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ABSTRACT
With the outsourcing of design flow, ensuring the security and

trustworthiness of integrated circuits has become more challenging.

Among the security threats, IC counterfeiting and recycled ICs

have received a lot of attention due to their inferior quality, and

in turn, their negative impact on the reliability and security of the

underlying devices. Detecting recycled ICs is challenging due to the

effect of process variations and process drift occurring during the

chip fabrication. Moreover, relying on a golden chip as a basis for

comparison is not always feasible. Accordingly, this paper presents

a recycled IC detection scheme based on delay side-channel testing.

The proposed method relies on the features extracted during the

design flow and the sample delays extracted from the target chip to

build a Neural Network model using which the target chip can be

truly identified as new or recycled. The proposed method classifies

the timing paths of the target chip into two groups based on their

vulnerability to aging using the information collected from the

design and detects the recycled ICs based on the deviation of the

delay of these two sets from each other.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.
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1 INTRODUCTION
To reduce the fabrication cost of a new Integrated Circuit (IC), bene-

fit from smaller area and power profile of advanced sub-nanometer

technology nodes, or build a scalable model that is ready to meet the

market demand, the manufacturing supply chain of ICs is globalized

[40]. However, the presence of untrusted parties in such a global

supply chain has jeopardized the security and trustworthiness of In-

tegrated Circuits (ICs) and introduced many security vulnerabilities

[20], including the possibility of IP piracy/theft, Trojan insertion,

overbuilding, and counterfeiting. A widely studied solution for pro-

tecting the IP in the manufacturing supply chain is logic encryption.

For logic encryption, the IC designer introduces limited means of
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post-manufacturing programmability into a netlist (representing

valuable IP) [7, 13–16, 28, 29]. After fabrication, the IC is shipped to

and activated at a trusted facility, where the activation key is stored

in a non-volatile memory on-chip. Logic locking protects an IC

against overproduction and IP piracy and reduces Trojan insertion

chances, but does not protect recycled or aged ICs sold as new.

A counterfeit IC can be an unauthorized copy of the exact IC,

a slightly modified version, a recycled IC, or a defective one [11].

Recycled ICs, ICs that have been already used but are pretended

to be new, have contributed to more than 80% of the counterfeit

ICs in recent years[12]; posing around $169 billion revenue loss

to the global electronics supply chain[3]. Based on U.S. Chamber

of Commerce reports, counterfeit ICs have even found their way

into military supply chain [8]. A recycled chip exhibits a lower

performance and a higher failure rate over time, since its embedded

transistors have already been aged, i.e., their characteristics have

been derated due to the chip usage. This increases the probability

of chip failure sooner than expected; shortening the chip lifespan.

The short lifetime and low performance of the recycled ICs not only

affect the end-users but also puts a significant financial burden on

the industry and government sectors. Therefore, a concrete solution

to detect recycled ICs is highly required.

Among the various designs’ robustness concerns affecting CMOS

devices, aging effects have been receiving a lot of attention. In prac-

tice, aging mechanisms degrade the reliability and performance

of CMOS devices over their lifetime. Due to aging, the electrical

behavior of transistors deviates from their original intended be-

havior, resulting in performance degradation and the ultimate chip

failure [21, 22]. Among aging mechanisms, the effect of Bias Tem-

perature Instability (BTI) and Hot Carrier Injection (HCI) are more

dominant than other aging mechanisms [27]. In this paper, we focus

on these two aging mechanisms when detecting the recycled chips.

Guardbanding is the current industrial practice to cope with

transistor aging and voltage droops. It entails slowing down the

clock frequency (i.e., adding timing margin during design) based on

the worst degradation the transistors might experience during their

lifetime [23]. The guardbands ensure that the chip functionality is

intact for an average period of 5 to 7 years. However, inserting wide

guardbands degrades performance and increases energy consump-

tion. Hence, chip design companies usually have small guardbands,

typically 5-10% [36]. Fig. 1 shows an overview of the guardband

assignment for each chip during the manufacturing. In this figure,

the delay of the critical path is 𝐶0 when the chip is new. As the

chip is used, its critical path delay gradually increases due to aging;

reaching𝑇0 after a period of t = Y years. Accordingly, for the chip to
be usable during its expected lifetime (Y Year), it needs to be clocked

at a frequency no higher than 𝐹0 = 1/𝑇0. Thus, the designers add a
guardband𝐺 = 𝑇0 −𝐶0 to prevent any aging-induced chip malfunc-
tion during its expected lifespan (i..e, Y years in Fig. 1). However,
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if the chip is a recycled one, the remaining life expectancy is less

than Y, i.e., it can experience a malfunction much sooner than the

expected lifetime (Y).

Figure 1: Impact of aging on critical path delay.

In practice, detecting recycled ICs is challenging, particularly in

lower technology nodes, due to the Process Variations (PV) occur-

ring at the fabrication process. To account for the PV, the detection

method should be able to differentiate the PV-induced change in the

delay of timing-paths from the aging-induced changes. Otherwise,

ignoring the impact of PV would result in false positives or false

negatives, which in turn results in disposing a new IC or deploying

a recycled one, respectively.

Device workload as well as environmental conditions, including

temperature and voltage source, all affect the device aging rate. In

fact, each logical cell residing in a chip is aged differently based on

the duration of logical ‘1’ and ‘0’ values applied to its input pins, or

the toggling count that its transistors observe.

