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ABSTRACT
In this paper, we propose a canonical prune-and-SAT (CP&SAT )
attack for breaking state-of-the-art routing-based obfuscation tech-
niques. In theCP&SAT attack, we first encode the key-programmable
routing blocks (keyRBs) based on an efficient SAT encoding mech-
anism suited for detailed routing constraints, and then efficiently
re-encode and reduce the CNF corresponded to the keyRB using a
bounded variable addition (BVA) algorithm. In the CP&SAT attack,
this is done before subjecting the circuit to the SAT attack. We illus-
trate that this encoding and BVA-based pre-processing significantly
reduces the size of the CNF corresponded to the routing-based ob-
fuscated circuit, in the result of which we observe 100% success
rate for breaking prior art routing-based obfuscation techniques.
Further, we propose a new intercorrelated logic and routing locking
technique, or in short InterLock, as a countermeasure to mitigate the
CP&SAT attack. In Interlock, in addition to hiding the connectivity,
a part of the logic (gates) in the selected timing paths are also imple-
mented in the keyRB(s). We illustrate that when the logic gates are
twisted with keyRBs, the BVA could not provide any advantage as
a pre-processing step. Our experimental results show that, by using
InterLock, with only three 8×8 or only two 16×16 keyRBs (twisted
with actual logic gates), the resilience against existing attacks as
well as our new proposed CP&SAT attack would be guaranteed
while, on average, the delay/area overhead is less than 10% for even
medium-size benchmark circuits.
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1 INTRODUCTION
The globalization of the design and implementation of integrated cir-
cuits has drastically increased, particularly in the past two decades.
This is when high-tech companies try (1) to reduce the cost of
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manufacturing, (2) to access technology that is inclusively avail-
able by a limited number of suppliers, (3) to reduce time to market,
and (4) to meet the market demand [6]. However, it has also raised
many security threats and trust challenges. Some of these threats in-
clude that of IC overproduction, Hardware Trojan insertion, reverse
engineering, and Intellectual Property (IP) theft [44].

To combat these threats, numerous Design-for-Trust (DfTr) tech-
niques have been proposed, one of them is Logic locking [24, 26],
a.k.a logic obfuscation. In Logic locking, the designer adds post-
manufacturing programmability into the design controlled by pro-
grammable values referred to as the key. The key value is driven
from an on-chip tamper-proof non-volatile memory (tpNVM) [57],
and it will be initiated after fabrication via a trusted party. Hence,
the adversary cannot recover the correct functionality of a logic
locked chip without having the correct key.

The security and the strength of the primitive logic locking
techniques [24–26] has been called into question by various attacks,
especially the Boolean satisfiability (SAT) based attack [40, 56]. In
the SAT attack, it is assumed an adversary has access to (1) an
oracle (working chip), (2) a fully reverse engineered netlist, and
(3) the scan chain access of oracle (writing/reading the content of
internal registers at will.). Based on these assumptions, the SAT
attack, as an oracle-guided attack, starts iteratively ruling out the
set of incorrect keys using a few selected input queries found by
the SAT solver, called discriminating inputs (DIPs) [40, 56].

To thwart the SAT attack, over the past few years, researchers
have investigated four different categories [36]:

(1)Point FunctionBasedObfuscation:The first group of tech-
niques, examples of which include SARLock, Anti-SAT, and SFLL
[47, 48, 69], tries to reduce the strength of the SAT attack such that
each DIP could only rule out one incorrect key (or a few). So, it sig-
nificantly increases the number of required SAT iterations (required
DIPs). However, they are vulnerable against structural-based at-
tacks [11, 49, 50, 66]. Besides, these techniques suffer from very low
output corruption, making them susceptible to approximate-based
attacks [28, 67].

(2) Behavioral/Cyclic Obfuscation: In the second group of
techniques, such as delay locking [70], timing-based locking [16, 38],
or cyclic locking [4, 5, 29, 61, 62], the obfuscated circuit (I) is not
translatable to a SAT problem (delay/timing based), or (II) traps the
SAT solver in an infinite loop (cyclic), or (III) it leads to an incorrect
key (cyclic). However, the existing techniques in this category are
already broken using SMT attack (delay) [34], timingSAT attack
(timing) [3], and the SAT-based attacks on cyclic locking [21, 30, 68].

(3) Scan Chain Blocking/Obfuscation: Since many of prevail-
ing attacks rely on access to the scan chain, the third group of
techniques locks/blocks the scan for any unauthorized scan access
[18, 19, 33, 53, 59, 63, 65]. Since the SAT attack is only applicable to
combinational circuits, when the scan chain is blocked/obfuscated,
the adversary’s access is limited to only primary inputs/outputsACM ISBN /20/11. . . $15.00978-1-6654-2324-3
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(PI/PO). Hence, the SAT attack is no longer applicable to the whole
(sequential) circuit. However, these techniques are later broken us-
ing unrolling-based SAT attacks as well as the SAT attack integrated
with BMC [31, 37, 41]. Also, blocking the scan chain enforces the
tester to rely on the PO for any test/debug purpose, which might
reduce the test coverage considerably.

(4) Symmetric Interconnection Obfuscation: Taking a step
further, the fourth group of techniques tries to significantly increase
the complexity of inner calculations of the SAT solver leading to an
extremely long runtime per each iteration of the SAT attack [17, 32,
60]. These techniques rely on building symmetric interconnection
into the locked portion of the circuit, extremely increasing the depth
of the SAT search tree, and reducing the number of derived variables
(implications) based on assigned variables. The building block of
the existing solutions in this category are the key-programmable
routing blocks (we call them keyRB in this paper), each has its
topology, such as crossbar or permutation (logarithmic) network.
Although this group of obfuscation techniques suffers from the
higher area/delay overhead, to the best of our knowledge, there is
still no attack on this category of logic locking techniques.

1.1 Contribution
In this paper, we first propose a canonical prune-and-SAT (CP&SAT )
attack on the fourth group of techniques (The first attack on routing-
based obfuscation). In our proposed CP&SAT attack, we first extract
and model the circuit into some numerical bound problems, which
could be re-encoded efficiently using a bounded variable addition
(BVA) algorithm. Then, the BVA algorithm is applied to each numer-
ical bound problem, separately. The BVA re-encodes and reduces the
CNF size/complexity of each numerical bound problem significantly.
After reduction using the BVA, the reduced CNFs (corresponded to
numerical bound problems) will be merged again with the circuit’s
CNF, and the SAT solver could be executed on the reduced CNF
version. Our security analysis on benchmark circuits protected by
existing routing obfuscation techniques, such as Cross-Lock and
Full-Lock [17, 32], demonstrates 100% successfulness of this attack
within a short time.

We then propose an enhanced obfuscated technique, that mit-
igates the weakness of existing routing-based obfuscation tech-
niques [17, 32] against the proposed CP&SAT attack. We refer to
our proposed obfuscation solutions as InterLock. In InterLock, the
routing obfuscation (keyRB) is intercorrelated with logic obfuscation.
Hence, since the logic is truly twisted with routing all controlled
by the key, it is not possible to convert and model the keyRB(s) into
the numerical bound problem(s), and consequently, the BVA is no
longer applicable to them for reduction.

