Learning Assisted Side Channel Delay Test for Detection of
Recycled ICs

Ashkan Vakil

George Mason University

Avesta Sasan
George Mason University

ABSTRACT

With the outsourcing of design flow, ensuring the security and
trustworthiness of integrated circuits has become more challenging.
Among the security threats, IC counterfeiting and recycled ICs
have received a lot of attention due to their inferior quality, and
in turn, their negative impact on the reliability and security of the
underlying devices. Detecting recycled ICs is challenging due to the
effect of process variations and process drift occurring during the
chip fabrication. Moreover, relying on a golden chip as a basis for
comparison is not always feasible. Accordingly, this paper presents
arecycled IC detection scheme based on delay side-channel testing.
The proposed method relies on the features extracted during the
design flow and the sample delays extracted from the target chip to
build a Neural Network model using which the target chip can be
truly identified as new or recycled. The proposed method classifies
the timing paths of the target chip into two groups based on their
vulnerability to aging using the information collected from the
design and detects the recycled ICs based on the deviation of the
delay of these two sets from each other.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures.
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1 INTRODUCTION

To reduce the fabrication cost of a new Integrated Circuit (IC), bene-
fit from smaller area and power profile of advanced sub-nanometer
technology nodes, or build a scalable model that is ready to meet the
market demand, the manufacturing supply chain of ICs is globalized
[40]. However, the presence of untrusted parties in such a global
supply chain has jeopardized the security and trustworthiness of In-
tegrated Circuits (ICs) and introduced many security vulnerabilities
[20], including the possibility of IP piracy/theft, Trojan insertion,
overbuilding, and counterfeiting. A widely studied solution for pro-
tecting the IP in the manufacturing supply chain is logic encryption.
For logic encryption, the IC designer introduces limited means of
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post-manufacturing programmability into a netlist (representing
valuable IP) [7, 13-16, 28, 29]. After fabrication, the IC is shipped to
and activated at a trusted facility, where the activation key is stored
in a non-volatile memory on-chip. Logic locking protects an IC
against overproduction and IP piracy and reduces Trojan insertion
chances, but does not protect recycled or aged ICs sold as new.

A counterfeit IC can be an unauthorized copy of the exact IC,
a slightly modified version, a recycled IC, or a defective one [11].
Recycled ICs, ICs that have been already used but are pretended
to be new, have contributed to more than 80% of the counterfeit
ICs in recent years[12]; posing around $169 billion revenue loss
to the global electronics supply chain[3]. Based on U.S. Chamber
of Commerce reports, counterfeit ICs have even found their way
into military supply chain [8]. A recycled chip exhibits a lower
performance and a higher failure rate over time, since its embedded
transistors have already been aged, i.e., their characteristics have
been derated due to the chip usage. This increases the probability
of chip failure sooner than expected; shortening the chip lifespan.
The short lifetime and low performance of the recycled ICs not only
affect the end-users but also puts a significant financial burden on
the industry and government sectors. Therefore, a concrete solution
to detect recycled ICs is highly required.

Among the various designs’ robustness concerns affecting CMOS
devices, aging effects have been receiving a lot of attention. In prac-
tice, aging mechanisms degrade the reliability and performance
of CMOS devices over their lifetime. Due to aging, the electrical
behavior of transistors deviates from their original intended be-
havior, resulting in performance degradation and the ultimate chip
failure [21, 22]. Among aging mechanisms, the effect of Bias Tem-
perature Instability (BTI) and Hot Carrier Injection (HCI) are more
dominant than other aging mechanisms [27]. In this paper, we focus
on these two aging mechanisms when detecting the recycled chips.

Guardbanding is the current industrial practice to cope with
transistor aging and voltage droops. It entails slowing down the
clock frequency (i.e., adding timing margin during design) based on
the worst degradation the transistors might experience during their
lifetime [23]. The guardbands ensure that the chip functionality is
intact for an average period of 5 to 7 years. However, inserting wide
guardbands degrades performance and increases energy consump-
tion. Hence, chip design companies usually have small guardbands,
typically 5-10% [36]. Fig. 1 shows an overview of the guardband
assignment for each chip during the manufacturing. In this figure,
the delay of the critical path is Cyp when the chip is new. As the
chip is used, its critical path delay gradually increases due to aging;
reaching Tj after a period of t = Y years. Accordingly, for the chip to
be usable during its expected lifetime (Y Year), it needs to be clocked
at a frequency no higher than Fy = 1/Ty. Thus, the designers add a
guardband G = T — C to prevent any aging-induced chip malfunc-
tion during its expected lifespan (i..e, Y years in Fig. 1). However,
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if the chip is a recycled one, the remaining life expectancy is less
than Y, i.e., it can experience a malfunction much sooner than the
expected lifetime (Y).

Critical
Path Delay

Usage Time

Figure 1: Impact of aging on critical path delay.