Our Learning Assisted Side Channel Delay Test scheme aims to

differentiate between aged and new devices by assessing the impact

of aging on the delay of carefully selected timing paths in a chip

under test. Different timing paths, for having different topologies,

for being made of different types of devices, and for experiencing

different switching activities would age differently. Hence, in an

aged IC, one could expect to see a disparity in the aging-induced

increase in the delay across timing-paths. Therefore, delay testing

could be used for the detection of aged ICs.

The problem of finding aged ICs using delay testing, however,

faces a serious challenge: The change in the delay of timing paths

could also be the result of PV (systematic or random) and/or process

drift. PV is the unintended variation in the physical and electrical
property (strength) of transistor devices due to the physical limita-

tion of manufacturing devices in building perfect transistors. Pro-

cess drift is the intended change in the process over time, made by
the fabrication lab to improve the process. Although such improve-

ment guarantees a working transistor made using Spice models

generated for an older version of the process, the strength and char-

acteristic of devices (and in the result their speed) would change

over time. Therefore, by having access to the original GDSII and

timing model (generated for the original Spice Model), a tester can

not determine if the change in the delay of a timing path is due to

PV and/or process drift or if it is due to aging.

In this paper, we propose a learning assisted mechanism for side-

channel delay testing of a circuit to assess if the chip under test is

aged. Our proposed solution is resilient to the PV and process drift

and does not need a golden chip to work properly.

2 THREAT MODEL
In this paper, we assume that the IC designer is trustworthy while

the supply chain is untrusted. In particular, we assume that an

adversarial supplier can potentially provide the system integrator

with a recycled IC, the usage of which (in a critical application) may

result in catastrophic consequences (due to the effect of aging on the

chip’s reliability). We assume that the IC/system designer has access

to the chip netlist and its GDSII file. However, she does not have a

golden chip to use it as a basis to determine if the chip-under-test

is recycled or new.

3 PREVIOUS WORKS
Recycled IC detection methods can be classified into several cat-

egories. The first category deals with conventional test methods that

perform physical (e.g. detecting repackaged ICs using 3-Dimensional

imaging technologies) and electrical (studying the ICs’ parameters

such as threshold voltage, path delays, etc) tests [33] [30]. Such tests

are conducted in specific labs following several testing standards

such as AS6171, AS5553, and CCAP-101 [2]. These methods are

costly, time-consuming, and have a low detection rate.

The second category of Recycled IC detection schemes, i.e., statis-

tical approaches, mainly deploy machine-learning models to differ-

entiate new and aged chips from each other. For instance, in [19], Ke

Huang et al. used a Support Vector Machine (SVM) based technique

to classify the chips into recycled versus new using parametric mea-

surements collected from a set of brand new chips including Iddq,

𝐹𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛 , etc. These measurements are usually collected in the
test facilities to verify the correct functionality of the chips before

shipping them to customers. On the other hand, in [41], the authors

detect recycled ICs based on the aging rates in similar components

that may have resided in the target chip. The assumption is that if

the device is aged, similar components in the device (e.g., different

full adders in an N-bit adder module) may age differently as they are

exposed to different input patterns during run time. In this method,

the correlation of dynamic supply current (IDDT ) between similar
logic blocks is calculated, based on which, the IC is reported as new

or recycled. The main drawback of the prior art statistical solutions

is their reliance on the availability of a golden chip.

The third group, the so-called DFAC (Design For Anti Counter-

feiting) strategies, detect the recycled ICs via on-chip sensors[30].

The on-chip sensor-based approaches try to compare the frequency

of an embedded element, e.g., a Ring Oscillator (RO) with a ref-

erence point to identify the recycled ICs. For instance, Guin et al.

[10] proposed to insert two ring oscillators inside the chip, one

is not used frequently while the other is always on. Comparing

the frequency of these oscillators reveals if the chip is recycled.

As this is sensitive to PV, its detection accuracy is low. To resolve

this issue, [3] tried to mitigate the impact of PV by replacing the

reference RO with a Non Volatile Memory (NVM) that stores the

frequency of the RO when it is new. The stored value is compared

with the frequency of the RO when the device is checked regarding

its freshness. Any discrepancy demonstrates that the device is not

new. To prevent tampering such NVM, the authors proposed to use

digital signature verification (e.g., chip unique ID). This method

suffers from high power consumption related to its always-on RO.

4 PRELIMINARY BACKGROUNDS

4.1 Background on aging.
Aging mechanisms including Bias Temperature Instability (BTI),

Hot-Carrier Injection (HCI), Time-Dependent Dielectric Breakdown

(TDDB), and Electromigration (EM) result in performance degrada-

tion and eventual failure of digital circuits over time [25]. Among
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all, BTI and HCI are the two leading factors in the performance

degradation of digital circuits [27]. Both mechanisms increase the

switching delay of transistors, leading to an increase in path delays.

BTI Aging: BTI aging includes Negative Bias Temperature In-
stability (NBTI) and Positive Bias Temperature Instability (PBTI).

NBTI affects a PMOS transistor when a negative voltage is applied

to its gate. A PMOS transistor experiences two phases of NBTI

depending on its operating condition. The first phase, the so-called

stress phase, occurs when the transistor is on (𝑉𝑔𝑠 < 𝑉𝑡 ). In this

case, positive interface traps are generated at the Si-SiO2 interface

which leads to an increase of the threshold voltage of the transistor.

