPGA

element, where reconfiguration is carried out by switching

between multiple single-purpose (static) gates, the most

promising feature of chaotic computing is its ability to

reconfigure a single chaotic element as different Boolean

logic gates (different Boolean functions) [40], [41]. The dy-

namic morphing from one functionality to another in chaotic

computing has received significant attention in recent years

[42]. Numerous recent studies have shown the possibility

of building different Boolean logic functions using a single

chaotic element [41], [43], [44]. Implementing universal

NOR gate using Chua’s circuit [43], or building all 222

functions of a 2-input Boolean gate using a single chaotic

element, called chaogate [41], are the best examples of the

realization of digital computing using Chaotic circuits. Also,

recently ChaoLogix, Inc. designed and fabricated a proof of

concept chip that demonstrates the feasibility of constructing

reconfigurable chaotic logic gates in standard CMOS-based

VLSI 0.18 μm process operating at 30 MHz with a 3.1x3.1

mm die size and a 1.8v digital core. More recent study

quantitatively shows that chaotic gates could be used for

security purposes, where its dynamic structure can help us

to mitigate the power analysis based profiling attacks on

instructions executed on the circuit [45].

Apart from the richness of their dynamic, the basic

structure of chaotic circuits could also grant promising

advantages for security purposes. Hence, in the following,

we first present how a chaotic Boolean gate could work to

yield all fundamental logic functions by programming the

initial conditions and the parameters of a chaotic system.

Then, by introducing asymmetry in these gates, we describe

the structure of the chaotic Boolean gate as a new means

of logic locking that is strongly resilient against the SAT

attack.

A. General Concept of Chaotic Boolean Gate

Based on the basic theoretical method, for obtaining all

22
2

functions of a 2-input gate using the chaotic Boolean

gate, the following steps are required to be involved [41]:

(1) The logical inputs I1 and I2 for a 2-input logic gate

are encoded by the initial state x0 as x0 → xgate+X1+X2.

X1 (or X2) is a physical quantity that has value 0 when logic

input I1 (or I2) is 0, and has value δ when logic input I1 (or

I2) is 1 (δ is a positive constant). xgate is also a physical

value, which can be varied to yield different logic outputs.
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Table I
NECESSARY/SUFFICIENT CONDITIONS FOR IMPLEMENTING 2-INPUT

BASIC LOGIC GATES WITH THE SAME CHAOTIC BOOLEAN GATE [41].

Logic Input Set
Output

Necessary and
Operation (I1, I2) Sufficient Condition

AND
(0, 0) 0 f(xgate) < x∗

(0, 1) / (1, 0) 0 f(xgate + δ) < x∗
(1, 1) 1 f(xgate + 2δ) ≥ x∗

OR
(0, 0) 0 f(xgate) < x∗

(0, 1) / (1, 0) 1 f(xgate + δ) ≥ x∗
(1, 1) 1 f(xgate + 2δ) ≥ x∗

XOR
(0, 0) 0 f(xgate) < x∗

(0, 1) / (1, 0) 1 f(xgate + δ) ≥ x∗
(1, 1) 0 f(xgate + 2δ) < x∗

NAND
(0, 0) 1 f(xgate) ≥ x∗

(0, 1) / (1, 0) 1 f(xgate + δ) ≥ x∗
(1, 1) 0 f(xgate + 2δ) < x∗

NOR
(0, 0) 1 f(xgate) ≥ x∗

(0, 1) / (1, 0) 0 f(xgate + δ) < x∗
(1, 1) 0 f(xgate + 2δ) < x∗

XNOR
(0, 0) 1 f(xgate) ≥ x∗

(0, 1) / (1, 0) 0 f(xgate + δ) < x∗
(1, 1) 1 f(xgate + 2δ) ≥ x∗

(2) Over n time steps, the chaotic Boolean gate has

dynamical evolution, which updates the state of the gate

x → fn(x0), namely, the nth iteration of the initial state.

Specifically for n = 1, the updated state is x = f1(x0).