In practice, detecting recycled ICs is challenging, particularly in
lower technology nodes, due to the Process Variations (PV) occur-
ring at the fabrication process. To account for the PV, the detection
method should be able to differentiate the PV-induced change in the
delay of timing-paths from the aging-induced changes. Otherwise,
ignoring the impact of PV would result in false positives or false
negatives, which in turn results in disposing a new IC or deploying
a recycled one, respectively.

Device workload as well as environmental conditions, including
temperature and voltage source, all affect the device aging rate. In
fact, each logical cell residing in a chip is aged differently based on
the duration of logical ‘1’ and ‘0’ values applied to its input pins, or
the toggling count that its transistors observe.

Our Learning Assisted Side Channel Delay Test scheme aims to
differentiate between aged and new devices by assessing the impact
of aging on the delay of carefully selected timing paths in a chip
under test. Different timing paths, for having different topologies,
for being made of different types of devices, and for experiencing
different switching activities would age differently. Hence, in an
aged IC, one could expect to see a disparity in the aging-induced
increase in the delay across timing-paths. Therefore, delay testing
could be used for the detection of aged ICs.

The problem of finding aged ICs using delay testing, however,
faces a serious challenge: The change in the delay of timing paths
could also be the result of PV (systematic or random) and/or process
drift. PV is the unintended variation in the physical and electrical
property (strength) of transistor devices due to the physical limita-
tion of manufacturing devices in building perfect transistors. Pro-
cess drift is the intended change in the process over time, made by
the fabrication lab to improve the process. Although such improve-
ment guarantees a working transistor made using Spice models
generated for an older version of the process, the strength and char-
acteristic of devices (and in the result their speed) would change
over time. Therefore, by having access to the original GDSII and
timing model (generated for the original Spice Model), a tester can
not determine if the change in the delay of a timing path is due to
PV and/or process drift or if it is due to aging.

In this paper, we propose a learning assisted mechanism for side-
channel delay testing of a circuit to assess if the chip under test is
aged. Our proposed solution is resilient to the PV and process drift
and does not need a golden chip to work properly.

2 THREAT MODEL

In this paper, we assume that the IC designer is trustworthy while
the supply chain is untrusted. In particular, we assume that an
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adversarial supplier can potentially provide the system integrator
with a recycled IC, the usage of which (in a critical application) may
result in catastrophic consequences (due to the effect of aging on the
chip’s reliability). We assume that the IC/system designer has access
to the chip netlist and its GDSII file. However, she does not have a
golden chip to use it as a basis to determine if the chip-under-test
is recycled or new.

3 PREVIOUS WORKS

Recycled IC detection methods can be classified into several cat-
egories. The first category deals with conventional test methods that
perform physical (e.g. detecting repackaged ICs using 3-Dimensional
imaging technologies) and electrical (studying the ICs’ parameters
such as threshold voltage, path delays, etc) tests [33] [30]. Such tests
are conducted in specific labs following several testing standards
such as AS6171, AS5553, and CCAP-101 [2]. These methods are
costly, time-consuming, and have a low detection rate.

The second category of Recycled IC detection schemes, i.e., statis-
tical approaches, mainly deploy machine-learning models to differ-
entiate new and aged chips from each other. For instance, in [19], Ke
Huang et al. used a Support Vector Machine (SVM) based technique
to classify the chips into recycled versus new using parametric mea-
surements collected from a set of brand new chips including Iddq,
Fraxs Vmin, etc. These measurements are usually collected in the
test facilities to verify the correct functionality of the chips before
shipping them to customers. On the other hand, in [41], the authors
detect recycled ICs based on the aging rates in similar components
that may have resided in the target chip. The assumption is that if
the device is aged, similar components in the device (e.g., different
full adders in an N-bit adder module) may age differently as they are
exposed to different input patterns during run time. In this method,
the correlation of dynamic supply current (IDDT) between similar
logic blocks is calculated, based on which, the IC is reported as new
or recycled. The main drawback of the prior art statistical solutions
is their reliance on the availability of a golden chip.

The third group, the so-called DFAC (Design For Anti Counter-
feiting) strategies, detect the recycled ICs via on-chip sensors[30].
The on-chip sensor-based approaches try to compare the frequency
of an embedded element, e.g., a Ring Oscillator (RO) with a ref-
erence point to identify the recycled ICs. For instance, Guin et al.
[10] proposed to insert two ring oscillators inside the chip, one
is not used frequently while the other is always on. Comparing
the frequency of these oscillators reveals if the chip is recycled.
As this is sensitive to PV, its detection accuracy is low. To resolve
this issue, [3] tried to mitigate the impact of PV by replacing the
reference RO with a Non Volatile Memory (NVM) that stores the
frequency of the RO when it is new. The stored value is compared
with the frequency of the RO when the device is checked regarding
its freshness. Any discrepancy demonstrates that the device is not
new. To prevent tampering such NVM, the authors proposed to use
digital signature verification (e.g., chip unique ID). This method
suffers from high power consumption related to its always-on RO.

