
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021 643

Data Flow Obfuscation: A New Paradigm
for Obfuscating Circuits

Kimia Zamiri Azar, Hadi Mardani Kamali , Shervin Roshanisefat , Houman Homayoun ,

Christos P. Sotiriou, and Avesta Sasan , Member, IEEE

Abstract— In this article, unlike almost all state-of-the-art
obfuscation solutions that focus on functional/logic obfuscation,
we introduce a new paradigm, called data flow obfuscation,
which exploits the essence of asynchronicity. In data flow
obfuscation, by benefiting from the handshaking mechanism of
asynchronous circuits, the system’s FFs/latches will operate out
of sync. Hence, the adversary has no sufficient knowledge to
apply unrolling/BMC. Also, due to the inherited asynchronicity,
the exact time of writing/capturing data into/from the scan chain
becomes hidden. Hence, the SAT attack cannot be applied even
while scan chain access is open. Moreover, our new proposed
paradigm creates stateful/oscillating combinational cycles into
the design which extensively boosts the difficulty of modeling
this technique. We also demonstrate how data flow obfuscation
could easily be integrated with any circuit at low overhead while
there is no limitation such as compromising test flow.

Index Terms— Desynchronization, logic obfuscation.

I. INTRODUCTION

THE ever-increasing cost of integrated circuits (ICs) man-
ufacturing has forced many design houses to become

fabless [1]. Outsourcing the stages of the manufacturing supply
chain to the third-party facilities with no reliable monitoring
on them results in emerging multiple forms of security threats
such as IC overproduction, reverse engineering (RE), and
intellectual property (IP) theft [2], [3]. To overcome these
threats, logic obfuscation a.k.a. logic locking, as a proactive
scheme adds post-manufacturing programming capability into
the circuits [4], [5]. Logic obfuscation is the process of hiding
the correct functionality of a circuit, during the stages at
untrusted parties, when the programming value, referred to
as the key, is unknown/incorrect. Only once the correct key
is provided, the circuit behaves correctly, and the correct
key would be initiated in its tamper-proof nonvolatile mem-
ory (tpNVM) after fabrication via a trusted party.

Manuscript received October 19, 2020; revised December 31, 2020;
accepted January 31, 2021. Date of publication March 4, 2021; date of current
version April 1, 2021. This work was supported in part by the National Science
Foundation (NSF) under Award 1718434 and in part by the Semiconductor
Research Corporation (SRC) TaskID 2772.001. (Corresponding author: Hadi
Mardani Kamali.)

Kimia Zamiri Azar, Hadi Mardani Kamali, Shervin Roshanisefat, and Avesta
Sasan are with the Department of Electrical and Computer Engineering,
George Mason University, Fairfax, VA 22030 USA (e-mail: kzamiria@
gmu.edu; hmardani@gmu.edu; sroshani@gmu.edu; asasan@gmu.edu).

Houman Homayoun is with the Department of Electrical and Computer
Engineering, University of California at Davis, Davis, CA 95616 USA
(e-mail: hhomayoun@ucdavis.edu).

Christos P. Sotiriou is with the Department of Electrical and Com-
puter Engineering, University of Thessaly, 38221 Volos, Greece (e-mail:
csotiriou@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2021.3060345.

Digital Object Identifier 10.1109/TVLSI.2021.3060345

Due to the importance of logic obfuscation, many stud-
ies have evaluated the effectiveness of this countermeasure
[6], [7]. Amongst all state-of-the-art threats on logic obfus-
cation, the Boolean satisfiability (SAT) attack has seriously
challenged the effectiveness of the vast majority of existing
logic obfuscation solutions [8]. In the SAT attack, as an
oracle-guided attack, the adversary has access to (1) one
successfully reverse-engineered yet locked netlist,1 and (2) the
activated/functional IC with open access to the scan chain.
By getting inspiration from the miter circuit used in formal
verification, in the SAT attack, a SAT solver is employed to
iteratively find a specific set of inputs (one per each iteration),
called discriminating input patterns (DIPs) that eliminate all
incorrect keys leading to recovering the correct functionality
of the circuit.

The main strength of the SAT attack comes from two
important factors: 1) the pruning power of each DIP that can
rule out a high portion of incorrect keys and 2) exploiting
the scan chain access to apply the SAT attack on each
combinational logic, separately. Hence, most studies on logic
obfuscation could be categorized into four different groups all
demonstrated in Table 1.

A. Motivation and Contributions

Table I provides a comprehensive comparison of state-of-
the-art logic obfuscation techniques. As shown in Table I,
a reliable logic obfuscation technique must be: 1) resilient
against both combinational and sequential SAT attack and
2) added without compromising the test flow. To fulfill these
requirements, in this article, we introduce a new logic obfus-
cation paradigm, called data flow obfuscation, whose main
contributions are as follows.

1) In data flow obfuscation, getting inspired by asynchro-
nous circuits, the data flow is asynchronously key-
controlled. Since the sequential SAT attack unrolls the
FF-to-FF (flip-flop) paths per each iteration (each itera-
tion resembles each clock cycle), in data flow obfus-
cation, a small portion of the FF would be replaced
with latches controlled by asynchronous obfuscated
controllers. Hence, the timing (flow) of the latches is
unknown for the adversary (locked). So, the adversary
has no sufficient knowledge to do the unrolling cycle-
accurately, and the sequential SAT attack is no longer
applicable to a data flow obfuscated circuit.

2) With an obfuscated asynchronous controller, having
access to the scan chain without any information about

1Two scenarios: (1) Adversary as end-user purchases and delayers the
activated chip; however, the content of tpNVM will be wiped-out during RE.
(2) Adversary as staff at foundry before fabrication does have access to the
layout, but the key is not provided to the foundry [9].

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4246-6736
https://orcid.org/0000-0003-3407-449X
https://orcid.org/0000-0001-8904-4699
https://orcid.org/0000-0002-4052-8075

644 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

TABLE I

COMPARISON OF STATE-OF-THE-ART LOGIC OBFUSCATION TECHNIQUES

the exact timing (locked timing) of arrival/departure of
data does not provide any advantages for the adversary.
Hence, as shown in Table I, with open scan chain access,
and without any limitation on the test phase, the data
flow obfuscation is resilient against all state-of-the-art
attacks at low overhead.

3) The latches controller will be implemented based on
asynchronicity. Since the asynchronous latches con-
troller is full of stateful/oscillating cycles, without any
restriction on manufacturing stages or any incompati-
bility with conventional EDA tools, we show why the
adversary is no longer able to engage any form of the
SAT attack on this technique.

4) We thoroughly evaluate and compare the proposed data
flow obfuscation with state-of-the-art countermeasures
in terms of overhead and security, showing why this new
paradigm will be strongly resilient against the existing
attacks.

II. BACKGROUND

A. Combinational De-Obfuscation

For categories 1, 2, and 3 in Table I, an impor-
tant threat model assumption is that the attack model is
oracle-guided. In an oracle-guided attack model for com-
binational de-obfuscation, the adversary has access to an
unlocked/activated chip (oracle) with open scan chain access,
as well as the reverse-engineered yet locked netlist of the
oracle. In the SAT attack, for any arbitrary obfuscated com-
binational logic (ccomb_lock), by getting inspiration from the
miter circuit used in formal verification, a (distinguishing)
miter circuit has been built as miter ≡ ccomb_lock(dip, k1) �=
ccomb_lock(dip, k2), which returns a specific discriminating input
pattern (dip) that produces different output for two different
keys k1 and k2. Then, this dip is queried on the oracle, ccomb,
eval← ccomb(dip) and the I/O-constraint ccomb_lock(dip, k1) =
ccomb_lock(dip, k2) = eval is stored back in the SAT solver
and the miter circuit would be solved again. When the
miter + constraints problem has no longer satisfying assign-
ment, it could identify the correct key.

B. Sequential De-Obfuscation

Since the SAT attack is only applicable when the access to
the scan chain is open, the studies in category 4 evaluate the
security of traditional logic obfuscation techniques [4], [43]
while the access to the scan chain is blocked/obfuscated.
In this case, the adversary has only access to the PI/PO, and
PO would be a function of PI and the state of the circuit,
which makes it impossible for the SAT attack to formulate it
at once.