We implement and evaluate the keyRBs in InterLock based on
three different technologies: (1) transmission-gate (Tgate) CMOS,
(2) programmable-via using anti-fuse elements (PVIA), and (3) three-
independent-gate field-effect transistors (TIGFET). It helps us to
provide a better illustration of the area/delay overhead. We also
show that by implementing in the lower level of abstraction, the
area/delay overhead of InterLock could be even below ∼10% to make
the design resilient against the prevailing attacks.

2 BACKGROUND
2.1 The Oracle-guided SAT Attacks
In the SAT attack, with having access to (1) a working chip with
open scan chain, and (2) the reverse-engineered netlist, each com-
binational part of the circuit could be evaluated independently. For

any arbitrary combinational part (which is locked), 𝑐𝑙𝑜𝑐𝑘 : 𝐼 × 𝐾 → 𝑂 ,
where 𝐾 = {0, 1}𝑘 is the key space, there exists 𝑘𝑐 ∈ 𝐾 such that
∀𝑖 ∈ 𝐼 ⇒ 𝑐𝑙𝑜𝑐𝑘 (𝑖, 𝑘𝑐 ) = 𝑐𝑜𝑟𝑎𝑐𝑙𝑒 (𝑖), and 𝑐𝑜𝑟𝑎𝑐𝑙𝑒 is the combinational
logic part of working chip (oracle).

In the SAT attack, by getting inspiration from the miter circuit
used in formal verification (equivalency checking), a miter circuit
has been built as𝑚𝑖𝑡𝑒𝑟 ≡ 𝑐𝑐𝑜𝑚𝑏_𝑙𝑜𝑐𝑘 (𝑑𝑖𝑝, 𝑘1) ≠ 𝑐𝑐𝑜𝑚𝑏_𝑙𝑜𝑐𝑘 (𝑑𝑖𝑝, 𝑘2).
This miter circuit returns a specific discriminating input pattern (𝑑𝑖𝑝)
that produces different output using two different keys 𝑘1 and 𝑘2.
Then, this 𝑑𝑖𝑝 is queried on the oracle 𝑒𝑣𝑎𝑙 ← 𝑐𝑐𝑜𝑚𝑏 (𝑑𝑖𝑝) and
a new I/O constraint will be generated. This new I/O constraint
𝑐𝑐𝑜𝑚𝑏_𝑙𝑜𝑐𝑘 (𝑑𝑖𝑝, 𝑘1) = 𝑐𝑐𝑜𝑚𝑏_𝑙𝑜𝑐𝑘 (𝑑𝑖𝑝, 𝑘2) = 𝑒𝑣𝑎𝑙 is stored back in
the solver and the𝑚𝑖𝑡𝑒𝑟 circuit would be solved again to find a new
𝑑𝑖𝑝 . When the𝑚𝑖𝑡𝑒𝑟+constraints problem has no longer satisfying
assignment (no new 𝑑𝑖𝑝), the constraints could identify a 𝑘𝑐 ∈ 𝐾 .

2.2 Point Function Based Obfuscation
Based on the iterative structure of the SAT attack, its runtime could
be obtained from:

𝑇𝐴𝑡𝑡𝑎𝑐𝑘 =

𝑁∑
𝑖=1

𝑇 (𝑖) =
𝑁∑
𝑖=1
(𝑡𝑖 +𝑇𝐷𝑃𝐿𝐿 (Φ𝑖 )) (1)

In Eq. 1, the 𝑇𝐷𝑃𝐿𝐿 is the runtime of the DPLL (Davis-Putnam-
Logemann-Loveland) algorithm, 𝑡𝑖 is the runtime of the remaining
book-keeping code executed at each iteration 𝑖 , and 𝑁 is the num-
ber of iterations (number of DIPs) required for de-obfuscation. The
DPLL (or one of its derivatives) is a recursive algorithm that used
to perform Conflict-Driven Clause Learning (CDCL) as the main
part of the SAT solver. Getting the benefit of this recursive algo-
rithm, the SAT attack can recover the correct functionality with
fast convergence.

The most intuitive mechanism to combat against the srength of
the SAT attack is to find a way to maximize 𝑁 , which is the main
aim of point function based obfuscation techniques (category 1). [47,
48, 69]. For this purpose, the structures proposed in this category
weakens the pruning power of each 𝑑𝑖𝑝 , guaranteeing that each
𝑑𝑖𝑝 can only rule out one (or a small number of) incorrect key(s).
This forces the number of needed iterations (𝑁 ) to exponentially
increase with respect to the number of keys. However, with a very
shallow DPLL recursive tree, the execution time of each iteration
of the SAT solver (𝑡 +𝑇𝐷𝑃𝐿𝐿) is quite short.

2.3 Symmetric Interconnection Obfuscation:
One Step Deeper

Symmetric interconnection obfuscation techniques show how the
direction of adding difficulties to the SAT attack could be changed
(becoming deeper) via deepening the DPLL tree. This deepening
could be achieved if the obfuscation circuit forces a relationship
between the number of clauses and the number of variables to
maximize the penalty associated with incorrect variable assignment
symmetrically across the search tree. With having a deeper DPLL
tree, the runtime formula of the SAT attack (Equation 1) could be
re-written as follows [17]:

𝑇𝐴𝑡𝑡𝑎𝑐𝑘 =

𝑁∑
𝑖=1
(𝑡𝑖 +𝑇𝐷𝑃𝐿𝐿 (Φ𝑖 )) ≃

𝑁∑
𝑖=1

𝑀∑
𝑗=1
(𝑇𝐴𝑣𝑔
𝐷𝑃𝐿𝐿

) (2)

The main aim of symmetric interconnection obfuscation techniques
(category 4) is to extremely increase the number (𝑀) and the com-
putational complexity (𝑇𝐴𝑣𝑔

𝐷𝑃𝐿𝐿
) of recursive calls in DPLL algorithm,
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Figure 1: Circuit Locked by Cross-Lock [32] with an 8 × 8 Crossbar Network.
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Figure 2: Circuit Locked by Full-Lock [17] with an 8×8 Logarithmic Network.

which occurs when the DPLL tree is extremely deep/large enough.
Two examples of this category are Cross-Lock [32] and Full-Lock
[17].

2.3.1 Cross-Lock: PVIA-based Crossbar Obfuscation

In Cross-Lock [32], each keyRB are built using programmable-vias
(PVIA) constructed using one-time-programmable (OTP) elements
made of anti-fuse [7]. PIVAs are used to implement 𝑛 ×𝑚 crossbars.
The main approach for PVIA programming is connecting two com-
plementary (NMOS and PMOS) programming transistors (PTs) to
the two ends that connect the device terminals to programming
supplies [7]. Routing obfuscation in Cross-lock has been performed
by inserting PVIA-based 𝑛×𝑚 crossbars. Fig. 1 shows a small circuit
locked by Cross-Lock with 𝑛 =𝑚 = 8.