The second phase, denoted as the recovery phase, occurs when the
transistor is off (𝑉𝑔𝑠 > 𝑉𝑡 ). The threshold voltage drift that occurred
during the stress phase will partially recover in the recovery phase.

Threshold voltage drifts of a PMOS transistor under stress de-

pend on the physical parameters of the transistor, supply voltage,

temperature, and stress time [24]. The last three parameters (known

as external parameters) are used as acceleration factors of the ag-

ing process. Figure 2 shows the threshold voltage drift of a PMOS

transistor that is continuously under stress for 6 months and a

transistor that alternates between stress and recovery phases ev-

ery other month. As shown, the NBTI effect is high in the first

couple of months but the threshold voltage tends to saturate for

long stress times. It is noteworthy to mention that PBTI affects the

NMOS transistors in a similar fashion that NBTI affects the PMOS

transistors. Accordingly, for the sake of space, we do not discuss

PBTI separately.

Figure 2: Threshold-voltage shift of a PMOS transistor under
the NBTI effect. Values on the Y-axis are not shown to make
the graph generic for different technologies.
HCI Aging: HCI occurs when hot carriers are injected into the

gate dielectric during transistor switching and remain there. HCI is

a function of switching activity and degrades the circuit by shifting

the threshold voltage and the drain current of transistors under

stress. HCI mainly affects NMOS transistors.

HCI-induced threshold voltage drift is highly sensitive to the

number of transitions occurring in the gate input of the transistor

under stress. In practice, HCI has a sublinear dependency on the

clock frequency, usage time, and activity factor of the transistor

under stress, where activity factor represents the ratio of the cycles

the transistor is switching and the total number of cycles the device

is utilized. HCI effect is exacerbated as the operating temperature

increases [27].

5 PROPOSED RECYCLED IC DETECTION
METHODOLOGY

Our proposed aged-IC detection methodology is based on a side-

channel delay analysis. To formulate a reliable test, we have pro-

vided separate solutions for mitigating the impact of process drift

and process variation, and have proposed a novel (delay-based fre-

quency sweeping) test solution to detect the aged-ICs. For the use

of machine learning models, our proposed solution falls in the cate-

gory of statistical models. However, unlike prior work, we do not

rely on the existence of a golden model. We, instead, assume that

the designer has access to the original physical design, the GDSII

sent for fabrication, and Static Timing Model developed for the

original design at the state of its timing-closure. In the following

subsection, we define a few terms and parameters, based on which

in Section 5.2, our proposed model is explained:

5.1 Definitions and Model Parameters
Before describing our solution, we elaborate on the model parame-

ters used:

Clock Frequency Sweeping Test (CFST): An existing delay

testing solution in which delay of different timing paths is examined

while increasing the clock frequency [39]. The target is to find the

start to fail frequency for different timing paths. The test accuracy

is limited by the tester frequency step size and maximum achievable

frequency. The delay reported for each timing path may be affected

by both process variation and process drift.

Age Distinguished Paths (ADP): Depending on the circuit

topology and workload, some of the timing paths in a circuit age

more, and some age less than others. Hence, we can distinguish

between two sets of timing paths: 1) Most aging Affected Paths

(MAP) and 2) Least aging Affected Paths (LAP).

For simplicity, lets first assume that there is no process drift (but

there exist process variation), the step size of the tester is sufficiently

small, Static Timing Analysis is perfect, and CFST reported delay

for a timing path at age zero (fresh IC) matches that of the STA

within the boundary of process variation. Lets denote the STA-

reported delay of path 𝑝 with 𝑆𝑇𝐴(𝑝), and the delay reported by
CFST by𝐶𝐹𝑆𝑇 (𝑝). We define added delay𝐴𝐷 for path 𝑝 as𝐴𝐷 (𝑝) =
𝐶𝐹𝑆𝑇 (𝑝) − 𝑆𝑇𝐴(𝑝). Given a set of timing paths, if we compute

𝐴𝐷 for each path, we will see a zero-mean normal distribution of

𝐴𝐷s if the IC is not aged (in an ideal world). This is illustrated in

Fig. 3(top). As the IC ages, theMAP and LAP timing paths would age

at different rates (Fig. 3(middle)). Therefore, the normal distribution

(observed at age zero) will morph into a bimodal distribution, where

the difference in the mean of two clusters increases over time,

highlighting the separation between MAP and LAP group. This is

the basis for our aged-IC detection.

However, in a real-world, we have to deal with process drift,

reduce the impact of process variation, identify MAP and LAP

groups ahead of time, deal with the inaccuracy of tester, account for

inaccuracy of the STA and the fact that it does not match the CFST

test result. In the next section, we describe our proposed model

that deals with each of these phenomenons, for building a reliable

aging detection solution.

5.2 Proposed Model
Our approach consists of six main steps, described next:

• (1) ADP set identification: Selecting a viable set of Age
Distinguishing Paths (𝐴𝐷𝑃 ), and dividing it into𝑀𝐴𝑃 and

𝐿𝐴𝑃 subsets.

• (2) Building aGoldenTimingModel:Generating aGolden
TimingModel (aided by amachine learning regressionmodel)

that accounts for process drift, timing prediction of which

matches that of CFST test on 𝑀𝐴𝑃 subset of timing paths.