To still exploit the combinational SAT attack while the scan
access is restricted, few recent studies have engaged unrolling
technique as a pre-processing step to formulate the sequen-
tial obfuscation using the combinational SAT attack [18],
[19], [22], [23]. As shown in Fig. 1, the adversary unrolls
the sequential circuits τ times. A τ -time unrolled circuit
is an equivalent combinational model of a sequential cir-
cuit for τ clock cycles. It takes in τ input patterns (as a
sequence), and produces τ outputs, while the intermediate
states are cascaded.2 After unrolling, similar to the com-
binational de-obfuscation, the SAT attack would find the
sequences of inputs (i0, i1, i2, . . . , iτ−1), called distinguishing
input sequence (dis) with two different keys k1 and k2 such
that the outputs (o0, o1, o2, . . . , oτ−1) will differ. Every time
the unrolled miter becomes unsatisfiable at some depth d
(no more dis), the adversary extends the unrolling until
a termination condition. Termination conditions are unique
completion (UC): when there is only one key that satisfies
the I/O-constraints for an unrolled circuit (correct key); com-
binational equivalence (CE): where the transition function is
combinationally equivalent between two duplicated circuits
with two keys (k1 and k2) (shadow key), and unbounded
model check (UMC): if a call to an unbounded model checker
(τ = ∞) concludes that the result is invariant in the reachable
state-space [18], [19].

2Similarly, model checking could be used to check the satisfying assignment
in a sequential (transition) system. A model checker with bounded depth
corresponds to bounded model checking (BMC) and an unbounded one to
unbounded model checking (UMC).

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 645

Fig. 1. Sequential circuit versus its combinational counterpart (τ cycles).

The point is that the unrolling step relies on the synchronic-
ity of FFs in the obfuscated sequential circuit. When the
sequential circuit is synchronous, moving forward from any
arbitrary clock cycle to the next one (cycle t → t+1) updates
the FFs only once at positive (negative) edges of the clock
signal. Hence, in the unrolling step, the combinational parts
would be replicated only once per each clock cycle. But,
for circuits and systems that asynchronously control the data
flow in the circuit, the unrolling-based SAT or BMC faces a
big obstacle during the unrolling step to build the equivalent
combinational model for a specific number of clock cycles.

C. Asynchronicity

To asynchronously control the data flow in a circuit (par-
tially or fully), one could adopt the asynchronous circuit
paradigm. The asynchronous circuits have multiple advantages
over synchronous circuits, particularly for newer technology
nodes, such as no clock skew problems, robustness toward
process variations, as well as advantages in terms of power
consumption and electromagnetic emissions [44].

For two main reasons, most designers consider asynchro-
nous circuits as a perilous approach: 1) the lack of electronic
design automation (EDA) tools and 2) opposition to change
designers’ mentality toward asynchronicity. However, the ever-
increasing attention on these circuits results in introducing
powerful synthesis and verification tools for asynchronous
circuits [45]–[47]. It allows any designer to nondisruptively
incorporate asynchronicity in an EDA flow, and there is no
need for the designer to change the synchronous mental-
ity/structure. As an instance, An ARM is an ultra-energy-
efficient asynchronous ARM processor that is successfully
implemented and fabricated using the STMicroelectronics
28 nm technology, using standard cells and conventional
CAD tools while achieving a 59% improvement in energy
when compared with the ARM Cortex-A7 [48]. As of today,
widespread application of asynchronous circuits could be seen
in IoTs, NoCs, mixed-signal circuits, etc. [49], [50].

D. From Synchronicity to Asynchronicity

Signal transition graph (STG) is the formal specification of
the asynchronous circuits, which is used in most asynchronous
synthesis and verification tools [51]. The STG could be drawn
from scratch by the designer based on the specification of
the design. However, one could use the desynchronization
paradigm that generates the equivalent asynchronous model
of any synchronous circuit. By providing formal proofs of
correctness based on the theory of Petri nets [52], the desyn-
chronization [53] provides a fully automated flow for building
the flow-equivalent asynchronous counterpart.

To build the flow-equivalent asynchronous model of
any synchronous circuit using desynchronization, as shown
in Fig. 2, after removing the clock signal, FFs would be

Fig. 2. Synchronous to asynchronous conversion [53]. (a) Synchronous
circuit. (b) Desynchronized circuit.

replaced with master (M) and slave (S) latch pairs. All latch
enable signals (en) must be controlled using new macros,
called asynchronous latches controllers, which use a hand-
shaking structure (req, ack) to emulate FFs’ behavior. For
example, in four-phase handshaking, as the most prevalent
handshaking protocol, φ1 is enabling req by a sender for
valid data. φ2 is enabling ack by the receiver, acknowledg-
ing the arrival of the new data. φ3 is lowering (disabling)
previous req, and finally φ4 is lowering the corresponded ack.
Handshake signals are not related to a global clock and are
based on the local, relative timing relationships between the
opening and neighboring latch enable signals. Also, during
desynchronization, delay elements must be added per each
combinational logic (C L) to mimic the delay of all timing
paths and asynchronous latch controller. Also, the first/last
latches of the asynchronous part [m1 and s3 in Fig. 2(b)] that
are dealing with other (synchronized) parts of the circuit will
be handled by some controlling signals, e.g., a specific state
of the circuit, or controlling signals like FFs enables.

It is also worth mentioning that all latches operate on the
basis of their controllers. By using desynchronization, one
latch will be enabled when tokens are ready and will be
disabled after receiving the ack corresponding to the new data
(lowering req). It will prevent extra propagation when inputs of
the latch change, which avoids increasing power consumption.
Furthermore, latch controllers are the only added parts when
the desynchronization is accomplished; however, we show that
since the proposed solution is required to be accomplished on
a small part of the circuit, it does not incur large area/resource
overhead.

E. Desynchronization
Three main steps of the Desynchronization, which provides

a fully automated methodology to build the flow-equivalent
asynchronous model of any synchronous circuit are: 1) con-
verting FFs to M and S latches, with decoupled enable signals
(e.g., in Fig. 2(b) FFi is replaced with Mi and Si whose
controllers are mi and si), 2) matched delays generation for
combinational logics (C Ls), based on their timing path delays
(e.g., d1−4 are matched delay for FF1−4 to mimic the delay of
their timing paths as well as the delay of each asynchronous
latch controller (m1−3 and s1−3)), and 3) implementation of the
asynchronous controller of each latch, e.g., ctrls in Fig. 2(b),
based on the data flow dependences in the original netlist.

In step 1, after replacing FFs with latches, re-timing is often
used as a performance improvement technique [54]. By using

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

Fig. 3. Desynchronization model for a pipeline [53]. “•” are tokens (ready
data). “◦” are bubbles (not-ready data). Latches are transparent when “en”s
are high. “a+” means rising transition, and “a−” means falling transition.
(a) Four cascaded latches. (b) Corresponding STG.

re-timing, latches are moved across C Ls (e.g., M3 is placed
before C L4. S1 is placed after C L1 in Fig. 2).

In step 2, matched delay elements are generated for emulat-
ing the timing path delay of their corresponding C Ls. These
will be connected to corresponding controllers in the next step.
In this step, the netlist is synthesized for the target cycle time
TT , using a conventional synthesis tool. The TT is captured
using {TT ≥ TCQ + TC + TL}, in which the TT is a delay
between two rising edges of control signal of the latch, TCQ is
the delay of local clock propagation through a latch, TC is the
delay of the C L, and TL is the latch controller delay. By using
this inequality, and based on the delay of critical paths in each
C L, these matched delays are generated. When TC s are equal
in all C Ls (balanced timing paths), then the separation time
between adjacent rising edges of every local clock equals TT .
Also, in any desynchronized circuit, the i th rising transition
of a local clock cannot appear later than (i−1)×TT , showing
that the temporal behaviors of the desynchronized circuits are
also similar to synchronous counterpart [53].

Step 3 implements the asynchronous controller for each
latch. These controllers are connected to the controllers of
neighboring latches with the delay elements built during step 2.
A variety of desynchronization models exist to implement
these asynchronous controllers. The behavior of these models
can be typically specified using STG, which is a decision-free
subclass of Petri nets [52]. An STG, as shown in Fig. 3(b),
may be defined as a 3-tuple (�, →, I0), where � is the set
of events, and events are the latch enable values (high/low)
in asynchronous controllers. → corresponds to an arc, which
illustrates event transitions, and for a latch controller, it deter-
mines changes in latch enable values. I0 is the initial marking,
called a token, and denotes the initial event signal states.
In desynchronization, it is crucial to properly define I0, as the
initial tokens, and it is fully dependent on the handshaking
protocol used for desynchronization [53]. Tokens determine
which data are ready. In STGs, as in Petri nets, these tokens
could be updated (moved) based on the interaction between
different latches. For example, a signal is enabled when all
its predecessor arcs are marked with a token. An enabled
signal can fire, removing tokens from all its predecessors’
arcs, and populate tokens to its successors’ arcs. For instance,
Fig. 3(a) shows a part of a pipeline with cascaded latches.
Fig. 3(b) depicts an STG representing the behavior of these
latches. Over time, based on the location of data, tokens
move around determining which latch will catch new data.
Without loss of generality, we use semi-decoupled four-phase
control for handshaking [55], which represents a good trade-
off between simplicity and performance, however, any valid
desynchronization latch controller may be used instead [53].