4 PRELIMINARY BACKGROUNDS

4.1 Background on aging.

Aging mechanisms including Bias Temperature Instability (BTI),
Hot-Carrier Injection (HCI), Time-Dependent Dielectric Breakdown
(TDDB), and Electromigration (EM) result in performance degrada-
tion and eventual failure of digital circuits over time [25]. Among
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all, BTT and HCI are the two leading factors in the performance
degradation of digital circuits [27]. Both mechanisms increase the
switching delay of transistors, leading to an increase in path delays.

BTI Aging: BTI aging includes Negative Bias Temperature In-
stability (NBTI) and Positive Bias Temperature Instability (PBTI).
NBTI affects a PMOS transistor when a negative voltage is applied
to its gate. A PMOS transistor experiences two phases of NBTI
depending on its operating condition. The first phase, the so-called
stress phase, occurs when the transistor is on (Vg5 < V;). In this
case, positive interface traps are generated at the Si-SiO3 interface
which leads to an increase of the threshold voltage of the transistor.
The second phase, denoted as the recovery phase, occurs when the
transistor is off (Vgs > V;). The threshold voltage drift that occurred
during the stress phase will partially recover in the recovery phase.

Threshold voltage drifts of a PMOS transistor under stress de-
pend on the physical parameters of the transistor, supply voltage,
temperature, and stress time [24]. The last three parameters (known
as external parameters) are used as acceleration factors of the ag-
ing process. Figure 2 shows the threshold voltage drift of a PMOS
transistor that is continuously under stress for 6 months and a
transistor that alternates between stress and recovery phases ev-
ery other month. As shown, the NBTI effect is high in the first
couple of months but the threshold voltage tends to saturate for
long stress times. It is noteworthy to mention that PBTI affects the
NMOS transistors in a similar fashion that NBTI affects the PMOS
transistors. Accordingly, for the sake of space, we do not discuss
PBTI separately.
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Figure 2: Threshold-voltage shift of a PMOS transistor under
the NBTI effect. Values on the Y-axis are not shown to make

the graph generic for different technologies.
HCI Aging: HCI occurs when hot carriers are injected into the

gate dielectric during transistor switching and remain there. HCI is
a function of switching activity and degrades the circuit by shifting
the threshold voltage and the drain current of transistors under
stress. HCI mainly affects NMOS transistors.

HClI-induced threshold voltage drift is highly sensitive to the
number of transitions occurring in the gate input of the transistor
under stress. In practice, HCI has a sublinear dependency on the
clock frequency, usage time, and activity factor of the transistor
under stress, where activity factor represents the ratio of the cycles
the transistor is switching and the total number of cycles the device
is utilized. HCI effect is exacerbated as the operating temperature
increases [27].

5 PROPOSED RECYCLED IC DETECTION
METHODOLOGY
Our proposed aged-IC detection methodology is based on a side-

channel delay analysis. To formulate a reliable test, we have pro-
vided separate solutions for mitigating the impact of process drift
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and process variation, and have proposed a novel (delay-based fre-
quency sweeping) test solution to detect the aged-ICs. For the use
of machine learning models, our proposed solution falls in the cate-
gory of statistical models. However, unlike prior work, we do not
rely on the existence of a golden model. We, instead, assume that
the designer has access to the original physical design, the GDSII
sent for fabrication, and Static Timing Model developed for the
original design at the state of its timing-closure. In the following
subsection, we define a few terms and parameters, based on which
in Section 5.2, our proposed model is explained:

5.1 Definitions and Model Parameters

Before describing our solution, we elaborate on the model parame-
ters used:

Clock Frequency Sweeping Test (CFST): An existing delay
testing solution in which delay of different timing paths is examined
while increasing the clock frequency [39]. The target is to find the
start to fail frequency for different timing paths. The test accuracy
is limited by the tester frequency step size and maximum achievable
frequency. The delay reported for each timing path may be affected
by both process variation and process drift.

Age Distinguished Paths (ADP): Depending on the circuit
topology and workload, some of the timing paths in a circuit age
more, and some age less than others. Hence, we can distinguish
between two sets of timing paths: 1) Most aging Affected Paths
(MAP) and 2) Least aging Affected Paths (LAP).

For simplicity, lets first assume that there is no process drift (but
there exist process variation), the step size of the tester is sufficiently
small, Static Timing Analysis is perfect, and CFST reported delay
for a timing path at age zero (fresh IC) matches that of the STA
within the boundary of process variation. Lets denote the STA-
reported delay of path p with STA(p), and the delay reported by
CFST by CFST (p). We define added delay AD for path p as AD(p) =
CFST(p) — STA(p). Given a set of timing paths, if we compute
AD for each path, we will see a zero-mean normal distribution of
ADs if the IC is not aged (in an ideal world). This is illustrated in
Fig. 3(top). As the IC ages, the MAP and LAP timing paths would age
at different rates (Fig. 3(middle)). Therefore, the normal distribution
(observed at age zero) will morph into a bimodal distribution, where
the difference in the mean of two clusters increases over time,
highlighting the separation between MAP and LAP group. This is
the basis for our aged-IC detection.