Learning Assisted Side Channel Delay Test for Detection of Recycled ICs
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Figure 3: In a new device, one cannot distinguish between
MAP and LAP timing paths as no aging occurred. Comput-
ing the 𝐴𝐷 for timing paths gives us a zero-mean distribu-
tion. As the IC ages, the delay of all timing paths increases,
however, the delay-increase is more significant in the MAP
set of timing paths. Therefore, the normal distribution of
𝐴𝐷 morphs into a bimodal distribution as the IC ages. Iden-
tification of MAP and LAP sets of timing paths allows us to
compute the mean for each set. The shift in the mean is an
indication of the extent of aging. In this figure, it is assumed
that there is no process drift (but there exist process varia-
tion), the step size of the tester is very small, STA is perfect,
and CFST reported delay for a timing path at age zero (fresh
IC) matches STA. We will update these assumptions to real-
istic ones when discussing our proposed solution.

This step intends to model the impact of process drift and

systematic process variation.

• (3) Computing Added Delays: Inferring the slack of tim-
ing paths in the 𝐴𝐷𝑃 set for both 𝐿𝐴𝑃 and 𝑀𝐴𝑃 subsets

from the GTM (created in the previous step) as expected

value, and from CFST as actual value, and computing the

𝐴𝐷 (𝑝) = 𝐶𝐹𝑆𝑇 (𝑝) −𝐺𝑇𝑀 (𝑝) for each path in each subset.
• (4) InferringMAP-LAPmean shift:Computing themean-
shift of 𝐴𝐷 for𝑀𝐴𝑃 and 𝐿𝐴𝑃 subsets; This step intends to

reduce the impact of process variation and tester discrete

step size on our detection threshold.

• (5) Classification: Using a binary classifier to mark the IC
as aged or new.

5.2.1 ADP set identification. Age distinguishing paths consist
of two subsets of MAP and LAP timing paths. In order to collect

the ADP set and assign timing paths to each of MAP and LAP,

we propose the following set of modeling steps, each of which is

described next:

• Train a regression model for gate-specific age perdition

• Build an Aging-Induced Path-Delay Prediction Model

• Build an ADP set Classifier

Regression model for gate-specific age prediction: To build amodel

that predicts aging-induced delay increase for each gate, we first

create a database that includes each gate type and its correspond-

ing aging-induced delay increase after 𝑖 months when the gate is
fed with different workloads. To emulate different workloads, the

Figure 4: SPICE netlist for aging each gate type.

gate is simulated under different conditions where in each condi-

tion of 𝐶𝑂𝑁𝐷𝑖, 𝑗 , its output signal Duty Cycle and Toggle Count
are 𝐷𝐶𝑖 and 𝑇𝐶 𝑗 , respectively. Here, Duty Cycle (𝐷𝐶) denotes the
percentage of the time that the signal is ‘0’.

In practice, we consider 𝐼 different 𝐷𝐶 and 𝐽 different 𝑇𝐶 val-

ues for the gate output, and for each condition (among all 𝐼 × 𝐽
conditions) we generate a table of input patterns (among many

possibilities) that satisfies the considered toggle count and duty

cycle on the output.

To tailor a more precise timing model for each circuit, we deter-

mine an approximate range of 𝑇𝐶s that the circuit’s gates outputs
experience during run time by simulating the main circuit with

a set of random inputs. We use the SAIF file which is generated

via simulation to extract the maximum and minimum 𝑇𝐶s of all
signals in the circuit, refer to as 𝑇𝐶𝑚𝑖𝑛 and 𝑇𝐶𝑚𝑎𝑥 hereafter. Then,
we sweep 𝐷𝐶 in range of [0, 1] with the steps of 𝑠𝑡 , and𝑇𝐶 in range

of [𝑇𝐶𝑚𝑖𝑛,𝑇𝐶𝑚𝑎𝑥 ] with the steps of 𝑡𝑐 . In this study, st and tc are
considered as 0.05 and

𝑇𝐶𝑚𝑎𝑥−𝑇𝐶𝑚𝑖𝑛
50 , respectively.

As the next step, the aging-induced delay change for each gate

type in the considered 𝑇𝐶 and 𝐷𝐶 combinations are extracted via

HSpice aging simulations for 𝑖 months using the FO4 model for
each gate (as shown in Fig. 4, and are included in the database

which is further deployed for training a non-linear regression model
to predict the delay of each gate type experiencing unseen 𝑇𝐶 and

𝐷𝐶 combinations in its output.

Aging-Induced Path-Delay Prediction Model: Having the SAIF file

used to specify the 𝑇𝐶𝑚𝑖𝑛 and 𝑇𝐶𝑚𝑎𝑥 and the regression model

from the previous step, enables us to infer the aging-induced delay

change of each gate in the design after 𝑖 months of aging, when
the device experiences the switching activity and duration cycle

in that SAIF file. Instead of building a new timing model, we use

a trick to use existing STA engines for aging-induced path-delay

prediction. For this purpose, we replace the delay of each cell, with

the delay increment suggested by the regression model (developed

in the previous step) and re-time the design. The timing report,

in the result of query to the STA tool, provides us with the net

delay increase of each timing path, accounting for possible skew

in the launch and capture portion of each timing path (if they age

differently or have different topology). At this point, we have all

information needed to extract the ADP set, described next.
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ADP set Classifier: The ADP set, is composed of MAP and LAP

subset. Timing paths assigned to each subset have to satisfy two

requirements. The first requirement that is common for both MAP

and LAP groups is that the selected timing paths should have avail-

able slack 𝑠 in the original (design time) timing model. Where 𝑠
satisfies the inequality 𝑓𝑚𝑎𝑥 > 1/(𝑇 −𝑠), in which𝑇 is clock period,

and 𝑓𝑚𝑎𝑥 is the maximum clock frequency of the tester. The reason

for this path selection is to be able to use CFST to measure the delay

of the timing paths, which is needed as a part of our model building.