Based on the generalization of semi-decoupled four-phase
control, there are four rules imposed on the latch control

Fig. 4. Desynchronization flow [53]. (a) Synchronous circuit. (b) FFs→{Ms
and Ss} + re-timing. (c) STG generation using semi-decoupled four-phase
control. (d) Building the asynchronous controller based on its generated STG.
(e) Latch controller (Left: Ms, Right: Ss) with matched delays (d).

signals of the STG. Using these four rules, the designer
can specify the corresponding STG for any circuit:
1) a+→ a−: rising of each signal (each latch enable) should
be followed by falling of that signal, 2) b− → a+: For
latch A (master) to read a new data, latch B (slave) must
have completed the reading of a previous token from A,
3) a− → b−: For latch B (slave) to complete the reading
of a data token coming from A (master), it must first wait
for latch A to complete the reading of that data token, and
4) a+→ b+: For latch B (slave) to read a new data, it must
wait for latch A to read that new data token.

Considering these four rules, we now illustrate an exam-
ple of the desynchronization methodology based on semi-
decoupled four-phase control for a small circuit. Fig. 4(a) is
an arbitrary synchronous netlist with three FFs. In Fig. 4b,
all FFs are replaced with latches subjecting to re-timing
(e.g., C L4 is placed between latches C and D). Since the
fan-out of rightmost FF in Fig. 4(a) is two, it is converted
to one M , (E), and two Ss (F and G). After converting FFs
to latches, the corresponding STG is generated based on all
four aforementioned rules [see Fig. 4(c)]. Then, based on the
drawn STG, the corresponding asynchronous controller for
latches enables is implemented. Considering that we use the
semi-decoupled four-phase control for this article, the circuit
depicted in Fig. 4(e) must be engaged for each latch controller.
It is latch controller (left (red) one for Ms and right (blue) one
for Ss) based on semi-decoupled four-phase control. The hand-
shaking signals between Ms and Ss are connected directly.
However, for multiple dependences in STG (i.e., one to many
latches, or vice versa), the handshaking must be handled by
merging req or ack signals. This merge is performed using
C-elements, which is an event-driven AND gate. A possible

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 647

Fig. 5. Timing diagram of synchronous versus asynchronous circuits [53].
(a) Synchronous behavior. (b) Asynchronous (desynchronized) behavior.

implementation is using the function Z = AB + Z A + Z B ,
where A and B are the C-element inputs, and Z is its output.
For example, as shown in Fig. 4(c), latch C is dependent on
both D and G. So, in Fig. 4(d), Ri of latch C is driven using
a conjunction of Ros of D and G using a C-element.

After implementing the asynchronous latch controller,
it must be connected to the circuit depicted in Fig. 4(b) to build
the complete desynchronized counterpart of the synchronous
circuit. It is proven in [53] that: 1) desynchronized circuit
never halts (liveness property) and 2) sequence of data values
of a desynchronized circuit are identical to its synchronous
counterpart (flow-equivalence).

Also, by using desynchronization, physical design, verifica-
tion, and design for testability can be accomplished “as is,”
using conventional synchronous EDA tools [53]. For instance,
for the design for testability, a low-frequency clock may
be distributed to latches in test mode [56]. For testing the
asynchronous controllers, as rising and falling of reqs and
acks follow each other, in the presence of a stuck-at fault on
either req or ack, either the environment or the circuit will wait
forever, and cause a deadlock, which may be easily detected
during design for testability. Circuits that have the property
that they halt for all faults are called self-testing.

F. Concept of Data Flow Obfuscation

Since the sequential SAT attack relies on the synchronous
unrolling mechanism, the preserved flow-equivalency after
desynchronization, motivates us to propose a new obfuscation
paradigm. In general, two circuits could be called flow-
equivalent if there is no difference between the sequence of
values stored at each latch. The observation is done inde-
pendently for each latch. As an example of flow-equivalent
circuits Fig. 5 demonstrates two flow-equivalent circuits.
Fig. 5(a), shows the synchronous behavior, while Fig. 5(b)
shows the desynchronized behavior. Using this characteristic
of asynchronous circuits, in Section IV, we show how our
proposed obfuscation technique could get benefit from this
flow-equivalency concept to introduce a new obfuscation par-
adigm, called data flow obfuscation.

III. THREAT MODEL

Similar to categories 1, 2, and 3 in Table I, we make
the following assumption about the adversary capabilities:
1) the adversary can successfully do the reverse-engineering on
the chip, and retrieve the gate-level netlist (yet locked), 2) the
adversary can purchase an activated/unlocked chip (oracle)
from the market, and 3) the access to the scan chain of the

oracle is not restricted. So, the adversary could apply any
query to FFs using SI and read the updated values through
SO after one clock cycle (capture mode).

IV. PROPOSED SCHEME: DATA FLOW OBFUSCATION

As discussed previously, in all existing logic obfuscation
techniques, synchronicity is kept intact during the manufactur-
ing stages. However, due to the synchronicity, these techniques
were vulnerable to unrolling-based SAT or BMC even while
the scan chain is restricted. It should be noted that, for the
most potent attacks on logic obfuscation, there exists a big
inspiration from a formal verification method such that the
attack relied on and adopted from the verification method
to successfully de-obfuscate circuits, e.g., miter circuit in
traditional SAT [8], or BMC/unrolling in sequential SAT [18].
Hence, the main aim of this new obfuscation paradigm is to
add ambiguity in a way such that it turns the obfuscated circuit
into a completely new form that cannot be modeled using
any of the existing formal verification methods. We target
part of the data flow in a circuit to be obfuscated using
asynchronicity. When asynchronicity is used in a circuit, due to
the high nondeterministic behavior, it is extremely challenging
to come up with an automated approach to establish invariance
properties, which are vital in proving the correctness of a
circuit with asynchronous parts. There exist a few methods that
ease the formal verification in asynchronous parts [57], [58],
helping the designers to do formal verification for datapath
of asynchronous circuits. However, to prevent any form of
easing, in our proposed data flow obfuscation, we target to
obfuscate the asynchronous controllers, which is the source of
desynchronization with the self-testable feature. Also, since
we assume that the scan access must be still fully open,
the proposed obfuscation must be in a way that conceals the
writing/capturing into/from the storage elements. Hence, in the
proposed solution, the controller of latches is obfuscated such
that without the correct key, the temporal characteristics of the
datapath will be hidden.

A. How Data Flow Obfuscation Works?

The main steps of our proposed data flow obfuscation are
as follows.

1) Converting the targeted synchronous part(s) of the
circuit to its (their) flow-equivalent asynchronous
counterpart using desynchronization described in
Sections II-D and II-E3,4

2) Inserting false paths into the desynchronized circuit.
Each false path could be extra wiring from the output
of one latch to any arbitrary combinational logic.

3) Updating the corresponding STG based on the added
false paths. For each false path, few extra transitions
with an initial token must be added to the STG to reflect
the changes.

4) Obfuscating the asynchronous latches controller circuit
(based on STG with respect to the new false paths)

3The conversion could be done fully (whole circuit) or partially (part(s) of
the circuit). However, targeting and obfuscating only critical part(s) of the
circuit (partially) guarantees security at lower overhead.

4Re-timing will be done as a part of de-synchronization in data flow
obfuscation. However, it might not change the location of latches (relocation).
So, we need to apply a minor relocation for some latches to avoid any form
of re-synchronization-based attack described in Sections VI-A and VI-B.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

648 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

Fig. 6. An example of data flow obfuscation by inserting only false paths
into the circuit controlled by obfuscated asynchronous controller. (a) Orig-
inal asynchronous circuit. (b) False paths insertion. (c) Updating the STG.
(d) Locked asynchronous control.

by using proposed C*-element that is a key-controlled
event-driven AND gate.