(3) The output of the chaotic Boolean gate is 0 if f(x0) <
x∗, and is 1 when f(x0) � x∗.

The chaotic system is strongly nonlinear. Hence, a control

mechanism is required, such as a threshold controller (x∗),

to set the initial state (xgate and x0) accurately. Considering

f(x) as the dynamic function of the chaotic system, the

value of the threshold (x∗) and the initial state (xgate and

x0) must satisfy the conditions derived from the desired truth

table(s). For instance, for building the basic 2-input gates, i.e.

AND, OR, XOR, NAND, NOR, and XNOR, the conditions are

listed in Table I. For instance, based on the aforementioned

steps, for an AND gate, when only one of its inputs is 1,

then xgate + X1 + X2 is equal with xgate + δ, and since

the output of AND gate must be 0 in this case, f(xgate+ δ)
must be less than threshold (x∗). However, when both inputs

are 1, then xgate +X1 +X2 is equal with xgate + 2δ, and

since the output must be 1 in this case, f(xgate + 2δ) must

be equal or greater than (x∗). Similarly, the conditions could

be formulated for any function.

After formulating the conditions for desired Boolean

function, such as conditions for the basic 2-input gates

depicted in Table I, the designer must look for the satisfying

threshold (x∗) and the initial state (xgate). For example,

a representative example that satisfies the conditions of

Table I has been illustrated in Table II, which shows the

accurate satisfying values for xgate and the threshold x∗.

For this example, the logistic equation that provides the

dynamical equation is f(x) = ax(1− x). For this equation,

Table II
A SPECIFIC SATISFYING SOLUTION FOR THE CONDITIONS IN TABLE I

YIELDING THE BASIC 2-INPUT LOGIC GATES (δ = 1/4) [41].

Operation AND OR XOR NAND NOR XNOR

xgate 0 1/8 1/4 3/8 5/8 3/4

x∗ 3/4 11/16 3/4 11/16 5/8 7/16

Table III
CONDITIONS FOR IMPLEMENTING 2-INPUT BASIC LOGIC GATES WITH

THE SAME ASYMMETRIC CHAOTIC BOOLEAN GATE [41].

{I2, I1} fuction AND OR XOR NAND NOR XNOR

(0, 0) f(xgate) < x∗ < x∗ < x∗ ≥ x∗ ≥ x∗ ≥ x∗

(0, 1) f(xgate + δ) < x∗ ≥ x∗ ≥ x∗ ≥ x∗ < x∗ < x∗

(1, 0) f(xgate + 2δ) < x∗ ≥ x∗ ≥ x∗ ≥ x∗ < x∗ < x∗

(1, 1) f(xgate + 3δ) ≥ x∗ ≥ x∗ < x∗ < x∗ < x∗ ≥ x∗

the nonlinearity parameter a has been set to 4 and the

constant δ is set to 1/4 common to all the logic gates.

Note that it is possible to implement the concept with any

typical nonlinear function, and there are proof-of-principle

realizations of chaos computing using circuits implementing

several different nonlinear maps.

B. Asymmetric Inputs in Chaotic Boolean Gates

In chaotic Boolean gates, the inputs are encoded via the

initial state (step 1) as x0 → xgate + X1 + X2. Hence,

these gates are symmetric by itself, in which with input set

either {X1, X2} = {0, 1} or {X1, X2} = {1, 0}, the logic

output is identical. In fact, the chaotic Boolean gates cannot

distinguish the input set {X1, X2} = {0, 1} from the input

set {X1, X2} = {1, 0}. To support the asymmetric inputs,

the chaotic Boolean gates must follow the following steps:

• X1 = 0 when I1 = 0 and X1 = δ when I1 = 1.

• X2 = 0 when I2 = 0 and X2 = 2δ when I2 = 1.

In this case, the physical value of each input is unique.