However, in a real-world, we have to deal with process drift,
reduce the impact of process variation, identify MAP and LAP
groups ahead of time, deal with the inaccuracy of tester, account for
inaccuracy of the STA and the fact that it does not match the CFST
test result. In the next section, we describe our proposed model
that deals with each of these phenomenons, for building a reliable
aging detection solution.

5.2 Proposed Model

Our approach consists of six main steps, described next:

e (1) ADP set identification: Selecting a viable set of Age
Distinguishing Paths (ADP), and dividing it into MAP and
LAP subsets.

e (2)Building a Golden Timing Model: Generating a Golden
Timing Model (aided by a machine learning regression model)
that accounts for process drift, timing prediction of which
matches that of CFST test on MAP subset of timing paths.
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Figure 3: In a new device, one cannot distinguish between
MAP and LAP timing paths as no aging occurred. Comput-
ing the AD for timing paths gives us a zero-mean distribu-
tion. As the IC ages, the delay of all timing paths increases,
however, the delay-increase is more significant in the MAP
set of timing paths. Therefore, the normal distribution of
AD morphs into a bimodal distribution as the IC ages. Iden-
tification of MAP and LAP sets of timing paths allows us to
compute the mean for each set. The shift in the mean is an
indication of the extent of aging. In this figure, it is assumed
that there is no process drift (but there exist process varia-
tion), the step size of the tester is very small, STA is perfect,
and CFST reported delay for a timing path at age zero (fresh
IC) matches STA. We will update these assumptions to real-
istic ones when discussing our proposed solution.

This step intends to model the impact of process drift and
systematic process variation.

(3) Computing Added Delays: Inferring the slack of tim-
ing paths in the ADP set for both LAP and MAP subsets
from the GTM (created in the previous step) as expected
value, and from CFST as actual value, and computing the
AD(p) = CFST(p) — GTM(p) for each path in each subset.
(4) Inferring MAP-LAP mean shift: Computing the mean-
shift of AD for MAP and LAP subsets; This step intends to
reduce the impact of process variation and tester discrete
step size on our detection threshold.

(5) Classification: Using a binary classifier to mark the IC
as aged or new.

5.2.1 ADP set identification. Age distinguishing paths consist
of two subsets of MAP and LAP timing paths. In order to collect
the ADP set and assign timing paths to each of MAP and LAP,
we propose the following set of modeling steps, each of which is
described next:

e Train a regression model for gate-specific age perdition
o Build an Aging-Induced Path-Delay Prediction Model
e Build an ADP set Classifier

Regression model for gate-specific age prediction: To build a model

that predicts aging-induced delay increase for each gate, we first
create a database that includes each gate type and its correspond-
ing aging-induced delay increase after i months when the gate is
fed with different workloads. To emulate different workloads, the
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Figure 4: SPICE netlist for aging each gate type.

gate is simulated under different conditions where in each condi-
tion of COND; j, its output signal Duty Cycle and Toggle Count
are DC; and TC}, respectively. Here, Duty Cycle (DC) denotes the
percentage of the time that the signal is ‘0’.

In practice, we consider I different DC and J different TC val-
ues for the gate output, and for each condition (among all I X J
conditions) we generate a table of input patterns (among many
possibilities) that satisfies the considered toggle count and duty
cycle on the output.

To tailor a more precise timing model for each circuit, we deter-
mine an approximate range of TCs that the circuit’s gates outputs
experience during run time by simulating the main circuit with
a set of random inputs. We use the SAITF file which is generated
via simulation to extract the maximum and minimum TCs of all
signals in the circuit, refer to as TCpip and TCpyax hereafter. Then,
we sweep DC in range of [0, 1] with the steps of st, and TC in range
of [TCpin, TCrmax] with the steps of tc. In this study, st and tc are
considered as 0.05 and %, respectively.

As the next step, the aging-induced delay change for each gate
type in the considered TC and DC combinations are extracted via
HSpice aging simulations for i months using the FO4 model for
each gate (as shown in Fig. 4, and are included in the database
which is further deployed for training a non-linear regression model
to predict the delay of each gate type experiencing unseen TC and
DC combinations in its output.