Fig. 6 demonstrates step-by-step implementation of the data
flow obfuscation on the circuit from Fig. 4(a). First, the tar-
geted parts of synchronous circuit [see Fig. 4(a)] are converted
to their asynchronous counterpart [see Fig. 6(a)]. Then, in the
desynchronized circuit a specific number of false paths are
inserted (e.g., D→ C L2(E) and G → C L1(A) in Fig. 6(b)).
Since the connectivity between latches is altered, the STG
should be updated [see Fig. 6(c)]. Also, the changes must
be reflected into the asynchronous controllers. For instance,
before adding the false paths, F was the only predecessor of
A. So, Ro of F was directly connected to Ri of A. However,
after adding the false path G → A, both F and G are the
predecessors of A. Thus, a C-element must be added to merge
their req signals. The C-element here implies that latch A may
only be opened whenever data from both G and F are ready.
However, for any false path like G → A, it should have no
impact on timing when the key is correct. To achieve this,
we introduce a C*-element, in which a key-controlled MUX is
used to control the C-element’s inputs. As shown in Fig. 7(a),
based on the key value, the C-element input is either {A, B}
or {A, A}, and based on the C-element’s definition, if both
inputs are the same, the output will be equal to the identical
input pair: Z = AA + Z A + Z A = A, meaning that with the
correct key, the added false paths will have no timing effect.

As shown in Fig. 6, the only obfuscated part in data flow
obfuscation is the usage of C*-elements that alter the behavior
of controllers based on the key value. However, these C*-
elements only control the timing (behavior) of latches. Hence,
regardless of the key value, each false path is connected
directly to one arbitrary chosen C L and could affect its
functionality. For instance, for false path G → A, regardless
of the key value (k0), latch G would affect the functionality
of C L1, and the key value only controls the time of the act.
To avoid this problem, the false paths can be connected to the

Fig. 7. Essential modules for false path insertion. (a) C*-element.
(b) Function bypassing.

chosen C L as don’t cares, or nonoccurring inputs. Fig. 7(b)
shows these two models for a simple circuit. As shown,
the output of all cases is the same, i.e., a ∨ b, and the added
false path fp does not affect the output in both cases. For
instance, in nonoccurring,5 fp is ANDed with wi ∧ w j ∧ wk ,
which is always ZERO, and has no impact on the logic.

B. Shortcomings of False Path Insertion

With inserting only false paths, the data flow obfuscation is,
however, vulnerable to re-synthesis and removal attack. Since
the false paths are connected to corresponding C Ls as don’t
care or nonoccurring, they explicitly have no impact on the
circuit’s functionality. Hence, the attacker could re-synthesis
the reverse-engineered netlist, and by using logic optimization
effort during the synthesis, the false paths will be removed
during optimization. Then, the adversary can find some extra
elements/connections in the controller that have no corre-
sponding part in the datapath (already removed). So, he/she
can distinguish between the original parts and the extra logic
added for the false paths in the controller and retrieve the
original circuit. So, to combat this issue, we add one more
step which adding extra false latches on false paths.

C. Adding False Latches on the False Paths

We updated and added one more step in our proposed data
flow obfuscation to support adding false latches.

(1) (Same Step) desynchronization + re-timing (relocate).
(2) (Same Step) Inserting false paths into the circuit.
(3) (New Step) Inserting false latches (M/S pairs) on the

false paths + an asynchronous controller for each added false
latch to control its behavior.

(4) (Same Step) Updating the STG based on new insertions.
(5) (Same Step) Obfuscating the controller via C* elements.
Inserting pairs of false latches in false paths allows us to

control the logic value of these paths. So, there is no longer
a need to add false paths as don’t care or nonoccurring,
and the re-synthesis and removal attack is no longer a valid
attack. The concept of insertion the false {paths + latches}
is visualized in Fig. 8. Similar to the previous example, first,
the circuit must be converted to its asynchronous counterpart
(desynchronized). Fig. 8(a) shows the asynchronous model of
our simple circuit from Fig. 4(a). After that, one false path
is added from C L2(B) to C L1(A), then a pair of master and
slave latches (I and H), are added in this path [see Fig. 8(b)].

5Non-occurring cases can be found using SAT solver. First, few wires must
be selected, then its condition clause must be added, and solved by SAT.
If SAT solver returns UNSAT, that condition is non-occurring.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 649

Fig. 8. An example of data flow obfuscation by inserting false {Paths +
Latches} into the circuit controlled by obfuscated asynchronous controller.
(a) Original asynchronous circuit. (b) False {Paths + Latches} insertion.
(c) Updating the STG. (d) Locked asynchronous control.

Based on these changes, the STG is updated [see Fig. 8(c)].
Compared to the STG of the previous example, not only
new transitions are added, the STG has new nodes describing
the events of new false latches. Finally, these updates must
be reflected into the obfuscated asynchronous controller [see
Fig. 8(d)]. Note that extra controller modules are added for
false latches. Also, the key-controlled gates must be added to
properly control the behavior of latches H and I . When the
key is correct, the added false path must have a value that
does not affect the functionality of C L1. For this purpose,
the behavior of the false latches is controlled using k0−2.
So, while the k0−2 is correct (000 in this case), the AND
gates mask the handshaking of H and I with their neighboring
latches. Hence, these latches are disabled (and no new data
will be captured in them). So, the initial value of these latches
will be kept intact and will be used as the new input of
C L1. In C L1, based on the initial value of these latches, this
false path will be connected to an arbitrary gate (e.g., with
initial value 0, it could be connected to an OR or XOR gate).
However, while the key is not correct, the behavior of these
latches would be changed repeatedly, resulting in corrupting
the functionality of C L1.

Additionally, false {paths + latches} must not affect their
neighboring latches when the key value is correct (e.g., latches
H and I must have no effect on A and B in Fig. 8(d)).
This is achieved by adding two C*-element before A and B ,
controlled by k3 and k4, respectively, to effectively eliminate
this temporal relation (e.g., in path I → A, C*-element skips
the effect of the behavior of I on the behavior of A).

D. Key Classification

The keys added to asynchronous latches controllers will
be categorized into two main groups: 1) handshake-in keys:
keys that control the impact of incoming signals to false
latches (k0−2 in Fig. 8(d)) and 2) handshake-out keys: keys
that control the impact of outgoing signals from false latches

Fig. 9. Comparison of timing diagram of latch enables. (a) Original circuit.
(b) Locked desynchronized circuit.

(k3−4 in Fig. 8(d)). Based on the value of these two groups,
different scenarios could happen.

1) Correct Functionality: while both groups are correct.
In this case, similar to the timing diagram depicted
in Fig. 9(a), the firing of latches alternates appropriately.

2) Halt in Data Flow: While handshake-in keys are correct,
but handshake-out keys are incorrect, halts will happen
(e.g., if k0−2 = 000 and k3−4 �= 00, H and I would
halt). As shown in Fig. 9(b), after latch H controller (h)
is halted, more halts are happened in other paths and
results in a complete deadlock in the whole circuit.

3) Incorrect Functionality: While the handshake-in keys
are incorrect, regardless of the handshake-out keys,
the function will be incorrect.

V. SECURITY/TESTABILITY ANALYSIS

A. Security versus the SAT Attack

Since the adversary has access to the scan chain in data
flow obfuscation, he/she is able to apply combinational de-
obfuscation for any accessible part of the circuit using the SAT
attack. However, for two important reasons, the traditional SAT
attack cannot be applied on data flow obfuscated circuit.

1) In the SAT attack, it is crucial to know the exact time of
writing/capturing into/from the scan chain; but, in data
flow obfuscation, this timing is controlled (locked) by
an asynchronous controller. The adversary cannot deter-
mine when he/she must write into the scan, and when
the updated data is ready to be observed.

2) Due to the nature of asynchronous controllers, the latch
enable controller consists of many stateful cycles. The
SAT solver works perfectly fine if the circuit is a
directed acyclic graph (DAG), and only structural cycles
could be analyzed using a pre-processing engine before
running the SAT solver. Depending on whether the cycle
is oscillating or stateful, the SAT solver will either
be trapped in an infinite loop or will return UNSAT.
Moreover, in attacks such as BeSAT [40] that can track
and detect nonstructural cycles, the very first assumption
is that the circuit has no stateful combinational cycle by
itself.

B. Security versus Sequential SAT Attack

The adversary may attempt to engage either an unrolling-
SAT attack or SAT integrated with BMC (SAT-BMC) by
creating the unfolded combinational equivalent circuit to
find dises. The length of dises determines the number of
unrolling required before running the SAT solver. When
the circuit is synchronous, per each clock cycle, the FFs
will be updated only once. So, the adversary can replicate

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

650 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

Fig. 10. Hold and setup paths in an asynchronous circuit [59].

whole C Ls iteratively (per each clock cycle) to build the
unrolled circuit. However, when we use asynchronicity in
data flow obfuscation, the adversary needs to know the list
of enabled latches continuously and cycle-accurately to unroll
those parts that are triggered with new latched data. But, in the
data flow obfuscation paradigm, the asynchronous controller
that determines which latches must be enabled/disabled is
obfuscated. So, the adversary cannot build the unrolled circuit
to still get the benefit of the SAT attack, and thus, the sequen-
tial SAT attack cannot be applied to this technique.