2.3.2 Full-Lock: Logarithmic-based Logic+Routing Obfuscation

In Full-Lock [17], the keyRB(s) is built using logarithmic near non-
blocking routing network. Since the SAT solver accepts the inputs
in conjunctive normal form (CNF), Full-Lock was motivated by [10],
where it was shown that the number of recursive calls in the DPLL
algorithm could be maximized when the clause to variable ratio of
a CNF is close to 4. Then, a symmetric logarithmic routing network
is introduced in Full-Lock that forces this ratio to 4. Also, to elevate
the complexity of the obfuscated circuit against the SAT attack,
the logic gates succeeding each keyRB are replaced with same-size
look-up-tables (LUT). Fig. 2 shows a small circuit (similar circuit
with Fig. 1) that is locked by Full-Lock with 𝑛 = 𝑚 = 8, and the
succeeding gates (𝑔2, 𝑔5, 𝑔7, and 𝑔9) are replaced with same-size
LUTs (𝐿𝑈𝑇2(1) , 𝐿𝑈𝑇2(2) , 𝐿𝑈𝑇3(1) , and 𝐿𝑈𝑇1(1) , respectively). Also,
in each key-programmable switch-box (𝑆𝑤𝐵), a key-programmable
inverter has been added, allowing output to be negated based on
the key value. This negation capability allows us to replace the
logic gates preceding each keyRB with their negated version (𝑔1:
AND→ NAND, 𝑔6: NOT → BUFF ), and handle the negation within
the keyRB.

2.4 Cases Requiring Cyclic-based SAT Attack
By using a keyRB for routing-based obfuscation, when the selected
nets are correlated, an incorrect key might generate a feedback,
which results in the generation of a combinational cycle. For ex-
ample, when a net is in the fan-in-cone of another net, and both
are selected as input to the keyRB, an incorrect key most likely
generates a combinational cycle (e.g. 𝑔2→ crossbar → 𝑔2 in Fig. 1).

Since the SAT attack is only applicable to directed acyclic graphs
(DAG), the generation of cycles mislead (to an incorrect key, or
an infinite loop) the SAT attack. The existence of cycles, however,
does not prevent the SAT attack formulation. In many studies on
cyclic obfuscation [21, 30, 68], it was shown that by adding a pre-
processing step to the SAT attack, it could add necessary cycle
avoidance clauses for a successful SAT attack in the presence of
combinational cycles. From this argument, for the security analysis
of routing obfuscation, a cyclic-based SAT attack must be used.

3 CANONICAL PRUNE-AND-SAT ATTACK
As of today, there is still no successful attack on routing-based
obfuscation. Each iteration of SAT solving on routing-based obfus-
cated circuits faces an ultra-deep and complex DPLL tree. Hence,
the SAT attack cannot even find a satisfying assignment(s) to com-
plete the de-obfuscation process. However, in this work, we propose
canonical prune-and-SAT (CP&SAT ) attack on the routing-based
obfuscation techniques. In the CP&SAT, we first model the key-
programmable routing blocks (keyRB(s)) as numerical bound prob-
lems, and then a bounded variable addition (BVA) algorithm has
been engaged as a pre-processing step to reduce the size and com-
plexity of numerical bound problems. By using the BVA algorithm,
the CNF corresponded to each keyRB will be reduced dramatically
in terms of the number of clauses. Then, the re-encoded CNF will
be solved using the traditional SAT attack.

3.1 Threat Model in CP&SAT Attack
The CP&SAT attack will be performed based on the conventional
threat model for logic locking [24, 40, 56], where:
(1) The adversary has access to the successfully reverse-engineered

yet locked netlist. Hence, (s)he has all the necessary information
about the netlist, such as the obfuscation technique, the key
gates, the key inputs, etc. Specifically in routing obfuscation, the
location of the keyRBs could be determined by the adversary.

(2) The adversary has access to an activated/unlocked chip, in
which the correct key is embedded into a secure tpNVM.

(3) With having scan chain access on the activated/unlocked chip,
the adversary can apply the SAT attack on each combinational
part of the circuit, independently.

3.2 Attack Flow
The proposed CP&SAT attack is composed of three main steps: (1)
modeling the keyRB(s) to be presented as a numerical bound prob-
lem, where for each output of keyRB, a sub-CNF will be extracted
from the CNF of the whole circuit; (2) re-encoding the sub-CNF cor-
responded to each keyRB output using bounded variable addition
(BVA) algorithm; (3) merging the updated (reduced) sub-CNFs into
the CNF of the whole circuit, running the traditional SAT attack,
and match the key for the correct routing.
3.2.1 Modeling keyRB as a Numerical Bound Problem

Extensive analysis on the application of Boolean satisfiability in
detailed routing constraints [8, 14, 15, 45, 46] shows that the SAT
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solvers can consider simultaneously the routability constraints for
all nets, leading to potentially faster convergence to a solution. How-
ever, this only happens when an appropriate encoding approach
has been chosen to represent routing constraints as a SAT problem
before solving. Many studies have investigated and compared dif-
ferent encoding approaches [15, 45]. Using the key observations
provided in these studies, in the first step of the proposed CP&SAT
attack, we encode the sub-CNF related to each keyRB output using
one-layer linear encoding. To describe the logic-equivalent model,
for each output of a 𝑛 × 𝑛 keyRB, the one-layer linear encoding
replaces the original sub-CNF with a CNF describing a one-layer
𝑛−𝑡𝑜−1 multiplexer (MUX) controlled by the one-hot key. More for-
mally, for a 𝑛 ×𝑛 keyRB, the sub-CNF of each keyRB output, which
is encoded using one-layer linear encoding, will be as follows:∧

𝑀⊆1,...,𝑛,
|𝑀 |=1

( ∨
𝑖∈𝑀

𝑥𝑖𝑘𝑖
)

(3)

In which 𝑥𝑖 denotes the wire that is connected to the 𝑖𝑡ℎ input
of the keyRB, and 𝑘𝑖 denotes the one-hot key that connects the 𝑖𝑡ℎ
input of the keyRB to the corresponded keyRB output when it is
1, and 𝑀 is the search space for each keyRB output. The Eq. 3 is
the most special case of encoding of numerical bounds [54]. The
numerical bound problems could be denoted as ≤ 𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛),
meaning that among 𝑛 variables 𝑝 variables are allowed to be as-
signed true. The most special case of numerical bounds is when
𝑝 = 1, called at-most-1 constraint, that is applied whenever a finite
domain is encoded, and the Eq. 3 is one form of at-most-1 constraint
encoding. According to this encoding definition, in the first step of
the proposed CP&SAT attack, we first extract the sub-CNF related
to each output of keyRB(s). Then, we use one-layer linear encoding
for the extracted sub-CNF to be encoded as a numerical bound
problem. Then, in the second step as described in the next section,
we use the BVA to re-encode and reduce the size of each sub-CNF
for each output of the keyRB.