Aging-Induced Path-Delay Prediction Model: Having the SATF file
used to specify the TCpyip and TCpyax and the regression model
from the previous step, enables us to infer the aging-induced delay
change of each gate in the design after i months of aging, when
the device experiences the switching activity and duration cycle
in that SAIF file. Instead of building a new timing model, we use
a trick to use existing STA engines for aging-induced path-delay
prediction. For this purpose, we replace the delay of each cell, with
the delay increment suggested by the regression model (developed
in the previous step) and re-time the design. The timing report,
in the result of query to the STA tool, provides us with the net
delay increase of each timing path, accounting for possible skew
in the launch and capture portion of each timing path (if they age
differently or have different topology). At this point, we have all
information needed to extract the ADP set, described next.
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ADP set Classifier: The ADP set, is composed of MAP and LAP
subset. Timing paths assigned to each subset have to satisfy two
requirements. The first requirement that is common for both MAP
and LAP groups is that the selected timing paths should have avail-
able slack s in the original (design time) timing model. Where s
satisfies the inequality finax > 1/(T —s), in which T is clock period,
and fmax is the maximum clock frequency of the tester. The reason
for this path selection is to be able to use CFST to measure the delay
of the timing paths, which is needed as a part of our model building.
The second requirement is to have a high value of aging-induced
path delay prediction for paths in the MAP subset, and low values
for timing paths in the LAP subset.

Identifying MAP and LAP subset could be easily achieved by
plotting the histogram of aging-induced path delay predictions for
all timing paths that meet the first condition (finax > 1/(T —s))
and identifying set of timing paths that are (predicted to be) least
and most affected by aging. This process could be automated by
fitting a bimodal function on the resulting plot.

1

To differentiate MAP and LAPs from each other, we argue that
a timing-path belongs to the MAP group if its aging-induced path
delay prediction is greater than yip;4p—2X0oprap; while it is included
in the LAP group if it is less than pyrap + 2 X opap. Note that
the timing paths with mid-range value for aging-induced path
delay prediction (that extend the tail of MAP and LAP towards one
another) are removed, and are mot included in ADP.

f = Gauss(uLap, orap) + Gauss(pupap, oMAP)

5.2.2 Building a Golden Timing Model. The mean of aging-
induced delay in LAP and MAP paths deviates from each other
as the device ages. We utilize this observation to identify recycled
chips. More precisely, the expected delay of timing path, as reported
by STA, could be compared with the delay obtained from CFST:
AD = CFST(p) — STA(p). The problem with this approach is that
the STA timing information could be very off. This might be due to
process drift or systematic process variation. In the section below,
we describe how each of these fabrication process related phenom-
enon affects our STA accuracy. Then we describe our proposed
learning solution that (by using a set of input features collected
from EDA tool, STA engine, and CFST tester on a subset of ADP
set) predicts the impact of process drift and systematic process
variation. Using this information, and the original STA model, we
build a process-drift aware, and systematic-process-variation aware
Golden Timing Model (GTM) which will be used in our proposed
recycled-IC identification test.

Challenge 1: Process Drift: The Spice model for a new technol-
ogy node is developed and made available to design houses as soon
as the technology is feasible. The spice and technology files are then
used to characterize the standard cell libraries, and extract parasitic
for physical design. However, the foundry keeps maturing the pro-
cess over time. Hence, as the process matures, it drifts apart from
its snapshot being used by design houses. Since, it is unreasonable
to keep updating the technology, spice, and standard cell libraries
during physical design, the process matures/drifts while assuring
backward compatibility. The most obvious example of process drift
is tightening the extent of process variation, a systematic shift in
the performance of all-transistor devices, or optical shrinking.

The process drift causes a systematic, yet nonlinear change in the
timing behavior of fabricated IC compared to that expected from
STA (produced using older process snapshot) and generation of
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new unused timing slacks. This creates a non-uniform additional
margin for different timing paths and improves the yield. However,
it makes the comparison of the delays reported by CFST (at test
time) and STA (at design time) more difficult. In this case, even an
aged IC may have slack more than that reported by STA. Moreover,
the added slack is non-uniformly distributed, depending on the
topology of each timing path, as the process drift affects each timing
path differently. Therefore, the STA can not be treated as a fairly
accurate model, and can not be used for the detection of aged ICs
in our methodology. To remedy this issue, in our proposed solution,
we build a learning model (using a subset of ADP paths, features
extracted from the EDA tool, and delay reported by CFST) to predict
the path-based impact of process drift (for each timing path). Our
approach for building the learning model is described below.
Challenge 2: Systematic Process Variation: Systematic pro-
cess variation is the result of imperfection in one or several process
steps, as the result of which, a systematic shift in the behavior of
transistors or wires is observed. For example, such a systematic
shift may speed up all NMOS transistors, increase the capacitance
of a certain metal layer, or reduce the strength of PMOS transistors.
Unlike random process variation (mitigation of which will be dis-
cussed when we describe our IC classification methodology), the
systematic (inter-die) process variation affects all devices similarly.
Therefore, systematic process variation behaves very similar to
process drift, with the difference that process drift is the intended
consequence of improving the fabrication process, and the systematic
process variation is an unintended consequence of imperfection in
one or several processing steps (for example if during the chemical
mechanical polishing (CMP) step, the height of a certain wire level,
e.g. M4, was less or more than the process defined height). The good
news is that the systematic process drift can be treated similarly to
process drift. In the following text, we describe how we developed
a learning model that predicts the impact of both process drift and
systematic process variation for ADP set of timing paths.
Solution: Learning Model: To predict the timing impact of