Assuming this asymmetry, four distinct situations might

happen for a 2-input chaotic Boolean gate:

1) I1=0, I2=0 → x0=xgate+(0)δ+(0)2δ → x0=xgate

2) I1=1, I2=0 → x0=xgate+(1)δ+(0)2δ → x0=xgate + δ
3) I1=0, I2=1 → x0=xgate+(1)δ+(0)2δ → x0=xgate+2δ
4) I1=1, I2=1 → x0=xgate+(1)δ+(1)2δ → x0=xgate+3δ

Using this encoding for the inputs of any chaotic Boolean

gate helps us to distinguish between the asymmetric input

sets, such as {X1, X2} = {0, 1} and {X1, X2} = {1, 0}.

Hence, the general formalism for basic chaotic Boolean gate

from Table I could be updated to support this asymmetry.

Table III shows new conditions formulated while the phys-

ical value of inputs are unique (asymmetric).

C. Chaotic Boolean Gates in Digital Circuit

To build the chaotic Boolean gates, and particularly to

guarantee its compatibility/feasibility to be integrated with

conventional digital technologies, such as CMOS, there is a
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well-known 3-transistor CMOS circuit with adjustable non-

linear characteristics, which could be used to map discrete-

time chaotic signals. As shown in Fig. 1, the circuit has two

sets of inputs named as functional input (in) and control

input (ctrl). For implementing m-bit input and 1-bit output

Boolean function, a m-bit digital to analog converter is

required, which incurs negligible area overhead. Based on

the initial values of in and ctrl, the output voltage sequence

would be able to generate different m-bit logic functions.

Based on the controlling values, including vc and φ1−3, the

functionality space of this circuit could be maximized to

support more functions.

This 3-transistor CMOS-based circuit allows the designers

to build it using standard HDL, such as Verilog-A, and

integrate it with conventional standard EDA tools. By using

this circuit, the fabrication and testing of such chips will

be accomplished with no restriction. Also, by using these

circuits, the designer has no deal regarding the combination

of analog and digital logic for each chaotic gate. Stud-

ies on the applications of chaos computing shows 100%

compatibility of this technology with standard EDA tools,

such as commercial-grade Cadence design [47], resulting

in the wide-spread usage of chaotic circuits in different

digital circuits []. Moreover, it is worth mentioning that the

CMOS circuits that contain chaotic gates require optimiza-

tion to avoid the variation problems from chip fabrication

technologies [48], where a variation in a process, voltage,

or temperature (PVT) may degrade or even eliminate the

chaotic behavior. However, in many investigations regarding

the impact of PVT variation on the functionality of chaotic

gates, many meta-heuristic techniques have been introduced

showing how numerical methods could be selected to elim-

inate this concern [49], [50].

Note that as the essence of chaos computing, the sets of

initial conditions and system parameters produce a result

corresponding to a desired Boolean function. These param-

eters could be stored and used as a ready look-up table
(LUT) for future computations using this system. In this

case, other combinations of inputs and parameters might

lead to results that do not produce a correct mathematical

or logical result. Those initial conditions are discarded. So

setting the parameters to be the ones that gave the desired

φ3 

DAC DAC

φ2 φ1 

ctrl

buffer

compare
vth

C2 C1 

vcvn
M1 M2

M3

1.2μ
60n 

vn+1

0.12μ
60n 

0.12μ
60n 

in

Figure 1. Logic gate built from a discrete time chaotic map circuit
(Dudek’s Circuit) in a 65 nm CMOS process [46].

functional temporal patterns constitutes programming of the

system to give the right output.

III. THREAT MODEL

We make the following assumption about the adversary

capabilities: (1) The adversary has access to a successfully

reverse-engineered yet locked netlist. (2) The adversary also

has access to an activated/unlocked chip from the market.

So (s)he can apply chosen inputs to an unlock IC obtained

from the market and collect the correct outputs. (3) The

access to the scan chain is NOT restricted after activation.

The adversary could load any arbitrary value to FFs using

SI and read the updated values through SO after the capture
mode.