C. Security versus Re-Synchronization + Sequential SAT
Attack

Since the sequential SAT attack cannot be applied directly
to data flow obfuscation, the adversary might add a pre-
processing step, such as re-synchronization, to make this
attack valid. In re-synchronization, which is the reverse of
desynchronization, the asynchronous controller is removed, M
and S latches are merged as FFs, and all FFs are connected to
a global clock. However, for a few reasons, re-synchronization
of the obfuscated desynchronized netlist is not possible:

First, since each controller requires a local clock tree in
asynchronous circuits, and these local trees do not have
the same delay [59], the adversary needs to confirm two
constraints below, which contradict each other.

1) Theoretically, the adversary must use a clock period
larger than any delay element, to avoid metastability
happening in the asynchronous controllers from the
delay element. The delay constraints of an asynchronous
circuit could be modeled using the following formulas
obtained from Fig. 10:

DRi + Tri+1 + DLi+1 > DLi + Tci + DPi + Tsi+1 (1)

DAi + Tai + DLi + Tci + DPi > DLi+1 + Thi+1 . (2)

2) But, the adversary must use a very small clock period to
utilize the delay element as a time offset. Hence, based
on these two constraints, the timing correctness condi-
tions cannot be satisfied. Also, the timing constraints
between the datapath and the asynchronous controller
must be preserved making it more challenging [59].

Second, as a step during re-synchronization, the attacker
must analyze every connectivity in the netlist, and effectively
create a mapping problem using bipartite graphs between pairs
of {M , S} to FFs. To accomplish this, the attacker must
have prior knowledge of the design methodology used for
creating the asynchronous circuit (2-phase latches or 3-phase
latches, handshaking protocol, initial marking (tokens), etc.).
Even while the adversary has access to this prior knowledge,
since the connectivity is obfuscated using false paths, the false
mapping will be added to this bipartite graph, leading to failure
of correct matching between Ms and Ss.

Additionally, as shown in Figs. 2 and 4, during desyn-
chroniztion flow, re-timing has been engaged in data flow
obfuscation by moving parts of C Ls before/after the latches.
By doing so, re-synchronization cannot be accomplished
directly. Re-timed asynchronous circuit can be converted to
a 2-phase nonoverlapping synchronous design, with two clock
signals, φ1 and φ2. However, false paths with extra latches
makes this 2-phase nonoverlapping synchronous netlist mal-
function. For example, latches H and I in Fig. 8(b) would be
connected to clock signal φ1 and φ2 (non-overlapping clock
signals). By connecting these two false latches to clock signals,
their values would be updated which alters the functionality
of C L1.

D. Security versus Structural-Based Attacks

The attacker might try to guess the value of the keys
based on the overall structure of the locked netlist. For
instance, all handshaking signals to/from latches H and I
in Fig. 8(d) are controlled using C*-element and key-gates
(ANDs). Hence, the attacker might guess that this pair of
latches are false latches located on a false path. So, the value
of the keys can be retrieved easily. However, to avoid such
circumstances, these key-gates and C*-element will be added
for a set of arbitrary (actual) latches in the netlist. For example,
in Fig. 8(d), the same key-gates are added between C and D.
However, they always must be active. Also, the original C-
element before C and E could be replaced with C*-element.
So, unlike C*-element before A and B , in which only one
of the inputs is valid, in these C*-elements, both inputs are
valid. By using this simple mechanism, the attacker cannot
start guessing/detecting the false {paths + latches} based on
the location/type of key gates.

E. Security versus Other State-of-the-Art Attacks

As is shown in Table I, there exist many attacks on different
logic obfuscation techniques, each is modeled to break one
or more specific techniques. However, Table II explains why
none of these attacks is applicable to the proposed solution.
The biggest advantage of the proposed data flow obfuscation
is the usage of extensive nondeterminism of asynchronicity
for obfuscation purposes. In data flow obfuscation, the main
source of this nondeterminism, which is the asynchronous
controller, is the main target of obfuscation. Obfuscating an
asynchronous controller makes every step of simplification
dependent on the key value, and it extremely boosts up the
state space in the asynchronous part. This implies the difficulty
of attacking the proposed data flow obfuscation, where it
requires an extensive (likely impossible) investigation on how
the existing formal verification methods might be fit and useful
to be adopted in this case.

F. Testability of Data Flow Obfuscation

As discussed previously, the handshaking asynchronous
controller is a self-testing circuit. However, since we use the
halt in false paths for logic locking purposes, data flow obfus-
cation prevents the self-testing and contradicts this property.
To protect against an untrusted test, this contradiction enforces
the designer to use an incorrect key to keep the self-testing
property of these circuits. For instance, k0−2 in Fig. 8(d) must
be 111 to avoid any halt (the correct key is 000). As another
example, similarly, k5 in Fig. 8(d)s must be 1 to avoid halt on

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 651

TABLE II

OUR PROPOSED DATA FLOW OBFUSCATION AGAINST STATE-OF-THE-ART ATTACKS ON LOGIC LOCKING

the other path (but in this case, the correct key is 1). Also, since
C*-element does not create a halt in any path, keys connected
to C*-element could be an arbitrary value to choose a path in
latches controllers. It shows that there is no relation, e.g., bit
flipping, between the correct key and key used for the test.
Using incorrect key allows false latches located in the false
paths to be updated. Hence, false paths can affect the C Ls’
functionality. Although the designer can generate test patterns
that avoid making them driving, since the incorrect key only
adds false paths to the original netlist, few more test patterns
are required to test these paths, which has no impact on test
patterns generated for original parts of the netlist. Hence, there
is no restriction for test pattern generation.

VI. EXPERIMENTAL RESULTS

We evaluate the data flow obfuscation over three sets of
benchmark circuits, all listed in Table III. The experiments
are all executed on a 24-core Intel Xeon processors running
at 2.4 GHz with 256 GB of RAM. Area, power, and delay
overhead of the data flow obfuscation are obtained using
conventional Synopsys Design Compiler along with Synopsys
generic 32 nm library. We evaluate the security/overhead of
the data flow obfuscation based on the following methods.

1) Obfuscation Overhead: Selection, desynchronization,
and insertion of false {paths + latches} depend on the
circuit size.

2) Key Size: Regardless of the circuit size, for a key
size, a nearly fixed part of a circuit will be selected,
desynchronized, and false {paths + latches} will be
inserted.

A. Modeling of Attacks on Data Flow Obfuscation

Since the proposed data flow is dependent on the locked
asynchronous controller, the timing of writing/capturing into
latches is hidden, and the traditional SAT attack does not work
even while the scan chain is available. So, to evaluate the secu-
rity of the data flow obfuscation, we deploy two new versions

TABLE III

SPECIFICATIONS OF THE BENCHMARK CIRCUITS (ISCAS’89,
ITC’99, AND WELL-KNOWN ASICS/MICROPROCESSORS)

Fig. 11. Re-synchronization using MUX-based path selection. (a) Obfuscated
asynchronous circuit. (b) Re-synchronized circuit.

of sequential SAT: 1) S_SAT: Resync + BMC + SAT and
2) S_BeSAT/S_icySAT: BMC + BeSAT/icySAT [14]/[40].

Regarding the former version of the deployed attack, due to
the failure of unrolling on desynchronized circuits, we need a
pre-processing step to re-produce the re-synchronized version
of the obfuscated circuit. We discussed in Section V-C that
the exact re-synchronization is almost impossible. In this
section, to validate our claim, regardless of the timing criteria,
we developed an intuitive re-synchronization technique. The
steps of the re-synchronization are as follows: 1) removing the
obfuscated asynchronous controller, 2) merging each pair of
M and S latches based on the connectivity of them (moving
them across C Ls), 3) replacing each pair of M and S latches

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

TABLE IV

RUNTIME OF RE-SYNCHRONIZATION+ SEQUENTIAL SAT INTEGRATED WITH PURE SAT (S_SAT), INTEGRATED WITH BESAT (S_BESAT),
AND INTEGRATED WITH ICYSAT (S_ICYSAT), ON THE DATA FLOW OBFUSCATION WITH 1%, 5%, AND 10%

OBFUSCATION OVERHEAD, AND ON THE DATA FLOW OBFUSCATION WITH KEY SIZE= 100, 200

TABLE V

KEY SIZE AND OVERHEAD (OO) RELATION IN DIFFERENT SCENARIOS

with a FF, 4) connecting FFs to a synchronous clock signal,
and 5) adding an extra key-controlled MUX for each path that
comes from the output of FFs. (For each MUX, input comes
from the output of the FF, and one input is an extra key.
The selector of the MUX is another key input.) Using these
five steps, Fig. 11 shows the re-synchronized version of the
obfuscated circuit from Fig. 8(b). Now, this re-synchronized
version could be the input of the Sequential SAT attack.
By using this model, if a path is a false path, then the logic
value of this path is always fixed. So, the MUX must select the
extra key input with corresponded value; however, if a path is
an actual one, the other input of the MUX must be selected.