The second requirement is to have a high value of aging-induced

path delay prediction for paths in the MAP subset, and low values

for timing paths in the LAP subset.

Identifying MAP and LAP subset could be easily achieved by

plotting the histogram of aging-induced path delay predictions for

all timing paths that meet the first condition (𝑓𝑚𝑎𝑥 > 1/(𝑇 − 𝑠))
and identifying set of timing paths that are (predicted to be) least

and most affected by aging. This process could be automated by

fitting a bimodal function on the resulting plot.

𝑓 = 𝐺𝑎𝑢𝑠𝑠 (𝜇𝐿𝐴𝑃 , 𝜎𝐿𝐴𝑃 ) +𝐺𝑎𝑢𝑠𝑠 (𝜇𝑀𝐴𝑃 , 𝜎𝑀𝐴𝑃 ) (1)

To differentiate MAP and LAPs from each other, we argue that

a timing-path belongs to the MAP group if its aging-induced path

delay prediction is greater than 𝜇𝑀𝐴𝑃−2×𝜎𝑀𝐴𝑃 ; while it is included
in the LAP group if it is less than 𝜇𝐿𝐴𝑃 + 2 × 𝜎𝐿𝐴𝑃 . Note that
the timing paths with mid-range value for aging-induced path

delay prediction (that extend the tail of MAP and LAP towards one

another) are removed, and are mot included in ADP.

5.2.2 Building a Golden Timing Model. The mean of aging-

induced delay in LAP and MAP paths deviates from each other

as the device ages. We utilize this observation to identify recycled

chips. More precisely, the expected delay of timing path, as reported

by STA, could be compared with the delay obtained from CFST:

𝐴𝐷 = 𝐶𝐹𝑆𝑇 (𝑝) − 𝑆𝑇𝐴(𝑝). The problem with this approach is that

the STA timing information could be very off. This might be due to

process drift or systematic process variation. In the section below,

we describe how each of these fabrication process related phenom-

enon affects our STA accuracy. Then we describe our proposed

learning solution that (by using a set of input features collected

from EDA tool, STA engine, and CFST tester on a subset of ADP

set) predicts the impact of process drift and systematic process

variation. Using this information, and the original STA model, we

build a process-drift aware, and systematic-process-variation aware

Golden Timing Model (GTM) which will be used in our proposed

recycled-IC identification test.

Challenge 1: Process Drift: The Spice model for a new technol-

ogy node is developed and made available to design houses as soon

as the technology is feasible. The spice and technology files are then

used to characterize the standard cell libraries, and extract parasitic

for physical design. However, the foundry keeps maturing the pro-

cess over time. Hence, as the process matures, it drifts apart from

its snapshot being used by design houses. Since, it is unreasonable

to keep updating the technology, spice, and standard cell libraries

during physical design, the process matures/drifts while assuring

backward compatibility. The most obvious example of process drift

is tightening the extent of process variation, a systematic shift in

the performance of all-transistor devices, or optical shrinking.

The process drift causes a systematic, yet nonlinear change in the
timing behavior of fabricated IC compared to that expected from

STA (produced using older process snapshot) and generation of

new unused timing slacks. This creates a non-uniform additional

margin for different timing paths and improves the yield. However,

it makes the comparison of the delays reported by CFST (at test

time) and STA (at design time) more difficult. In this case, even an

aged IC may have slack more than that reported by STA. Moreover,

the added slack is non-uniformly distributed, depending on the

topology of each timing path, as the process drift affects each timing

path differently. Therefore, the STA can not be treated as a fairly

accurate model, and can not be used for the detection of aged ICs

in our methodology. To remedy this issue, in our proposed solution,

we build a learning model (using a subset of ADP paths, features

extracted from the EDA tool, and delay reported by CFST) to predict

the path-based impact of process drift (for each timing path). Our

approach for building the learning model is described below.

Challenge 2: Systematic Process Variation: Systematic pro-
cess variation is the result of imperfection in one or several process

steps, as the result of which, a systematic shift in the behavior of

transistors or wires is observed. For example, such a systematic

shift may speed up all NMOS transistors, increase the capacitance

of a certain metal layer, or reduce the strength of PMOS transistors.

Unlike random process variation (mitigation of which will be dis-

cussed when we describe our IC classification methodology), the

systematic (inter-die) process variation affects all devices similarly.

Therefore, systematic process variation behaves very similar to

process drift, with the difference that process drift is the intended
consequence of improving the fabrication process, and the systematic
process variation is an unintended consequence of imperfection in
one or several processing steps (for example if during the chemical
mechanical polishing (CMP) step, the height of a certain wire level,

e.g. M4, was less or more than the process defined height). The good

news is that the systematic process drift can be treated similarly to

process drift. In the following text, we describe how we developed

a learning model that predicts the impact of both process drift and

systematic process variation for ADP set of timing paths.

Solution: Learning Model: To predict the timing impact of

process drift and systematic process variation, we deploy a learn-

ing model that is trained to predict the difference between the

STA reported delay (at design time) and CFST reported delay (at

test time). For this purpose, we first create a dataset (for training,

validation, and test) where each instance is a timing-path in the

design. Each sample (timing path) is characterized using 38 fea-

tures. These features are extracted from the GDSII file and the

STA engine. Moreover, each sample is given label 𝐿 = 𝐴𝐷 , where
𝐿 = 𝐶𝐹𝑆𝑇 (𝑝) − 𝑆𝑇𝐴(𝑝). Table 1 shows the features considered for
a sequential circuit.