IV. PROPOSED SCHEME: CHAOLOCK

Our proposed ChaoLock is the realization of the con-

cept of chaotic logic locking, which relies on two features

of chaotic circuits: (1) the functionality of each chaotic

Boolean gate depends on the system parameters and initial

conditions that could be stored in look-up-tables (LUTs)

as the programming value, and (2) the general formalism

of chaotic Boolean gates while their inputs have unique

physical value (asymmetric chaotic gates) allows us to have

different weighted inputs.

A. Locked System Parameters/Conditions

As discussed previously, as the essence of chaotic circuits,

the sets of initial conditions and system parameters, which

determine the functionality, could be stored and used as a

ready look-up table (LUT). Hence, as a ready to use means

of configurability in chaotic circuits, we consider that these

parameters, such as vc and φ1−3 (xgate, x∗, and δ in general

formalism) would be considered as the post-manufacturing

programming values. The exact functionality of each chaotic

Boolean gate depends on these parameters. Hence, these

system parameters and initial conditions operate as a part

of keys in ChaoLock.

B. Dummy Inputs using Asymmetric Chaotic Boolean Gates

By exploiting asymmetric inputs in chaotic Boolean gates,

in ChaoLock, a regular chaotic Boolean gate with N inputs

is transformed to the same gate with N + d inputs, where

d is the number of dummy inputs. However, these dummy

inputs are not detectable for the adversary.

To add the dummy inputs to each chaotic Boolean gate, we

need to re-formulate the conditions derived from the desired

truth table(s). For this purpose, the chaotic Boolean gates

in ChaoLock must follow the following steps, which are

almost the same with the formalism of asymmetric inputs

with minor changes:

• Xdi
= 0, when Idi

= 0 and Xdi
= δ when Idi

= 1.

• X1 = 0 when I1 = 0 and X1 = (d+ 1)δ when I1 = 1.

• X2 = 0 when I2 = 0 and X2 = (d+ 2)δ when I2 = 1.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:20:44 UTC from IEEE Xplore.  Restrictions apply. 



Table IV
CONDITIONS FOR IMPLEMENTING THE 2-INPUT ASYMMETRIC CHAOTIC BOOLEAN GATE WITH d DUMMY INPUTS.

Functional Inputs Dummy Inputs Dynamic fuction AND OR XOR NAND NOR XNOR

{I2, I1} = (0, 0)
(0, 0, ..., 0) f

(
xgate

)
<x∗ (0) <x∗ (0) <x∗ (0) ≥x∗ (1) ≥x∗ (1) ≥x∗ (1)

(1, 1, ..., 1) f
(
xgate + dδ

)

{I2, I1} = (0, 1)
(0, 0, ..., 0) f

(
xgate + (d+ 1)δ

)
<x∗ (0) ≥x∗ (1) ≥x∗ (1) ≥x∗ (1) <x∗ (0) <x∗ (0)

(1, 1, ..., 1) f
(
xgate + (2d+ 1)δ

)

{I2, I1} = (1, 0)
(0, 0, ..., 0) f

(
xgate + (d+ 2)δ

)
<x∗ (0) ≥x∗ (1) ≥x∗ (1) ≥x∗ (1) <x∗ (0) <x∗ (0)

(1, 1, ..., 1) f
(
xgate + (2d+ 2)δ

)

{I2, I1} = (1, 1)
(0, 0, ..., 0) f

(
xgate + (2d+ 3)δ

)
≥x∗ (1) ≥x∗ (1) <x∗ (0) <x∗ (0) <x∗ (0) ≥x∗ (1)

(1, 1, ..., 1) f
(
xgate + (3d+ 3)δ

)

As defined, the physical value of each dummy input (Xdi
)

is δ when the dummy input (Idi
) is 1. However, the physical

value of the functional inputs (X1..m=2) is starting from

(d + 1)δ. By using this model, the physical value of the

summation of all dummy inputs per each chaotic Boolean

gate, which is δ+δ+...+δ=dδ, are less than the physical

value of even one of the functional inputs. Hence, if we

formulate the threshold controller mechanism as shown in

Table IV, none of the dummy inputs could change the

functionality of the chaotic Boolean gate.