3.2.2 SAT Reduction using Bounded Variable Addition

As an integral part of SAT solving, resolution and variable elimina-
tion (VE) are two rules that would be applied on CNF before running
the SAT solver to reduce the size of variables/literals [1, 39, 52]. The
VE, as a proof procedure for CNF formulas, faces an exponential
space complexity. Hence, to make it practical for usage, the VE
must be bounded [1, 52]. In bounded VE (BVE) a variable 𝑥 could
be eliminated only if |𝑆 | ≤ |𝑆𝑥 ∪ 𝑆𝑥 |, in which 𝑆𝑥 (𝑆𝑥 ) denotes a set
containing clauses all contain 𝑥 (𝑥), 𝑆 is obtained from Eq. 4, and
|𝑆 | ≤ |𝑆𝑥 ∪𝑆𝑥 | means that the resulting CNF

(
((𝐹 \ (𝑆𝑥 ∪𝑆𝑥 )) ∪𝑆

)1
will contain no more than the original CNF (𝐹 ) clauses.
𝑆 = 𝑆𝑥⊗𝑆𝑥 = {𝐶1⊗𝐶2 |𝐶1 ∈ 𝑆𝑥 ,𝐶2 ∈ 𝑆𝑥 ,𝐶1⊗𝐶2 ≠ 𝑇𝑎𝑢𝑡𝑜𝑙𝑜𝑔𝑦} (4)
In CP&SAT attack, we engage the complementary version of BVE,

called bounded variable addition (BVA) [54], in which either a new
variable will be added to the CNF or a variable will be substituted.
Similar to BVE, the same bounding concept must be used in BVA to
decrease the size of the CNF [54]. As the simplest example of the
BVA, by adding a new variable 𝑥 to the following formula 𝐹 with 6
clauses, the re-encoded formula 𝐹 ′ would have one clause less.
𝐹 = (𝑎 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑎 ∨ 𝑒) ∧ (𝑏 ∨ 𝑐) ∧ (𝑏 ∨ 𝑑) ∧ (𝑏 ∨ 𝑒) (5)

1 ( (𝐹 \ (𝑆𝑥 ∪ 𝑆𝑥 )) ∪ 𝑆 means that, in CNF 𝐹 , both sets of clauses, 𝑆𝑥 and 𝑆𝑥 , that
contain 𝑥 and 𝑥 , respectively, must be replaced with clauses of set 𝑆 that are built
using Eq. 4.

𝐹 ′ = (𝑎 ∨ 𝑥) ∧ (𝑏 ∨ 𝑥) ∧ (𝑐 ∨ 𝑥) ∧ (𝑑 ∨ 𝑥) ∧ (𝑒 ∨ 𝑥) (6)
In the BVA, the number of possibilities to add or substitute a variable
is extremely large. Hence, to make it practical for any CNF (𝐹 ), the
BVA algorithm must be constructed based on two steps:
(1) Replaceable Matching: Creating a pair of sets consisting of a set

of literals (𝑆𝐸𝑇𝐿) and a set of clauses (𝑆𝐸𝑇𝐶 ) such that for all
{𝑙, 𝑐} ∈ {𝑆𝐸𝑇𝐿, 𝑆𝐸𝑇𝐶 }, the clauses (𝑐 \ {𝑆𝐸𝑇𝐿}) ∪ {𝑙} are either
in CNF (𝐹 ) or tautological.

(2) matching-to-clauses: Using a method that creates the sets 𝑆𝑥 =

{(𝑙 ∨ 𝑥) | 𝑙 ∈ 𝑆𝐸𝑇𝐿} and 𝑆𝑥 = {(𝑐 \ 𝑆𝐸𝑇𝐿) ∪ {𝑥} | 𝑐 ∈ 𝑆𝐸𝑇𝐶 },
and removes all clauses (𝑐 \ {𝑆𝐸𝑇𝐿) ∪ {𝑙}, and replaces them
with 𝑆𝑥 ∪ 𝑆𝑥 .
By applying these two steps on 𝐹 (Eq. 5), 𝑆𝐸𝑇𝐿 = {𝑎, 𝑏} and

𝑆𝐸𝑇𝐶 = {(𝑎 ∨ 𝑐), (𝑎 ∨ 𝑑), (𝑎 ∨ 𝑒)}, 𝐹 ′ could be generated using
matching-to-clauses with one clause less as shown in Eq. 6. Now, by
using this 2-step BVA algorithm, any CNF formula could be reduced
provably in size (the number) of clauses while the reduced CNF is
also provably equivalent with the original CNF.

Theorem 1. For two sets as replaceable matching {𝑆𝐸𝑇𝐿, 𝑆𝐸𝑇𝐶 }
as for the CNF formula 𝐹 , 𝐹 ′ as the reduced of 𝐹 could be constructed
by adding a Boolean variable such that (1) 𝐹 ′ is logically equivalent
to 𝐹 and (2) 𝐹 ′ contains |𝐹 ′ | + |𝑆𝐸𝑇𝐶 | + |𝑆𝐸𝑇𝐿 | − |𝑆𝐸𝑇𝐶 | × |𝑆𝐸𝑇𝐿 |
clauses if none of the resolvents is a tautology.

Proof. For two sets as replaceable matching {𝑆𝐸𝑇𝐿, 𝑆𝐸𝑇𝐶 }, we
can construct 𝐹 ′ as follows: All clauses of (𝑐 \ {𝑆𝐸𝑇𝐿) ∪ {𝑙} must
be removed from 𝐹 and must be replaced with 𝑆𝑥 ∪ 𝑆𝑥 that are
obtained using the matching-to-clauses construction method. The
number of removed clauses is |𝑆𝐸𝑇𝐿 | × |𝑆𝐸𝑇𝐶 |, while the number of
added clauses is |𝑆𝐸𝑇𝐿 | + |𝑆𝐸𝑇𝐶 | proving (2). Since the BVA is the
complement of BVE, by applying BVE on 𝑥 in 𝐹 ′, it re-produces
(reverse) 𝐹 , and BVE preserves logical equivalence proving (1). ■

One of the best fitting applications of the BVA algorithm is re-
encoding cardinality constraints [2, 8, 14, 54], where it is necessary
to encode numerical bounds (≤ 𝑘 (𝑥1, 𝑥2, ..., 𝑥𝑝 )). As discussed previ-
ously, the one-layer linear encoding formulates each keyRB output
as the most special case of cardinality constraints (𝑘 = 1), called
at-most-1 constraint. Compared to naive encoding for at-most-1
constraint in which the number of clauses is 𝑛.(𝑛 + 1)/2, by using
BVA algorithm, the number of clauses would be reduced to ∼ 3𝑛
[54].

It is worth mentioning that numerous studies are explaining
how cardinality constraints (numerical bounds) could be encoded
efficiently [23, 43, 55, 58, 64]. Also, a few SAT solvers handle cardi-
nality constraints by itself, such as Sat4J [9] or clasp [42]; however,
since these solvers do not extract cardinality constraints from the
formula, compared to the direct re-encoding using BVA, their ef-
ficiency is extremely low. Furthermore, the strongest SAT solvers
tend to not support native cardinality constraints, such as MiniSAT
[51] that was supporting native cardinality constraints up to ver-
sion 1.12. In CP&SAT attack, we employ the simpleBVA proposed
in [54] as a pre-processing step before running the SAT attack and
after one-layer linear encoding. The simpleBVA will be used for
each sub-CNF, corresponded to each keyRB output, and encoded
using one-layer linear encoding, separately.