To build an accurate learning model, we deployed and trained a

stacking regression model [4], aka as stacked generalization [38].

The samples used for training are timing paths in the MAP subset of

the ADP set. The selected samples are divided into (60%, 20%, 20%)

subset to form training, validation, and test set accordingly. The

stacking learning model is a two-level ensemble of regressors. Each

regressor by itself can be used as a standalone prediction model;

however, by stacking them, a more generalized model is obtained

that outperforms each of the individual regressors.

An abstract view of a two-layer stacked regressor is shown in

Fig. 5, in which the first layer, 𝐿1, contains of six regressors Xgb[6],
Enet[42], Lasso[34], Ridge[9], MLP[17] and RandomForest[18]. The

second layer can have several regressors, yet we only use Lasso for

this layer. More precisely, the pre-processed train-set that contains
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Table 1: Description for each of 38 features of a sequential circuit, extracted from each timing-path for building the NN dataset.
(LP: Launch portion of timing-path, CP: Capture portion of timing-path, DP: Data portion of timing-path, M: Metal Layer, x:
drive strength of the gate)

Features
Length of M1 in CP Length of M3 in DP # cells in DP # cells of x0 strength in CP # cells of x2 strength in CP # cells of x8 strength in DP

Length of M1 in DP Length of M3 in LP # cells in LP # cells of x0 strength in DP # cells of x2 strength in DP # cells of x8 strength in LP

Length of M1 in LP Length of M4 in CP Setup time # cells of x0 strength in LP # cells of x2 strength in LP # Total fanout

Length of M2 in CP Length of M4 in DP Delay of CP # cells of x16 strength in DP # cells of x4 strength in CP –

Length of M2 in DP Length of M4 in LP Delay of DP # cells of x1 strength in CP # cells of x4 strength in DP –

Length of M2 in LP Length of M5 in DP Delay of LP # cells of x1 strength in DP # cells of x4 strength in LP –

Length of M3 in CP # cells in CP Path delay reported in STA # cells of x1 strength in LP # cells of x8 strength in CP –

Figure 5: A general view of the used 2-layer stacked model.

𝑚 instances and 𝑛 features (𝑋𝑚×𝑛 in Fig. 5) is fed to each of the

embedded regressors at the level one, and their outputs, 𝑦𝜇1 to 𝑦𝜇6

in Fig. 5, are fed to the 𝐿2 model. The output of Lasso in 𝐿2, which
is the only regressor in the second layer, is the final prediction, and

is specified with 𝑦 𝑓 𝑖𝑛 .
We employed Sklearn [5] framework to train and test the stacked

model. We then used the specified hyper-parameters in Table 2 to

tune each model. The detail of the implementation can be found at

[26]. Alg.1 summarizes the steps taken in this research for training

the NN aiming at identifying recycled chips.

Table 2: hyper-parameters of each one of the stackedmodels
showed at the Fig. 5.
Model Hyper-Parameters

Ridge alpha=1, max_iter=5000

Lasso alpha=0.001, max_iter=5000

RF n_estimators=1024, bootstrap=True, min_leaf=1, min_split=2

Xgb n_estimators=1024, learning_rate=0.05

Enet alpha=0.001, max_iter=1000

MLP
in_layer=42, hidden_layer=23, out_layer=1, activation=’tanh’, opti-
mizer=’adam’, learning_rate=’adaptive’, start_lr=’0.1’

Let’s assume that𝑀𝑜𝑑𝑒𝑙 (𝑝) is the prediction of the stacked learn-
ing model for the added delay of timing path 𝑝 . Our Golden Timing
Model is defined as:

𝐺𝑇𝑀 (𝑝) = 𝑆𝑇𝐴(𝑝) +𝑀𝑜𝑑𝑒𝑙 (𝑝) (2)

5.2.3 Computing Added Delays. Now that we have the GTM

for the ADP set, we can compute the Added Delay (AD) of each

path from:

𝐴𝐷 (𝑝) = 𝐶𝐹𝑆𝑇 (𝑝) −𝐺𝑇𝑀 (𝑝) (3)

Note that this model is tuned to predict the delay of the MAP

subset of ADP for the current chip, that could be aged or new. If

the IC is new, the 𝐴𝐷 value for MAP and LAP subset should fall in

the same distribution (when collected across many timing paths).

However, if the IC is aged, the𝑀𝑜𝑑𝑒𝑙 (𝑝) prediction (which is tuned
for MAP subset) will be incorrect, resulting in large inconsistency

between 𝐶𝐹𝑆𝐹 (𝑝) and 𝐺𝑇𝑀 (𝑝).