As an example, as shown in Table IV, for a 2-input OR
gate with d dummy inputs, when both functional inputs and

all dummy inputs are 0, xgate +X1 +X2 +Xd1
+ ...+Xdd

is equal with xgate, and it must be less than x∗. Also, when

only both functional inputs are 0, and all dummy inputs are

1, then xgate + X1 + X2 + Xd1
+ ... + Xdd

is equal with

xgate+dδ, and it also must be less than x∗. However, when

only one of the functional inputs is 1, then xgate+X1+X2+
Xd1 + ...+Xdd

is equal with xgate + (d+1)δ, and it must

be equal or greater than x∗ (output must be 1) to operate as

an OR gate. Similarly, all threshold-based conditions could

be formulated for any case of each function.

Since we assumed that the system parameters and the

initial conditions in ChaoLock have been stored in LUTs,

and these LUTs would be initiated as a post-manufacturing

step at a trusted party, the adversary is not able to distinguish

between functional inputs and dummy inputs. Hence, in

ChaoLock, a set of logic gates must be replaced with

asymmetric chaotic Boolean gates with dummy inputs. As

an example, Fig. 2 shows that how a 1-bit full-adder (FA)

could be locked using ChaoLock when asymmetric chaotic

Boolean gates are in place. In this example, two 2-input gates

(one XNOR gate and one OR gate) are replaced with two

multiple-input chaotic Boolean gates ({XNOR → cgate1}
and {OR → cgate2}). In this example, cgate1 has 3 dummy
inputs, and cgate2 has 2 dummy inputs. Also, the chaotic

Boolean gates could be used as key-programmable gates to

add one more level of locking to ChaoLock. For instance,

(kcgate1 and kcgate2) have been inserted in the 1-bit FA

with dummy inputs in Fig. 2. Hence, retrieving the correct

A (wi)
B (wj) Carryin (wk) sumout

carryout

Carryin (wk)

A (wi)
B (wj)

A (wi)
B (wj)  FA

1-bit

(a) Full Adder Circuit.

A (wi)

B (wj)
X (d0)

Y (d1)
Z (d2)

K0 
U (d3) sumout

Carryin (wk)

carryout
A (wi)
B (wj)

K1 

A (wi)
B (wj)

Carryin (wk)

P (d4)

R (d6)
Q (d5)

V (d7)
W (d8)

kcgate
1cgate

1

kcgate
2

cgate
2

 
Obfuscated FA

1-bit

(b) Obfuscated Full Adder using ChaoLock.

Figure 2. ChaoLock on a Full Adder.

functionality of the circuit locked by ChaoLock is not only

dependent on the initial conditions and system parameters

of chaotic Boolean gates, but it also depends on the value

of key used as the inputs of kcgates.

C. Resiliency against the SAT attack

ChaoLock could be categorized as an analog-oriented

logic locking for digital circuits. However, a big shortcoming

of analog-based logic locking techniques for digital circuits

is that the adversary can replace any analog-based module

(as a black-box) in the locked circuit with a look-up-table

(LUT) with the same inputs, and then by engaging the SAT

attack, (s)he could find the configuration values of LUTs as

the keys. Then, based on the correct key value, the behavior

of the analog-based module could be revealed. However, this

LUT-based SAT modeling does not work on chaotic Boolean

gates when dummy inputs are in place.
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Figure 3. Modeling the chaotic gate using LUT with the Same Inputs.

Assuming that the adversary applies LUT-based SAT

modeling on ChaoLock, for 1-bit locked FA in Fig. 2(b)

as a case study, (s)he has to replace each chaotic gate with

a LUT with same inputs: (1) cgate1 in Fig. 2(b) has 5 inputs,

and it must be replaced with a LUT with size 5 (LUT5
), (2)

cgate2 has 4 inputs, and it must be replaced with a LUT

with size 4 (LUT
4 ), (3) kcgate1 has 3 inputs, and it must be

replaced with a LUT with size 3 (LUT
3
), and (4) kcgate2

has 5 inputs, and it must be replaced with a LUT with size

5 (LUT
5
). Each LUT

n
could be modeled using a tree of

MUXes with depth n. As an example, Fig. 3 shows the

tree of MUXes (LUT model) for cgate2 that has 4 inputs,

including 2 dummy inputs.