Regarding the latter versions of the deployed attack, on the
other hand, no re-synchronization has been used, and since the
asynchronous controller is in place with lots of combinational
cycles, we replaced the traditional SAT attack with existing
cyclic-SAT attacks, i.e., BeSAT and icySAT [14], [40].

B. Attack Results

Table IV shows the results of two attacks. For all cases,
both attacks failed to break the obfuscated desynchronized
circuit. The result of the attacks, in both versions, might
return a wrong key, might return UNSAT, or might trap in

TABLE VI

DATA FLOW OBFUSCATION OVERHEAD (LOCKING OVERHEAD= 10%)

an infinite loop. These three scenarios happen for a few main
reasons: (1) regarding the wrong key (w/k) and UNSAT in
S_SAT, the unrolling could not build the correct unrolled
version due to asynchronicity; (2) regarding facing an infinite
loop in S_BeSAT and S_icySAT, all are because of facing
lots of stateful cycles in the asynchronous controller; and
(3) regarding the UNSAT in S_BeSAT and S_icySAT, before
facing an infinite loop, the solver is trapped in a wrong
decision leading to UNSAT (because of incorrect formulation).

As shown in Table IV, in some rare cases, we see some
numbers are struck out and replaced with w/k and UNSAT
when we apply the S_SAT on re-synchronized circuits.
In these cases, the S_SAT was able to find the correct key
values. However, we found that re-timing did not relocate
the latches after desynchronization for such cases. So,
we force the re-timing step to do a minor relocation for a
set of latches to eliminate the possibility of applying any
form of re-synchronization. In this case, after enforcing
those minor relocations, the S_SAT fails to break them.
Also, for some cases, we face time-out (105 s), implicitly
showing the complexity of SAT circuit. For all other cases,
since we remove all stateful combinational cycles during
re-synchronization, we faced only with w/k or UNSAT.
Table IV implies that the existing attacks cannot formulate
the proposed solution properly to break it, regardless of the

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 653

TABLE VII

AREA BREAKDOWN (LOCKING OVERHEAD= 10%)

TABLE VIII

DATA FLOW OBFUSCATION OVERHEAD (KEY SIZE= 200)

size/portion of the circuit, and regardless of the number of
false paths inserted into the circuit.

Based on the two obfuscation metrics, we evaluated these
deployed attacks in five different scenarios, in which a specific
value for one of the metrics has been fixed. Table V shows
that for each scenario with a fixed metric, what the value
of the other metric is, which helps us to have an estimated
relationship between these two metrics.

C. Area/Power/Delay Overhead Comparison

In this section, we evaluate the post-synthesis overhead
of our data flow obfuscation. Table VI compares the power,
performance (delay), and the area (PPA) of the original versus
obfuscated circuits while the obfuscation overhead is set to
10%. 10% obfuscation overhead means that 10% of all FFs in
a circuit must be converted to latches using desynchronization.
Also, for any obfuscation overhead percentage, the number of
extra {paths + latches} is set to be less than 10% of the total
latches. Furthermore, the actual latches that are obfuscated
using the same key gates (to prevent any key-guessing or struc-
tural attacks) are set to be less than 10% of the total latches.
For example, for b17 with ∼1.5K FFs, for 10% obfuscation
overhead, we replace 150 FFs with latches; we insert up to
15 false {paths + latches}, and up to 15 actual latches are
obfuscated using the same key gates. PPA overhead in the
data flow obfuscation is the consequence of two operations:
1) desynchronization and 2) adding false {paths + latches}.
The overhead of desynchronization is dominant while the ratio
of FFs to the total number of gates is higher in the original
netlist. For instance, for s13207, whose FFs’ ratio to all gates
is 638/7951 = 8.03%, the area overhead is 6.72%. However,
in s9234 with a ratio of 3.76%, the area overhead is only
4.28%. Table VII demonstrates the area breakdown of some
of the circuits when the obfuscation overhead is 10%.

Regarding the delay overhead, since re-timing is used during
desynchronization, in some cases we even achieved slight

TABLE IX

OVERHEAD COMPARISON BETWEEN DATA FLOW OBFUSCATION VERSUS

STATE-OF-THE-ART OBFUSCATION TECHNIQUES

delay improvement. However, in some cases, it imposes only
a very slight difference in cycle time by up to 8%. Regarding
the power overhead, due to moving from edge-triggered design
to level-triggered, the power overhead is less compared to
area overhead. As seen in Table VI, our data flow obfuscation
paradigm increased the power consumption by up to 10%.

Table VIII compares the PPA of the original circuits
versus obfuscated circuits when the key size is 200. As
implied in Table V, in data flow obfuscation, for each extra
{paths + latches}, as well as for any actual latch that are
obfuscated to disable key-guessing, 3–5 keys could be added.
So, when the key size is 200, regardless of the size of the
circuit, 50–60 latches are needed. Accordingly, when the size
of the key is 200, the area overhead is much higher in small
circuits. However, for larger circuits, the ratio of false latches
compared to the size of the circuit is significantly low, and
since the real applications (ICs) are far larger than small
circuits listed in Table III, the area overhead is low in this
approach. For instance, in AES-GCM, the area overhead is
even less than 1% (0.4%). To reflect a better evaluation of
overhead, in Table IX, we compare the overhead of data flow
obfuscation when the key size is set to 200 with state-of-
the-art logic obfuscation techniques.6 As shown, on average,
the overhead incurred by data flow obfuscation is much
lower compared to almost all techniques. In some techniques,
the overhead of one metric might be better than that of data
flow obfuscation, but on average, it could be concluded that the
overhead of the proposed technique is completely acceptable.

D. Comparison With State-of-the-Art

Most recently, a new study has evaluated the possibility
of latch-based architecture as a new means of logic obfusca-
tion [60]. In this study, as shown in Fig. 12, key-programmable
latches could be used as: 1) regular storage elements (FFs
that are replaced with green latches subjected to re-timing),
2) programmable logic decoys (red latches/C Ls) with constant
output (always zero with no driving effect), and 3) pro-
grammable path delay decoy for delay manipulation (yellow

6Since the strength of the data flow obfuscation does not depend on
the number of {paths + latches}, we could add as much as the key size
(e.g., ≥64) to prevent breaking them using attacks like brute-force.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

654 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

Fig. 12. Latch-based logic locking scheme [60]. (a) Key-controlled latches.
(b) Example of latch-based logic locking. (c) Functions of key-controlled
latches.

latches). However, unlike our proposed data flow obfuscation,
it is still fully dependent on the clock signal (reset and enable
of latches are a function of the clock signal) allowing us to
convert this solution to a synchronous obfuscated problem.
Clock-dependent latches operate as storage elements with syn-
chronized gated clock, and due to this synchronicity, by inte-
gration with two pre-processing steps, it still could be modeled
and broken using sequential SAT integrated with cyclic model:
(step 1) Generating a single-clock synchronized locked circuit
using a generalized/automated model, and (step 2) Detection
of (some) programmable logic decoys with constant output
through (pseudo-exhaustive) test patterns on testable points of
the oracle.

Unlike latch-based logic locking that uses BMC with two
copies of circuit per each clock cycle (due to level-triggering
of latches) [60], we first generate a single-clock model to
avoid this duplication per cycle. Fig. 13 shows we could
build a single-clock fully synchronized circuit from the latch-
based logic locked circuit. Based on the modes of latches
demonstrated in Fig.12(c), Latches are replaced with a FF with
two MUXes (one 2-to-1 preceding and one 4-to-1 following).
The 4-to-1 MUX builds all three modes illustrated in Fig.12(c),
and the 2-to-1 MUX is for keeping FF values when clk is not
triggering (latching). Also, a 2-to-1 MUX will be added before
each neighboring FF (immediate neighbors of latches). Now,
all FFs are connected to a low-frequency generalized clock sig-
nal (clkg). The selector of 2-to-1 MUXes of FFs corresponded
to latches will be connected to the original clock signal, and
the selector of that of neighboring FFs will be connected to a
gated clock signal for falling (clk f) or rising (clkr) levels. This
generalized model could be used for different scenarios with
more complexities, such as multi-clock systems, and circuits
with gated clock, all could be synchronized using generalized
clock signal clkg [61]. It allows us to use BMC with ONLY
one copy of the circuit per each clock cycle, which improves
the scalability significantly.

