
ExTru: A Lightweight, Fast, and Secure Expirable
Trust for the Internet of Things

Hadi M Kamali∗, Kimia Z Azar∗, Shervin Roshanisefat∗, Ashkan Vakil∗, Houman Homayoun†, Avesta Sasan∗
∗Department of ECE, George Mason University, Fairfax, VA, USA

{hmardani, kzamiria, sroshani, avakil, asasan}@gmu.edu
†Department of ECE, University of California, Davis, Davis, CA, USA

hhomayoun@ucdavis.edu

Abstract—The resource-constrained nature of the Internet of
Things (IoT) edges, poses a challenge in designing a secure
and high-performance communication for this family of devices.
Although side-channel resistant ciphers (either block or stream)
could guarantee the security of the communication, the energy-
intensive nature of these ciphers makes them undesirable for
lightweight IoT solutions. In this paper, we introduce ExTru, an
encrypted communication protocol based on stream ciphers that
adds a configurable switching & toggling network (CSTN) to
not only boost the performance of the communication in these
devices, it also consumes far less energy than the conventional
side-channel resistant ciphers. Although the overall structure
of the proposed scheme is leaky against physical attacks, we
introduce a dynamic encryption mechanism that removes this
vulnerability. We demonstrate how each communicated message
in the proposed scheme reduces the level of trust. Accordingly,
since a specific number of messages, N , could break the commu-
nication and extract the key, by using the dynamic encryption
mechanism, ExTru can re-initiate the level of trust periodically
after T messages where T < N , to protect the communication
against side-channel and scan-based attacks (e.g. SAT attack).
Furthermore, we demonstrate that by properly configuring the
value of T , ExTru not only increases the strength of security
from per “device” to per “message”, it also significantly improves
energy saving as well as throughput vs. an architecture that only
uses a conventional side-channel resistant block/stream cipher.
Index Terms—Internet-of-Thing, Secure Communication,

Block Cipher, Stream Cipher, Physical Attack

I. INTRODUCTION

The Internet of Things (IoT), which has been foreseen
to become the most successful business for the next decade
by International Technology Roadmap for Semiconductors
(ITRS), is an inevitable landmark of smart life providing novel
applications and services, ranging from business automation
to personal day-to-day life [1]. The IoT infrastructure is
the seamless connection of billions of heterogeneous devices
(”things”) within a large integrated network (the ”Internet”).
The heterogeneity of IoT constitutes from a wide variety of
devices, such as smartwatches, mobile phones, etc, which
results in a drastic increase in the number of IoT devices.

Although IoT devices provide a more efficient, automated,
and smart life, from security/privacy perspective, many threats
and vulnerabilities have been raised in IoT devices. Many
investigations on cyber-based threats demonstrate that there
are 176 new cyber-threats every minute, and over 2.5 million
within only four months [2]. Several incidents have highlighted
the massive influence of counterfeit/cloned/tampered devices
into the supply chain [3]. As an instance, influencing and

controlling every connected device within a ZigBee network,
which is one of the most prevalent wireless communications in
IoT, has been illustrated in [4], [5]. Another recent evaluation
by HP demonstrates that 70% of the devices in IoT are
vulnerable to different types of threats, including physical
attacks.

Numerous solutions, including communication standards
optimization, more secure configuration, etc, have been in-
troduced to protect IoT devices and their communications
against physical threats, which help to prevent the wide
variety of conventional attacks [7]. For instance, the utilization
of symmetric-based secret-key ciphers or keyed hash-based
authentication code (HMAC) is prevalent in IoT devices to
provide integrity and authentication while securely protect
the inter-communication of IoT edge devices. Considering
that the power consumption (particularly energy consumption)
constraints in resource-constrained edge devices are very strict,
the energy overhead of security solutions against hardware
threats must be minimized. For instance, tight restrictions
in edge devices enforce the designer to employ lightweight
ciphers, such as stream ciphers or lightweight block ciphers
[8], [9]. However, the energy consumption of this breed of
encryption architectures is still high for a high portion of
IoT edge devices. Also, the performance of these ciphers
considerably lower than regular block ciphers. This creates an
inevitable security/cost trade-off in lightweight IoT devices,
which results in sacrificing one of them.

In this paper, we introduce a new lightweight, fast, and
provably secure Expirable Trust (ExTru) mechanism relied
on a configurable switching and toggling network (CSTN) as
well as the winner of the Competition for Authenticated En-
cryption: Security, Applicability, and Robustness (CAESAR)
[10], called ACORN [11]. ExTru provably protects the inter-
communication of IoT edge devices while it even obtains
higher performance and mitigates the energy consumption
compared to the case in which the regular block/stream ciphers
have been used. Moreover, we show how ExTru engages
dynamicity in the circuit to provide guaranteed protection
against different types of physical and scan-based attacks,
such as side-channel, Boolean satisfiability (SAT) attack, and
algebraic attack. We demonstrate that by using this dynamic
encryption scheme, the strength of security could be elevated
from per device to per message.