After replacing each chaotic Boolean gate with its equiv-

alent LUT model with the same inputs, the SAT could be

executed to find all keys as well as the configurations of

LUTs (e.g. k′0..15 for cgate2), thus, revealing the correct

functionality of the circuit. Then, the adversary can match

the correct key and the configurations of LUTs with the

chaotic-based locked circuit to find the system parameters

and initial conditions. However, in ChaoLock, exploiting

dummy inputs with negligible area overhead allows us to

make it strongly robust to be broken using the SAT attack.

In ChaoLock, the size of the equivalent LUT model is equal

with the summation of the number of functional inputs + the

number of dummy inputs. Hence, we could easily engage

more dummy inputs to increase the size of the equivalent

LUT model. When the number of inputs to a chaotic gate

is high, the LUT model is alos is a large LUT, and the

SAT attack faces exponential execution time increase when

LUTs are becoming larger. Fig. 4 shows the execution time

of the SAT attack for finding the configuration values of

LUTs with different sizes (from 2 to 14). As seen in this

logarithmic curve, when there is only ONE LUT with 14

inputs (LUT
14 ), or when there is only THREE LUTs with

12 inputs (LUT
12

), or when there is only FIVE LUTs with

11 inputs (LUT
11

), the SAT could not find the configuration

within 106 Seconds. The exponential regression on these

examples shows that the SAT attack could not scale for large

LUTs. Hence, ChaoLock could resist against the SAT attack

by increasing the number of dummy inputs while the area

overhead is acceptable. Also, based on our experiments, we

demonstrate that although ChaoLock is almost identical to

LUT-based logic locking using this modeling, the incurred
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Figure 4. SAT attack exe time on LUT-based Models with Different Sizes.

Table V
SPECIFICATIONS OF THE BENCHMARK CIRCUITS (ISCAS’85, ITC’99,

AND WELL-KNOWN ASICS/MICROPROCESSORS).

Small Circuit: c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c7552

# of Inputs 36 41 60 41 33 233 50 178 207

# of Outputs 7 32 26 32 25 140 22 123 108

# of Gates 160 202 383 546 880 1269 1669 2307 3513

Large Circuit: b17 b18 b19 MC8051 AES-GCM SPARC

# of Inputs 37 37 24 52 116 95

# of Outputs 97 23 30 112 15 108

# of Gates ∼28K ∼95K ∼190K ∼6.6K ∼49.5K 233K

overhead by ChaoLock is extremely lower.

V. EXPERIMENTAL RESULTS

To evaluate the efficiency expectations of ChaoLock,

as discussed previously, we implemented the 3-transistor

nonlinear circuit proposed by Dudek et al. in a 65nm CMOS

process [46]. Feedback circuit, DAC/ADC modules, and the

output comparator have been modeled in Verilog-A, and

it is integrated with the 3-transistor nonlinear circuit using

Cadence Spectre for simulation. The output voltage patterns

of the circuit for different control inputs have been evaluated

to explore possible logic functions and various options for

obtaining the desired function.

To also validate the security expectations, since the

chaotic is not translatable directly to a SAT problem, we

have developed a straightforward script to remodel the

obfuscated circuit based on the LUT-based SAT modeling.

Also, to show the resiliency of ChaoLock against the SAT

attack, we locked a selected list of combinational ISCAS’85

benchmark circuits, and executed the SAT attack by Subra-

manyan et al. [7] on a 24-core Intel Xeon processors running

at 2.4GHz with 256 GB of RAM. Also, all experiments

have been done on small ISCAS-85 circuits (For security

evaluation), and large ITC’99 circuits, larger ASICs and a

well-known microprocessor (For overhead comparison).