3.2.3 SAT Execution and Key Matching

After the reduction using the BVA algorithm, we update the CNF
of the whole circuit using the reduced sub-CNFs corresponded to
keyRB(s) outputs. Now, it is time to run the traditional SAT attack
on the updated CNF. Since each keyRB might add cycles into the
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design, as mentioned in Section 3.1, we need to use a cyclic-based
SAT attack. Assuming that the circuits are acyclic, the CycSAT-I2
will be used.

As was mentioned previously, in one-layer linear encoding, the
actual keys of each keyRB will be replaced with a set of one-hot
key controlling the MUXes (one-layer encoding). Hence, after de-
obfuscating the updated CNF, the SAT attack will recover the val-
ues of the one-hot keys. These one-hot keys determine the correct
wiring/interconnection for the MUXes. So, a matching step is re-
quired, in which we need to calculate the actual key for each keyRB
that establishes the same (correct) wiring/interconnection built by
one-hot key in MUXes.

4 INTERLOCK: RESISTING CP&SAT ATTACK
In the previous section, we described how prior routing-based ob-
fuscation techniques could be broken using the proposed CP&SAT.
It calls into a question that "How routing obfuscation could be still
used while it is not vulnerable to the BVA algorithm?". In this sec-
tion, we answer this question by proposing a countermeasure that
improves the resiliency of this category of obfuscation techniques
against CP&SAT attack.

4.1 Truly-Twisted Logic & Routing Obfuscation
To still get the benefit of routing obfuscation, and to combat against
the efficiency of BVA-based re-encoding on routing-based obfus-
cation, we truly twist the keyRB with logic gates, meaning that a
part of the actual logic gates will be also embedded into the keyRB.

In the CP&SAT attack, we explained how a keyRB could be
modeled as multiple numerical bound problems before the BVA
re-encoding. So, the idea is that when the routing-based obfuscated
circuit could not be translated (converted) to a numerical bound
problem, the BVA is no longer applicable to it. For this purpose,
inspired by the logarithmic (permutation) networks proposed in
Full-Lock [17], we employ the same architecture for keyRBs in
InterLock; however, for each layer of that hierarchy, we will add a
Boolean function (logic gate). Fig. 3 shows our new keyRB archi-
tecture that must be used for routing-based obfuscation. Compared
2CycSAT-I is designed and applicable to cyclic obfuscation when the original circuit is
acyclic.
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(a) key-programmable Routing Block (KeyRB) in Full-Lock [17]
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(b) key-programmable Routing Block (KeyRB) in our Proposed InterLock

Figure 3: Full-Lock [17] vs. Our Proposed InterLock.

Table 1: The SAT Attack Runtime on ISCAS-85 c7552 with only One KeyRB
in Different Scenarios.

Size
𝑓1,2 Full-Lock InterLock InterLock InterLock InterLock

[17] all NAND all NOR all XNOR Random
keyRB-4 0.02 0.192 0.136 0.718 0.232
keyRB-8 0.437 3.083 5.905 2062 19.79
keyRB-16 5.413 522.1 558.2 Timeout 62332
keyRB-32 195.1 Timeout Timeout Timeout Timeout
keyRB-64 Timeout Timeout Timeout Timeout Timeout
Timeout = 105 Seconds ≈ 1 day

to Full-Lock [17], for each switch-box (SwB), the configurable in-
verters are removed, and 𝑓1 and 𝑓2 are added that could be any of
2-input basic logic gates, i.e. NAND, NOR, XNOR, AND, OR, XOR.
Also, for each SwB, we add extra inputs (𝑒𝑥𝐼 ) as one of the inputs
of 2-input logic gates. For each SwB with 4 inputs (𝐼𝑖 , 𝐼 𝑗 , 𝑒𝑥𝐼𝑖 , 𝑒𝑥𝐼 𝑗 ),
output 𝑂𝑖 could be {𝐼𝑖 , 𝐼 𝑗 , 𝑓1 (𝐼𝑖 , 𝑒𝑥𝐼𝑖 ), and 𝑓1 (𝐼 𝑗 , 𝑒𝑥𝐼𝑖 )}, and output
𝑂 𝑗 could be {𝐼𝑖 , 𝐼 𝑗 , 𝑓2 (𝐼𝑖 , 𝑒𝑥𝐼 𝑗 ), and 𝑓2 (𝐼 𝑗 , 𝑒𝑥𝐼 𝑗 )}.

4.1.1 Different Possibilities for 𝑓1 and 𝑓2

In this section, we aim to explain (1) "Why the usage of 𝑓1 and 𝑓2
gates in the SwBs improves the resiliency of Interlock (compared to
full-lock in which only routing and inversion is implemented)?", and
(2) "how the selection of the logic for 𝑓1 and 𝑓2 affects its resiliency". To
answer these two questions, we investigate five different scenarios:
𝑓1s and 𝑓2s could be (1) still inverters with no extra input (similar
to Full-Lock), (2) all NAND (AND), (3) all NOR (OR), (4) all XNOR
(XOR), and (5) selected randomly (any arbitrary 2-input gate).

Table 1 shows the runtime of the SAT attack (CycSAT-I) on
an obfuscated ISCAS-85 c7552 circuit while only one keyRB is
embedded into the design based on these five scenarios. The first
and the most promising observation is that, compared to Full-Lock
(when the logic layer is still inverter), for the same-size keyRB, the
InterLock (all scenarios) builds a much harder SAT problem. As
shown, in Full-Lock, the smallest single keyRB that breaks the SAT
attack is a 64 × 64 keyRB (keyRB-64). However, in InterLock, it is
even smaller (keyRB-16 or keyRB-32). Furthermore, we observe
that, while all 𝑓1s and 𝑓2s are XNOR (or XOR), keyRB-16 is enough;
however, for other gate types (NAND, NOR, AND, OR), the smallest
resilient is keyRB-32.

4.1.2 Embedding Actual Timing Paths into KeyRBs

This is a key observation that when all 𝑓1s and 𝑓2s are XNOR (XOR),
the SAT resiliency of the keyRB is extremely higher. But, as shown
in Fig. 3, similar to Full-lock that engaged inverters to handle the
toggling of some gates preceding the keyRB, in InterLock, these
extra gates must become a part of the actual logic gates to avoid far
exceeding the overhead. However, it is less likely to find a set of
paths that only consist of XNOR (XOR). Hence, if we select the gate
of each SwB based on an actual gate in a selected timing path, all
𝑓1s and 𝑓2s will become the actual gates of the design. It guarantees
that, in InterLock, only MUXes could be considered as the overhead,
however, in Full-Lock, all inversions except one layer are surplus
as an extra overhead. Hence, although InterLock adds extra logic,
it even reduces the overhead compared to the Full-Lock.