process drift and systematic process variation, we deploy a learn-
ing model that is trained to predict the difference between the
STA reported delay (at design time) and CFST reported delay (at
test time). For this purpose, we first create a dataset (for training,
validation, and test) where each instance is a timing-path in the
design. Each sample (timing path) is characterized using 38 fea-
tures. These features are extracted from the GDSII file and the
STA engine. Moreover, each sample is given label L = AD, where
L = CFST(p) — STA(p). Table 1 shows the features considered for
a sequential circuit.

To build an accurate learning model, we deployed and trained a
stacking regression model [4], aka as stacked generalization [38].
The samples used for training are timing paths in the MAP subset of
the ADP set. The selected samples are divided into (60%, 20%, 20%)
subset to form training, validation, and test set accordingly. The
stacking learning model is a two-level ensemble of regressors. Each
regressor by itself can be used as a standalone prediction model;
however, by stacking them, a more generalized model is obtained
that outperforms each of the individual regressors.

An abstract view of a two-layer stacked regressor is shown in
Fig. 5, in which the first layer, L1, contains of six regressors Xgb[6],
Enet[42], Lasso[34], Ridge[9], MLP[17] and RandomForest[18]. The
second layer can have several regressors, yet we only use Lasso for
this layer. More precisely, the pre-processed train-set that contains
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Table 1: Description for each of 38 features of a sequential circuit, extracted from each timing-path for building the NN dataset.
(LP: Launch portion of timing-path, CP: Capture portion of timing-path, DP: Data portion of timing-path, M: Metal Layer, x

drive strength of the gate)

Figure 5: A general view of the used 2-layer stacked model.

m instances and n features (Xp,xn in Fig. 5) is fed to each of the
embedded regressors at the level one, and their outputs, §# to §#¢
in Fig. 5, are fed to the Ly model. The output of Lasso in Ly, which
is the only regressor in the second layer, is the final prediction, and
is specified with /7.

We employed Sklearn [5] framework to train and test the stacked
model. We then used the specified hyper-parameters in Table 2 to
tune each model. The detail of the implementation can be found at
[26]. Alg.1 summarizes the steps taken in this research for training
the NN aiming at identifying recycled chips.

Table 2: hyper-parameters of each one of the stacked models
showed at the Fig. 5.

[ Model | Hyper-Parameters |
Ridge | alpha=1, max_iter=5000
Lasso alpha=0.001, max_iter=5000
RF n_estimators=1024, bootstrap=True, min_leaf=1, min_split=2
Xgb n_estimators=1024, learning_rate=0.05
Enet alpha=0.001, max_iter=1000
in_layer=42, hidden_layer=23, out_layer=1, activation="tanh’, opti-
MLP : s s . s 7 10
mizer="adam’, learning_rate="adaptive’, start_Ir="0.1

Let’s assume that Model(p) is the prediction of the stacked learn-
ing model for the added delay of timing path p. Our Golden Timing
Model is defined as:

GTM(p) = STA(p) + Model(p) (2)

5.2.3 Computing Added Delays. Now that we have the GTM
for the ADP set, we can compute the Added Delay (AD) of each
path from:

AD(p) = CFST(p) — GTM(p) ®)

Note that this model is tuned to predict the delay of the MAP
subset of ADP for the current chip, that could be aged or new. If
the IC is new, the AD value for MAP and LAP subset should fall in
the same distribution (when collected across many timing paths).
However, if the IC is aged, the Model(p) prediction (which is tuned
for MAP subset) will be incorrect, resulting in large inconsistency
between CFSF(p) and GTM(p).
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Features
Length of M1 in CP | Length of M3 in DP | # cells in DP # cells of x0 strength in CP # cells of x2 strength in CP | # cells of x8 strength in DP
Length of M1 in DP | Length of M3 inLP | # cellsin LP # cells of x0 strength in DP # cells of x2 strength in DP | # cells of x8 strength in LP
Length of M1 in LP | Length of M4in CP | Setup time # cells of x0 strength in LP # cells of x2 strength in LP | # Total fanout
Length of M2 in CP | Length of M4 in DP | Delay of CP # cells of x16 strength in DP | # cells of x4 strength in CP | -
Length of M2 in DP | Length of M4 in LP | Delay of DP # cells of x1 strength in CP # cells of x4 strength in DP | —
Length of M2 in LP | Length of M5 in DP | Delay of LP # cells of x1 strength in DP # cells of x4 strengthinLP | -
Length of M3 in CP | # cells in CP Path delay reported in STA | # cells of x1 strength in LP # cells of x8 strength in CP | -
L1 Models T 5.24 Inferring MAP-LAP mean shift. Assuming there are n
e — paths in MAP subset, and m paths in LAP subset, we define the
Original L2 trammg data Final Prediction mean-shift MS as the
Training Data 125
Xmxn y’“ y“6 ‘*[?f i"l 1 1
MS == Z AD(p) - — Z AD(P)
n m
E PEMAP PELAP
Mip
5.2.5 Classification. The last step for detecting aged ICs is a