5.2.4 Inferring MAP-LAP mean shift. Assuming there are 𝑛
paths in MAP subset, and 𝑚 paths in LAP subset, we define the

mean-shift𝑀𝑆 as the

𝑀𝑆 =
1

𝑛

∑

𝑝∈𝑀𝐴𝑃
𝐴𝐷 (𝑝) − 1

𝑚

∑

𝑝∈𝐿𝐴𝑃
𝐴𝐷 (𝑃) (4)

5.2.5 Classification. The last step for detecting aged ICs is a

classification based on a simple thresholding mechanism, Using

threshold value 𝑇ℎ, the IC is identified as aged when 𝑇ℎ ≤ 𝑀𝑆 .
Choosing a value for 𝑇ℎ introduces a trade-off between false posi-

tive and sensitivity of the test. The smaller 𝑇ℎ the value, the more

sensitive the test, and could even identify slightly aged devices at

the expense of possible higher false-positive rate. In this paper, we

set the threshold to the step size of the CFST tester (to reduce the

false positive rate), which we assumed to be 10ps. However, note

that there are other mechanisms that could be justified for setting

the threshold such as 1) goal-driven threshold to identify devices

aged more than𝑚 months, 2) error-driven thresholds (such as𝑚𝜎
of the error of neural network), 3) simulation-driven thresholds

based on the average change of delay of affected timing paths after

𝑚 months of aging, etc. each of which could be justified based on

the ICs use case.

A Note on the impact of Random Process Variation: Pro-
cess variation is variation in the electrical and physical property of

transistor devices due to the physical limitations of the fabrication

process at scaled geometries [35, 37]. In higher abstract level, it

could be modeled as zero-mean variation in threshold voltage of

transistor device, such that two identical transistors may end up

with different drive strength after fabrication. In this section, we ex-

plain why process variation does not impact our aged-IC detection

solution.

When considering the impact of process variation in delay of

timing paths, the impact of variation in individual devices accu-

mulates and results in the variation in the delay of timing paths.

For modeling purpose, we can denote the variation in the delay of

timing path 𝑝𝑖 using random variable 𝑋𝑖 , where 𝐸 (𝑋𝑖 ) = 𝜇 = 0, and

V=𝑉𝐴𝑅(𝑋𝑖 ) = 𝜎2. Our detection methodology relies on identifying
the mean shift between the LAP and the MAP group. Let’s assume

the MAP group. The mean of added delay (AD) for timing paths in

MAP can be denoted by random variable 𝑋 , where

Algorithm 1 Training NN

1: for all 𝑃𝑎𝑡ℎ𝑠 in 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 do
2: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠←𝐶𝑜𝑙𝑙𝑒𝑐𝑡 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓 𝑟𝑜𝑚 GDSII

3: 𝑙𝑎𝑏𝑒𝑙𝑠←𝐶𝑜𝑙𝑙𝑒𝑐𝑡 𝑆𝑙𝑎𝑐𝑘 𝑓 𝑟𝑜𝑚 CFST of Fabricated chip

4: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← [𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠 ]
5: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝐴𝑃 ←𝑀𝐴𝑃 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

6: 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 ← Train a NN with 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑀𝐴𝑃
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s35932 s38417 s38584 b17 AES128

Figure 6: Histograms depicting delay-increase on timing-paths used for classification after onemonth of aging. For each bench-
marks, there exists a bimodal distribution for the 𝐴𝐷 distinguishing the MAP and LAP paths from each other.

𝑋 =
1

𝑛

∑

𝑝𝑖 ∈𝑀𝐴𝑃

𝑋𝑖 (5)

With this information:

𝐸 (𝑋 ) = 𝐸 ( 1
𝑛

∑

𝑝𝑖 ∈𝑀𝐴𝑃

𝑋𝑖 ) = 1

𝑛
𝐸 (

∑

𝑝𝑖 ∈𝑀𝐴𝑃

𝑋𝑖 ) = 0 (6)

𝑉𝐴𝑅 (𝑋 ) = 𝑉𝐴𝑅 ( 1
𝑛

∑
𝑋𝑖 ) = 1

𝑛2
𝑉𝐴𝑅 (

∑
𝑋𝑖 ) = 𝑛𝜎

2

𝑛2
=
𝜎2

𝑛
(7)

The same analogy applies to the mean of AD computed for the

LAP group. In another word, the mean shift (used for detection) is

a 0-mean random variable with standard deviation 𝜎/√𝑛, where n
represents the number of paths in MAP or LAP group. Therefore,

by choosing a large number of paths (n) for each of LAP and MAP

set (we collect thousands), the impact of process variation on mean-

shift value becomes negligible, and PV does not affect the final

classification.

6 EXPERIMENTAL RESULTS AND
DISCUSSIONS

We targeted 5 different IPs including s35932, s38417, s38584, b17,

and AES128 from IWLS benchmark suite[1] and hardened them

using a commercial 32nm technology via the Synopsys EDA toolset

[32]. We used Synopsys HSpice for the transistor-level simulations,

and the HSpice built-in MOSRA Level 3 model to assess the effect

of NBTI and HCI aging [31]. The aging simulations were performed

under temperature= 125°C and Vdd=0.85V for 12 months with 1-

month steps.

For each benchmark, using the Synopsys PrimeTime tool, we

extracted N=10 longest paths feeding each endpoint (flip-flop or

primary output). To account for the tester frequency step size, in

our experiments we only select a subset of these paths whose delay

is at least 250ps, resulting in the selection of 3455, 2390, 2121, 2626,

and 21460 timing paths for the s35932, s38417, s38584, b17, and

AES128 benchmarks, respectively.

To take the impact of process variations into account, in our

simulation-based setup, the random patterns we use to generate

our GTM is different from the set of patterns we use in aging

simulations to extract the aging-induced path delays and creating

the ADP classifier. Note that the ADP set classifier is unique for

each GDSII netlist and is generated per design. Using the ADP

set classifier, we fit a bimodal curve on ADP set’s histogram for

each design to identify MAP and LAP groups. The histograms and

fitted bimodal curves for each target circuitry after one month of

usage are shown in Fig. 6. This figure clearly depicts the deviation

of MAP and LAP paths from each other when the device is aged.