To embed part(s) of the logic gates into each keyRB, we need
a strategy to select the gates from the design. For the selection
strategy, when the number of timing paths in each keyRB is𝑚,𝑚
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(a) A Timing Path Selected to be Embedded into KeyRB
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(b) Inserting the Selected Timing Path into a KeyRB
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(c) 100% Utilization:𝑚 Timing Paths in a𝑚 ×𝑚 KeyRB

Figure 4: Timing Path Embedding into KeyRB.

timing paths must be selected3 For 2𝑙𝑜𝑔2 (𝑚) − 2 layers of SwBs in
permutation-based network [17]4, the length of the timing path
must be equal with 2𝑙𝑜𝑔2 (𝑚)−2. Hence, among the candidate timing
paths, we select paths (or cut the paths) with length 2𝑙𝑜𝑔2 (𝑚)−2. For
example, Fig. 4 shows how an actual timing path will be embedded
into a keyRB in InterLock. For a 8×8 keyRB, we have 2𝑙𝑜𝑔2 (𝑚)−2 =

2(3) − 2 = 4 layers of SwBs. So, the timing paths must be the length
of 4, and Fig. 4(a) shows a part of the timing path with a length of
4 that is selected to be embedded into the keyRB. Fig. 4(b) shows
how this timing path is embedded into the keyRB. By using this
approach, we embed𝑚 timing paths into a𝑚×𝑚 keyRB allowing us
to utilize the logic gates of each keyRB by 100%. Fig. 4(c) shows the
top view of 8 different paths that are embedded into a keyRB while
an arbitrary key has determined the connection between keyRB
I/O.
4.1.3 Twisted Logic in Interlock vs. Full-Lock

In Full-Lock [17], it is claimed that by adding a layer of configurable
inverters into each SwB, the logic could be twisted with the keyRB.
For example, Fig. 2 shows that gates 𝑔1 and 𝑔6 are converted to its
negated model ({AND, NOT }→ {NAND, BUFF }, and the inversion
is handled within keyRB. Hence, to handle the inversion inside
each keyRB, a layer of inversion is added into each SwB. However,
such usage of the sequence of key-programmable inversion does
not elevate the security of Full-Lock, and the KeyRB of Full-Lock
could be simplified. More precisely, to attack the Full-lock, one
could remove all inverters from the KeyRB (from all layers), and
just add one layer of the key-programmable inverters at the end
to reduce the key size while still maintaining the same function.
3For a permutation-based𝑚 ×𝑚 network, there are𝑚 different timing paths.
4The number of layers depends on the topology and being a blocking/non-blocking
network. In this work, we use 2𝑙𝑜𝑔2 (𝑚) − 2 layers of SwBs for𝑚 ×𝑚 network [17]
that builds a near non-blocking permutation network.
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Figure 5: Different Multiplexer Implementation Possibilities: (a) 2:1 MUX
Symbol, (b) 2:1 Pass-Transistor CMOS MUX, (c) 2:1 Transmission-Gate CMOS
MUX, (d) 2:1 Static CMOS MUX, (e) 2:1 Anti-fused MUX, and (f) 2:1 TIGFET
MUX.

This decouples the inversion from the routing block. Hence, in Full-
Lock, the logic (inversion) and routing are not truly twisted. This
allows us to simplify the KeyRB of Full-Lock before applying our
CP&SAT attack to give maximum efficiency to the BVA. However,
InterLock does not allow such simplification as 𝑓1 and 𝑓2 functions
in each SwB are 2-input logic gates, and each input is (or could be
considered as a) random and independent input.

4.2 Area/Delay Overhead Exploration
At first glance, embedding routing-based obfuscation incurs prohib-
ited area/delay overhead. However, both Full-Lock and Cross-Lock
engages some techniques to reduce the overhead to a reasonable
ratio. Full-Lock shows how LUT insertion succeeding each keyRB
allows them to use a smaller size of the keyRB to guarantee the
resiliency at lower overhead. Unlike Full-lock that is implemented
at gate-level and based on static CMOS technology, Cross-Lock
engages anti-fuse-based elements called programmable via (PVIA)
elements to minimize the overhead ratio of each keyRB. To im-
plement InterLock in this paper, we examine both CMOS-based
and PVIA-based implementation of keyRBs. Since MUXes are the
only gate types that are used (overhead) for InterLock implementa-
tion, for CMOS-based implementation, amongst static logic, pass-
transistor, or transmission gates, as demonstrated in Fig. 5(a)-5(d),
we engage transmission-gates (Tgate) for MUXes based on tree-
like structure [13, 22] that incur much lower overhead compared
to static CMOS implementation. Also, as shown in Fig. 5(e), by
using one-time-programmable elements (called PVIA elements in
Cross-Lock [32]), we investigate the overhead of InterLock while
implemented using anti-fuse-based (PVIA-based) 2:1 MUX. Similar
to Tgate CMOS technology, we would use the tree-like structure to
build keyRBs using PVIA elements.

Apart from these two technologies, in this paper, we assess the ef-
ficiency of another technology, called Three-Independent-Gate Field
Effect Transistors (TIGFET), for implementing MUXes in InterLock.
In TIGFET technology, each transistor has three independent gates,
and any two CMOS transistors could be modeled using only one
TIGFET transistors, compacting the structure and achieving area
as well as energy reduction, particularly for MUXes. Fig. 5(f) shows
a 2:1 TIGFET multiplexer, and comparing with static CMOS each
driving path consists of only one TIGFET transistors.

As shown in Fig. 6(a), Three terminal gates in TIGFET transistors
called Control Gate (CG), Polarity Gate at Drain (PGD), and Polarity
Gate at Source (PGS). Based on the value of these terminals, as
illustrated in Fig. 6(b, c), one could build 2 series nFETs or 2-series
pFETs. Since MUXes could be built using tristate inverters, in Fig.
6(d), we show how a tristate inverter could be built using TIGFET
transistors. Compared to CMOS-based tristate inverter, the number
of transistors is reduced by 50% in the TIGFET version. When𝑚
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tristate TIGFET inverters are cascaded, a𝑚 : 1 MUX is built (e.g.
2:1 TIGFET MUX in Fig. 6(e)). It is worth mentioning that since
the tristate inverter is used for each path of the multiplexer, the
control signal (MUX selector) needs to be decoded. Hence, since
all MUXes are controlled by the keys, and since we only use 2:1
MUXes, decoding selectors doubles the number of selectors (key
inputs) in this technology. In our experimental results, we compare
the implementation and the overhead of all three technologies.

5 EXPERIMENTAL RESULTS
To evaluate our proposed CP&SAT attack, we engage well-known
ISCAS-89 and ITC-99 combinational circuits locked using Full-Lock
[17]56. We sweep the size of keyRBs to show the efficiency of the
BVA algorithm on routing-based obfuscation. Further, for our pro-
posed InterLock, as a countermeasure, we implement keyRBs from
Fig. 3(b) on the same benchmark circuits to acquire locked cir-
cuits. We apply both the SAT (CycSAT-I) and our proposed CP&SAT
attack on locked circuits by InterLock. All the experiments are im-
plemented using Python/C++ and have been carried out on many
Dell PowerEdge R620 equipped with Intel Xeon E5-2670 2.50GHz
and 64GB of RAM. We evaluate the overhead of InterLock in three
different technologies: (1) Transmission-Gate (Tgate) CMOS using
Synopsys generic 32nm library, (2) PVIA-based MUXes that are
manually added between the M2 and M3 layers as physical-only
cells, and (3) Silicon NanoWire TIGFETs (TIG SiNWFETs 32nm)
modeled using Verilog-A [12, 27].