classification based on a simple thresholding mechanism, Using
threshold value Th, the IC is identified as aged when Th < MS.
Choosing a value for Th introduces a trade-off between false posi-
tive and sensitivity of the test. The smaller Th the value, the more
sensitive the test, and could even identify slightly aged devices at
the expense of possible higher false-positive rate. In this paper, we
set the threshold to the step size of the CFST tester (to reduce the
false positive rate), which we assumed to be 10ps. However, note
that there are other mechanisms that could be justified for setting
the threshold such as 1) goal-driven threshold to identify devices
aged more than m months, 2) error-driven thresholds (such as mo
of the error of neural network), 3) simulation-driven thresholds
based on the average change of delay of affected timing paths after
m months of aging, etc. each of which could be justified based on
the ICs use case.

A Note on the impact of Random Process Variation: Pro-
cess variation is variation in the electrical and physical property of
transistor devices due to the physical limitations of the fabrication
process at scaled geometries [35, 37]. In higher abstract level, it
could be modeled as zero-mean variation in threshold voltage of
transistor device, such that two identical transistors may end up
with different drive strength after fabrication. In this section, we ex-
plain why process variation does not impact our aged-IC detection
solution.

When considering the impact of process variation in delay of
timing paths, the impact of variation in individual devices accu-
mulates and results in the variation in the delay of timing paths.
For modeling purpose, we can denote the variation in the delay of
timing path p; using random variable X;, where E(X;) = p = 0, and
V=VAR(X;) = o. Our detection methodology relies on identifying
the mean shift between the LAP and the MAP group. Let’s assume
the MAP group. The mean of added delay (AD) for timing paths in
MAP can be denoted by random variable X, where

Algorithm 1 Training NN

: for all Paths in Benchmark do

features < Collect features from GDSII

labels « Collect Slack from CFST of Fabricated chip
: dataset «— [features, labels]

: datasetpjap <« MAP of dataset

QU W

: NN,,odel < Train a NN with datasetprap
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Figure 6: Histograms depicting delay-increase on timing-paths used for classification after one month of aging. For each bench-
marks, there exists a bimodal distribution for the AD distinguishing the MAP and LAP paths from each other.
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The same analogy applies to the mean of AD computed for the
LAP group. In another word, the mean shift (used for detection) is
a 0-mean random variable with standard deviation o/+/n, where n
represents the number of paths in MAP or LAP group. Therefore,
by choosing a large number of paths (n) for each of LAP and MAP
set (we collect thousands), the impact of process variation on mean-
shift value becomes negligible, and PV does not affect the final
classification.

6 EXPERIMENTAL RESULTS AND
DISCUSSIONS

We targeted 5 different IPs including s35932, s38417, s38584, b17,
and AES128 from IWLS benchmark suite[1] and hardened them
using a commercial 32nm technology via the Synopsys EDA toolset
[32]. We used Synopsys HSpice for the transistor-level simulations,
and the HSpice built-in MOSRA Level 3 model to assess the effect
of NBTI and HCI aging [31]. The aging simulations were performed
under temperature= 125°C and Vdd=0.85V for 12 months with 1-
month steps.

For each benchmark, using the Synopsys PrimeTime tool, we
extracted N=10 longest paths feeding each endpoint (flip-flop or
primary output). To account for the tester frequency step size, in
our experiments we only select a subset of these paths whose delay
is at least 250ps, resulting in the selection of 3455, 2390, 2121, 2626,
and 21460 timing paths for the 35932, s38417, s38584, b17, and
AFES128 benchmarks, respectively.

To take the impact of process variations into account, in our
simulation-based setup, the random patterns we use to generate
our GTM is different from the set of patterns we use in aging
simulations to extract the aging-induced path delays and creating
the ADP classifier. Note that the ADP set classifier is unique for
each GDSII netlist and is generated per design. Using the ADP
set classifier, we fit a bimodal curve on ADP set’s histogram for
each design to identify MAP and LAP groups. The histograms and
fitted bimodal curves for each target circuitry after one month of
usage are shown in Fig. 6. This figure clearly depicts the deviation
of MAP and LAP paths from each other when the device is aged.
This observation confirms the applicability of the proposed path
classification scheme in detecting recycled chips.
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As the next step after classifying the timing paths, for each
benchmark, we extracted the features presented in Table 1 from its
GDSII file, and used them to generate 13 datasets per benchmark
related to i months of aging where 0 < i < 12. Each dataset includes
the extracted features and the slacks collected from one of these
13 aging simulations. We used these datasets to generate a unique
GTM for each circuit-under-test.