Table VI demonstrates the execution time of the SAT

attack for different cases on small set of benchmark circuits

(ISCAS-85). Since smaller circuits are more vulnerable

against such attacks, we used smaller set to depict the
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Table VI
THE SAT EXECUTION TIME ON ISCAS-85 CIRCUITS OBFUSCATED USING CHAOLOCK.

Circuit
Chaotic Contribution = 1% Chaotic Contribution = 2% Chaotic Contribution = 5%

{5,6}∗ {5,10} {5,14} {15,6} {15,10} {15,14} {5,6} {5,10} {5,14} {15,6} {15,10} {15,14} {5,6} {5,10} {5,14} {15,6} {15,10} {15,14}
c432 18.65 292.5 to+ 28.1 666.9 to 159.5 1088 to 541.1 2969 to 1507 to to 10968 to to

c499 54.98 3138 to 102.8 3098 to 482.1 8992 to 2706 31982 to 4801 to to 44291 to to

c880 84.29 21928 to 294.1 8681 to 1002 18924 to 9521 to to 10402 to to to to to

c1355 1024 to to 27812 to to 9061 to to 22911 to to 29820 to to to to to

c1908 1258 to to 36724 to to 10921 to to to to to to to to to to to

c2670 17902 to to to to to to to to to to to to to to to to to

c3540 20299 to to to to to to to to to to to to to to to to to

c5315 34191 to to to to to to to to to to to to to to to to to

c7552 58281 to to to to to to to to to to to to to to to to to

* {#kcgates, d}: {the number of key-configurable chaotic Boolean gates (kcgates), the number of dummy inputs per each kcgate or cgate (d)}:
+ to: timeout, which is set to 106 Seconds, means that the SAT attack could not retrieve the correct functionally within 106 Seconds

strength of ChaoLock in any scenarios. In Table VI, chaotic

contribution means that what percentage of logic gates

are replaced with chaotic Boolean gates. For instance, 1%

chaotic in a c7552 denotes that 3513/100 ∼ 35 gates are re-

placed with chaotic Boolean gates. In the pair {#kcgates, d},

(1) the kcgates indicates that how many key-programmable

chaotic Boolean gate is inserted for locking, and (2) d de-

termines the number of dummy inputs for each either cgates

or kcgates. As seen, regardless of the chaotic contribution

percentage, for all cases, when 14 dummy inputs are added

to each chaotic Boolean gate, the SAT could not return the

correct key within 106 Seconds. However, when the number

of dummy inputs is less, the SAT retrieved the correct key

while the number of kcgates is small. Also, increasing the

chaotic contribution enhances the complexity of the SAT

model, but the incurred overhead is higher. Hence, increasing

the number of dummy inputs with negligible area overhead

is the best option in ChaoLock.

Table VII shows the area, power, and delay overhead of

ChaoLock in two different cases. Both cases are resilient

against the SAT attack as shown in Table VI. However, when

the chaotic contribution is less, the overhead is considerably

lower. Although the overhead is high for moderately small

circuits, such as c432 and c499, it could easily be less

than 10% for larger circuits such as c7552, proving that the

incurred overhead is negligible for large-scale ASICs and

microprocessors. For this purpose, to show the overhead on

larger ASICs and microprocessors, we evaluated ChaoLock

on few selected larger circuits. Table VIII reflects the area,

delay, and power overhead on these circuits. As shown,

for all three cases, area, power, and delay overhead are

extremely low. Also, as discussed previously, LUT-based

modeling helps the adversary to apply the SAT attack on

ChaoLock. It raises a big question that what the advantage of

ChaoLock than LUT-based logic locking. Table IX compares

the overhead of both techniques (LUT-based and ChaoLock)

Table VII
OVERHEAD PERCENTAGE OF CHAOLOCK (SMALL CIRCUITS).