5.1 The Efficiency of the BVA
To show how the BVA algorithm efficiently reduces the CNF size
of the routing-based obfuscated circuits, Table 2 shows the rate of
reduction that is more than a factor of two. The BVA adds/substitute
the variables to decrease the number of clauses. As shown, the
number of variables increases (by up to 2x); however, the number
of clauses that play an important role in determining the complexity
of the CNF is decreased by more than 2x. Hence, the BVA-based
pre-processed CNFs are far easier for the SAT solver to be solved.
Furthermore, as can be seen in Table 2, increasing the size of the
keyRBs does not increase the SAT runtime after BVA pre-processing
exponentially (most likely quadratically). Since we cannot infinitely
increase the size of the keyRB (due to overhead and limitation of
candidate selection), we report the results on keyRB with size up
to 64×64.

To show the success of our proposed CP&SAT attack on routing-
based obfuscation, in Table 3, we illustrate the runtime of the SAT
(CycSAT-I) and the CP&SAT attack on circuits locked by Full-Lock.
5Since Cross-Lock is a weaker version of Full-Lock (It has no configurable inverters),
we only report the attack results on circuits locked by Full-Lock.
6Since all ISCAS-89 and ITC-99 are sequential, we apply all techniques on combina-
tional parts of these circuits, and we assume that all FFs are accesible to be read/written
for both SAT and CP&SAT attack.
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Figure 6: 2:1 TIGFET MUX Implementation: (a) A TIGFET Transistor, (b) 2
Series nFETswithOne TIGFETTransistor, (c) 2 Series pFETswithOne TIGFET
Transistor, (d) A Tristate Inverter built by TIGFET Transistors, (e) 2:1 TIGFET
MUX by Cascading TIGFET Tristate Inverters.

Table 2: The Effectiveness of the BVA Pre-Processing Step on Different-Size
keyRBs in Routing-based Obfuscation.

Instance Original BVA Pre-processed
#Variables #Clauses Solve #Variables #Clauses pre+Solve

keyRB-4 271 418 0.02 428 202 0.01+0.22
keyRB-8 875 1606 0.45 1278 718 0.01+0.36
keyRB-12 1544 3084 2.48 2188 1288 0.01+0.54
keyRB-16 2419 4750 5.42 3982 2184 0.01+0.82
keyRB-24 3372 7502 54.82 4618 3452 0.02+1.64
keyRB-32 6178 12510 194.8 8892 7258 0.02+2.22
keyRB-48 9891 18614 Timeout 12672 9918 0.04+3.92
keyRB-64 15043 31182 Timeout 23818 14772 0.04+12.22
Timeout = 105 Seconds ≈ 1 day

As shown, in all cases, after inserting four keyRB-16 (16×16), the
traditional SAT attack fails to break the locked circuits. However,
when we apply the CP&SAT attack, all circuits locked by four
keyRB-16 are broken in less than 10 minutes. When we assume
that the configurable inverters of SwBs in Full-Lock are in place,
the BVA algorithm within the CP&SAT attack does not provide a
significant advantage. As shown in Table 3, we observed that this
new attack also fails to break circuits locked with four keyRB-16
while inverters are intact. However, as described previously, we
detach the inverters in Full-Lock by fixating the key values of all
layers of inverters (disable the inversion) except the last layer.When
the inverters are detached, the BVA could efficiently reduce the
size of the locked circuit allowing us to de-obfuscate within few
minutes.

Table 3: The Runtime of the SAT Attack and the Cnonical Prune-and-SAT At-
tack on Circuits Locked by Full-Lock [17] with Different Sizes of KeyRBs.

Circuit #Gates #I/O

Traditional SAT proposed canonical proposed canonical
Attack prune&SAT prune&SAT

(CycSAT-I) (with inverters) (detached inverters)
keyRB-16 (16×16) keyRB-16 keyRB-16

2 3 4 2 3 4 2 3 4
b15 ∼8.5K 485/519 1507.5 TO TO 486.4 2581.5 TO 44.8 75.9 319.8
b14 ∼9.5K 277/299 788.3 TO TO 329.7 1688.8 TO 34.8 88.9 416.6

s35932 ∼16K 1763/2048 856.6 TO TO 643.8 5238.1 TO 76.4 147.9 407.4
s38417 ∼18K 1464/1731 1187.4 TO TO 482.5 2037.9 TO 58.2 100.7 366.3
b20 ∼19.5K 522/512 1096.8 TO TO 537.8 3507.9 TO 70.8 129.4 411.2
b21 ∼20K 522/512 1832.4 13283 TO 984.8 8207.3 TO 134.4 207.8 550.1
b17 ∼30K 1452/1512 508.2 8401.7 TO 306.8 6095.4 TO 81.7 137.4 463.8
b22 ∼30K 767/757 924.6 6491.5 TO 508.2 5538.4 TO 68.5 99.1 390.5
b18 ∼110K 3357/3343 1283.7 9208.1 TO 581.9 6327.8 TO 91.6 162.7 472.2

Timeout (TO) = 105 Seconds ≈ 1 day

5.2 Disabling the BVA using InterLock
To show how InterLock could be used as a countermeasure against
the Canonical prune and SAT attack, we insert different numbers of
the keyRBs from Fig. 3(b) into the benchmark circuits with different
sizes. For the insertion of the keyRBs two strategies have been
considered/applied in InterLock: (1) To minimize the performance
degradation (delay overhead), the timing paths that are selected
as the candidates to be embedded into keyRBs must be one of the
highest positive slack timing paths, and (2) as shown in Table 1,
since having more XNORs (XORs) increase the resilience of the
locked circuits considerably, amongst the candidates, we select
those paths that have more XNORs (XORs).

Table 4 shows the runtime of both the SAT and the canonical
prune and SAT attack on circuits locked by InterLock. In both cases,
since the locked circuit is possibly cyclic, for the SAT solving part,
CycSAT-I has been used. As shown, for almost all cases, after in-
serting only two keyRB-16, both attacks fail to break the locked
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Table 4: The Runtime of the SAT Attack as well as the Cnonical Prune-and-
SAT Attack on Circuits Locked by InterLock with Different Sizes of KeyRBs.

Circuit
Traditional SAT proposed canonical
Attack (CycSAT-I) prune&SAT

keyRB-8 keyRB-16 keyRB-8 keyRB-16
1 2 3 1 2 1 2 3 1 2

b15 98.5 3807.8 TO 74127.8 TO 85.3 3207.8 TO 69328.5 TO
b14 120.8 4229.1 TO 67203.2 TO 105.1 4028.5 TO 64328.6 TO

s35932 291.7 7126.4 TO 59372.1 TO 260.7 6992.1 TO 55221.4 TO
s38584 267.9 7624.4 TO 71375.5 TO 233.8 7168.5 TO 63298.8 TO
b20 284.4 11275.8 TO 58348.6 TO 186.7 8673.8 TO 55373.3 TO
b21 738.4 TO TO TO TO 672.5 TO TO TO TO
b17 320.4 6221.3 TO 77023.3 TO 271.9 5882.2 TO 74623.7 TO
b22 376.4 5209.9 TO 51042.4 TO 126.7 3862.7 TO 37621.2 TO
b18 701.9 32841.5 TO TO TO 630.3 30067.7 TO TO TO

Table 5: The Average Number of Iterations for De-Obfuscating Different Sizes
of KeyRBs. (Numbers in parentheses show the Current Iteration at Timeout).