20
20

 IE
EE

 1
4t

h
Da

lla
s C

irc
ui

ts
 a

nd
 S

ys
te

m
s C

on
fe

re
nc

e
(D

CA
S)

 |
 9

78
-1

-7
28

1-
85

10
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DC
AS

51
14

4.
20

20
.9

33
06

32

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Due to the resource-constrained nature of IoT devices, a
big challenge in guaranteeing the security of this group of
devices is that the implementation of the security measures
must be sufficiently lightweight, which prevents the designers
to directly use conventional block ciphers [12], [13], such
as AES-GCM [13]. Many studies have been taken by the
research community to not only address security issues in IoT
networks but also to increase the efficiency by lowering the
power (particularly energy) consumption and increasing the
throughput. For instance, the fact that the elliptic curves cryp-
tography (ECC) achieves guaranteed security with reduced
resource requirements has attracted the research community.
The work in [14] has constructed an optimized ECC for
secure communication in heterogeneous IoT devices based on
Schnorr signature. Also, a simple key negotiation protocol has
been introduced in this work that is based on the Schnorr
scheme to demonstrate the usability of the presented ECC
optimizations.

Based on the desirable features of a physically unclonable
function (PUF), such as lightweightedness, unpredictability,
unclonability, and uniqueness, many researchers have been
motivated to concentrate on the usage of this module to build a
secure communication for IoT devices. Among several studies
on PUF-based secure communication for IoT devices, the
work in [15] has introduced an authentication, key sharing,
and secure communication architecture, in which each IoT
device has an integrated PUF. In this work, the identity
of each device is created by the challenge-response pair
signature of its PUF instance, and by engaging the identity-
based encryption scheme proposed in Boneh and Franklin, the
security of this approach is proven against attacks like chosen-
plaintext/ciphertext attack.

Numerous software/hardware implementation of lightweight
ciphers suited for IoT devices have been proposed in re-
cent few years, including RECTANGLE, PICO, Extended-
LILIPUT, SIT, SKINNY, MANTIS, to name but a few [16].
Some of these ciphers could provide the best performance
on software implementation, however, a portion of them have
better performance in hardware implementation. For instance,
the work in [17] introduces a lightweight 64-bit symmetric
block cipher, called SIT, whose implementation is a mixture
of Feistel and a uniform substitution-permutation network.
The proposed approach uses some logical operations along
with some swapping and substitution. Most of the encryption
algorithms designed for IoT reduced the number of rounds
to make a cost-security trade-off. For instance, SIT uses five
rounds of encryption with 5 different keys to improve energy
efficiency.

The lightweightedness of the stream ciphers, on the other
hand, has received fascinated attention from many researchers’
in recent years [18]. Since IoT being an emerging field requires
lightweight cipher designs with robustness, less complexity,
and lower energy consumption, stream ciphers are very suited
for particularly edge devices. Many studies evaluate the pos-
sibility of engaging stream ciphers in IoT devices, such as
WG-8, Trivium, Quavium, and ACORN [18].

(a) (b)

Fig. 1. ExTru Overall Infrastructure (a) Transmitter, (b) Receiver

III. ExTru INFRASTRUCTURE

ExTru consists of four main sub-modules: (1) ACORN as a
stream cipher that would be used periodically (The frequency
will be discussed further), (2) a configurable switching and
toggling network (CSTN) that dynamically permutes/toggles
the data based on the configuration generated by TRNG,
(3) a random number generator (RNG) that is responsible
for generating random data for Threshold Implementation of
ACORN as well as for generating the CSTN configuration, and
(4) a substitution box placed after CSTN to eliminate the lin-
earity/predictability of the ciphertext. The overall architecture
of ExTru has been demonstrated in Fig. 1 for both transmitter
side and receiver side.

On the transmitter side, the CSTN is used to permute/toggle
the plaintext using the configuration (TRN) generated by the
random number generator (RNG). The RNG will periodically
change the configuration (TRN) to add dynamicity into the
permutation/toggle network (CSTN). Parts of the configura-
tion is fed by the permuted/toggled data (the output of the
CSTN) to make the operation stateful (data-dependent). The
CSTN is followed only by a substitution-box to eliminate the
linearity/predictability of the output. The TRN that is used
to configure the CSTN has been also encrypted using the
authenticated cipher to be transmitted to the receiver. The key
used for authenticated cipher could be pre-stored in the secure
memory or produced by a PUF. The output of the transmitter
(ciphertext) would be selected from the output of the s-box
(permuted/toggled + substituted plaintext) or authenticated
cipher output (encrypted TRN).