Also, since programmable logic decoys (red latches and
red C Ls) always generate constant output (zero output), and
since testable pin are dedicated for latches (using extra MUXes
and duplicate FFs) in the existing latch-based approach [60],
the adversary would be able to apply test patterns (stuck-
at-fault or pseudo-exhaustive) on testable points at cone-of-
influence (COI) of oracle to detect latches with constant (zero)
output. For some fundamental reasons, the programmable
logic decoys could not be large enough to make this test infea-
sible: 1) programmable logic decoys are hardware overhead,
which must be limited, 2) these logic decoys add difficulties
to P&R which compromises the performance, and 3) it should
not have an impact on maximum frequency of the circuit
before adding obfuscation. Detecting these latches helps to

Fig. 13. Re-synchronization in latch-based logic locking. (a) Latch-based
logic locked circuit. (b) Single-clock synchronized latch-based logic locked
circuit.

TABLE X

RUNTIME OF RE-SYNCHRONIZATION+ DECOY COI REDUCTION+
SEQUENTIAL SAT INTEGRATED WITH BESAT (S_BESAT) ON

THE EXISTING LATCH-BASED LOGIC LOCKING

WITH KEY SIZE = 20, 50, 100, 200

TABLE XI

PROPOSED DATA FLOW OBFUSCATION VERSUS

LATCH-BASED LOGIC LOCKING

reduce the cone-of-influence, and consequently the SAT circuit
before running the sequential SAT attack. Table X shows
the execution time of the sequential SAT attack when it is
integrated with these two pre-processing steps. However, since
our proposed data flow obfuscation is truly desynchronized
(token-based with no dependence on a clock signal), this form
of re-synchronization is not applicable to it.

Table XI also shows some major advantages of the proposed
solution against existing latch-based logic locking [60]. For
example, we use a self-testable asynchronous controller; how-
ever, latch-based adds extra MUXes/FFs to make the latches
testable, resulting in extra overhead. We add false latches
pair by pair, which makes any structural/functional analysis
exponentially harder (any pair of neighboring latches is a point
of analysis); however, latch-based adds decoy latches one by
one, which allows analyzing them linearly (each latch is a

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

ZAMIRI AZAR et al.: DATA FLOW OBFUSCATION: NEW PARADIGM FOR OBFUSCATING CIRCUITS 655

point of analysis). In the proposed scheme, the latch enables
controller consists of many stateful cycles that boost the
difficulties for the adversary (no cyclic modeling). However,
only easy-to-track structural cycles might be added into the
existing latch-based logic locking when the key is not correct.
Also, the overhead is much higher in the existing approach
due to adding programmable logic decoys.

VII. CONCLUSION

To combat state-of-the-art attacks on logic obfuscation,
in particular, the SAT attack and the sequential SAT, in this
article, we introduced a new obfuscation paradigm called data
flow obfuscation. By exploiting the concept of asynchronicity
data flow obfuscation, we show how the flow of the data
could be obfuscated in any arbitrary circuit. In data flow
obfuscation, we engage false {paths + latches} using the
asynchronous structure to control the flow of data in specific
timing paths. Using this mechanism, we show that the SAT
attack has no longer an advantage for the adversary even while
the scan access is not restricted. Also, we showed that how
asynchronicity combat the sequential SAT attack by invalidat-
ing the unrolling step in these attacks. We comprehensively
investigated the effectiveness of this new obfuscation paradigm
over wide-range benchmark families. Our experiments showed
the resiliency of this new paradigm against all existing attacks
at significantly low overhead.

REFERENCES

[1] A. Yeh, “Trends in the global IC design service market,” in Proc.
DIGITIMES, 2012. [Online]. Available: http://www.digitimes.com/news/
a20120313RS400.html?chid=2

[2] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[3] M. M. Tehranipoor, U. Guin, and S. Bhunia, “Invasion of the hardware
snatchers,” IEEE Spectr., vol. 54, no. 5, pp. 36–41, May 2017.

[4] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy
of integrated circuits,” in Proc. Design, Autom. Test Eur., Mar. 2008,
pp. 1069–1074.

[5] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis
of logic obfuscation,” in Proc. 49th Annu. Design Autom. Conf. (DAC),
2012, pp. 83–89.

[6] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats on
logic locking: A decade later,” in Proc. Great Lakes Symp. (VLSI),
May 2019, pp. 471–476.

[7] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“IP protection and supply chain security through logic obfuscation,”
ACM Trans. Design Autom. Electron. Syst., vol. 24, no. 6, pp. 1–36,
Nov. 2019.

[8] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur.
Trust (HOST), May 2015, pp. 137–143.

[9] S. E. Quadir et al., “A survey on chip to system reverse engineering,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 1, pp. 1–34,
Dec. 2016.

[10] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE Trans.
Emerg. Topics Comput., vol. 8, no. 2, pp. 517–532, Apr. 2020.

[11] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Oriented Secur. Trust (HOST), May 2017, pp. 95–100.

[12] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 2514–2527,
2020.

[13] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic
logic encryptions,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2017, pp. 49–56.

[14] K. Shamsi, D. Z. Pan, and Y. Jin, “IcySAT: Improved SAT-based attacks
on cyclic locked circuits,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2019, pp. 1–7.

[15] K. Z. Azar et al., “SMT attack: Next generation attack on obfuscated
circuits with capabilities and performance beyond the SAT attacks,” in
Proc. IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 1, Spring
2019, pp. 97–122.

[16] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “InterLock:
An intercorrelated logic and routing locking,” in Proc. 39th Int. Conf.
Computer-Aided Design, Nov. 2020, pp. 1–9.

[17] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “NNgSAT:
Neural network guided SAT attack on logic locked complex structures,”
in Proc. 39th Int. Conf. Comput.-Aided Design, Nov. 2020, pp. 1–9.

[18] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering cam-
ouflaged sequential circuits without scan access,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017, pp. 33–40.

[19] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-condition crunching
for fast sequential circuit deobfuscation,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 534–539.

[20] N. Limaye, A. Sengupta, M. Nabeel, and O. Sinanoglu, “Is robust
design-for-security robust enough? Attack on locked circuits with
restricted scan chain access” in Proc. Int. Conf. Comput.-Aided Design
(ICCAD), 2019, pp. 1–8.

[21] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “On designing
secure and robust scan chain for protecting obfuscated logic,” in Proc.
Great Lakes Symp. (VLSI), Sep. 2020, pp. 1–6.

[22] L. Alrahis, M. Yasin, H. Saleh, B. Mohammad, M. Al-Qutayri, and
O. Sinanoglu, “ScanSAT: Unlocking obfuscated scan chains,” in Proc.
24th Asia South Pacific Design Autom. Conf., Jan. 2019, pp. 352–357.

[23] N. Limaye and O. Sinanoglu, “DynUnlock: Unlocking scan chains
obfuscated using dynamic keys,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2020, pp. 270–273.

[24] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SAR-
Lock: SAT attack resistant logic locking,” in Proc. IEEE Int. Symp.
Hardw. Oriented Secur. Trust (HOST), May 2016, pp. 236–241.

[25] Y. Xie et al., “Mitigating sat attack on logic locking,” in Proc. Int. Conf.
Cryptograph. Hardw. Embedded Syst. (CHES), 2016, pp. 127–146.

[26] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1601–1618.

[27] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating SAT-unresolvable circuits,” in Proc. Great Lakes
Symp. (VLSI), May 2017, pp. 173–178.

[28] S. Roshanisefat, H. M. Kamali, and A. Sasan, “SRCLock: SAT-resistant
cyclic logic locking for protecting the hardware,” in Proc. Great Lakes
Symp. (VLSI), May 2018, pp. 153–158.

[29] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 85–90.

[30] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic
locking against IC counterfeiting and overproduction,” in Proc. 54th
Annu. Design Autom. Conf. (DAC), Jun. 2017, pp. 1–6.