We deployed the extracted GTM for each benchmark circuits
aged between zero and 12 months, and calculated the MAP-LAP
mean shift via equation 4. The results are shown in Table 3. As
depicted, the mean shift between LAP and MAP paths significantly
increases for an aged device compared to its fresh (age=0) counter-
part. The more the device is aged, the higher the value of the mean
shift between its LAPs and MAPs. However, as expected the rate
of mean-shift increase is higher initially. This is because the aging
effect is high in the first couple of months but the aging-induced
threshold voltage tends to saturate for long stress times (refer to
Fig. 2). In particular, as Table 3 shows for the s35932 benchmark,
the mean shift changes from -0.63ps to 12.39ps (20x increase) after
1 month, while it increases 50% in the following month compared
to its value in month 1. The same trend can be observed in other
benchmarks. On average, over all benchmarks, the mean shift in-
creases 29.15, 36.02, 44.19, 53.71, and 72.23 ps after 1, 3, 6, 9, and 12
months of aging. Accordingly, the proposed method can accurately
differentiate the new and recycled chips from each other.

7 CONCLUSION

In this paper, we presented a novel methodology for detecting Aged-
ICs. Our detection methodology is based on a side-channel delay
analysis. Our model is tolerant of random process variation, sys-
tematic process variation, and process drift. Our proposed solution
does not rely on the existence of a Golden IC. Instead, using features
collected from the design, and delay samples collected from a subset
of timing paths using the Clock Frequency Sweeping test (CFST),
builds a learning model that predicts the delay difference between
the CFST and STA. We also presented a methodology to distinguish
between two sets of timing paths that age more/less overtime. Using
the collected delay information, we compute the delay difference
between these two sets of paths (Aged Distinguishing Paths) as a
measure of the age of the IC.
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Table 3: The mean error of each ADP set group for all benchmarks.

[ Benchmark [ Aging (Months) [0 T1 2 [3 [ 4 [5 [ 6 [ 7 [8 [ 9 10 11 12
Train and Test (MAP) 0.00 0.12 0.28 0.03 0.05 0.07 0.09 0.20 0.39 0.51 0.10 0.37 0.43
§35932 Evaluate (LAP) 0.63 |—12.27 [—19.39 |[-22.32 |-23.88 |—23.87 |—-27.47 |-28.54 [-30.72 |[—30.91 |-32.15 —35.71 —39.04
Mean Shift —0.63 12.39 19.67 22.35 23.92 23.94 27.56 28.74 31.11 31.42 32.25 36.08 39.47
Correctly Identified v v
Train and Test (MAP) [-0.05 [—0.89 —0.54 —0.76 2.81 —0.49 0.27 —0.20 —1.81 —0.96 —1.85 0.89 1.88
$38417 Evaluate (LAP) 0.57 |—-28.93 |-31.07 |-32.76 |—33.05 |—33.55 [—36.54 |[—40.91 [—-41.01 [—-43.60 |—44.52 —49.99 —62.87
Mean Shift —0.62 28.04 30.53 32.00 35.87 33.06 36.82 40.71 39.20 42.64 42.67 50.89 64.75
Correctly Identified v
Train and Test (MAP) 0.00 |—0.20 —2.54 1.40 —1.43 1.79 1.22 —1.05 -2.99 —0.30 -2.92 —2.86 —2.95
$38584 Evaluate (LAP) 0.46 |—26.46 |[—31.50 [—34.47 |—39.01 |—41.02 |—48.17 |—46.42 |—49.28 |—49.53 |—53.01 —55.15 —57.46
Mean Shift —0.46 26.26 28.96 35.87 37.58 42.81 49.39 45.37 46.29 49.23 50.08 52.30 54.52
Correctly Identified v
Train and Test (MAP) 0.02 |-2.75 —2.10 —5.46 —1.12 0.64 0.24 —1.05 —0.99 0.66 —0.42 —4.58 —4.21
b17 Evaluate (LAP) 0.14 [—38.22 |[—40.65 |[—44.99 |—48.21 |-53.94 |-57.18 |—68.94 |—-73.40 [—-91.61 [—100.83 |—104.66 |[—107.85
Mean Shift —0.12 35.47 38.55 39.53 47.09 54.58 57.42 67.89 72.41 92.27 100.42 100.08 103.64
Correctly Identified V
Train and Test (MAP) 0.02 1.06 0.87 0.65 1.94 0.35 0.31 2.09 1.28 1.84 1.36 1.49 0.63
AES128 Evaluate (LAP) 0.53 |—35.31 [—39.77 |—42.55 |—47.95 |—44.71 [—46.68 |—45.18 |—-52.32 [—-51.52 |—55.25 —62.85 —84.86
Mean Shift —0.50 36.37 40.65 43.20 49.89 45.06 46.99 47.28 53.60 53.36 56.61 64.35 85.49
Correctly Identified
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