Circuit
Original 1% Chaotic + {5,14} 3% Chaotic + {5,10}

a(μm2) p(μW) d(ns) area% power% delay% area% power% delay%

c432 504.5 23.9 1.3 33.4% 34.9% 26.5% 66.2% 55.8% 28.4%

c499 1322.5 76.6 1.1 31.8% 32.2% 22.2% 55.5% 51.1% 26.3%

c880 1049.3 57.1 1.3 26.3% 27.9% 19.6% 49.1% 47.7% 22.7%

c1355 1627.9 131.4 1.1 24.9% 24.1% 16.5% 42.1% 42.5% 18.7%

c1908 1483.7 145.8 1.5 19.1% 20.8% 14.1% 35.7% 38.7% 16.5%

c2670 1704.2 138.4 1.6 16.8% 17.8% 12.8% 26.8% 30.8% 15.9%

c3540 1894.1 149.1 1.5 15.5% 15.5% 12% 21.6% 26% 14.5%

c5315 2168.5 167.4 1.7 12.7% 11.9% 10.4% 18.8% 17.6% 12.3%

c7552 2439.7 201.6 1.9 10.9% 7.8% 8.8% 15.7% 11.1% 10.2%

Table VIII
OVERHEAD PERCENTAGE OF CHAOLOCK (LARGE CIRCUITS).

Circuit
Original 1% Chaotic + {5,14} 3% Chaotic + {5,10}

a(μm2) p(μW) d(ns) a% p% d% a% p% d%

b17 46872.9 1927.6 1.34 3.1% 2.4% 4.1% 4.5% 3.7% 4.9%

b18 134829 2269.9 1.82 2.7% 2.1% 3.5% 3.9% 3.3% 4.3%

b19 252945 2982.7 1.97 2.4% 1.9% 3.1% 3.5% 3.1% 4.0%

MC8051 4982.9 188.6 1.29 6.8% 5.5% 5.9% 10.2% 6.8% 7.1%

AES-GCM 105319 1876.4 1.76 2.9% 2.2% 4.0% 4.1% 3.7% 5.4%

SPARC 298231 3380.7 1.44 2.0% 1.2% 2.7% 2.5% 1.7% 2.9%

{a%, p%, d%}: {area%, power%, delay%}

with different numbers of inputs. As shown, The LUT-based1

Technique increases overhead by more than 10x (at least a

factor of 10) even for cases that the LUT size (number of

inputs) is less than the number of chaotic gate inputs.

1It is implemented based on magnetic tunnel junction (MTJ) using 32nm
Synopsys Generic Library [51], [52].
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Table IX
OVERHEAD COMPARISON: CHAOLOCK VS. MTJ-LUT LOCKING.

Circuit
1% Chaotic + {5,14} 5×LUT12 5×LUT14

a% p% d% a% p% d% a% p% d%

b17 3.1% 2.4% 4.1% 98.6% 101.0% 37.7% 3.6x 3.8x 52.5%

b18 2.7% 2.1% 3.5% 85.1% 92.8% 31.4% 3.3x 3.7x 48.0%

b19 2.4% 1.9% 3.1% 77.6% 84.1% 26.7% 3.1x 3.5x 42.7%

MC8051 6.8% 5.5% 5.9% 178.8% 149.1% 48.1% 7.6x 6.4x 70.1%

AES-GCM 2.9% 2.2% 4.0% 82.7% 90.6% 28.8% 2.8x 3.6x 45.9%

SPARC 2.0% 1.2% 2.7% 65.0% 72.9% 22.6% 2.2x 2.9x 36.3%

α.αx: Incurring overhead by αα00%
{a%, p%, d%}: {area%, power%, delay%}

VI. CONCLUSION

In this paper, we introduced a new logic locking scheme

using chaotic circuits, called ChaoLock. In ChaoLock, we

got the benefit of two features of chaotic circuits: (1)

The initial conditions and system parameters that determine

the functionality of chaotic Boolean gates are used as the

source of ambiguity, and (2) By exploiting asymmetric

chaotic Boolean gates, we introduced dummy inputs in these

gates, which conceals the main functionality of each chaotic

Boolean gate. We demonstrated that by applying ChaoLock,

the locked circuit is resilient against the SAT attack while

the incurred area overhead is significantly low.
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