On the receiver side, on the other hand, the reverse CSTN
(RCSTN) must be used to recover the permuted/toggled +
substituted plaintext. We will show that similar to ACORN
that engages only one hardware module for both encryp-
tion/decryption, the CSTN hardware is the same for both re-
ceiving/sending operations (same hardware for both CSTN and
RCSTN). Hence, no duplicated hardware (one for CSTN and
one for RCSTN) is required to be added on each side. When
TRN is received from the transmitter it must be decrypted
using the authenticated cipher to be used as the configuration
of the RCSTN. If the received data is not TRN, it first must
pass the s-box to accomplish re-substitution, then it must pass
the RCSTN to recover the plaintext.

Fig. 2 depicts the overall structure of dynamic encryption
provided by ExTru, which has no sign of leaky communi-
cation. As shown in Fig. 2(b), for each specific number of

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2. (a) The overall structure of using Dynamically Encrypted commu-
nication (b) Re-intensifying the Security Strength by Dynamically Encrypted
communication

transmission (T), which must be less than N , a new CSTN
configuration will be sent via side-channel resistant cipher. As
it is shown, a secure message (S), which contains TRN, will be
sent periodically after every T messages (I) that are handled
by CSTN/RCSTN. Based on different forms of attacks, such as
side-channel, scan-based SAT, and algebraic attack, messages
(I) are leaky. So, periodically changing TRN (S) and sending
through side-channel resistant ciphers re-intensify the security
of the communication.

Based on the size of the CSTN/RCSTN (number of I/O),
we will show that the maximum feasible update frequency
(N) would be changed. Consequently, the CSTN configuration
(TRN), which is fed by RNG, must be changed dynamically
after every T iterations, where T < N . Also, the size
of CSTN/RCSTN determines the number of configuration
bits (size of each S) must be generated by the RNG. In
the following sub-sections we discuss the details of ExTru
implementation.

A. Configurable Switching & Toggling Network (CSTN)

The CSTN is a logarithmic routing (permutation) network
that could permute the order of the signals at its input pins
to its output pins while possibly toggling their logic levels
based on its configuration (TRN). Fig. 3(a) captures a simple
implementation of an 8×8 CSTN based on OMEGA network
[19]. The network is constructed using permutation elements,
denoted as Re-Routing Blocks (RRB). Each RRB is able to
possibly toggle and permute each of the input signals to each
of its outputs. The number of RRBs needed to implement this
simple CSTN for N inputs (N is a power of 2) is simply
N/2× logN .

Each CSTN should be paired with an RCSTN. RCSTN
must be able to reverse all operations accomplished by CSTN
to re-generate the plaintext. Due to the structure of CSTN,
RCSTN can be implemented by vertically flipping the CSTN
without any change in configuration [21]. However, to avoid
duplicating the hardware (to put one dedicated hardware for
CSTN and one dedicated hardware for RCSTN), by flipping
the configuration bits (row-pivot reversed TRN), the CSTN
would operate as its corresponded reverse CSTN. Hence,
only one hardware is required to operate as both CSTN and
RCSTN. In ExTru, we engage a near non-blocking CSTN
which are more resilient against state-of-the-art attacks [22]–
[25].

(a) Blocking OMEGA (b) Near Non-blocking LOG8,1,1

Fig. 3. Logarithmic Network (a) Blocking, (b) Near Non-blocking.

B. Authenticated Encryption with Associated Data

The Authenticated Encryption with Associated Data
(AEAD) is used in ExTru for the transmission of the CSTN-
RCSTN configuration (TRN). Authenticated ciphers incorpo-
rate the functionality of confidentiality, integrity, and authenti-
cation. The input of an authenticated cipher includes plaintext
(message), associated data (AD), public message number
(NPUB), and secret key. Then, the ciphertext is generated
as a function of these inputs. A tag, which depends on
all inputs, is generated after message encryption to assure
the integrity and authenticity of the transaction. This tag
is then verified after the decryption process. The choice of
AEAD could significantly affect the area overhead of the
solution, the speed of encrypted communication, and the
extra energy/power consumption. To show the performance,
power/energy, and area trade-offs, we employ two AEAD
solutions: a NIST compliant solution (AES-GCM) [13], and a
promising lightweight solution (ACORN) [11]. Also, in both
versions, threshold implementation (TI) has been engaged to
resist against side-channel attacks [26].