[31] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Cross-lock: Dense layout-
level interconnect locking using cross-bar architectures,” in Proc. Great
Lakes Symp. (VLSI GLSVLSI), May 2018, pp. 147–152.

[32] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of SAT instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proc. 56th Annu. Design
Autom. Conf. (DAC), Jun. 2019, pp. 89–94.

[33] R. Karmakar, S. Chatopadhyay, and R. Kapur, “Encrypt flip-flop:
A novel logic encryption technique for sequential circuits,” 2018,
arXiv:1801.04961. [Online]. Available: http://arxiv.org/abs/1801.04961

[34] U. Guin et al., “FORTIS: A comprehensive solution for establishing
forward trust for protecting IPs and ICs,” ACM TODAES, vol. 21, no. 4,
p. 63, 2016.

[35] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture
for enabling trust in IC manufacturing and test,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 26, no. 5, pp. 818–830, May 2018.

[36] R. Karmakar et al., “Efficient key-gate placement and dynamic scan
obfuscation towards robust logic encryption,” IEEE Trans. Emerg.
Topics Comput., early access, Dec. 31, 2019, doi: 10.1109/TETC.2019.
2963094.

[37] N. Limaye et al., “Thwarting all logic locking attacks: Dishon-
est oracle with truly random logic locking,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., early access, Oct. 6, 2020, doi:
10.1109/TCAD.2020.3029133.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2020.3029133
http://dx.doi.org/10.1109/TETC.2019.2963094
http://dx.doi.org/10.1109/TETC.2019.2963094

656 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 4, APRIL 2021

[38] X. Xu et al., “Novel bypass attack and BDD-based tradeoff analy-
sis against all known logic locking attacks,” in Proc. CHES, 2017,
pp. 189–210.

[39] S. Roshanisefat, H. Mardani Kamali, H. Homayoun, and A. Sasan, “SAT-
hard cyclic logic obfuscation for protecting the IP in the manufacturing
supply chain,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 4, pp. 954–967, Apr. 2020.

[40] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based attack on cyclic logic encryption,” in Proc. 24th
Asia South Pacific Design Autom. Conf., Jan. 2019, pp. 657–662.

[41] X. Wang, D. Zhang, M. He, D. Su, and M. Tehranipoor, “Secure scan and
test using obfuscation throughout supply chain,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 9, pp. 1867–1880,
Sep. 2018.

[42] Y. Kasarabada, S. R. T. Raman, and R. Vemuri, “Deep state encryption
for sequential logic circuits,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2019, pp. 338–343.

[43] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of
integrated circuit camouflaging,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), 2013, pp. 709–720.

[44] S. M. Nowick et al., “Asynchronous design—Part 1: Overview and
recent advances,” IEEE Design Test, vol. 32, no. 3, pp. 5–18, Mar. 2015.

[45] V. Khomenko et al., “Logic synthesis for asynchronous circuits based on
STG unfoldings and SAT,” Fundamenta Informaticae, vol. 70, nos. 1–2,
pp. 49–73, 2006.

[46] A. Moreno, D. Sokolov, and J. Cortadella, “Synthesis from waveform
transition graphs,” in Proc. 25th IEEE Int. Symp. Asynchronous Circuits
Syst. (ASYNC), May 2019, pp. 60–67.

[47] S. Ataei and R. Manohar, “AMC: An asynchronous memory compiler,”
in Proc. 25th IEEE Int. Symp. Asynchronous Circuits Syst. (ASYNC),
May 2019, pp. 1–8.

[48] M. Fiorentino et al., “AnARM: A 28 nm energy efficient ARM processor
based on octasic asynchronous technology,” in Proc. 25th IEEE Int.
Symp. Asynchronous Circuits Syst. (ASYNC), May 2019, pp. 58–59.

[49] E. Beigne et al., “Asynchronous circuit designs for the Internet of
everything: A methodology for ultralow-power circuits with GALS
architecture,” IEEE Solid State Circuits Mag., vol. 8, no. 4, pp. 39–47,
Fall 2016.

[50] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and
A. Yakovlev, “Benefits of asynchronous control for analog electronics:
Multiphase buck case study,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2017, pp. 1751–1756.

[51] J. Cortadella et al., “A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE, vol. 80, no. 3,
pp. 315–325, 1997.

[52] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[53] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
TCAD, vol. 25, no. 10, pp. 1904–1921, Oct. 2006.

[54] B. Van Antwerpen et al., “Register retiming technique,” U.S. Patent
7 120 883, Oct. 10, 2006.

[55] S. B. Furber and P. Day, “Four-phase micropipeline latch control
circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, Jun. 1996.

[56] H. Hulgaard, S. M. Burns, and G. Borriello, “Testing asynchronous
circuits: A survey,” Integration, vol. 19, no. 3, pp. 111–131, Nov. 1995.

[57] A. Bouzafour, M. Renaudin, H. Garavel, R. Mateescu, and W. Serwe,
“Model-checking synthesizable systemverilog descriptions of asynchro-
nous circuits,” in Proc. 24th IEEE Int. Symp. Asynchronous Circuits
Syst. (ASYNC), May 2018, pp. 34–42.

[58] G. Tarawneh and A. Mokhov, “Formal verification of mixed synchronous
asynchronous systems using industrial tools,” in Proc. 24th IEEE Int.
Symp. Asynchronous Circuits Syst. (ASYNC), May 2018, pp. 43–50.

[59] G. Gimenez, A. Cherkaoui, G. Cogniard, and L. Fesquet, “Static timing
analysis of asynchronous bundled-data circuits,” in Proc. 24th IEEE Int.
Symp. Asynchronous Circuits Syst. (ASYNC), May 2018, pp. 110–118.

[60] J. Sweeney, M. Zackriya V, S. Pagliarini, and L. Pileggi, “Latch-
based logic locking,” 2020, arXiv:2005.10649. [Online]. Available:
http://arxiv.org/abs/2005.10649

[61] M. K. Ganai and A. Gupta, “Efficient BMC for multi-clock systems
with clocked specifications,” in Proc. Asia South Pacific Design Autom.
Conf., Jan. 2007, pp. 310–315.

Kimia Zamiri Azar received the B.Sc. degree in
computer engineering from Khajeh Nasir Toosi Uni-
versity, Tehran, Iran, in 2013, and the M.Sc. degree
in computer engineering from Shahid Beheshti Uni-
versity, Tehran, in 2015. She is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, George Mason Univer-
sity, Fairfax, VA, USA.

Her research interests include the areas of hard-
ware security and trust, security for supply chain,
and VLSI design and test.

Hadi Mardani Kamali received the B.Sc. degree
in computer engineering from Khajeh Nasir Toosi
University, Tehran, Iran, in 2011, and the M.Sc.
degree in computer engineering from the Sharif
University of Technology, Tehran, Iran in 2013.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
George Mason University, Fairfax, VA, USA.

His research focuses on hardware security, hard-
ware/software acceleration applications, and power
management in on-chip communication.

Shervin Roshanisefat received the M.Sc. degree
in computer engineering from the University of
Tehran, Iran, in 2015. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Computer Engineering, George Mason University,
Fairfax, VA, USA.

He has worked earlier on telecommunication
devices for SRD in Iran. His research interests
include the areas of approximate computing, low
power design, hardware-level functional safety, and
security.

Houman Homayoun received the Ph.D. degree
from the Department of Computer Science, Uni-
versity of California at Irvine, Irvine, CA, USA,
in 2010.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, University of California at Davis, Davis, CA,
USA.

He was the Technical Program Co-Chair of
GLSVLSI 2018 and the General Chair of the
2019 GLSVLSI Conference. Since 2017, he has

been serving as an Associate Editor for IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

Christos P. Sotiriou received the Ph.D. degree in
computer science from The University of Edinburgh,
Edinburgh, U.K., in 2001.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Thessaly, Volos, Greece. His research
interests include CAD algorithms and tools, and
design methods and approaches for asynchronous
timing. He served as the General Chair for the
International Symposium on Advanced Research in
Asynchronous Circuits and Systems for many years.

Avesta Sasan (Member, IEEE) received the B.Sc.
degree in computer engineering and the M.Sc. and
Ph.D. degrees in electrical and computer engineering
from the University of California at Irvine, Irvine,
CA, USA, in 2005, 2006, and 2010, respectively.

He worked at Broadcom Inc., and Qualcomm
Company till 2016. He joined George Mason Uni-
versity in 2016, where he is currently serving as an
Associate Professor for the Department of Electrical
and Computer Engineering.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:24:31 UTC from IEEE Xplore. Restrictions apply.