Model
Insance keyRB-4 keyRB-8 keyRB-16 keyRB-32 keyRB-64

Full-Lock [17] 3-5 4-6 8-10 10-12 (5) Timeout
InterLock 8-12 16-22 30-33 (8) Timeout (9) Timeout

circuit. Unlike previous routing-based obfuscation techniques, BVA
does not provide any advantage as a pre-processing step showing
that truly twisting logic into the keyRBs guarantees the resistance
against this new attack. Furthermore, compared to Full-Lock and
Cross-Lock, twisting logic into keyRB allows us to engage smaller
sizes of keyRB to guarantee the resiliency (keyRB-32/16→ keyRB-
16/8). Shrinking the size of the keyRB with guaranteed security
in InterLock allows the designer to considerably reduce area and
delay overhead.

To illustrate that InterLock elevate the complexity of locked
circuit, in Table 5, we compare the average number of iterations (𝑁
in Eq. 1) in Full-Lock with that of InterLock. Since we still get the
benefit of routing-based obfuscation, the number (𝑀 in Eq. 2) and
the computational complexity (𝑇𝐴𝑣𝑔

𝐷𝑃𝐿𝐿
in Eq. 2) of recursive calls in

DPLL algorithm is still extremely high in InterLock. However, as
illustrated in Table 5, the average number of required iterations is
increased by ∼3x-4x. This increase shows that 𝑀𝑁 ×𝑇𝐴𝑣𝑔

𝐷𝑃𝐿𝐿
(from

Eq. 2) is extremely higher in InterLock deepening the logic locking
problem significantly.

5.3 Elevated Security at Lower Overhead
To perform a proof-of-concept physical design flow, we imple-
ment the keyRB in InterLock using three different 32nm technol-
ogy: (1) Transmission-Gate (Tgate) CMOS, (2) PVIA-based MUXes,
and (3) TIGFET SiNWFETs using Verilog-A. Table 6 shows the
area/power/delay overhead of locked circuits via three keyRB-8,
which is resilient against the SAT and the cnonical prune-and-SAT
attack. Compared to Full-Lock which is a gate-level implementation
of MUXes using static CMOS, in InterLock, Tgate-based implemen-
tation at transistor level would considerably reduce the area/delay
overhead. In many cases it was expected to observe that PVIA-based
MUXes could achieve the most optimum results; However, since
there is no automatic flow in existing EDA tools for optimization
of a large number of PVIA-based elements, the insertion has to be
done manually. To do it manually, we inserted the PVIAs in a grid
and push the standard cells away from this PVIA grid to success-
fully perform placement, and due to fine-granularity of MUXes in
the circuit (small units and a large amount of usage), and since the

Table 6: TheOverheadComparison betweenThreeDifferent Technology used
for InterLock Implementation: Tgate, Anti-fuse, and TIGFET.

Circuit
Original

3×keyRB-8
Tgate CMOS PVIA Anti-Fuse TIGFET

a p d a p d a p d a p d
(𝜇m2) (𝜇W) (ns) % % % % % % % % %

b15 5292.7 327.6 1.23 34.5% 27.8% 12.9% 27.6% 21.9% 7.1% 24.5% 20.1% 6.4%
b14 5707.9 423.9 1.55 22.6% 17.5% 14.6% 19.5% 16.2% 8.8% 18.6% 15.4 6.8%

s35932 9283.1 729.8 1.68 30.7% 22.8% 10.9% 27.3% 20.7% 6.5% 24.8% 18.7% 5.1%
s38584 11003.2 806.6 1.77 24.1% 19.1% 19.7% 22.4% 17.3% 10.7% 20.7% 16.7% 8.3%
b20 11752.5 755.6 2.34 19.8% 15.5% 12.8% 17.6% 13.9% 7.1% 15.9% 13.4% 5.6%
b21 13007.1 922.7 2.21 16.2% 12.7% 10.7% 14.3% 11.2% 5.7% 12.9% 10.4% 4.5%
b17 15573.3 1245.1 3.58 8.9% 7.4% 7.6% 7.8% 6.4% 4.2% 7.2% 5.9% 3.4%
b22 16582.7 1319.5 3.18 6.4% 4.9% 8.5% 5.9% 4.1% 4.3% 4.8% 3.9% 3.5%
b18 57626.9 4834.1 3.81 3.7% 2.1% 3.2% 3.5% 1.8% 1.9% 2.7% 1.4% 1.6%

number of PVIAs that must be used is a lot, in many cases we faced
DRC violations leading us to use much lower utilization rate for
them.

Based on our evaluation of these three different technologies, as
shown in Table 6, TIGFET-based keyRB could bring more efficiency
compared to Tgate CMOS and PVIA-based implementation. As
shown, on average, TIGFET could reduce the area/delay overhead
by up to 20%/56% compared to Tgate-based CMOS keyRB. However,
for two important reasons, in all three technologies, on average,
the overhead is less than 10%, which is completely acceptable: (1)
The required number/size of keyRBs is less/smaller in InterLock,
and (2) The actual timing paths selected for embedding are paths
with highest positive slack time.

6 CONCLUSION
In this paper, we proposed a new attack, canonical prune-and-SAT
(CP&SAT ) attack, for breaking the state-of-the-art routing-based
obfuscation solutions (e.g. Full-Lock [17] and Cross-Lock [32]). In
this attack, we exploited a bounded variable addition (BVA) pre-
processing step (before the SAT attack) to reduce the size and com-
plexity of the CNF representation of the key-programmable routing
blocks (keyRBs) used for routing-based obfuscation. We demon-
strated that by adding the BVA pre-processing step, our proposed
attack reduces the size of the targeted CNF formula by a factor of
two, enabling us to easily break both Full-Lock and Cross-Lock in
a reasonable time. Further, as a countermeasure, we proposed our
unified routing and logic obfuscation techniques, coined as Inter-
Lock. In Interlock, in addition to hiding the wiring/interconnection,
a part of the logic (gates) in the selected timing paths are also im-
plemented in the keyRB. We illustrated that when the logic gates
are twisted with keyRBs, the BVA could not provide any advantage
as a pre-processing step. We demonstrated that, by using InterLock,
the resilience against existing attacks as well as our new proposed
CP&SAT attack would be guaranteed while the delay/area over-
head remains acceptable. We further evaluated and depicted the
result of implementing the Interlock using three different tech-
nologies: Transmission-gate CMOS, anti-fuse elements, and three-
independent-gate field-effect transistors (TIGFET).
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