This observation confirms the applicability of the proposed path

classification scheme in detecting recycled chips.

As the next step after classifying the timing paths, for each

benchmark, we extracted the features presented in Table 1 from its

GDSII file, and used them to generate 13 datasets per benchmark

related to 𝑖 months of aging where 0 ≤ 𝑖 ≤ 12. Each dataset includes

the extracted features and the slacks collected from one of these

13 aging simulations. We used these datasets to generate a unique

GTM for each circuit-under-test.

We deployed the extracted GTM for each benchmark circuits

aged between zero and 12 months, and calculated the MAP-LAP

mean shift via equation 4. The results are shown in Table 3. As

depicted, the mean shift between LAP and MAP paths significantly

increases for an aged device compared to its fresh (age=0) counter-

part. The more the device is aged, the higher the value of the mean

shift between its LAPs and MAPs. However, as expected the rate

of mean-shift increase is higher initially. This is because the aging

effect is high in the first couple of months but the aging-induced

threshold voltage tends to saturate for long stress times (refer to

Fig. 2). In particular, as Table 3 shows for the s35932 benchmark,

the mean shift changes from -0.63ps to 12.39ps (20x increase) after

1 month, while it increases 50% in the following month compared

to its value in month 1. The same trend can be observed in other

benchmarks. On average, over all benchmarks, the mean shift in-

creases 29.15, 36.02, 44.19, 53.71, and 72.23 ps after 1, 3, 6, 9, and 12

months of aging. Accordingly, the proposed method can accurately

differentiate the new and recycled chips from each other.

7 CONCLUSION
In this paper, we presented a novel methodology for detecting Aged-

ICs. Our detection methodology is based on a side-channel delay

analysis. Our model is tolerant of random process variation, sys-

tematic process variation, and process drift. Our proposed solution

does not rely on the existence of a Golden IC. Instead, using features

collected from the design, and delay samples collected from a subset

of timing paths using the Clock Frequency Sweeping test (CFST),

builds a learning model that predicts the delay difference between

the CFST and STA. We also presented a methodology to distinguish

between two sets of timing paths that age more/less overtime. Using

the collected delay information, we compute the delay difference

between these two sets of paths (Aged Distinguishing Paths) as a

measure of the age of the IC.
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Table 3: The mean error of each ADP set group for all benchmarks.
Benchmark Aging (Months) 0 1 2 3 4 5 6 7 8 9 10 11 12

s35932

Train and Test (MAP) 0.00 0.12 0.28 0.03 0.05 0.07 0.09 0.20 0.39 0.51 0.10 0.37 0.43
Evaluate (LAP) 0.63 −12.27 −19.39 −22.32 −23.88 −23.87 −27.47 −28.54 −30.72 −30.91 −32.15 −35.71 −39.04
Mean Shift −0.63 12.39 19.67 22.35 23.92 23.94 27.56 28.74 31.11 31.42 32.25 36.08 39.47
Correctly Identified � � � � � � � � � � � � �

s38417

Train and Test (MAP) −0.05 −0.89 −0.54 −0.76 2.81 −0.49 0.27 −0.20 −1.81 −0.96 −1.85 0.89 1.88
Evaluate (LAP) 0.57 −28.93 −31.07 −32.76 −33.05 −33.55 −36.54 −40.91 −41.01 −43.60 −44.52 −49.99 −62.87
Mean Shift −0.62 28.04 30.53 32.00 35.87 33.06 36.82 40.71 39.20 42.64 42.67 50.89 64.75
Correctly Identified � � � � � � � � � � � � �

s38584

Train and Test (MAP) 0.00 −0.20 −2.54 1.40 −1.43 1.79 1.22 −1.05 −2.99 −0.30 −2.92 −2.86 −2.95
Evaluate (LAP) 0.46 −26.46 −31.50 −34.47 −39.01 −41.02 −48.17 −46.42 −49.28 −49.53 −53.01 −55.15 −57.46
Mean Shift −0.46 26.26 28.96 35.87 37.58 42.81 49.39 45.37 46.29 49.23 50.08 52.30 54.52
Correctly Identified � � � � � � � � � � � � �

b17

Train and Test (MAP) 0.02 −2.75 −2.10 −5.46 −1.12 0.64 0.24 −1.05 −0.99 0.66 −0.42 −4.58 −4.21
Evaluate (LAP) 0.14 −38.22 −40.65 −44.99 −48.21 −53.94 −57.18 −68.94 −73.40 −91.61 −100.83 −104.66 −107.85
Mean Shift −0.12 35.47 38.55 39.53 47.09 54.58 57.42 67.89 72.41 92.27 100.42 100.08 103.64
Correctly Identified � � � � � � � � � � � � �

AES128

Train and Test (MAP) 0.02 1.06 0.87 0.65 1.94 0.35 0.31 2.09 1.28 1.84 1.36 1.49 0.63
Evaluate (LAP) 0.53 −35.31 −39.77 −42.55 −47.95 −44.71 −46.68 −45.18 −52.32 −51.52 −55.25 −62.85 −84.86
Mean Shift −0.50 36.37 40.65 43.20 49.89 45.06 46.99 47.28 53.60 53.36 56.61 64.35 85.49
Correctly Identified � � � � � � � � � � � � �
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