C. Random Number Generator (RNG)

A RNG unit is required on both sides to generate random
bits for side-channel protection of AEAD units, a random
public message number (NPUB) for AEAD, and TRNs for
CSTN-RCSTN. We adopted the ERO TRNG core described in
[27], which is capable of generating only 1-bit of random data
per over 20,000 clock cycles. In our TI implementations, AES-
GCM needs 40 and ACORN 15 bits of random data per cycle.
So, we employed a hybrid RNG unit combining the ERO
TRNG with a Pseudo Random Number Generator (PRNG).
TRNG output is used as a 128-bit seed to PRNG. The PRNG
generates random numbers needed by other components. The
reseeding is performed only once per activation. PRNG is
implemented in two different versions: (1) AES-CTR PRNG,
which is based on AES, and (2) Trivium based PRNG, which
is based on the Trivium stream cipher.

D. Substitution Box (S-Box)

To eliminate the linearity/predictability in ExTru, a non-
feistel trial strategy has been used that is based on Khazad
block cipher [28]. The wide trial strategy is composed of
several linear and non-linear transformations that ensures the
dependency of output bits on input bits in a complex manner
[29].

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

(a) AES-GCM protected (b) ACORN protected

Fig. 4. The t-test results for the protected implementations AEADs.

IV. SECURITY ANALYSIS OF ExTru

Assuming that the attacker can monitor the side-channel
information of the chips during normal operations (based on
power/current traces), and there exist no secure scan chain
structure, e.g. [30], [31], to block the access to the scan chain,
in this section we evaluate the resiliency of ExTru against
different physical attacks, such as side-channel, the scan-based
SAT, and algebraic attack. An Attack objective may be (1)
extracting the secret key, or (2) extracting CSTN configuration
(TRNs), or (3) eavesdropping on messages exchanged between
the devices.

A. Side-Channel Attack (SCA)

The objective of SCA on ExTru is to extract either the secret
key used by AEAD (ACORN) or the TRN used by CSTN. It
is worth mentioning that assuming that the secret key or TRN
is extracted, the functionality of the s-box would be revealed
using specific messages. Fig. 4 captures our assessment of
the side-channel resistance of AEAD using a t-test for the
protected implementations of AES-GCM and ACORN [32].
As illustrated, both implementations pass the t-test, indicat-
ing the guaranteed resistance against SCA. Note that this
guaranteed resistance against SCA shows the robustness of
communication channel during TRN transmission.

B. TRN Extraction using the SAT attack

Since the attacker might have access to the scan chain to
apply any form of scan-based attack, it might be possible to
recover and extract the TRN by applying specific inputs to the
CSTN and observing the output. This could be done by using
the SAT attack that is a very applicable and known attack on
logic locking schemes [33], [34]. In this scheme, assuming
that the TRN is the unknown parameters (such as key in logic
locking), based on Table I, it is evident that using near non-
blocking CSTN considerably enhances the resiliency of this
approach against the SAT attack. As shown in Table I, for
a near non-blocking CSTN with a size of 64 (LOG64,4,1),
the SAT is not able to find the TRN after 2 × 106 seconds.
Even after 2 × 106 seconds execution of SAT, it cannot find
more than 5 DIPs. However, based on the SAT iterations for
LOG32,3,1, we expect that for a close to non-blocking CSTN
with size 64, more than 32 DIPs are required to extract CSTN
configuration.

TABLE I
SAT EXECUTION TIME ON A CLOSE TO NON-BLOCKING CSTN,

LOGn,log2(n)−2,1 , FOR DIFFERENT SIZES.

CSTN Size (n) 4 8 16 32 64

SAT Iterations 14 18 25 32 TO

SAT Execution Time (Seconds) 0.01 0.015 2.35 79.18 TO

TO: Timeout = 2× 106 seconds

TABLE II
MAIN FEATURES OF THE TWO EXTRU MODES.

Feature Block Stream

AEAD AES-GCM ACORN
PRNG AES-CTR Trivium
BUS Width 8 8
Pins used for Communication 8 8
CSTN-RCSTN Size 64 64
Trusted Memory 4 Kbits 4 Kbits
Cfix: initialization overhead (cycles) 10,492 20,452
Cbyte: cycles needed for encrypting 1 byte 72 17
PRNGperf : Throughput of generating TRN 128b/10cycles 64bit/cycle

C. Algebraic Attacks

CSTN can be expressed as an affine function of the data
input x, of the form y = A ·x+b, where A is an n×n matrix
and b is an n× 1 vector, with all elements dependent on the
input TRN. Although recovering A and b is not equivalent to
finding the TRN, it may enable the successful decryption of
all blocks encrypted using a given TRN. We protect against
this threat in numerous ways: (1) The number of blocks
encrypted using a given TRN is set to the value smaller
than n, which prevents generating and solving a system of
linear equations with A and b treated as unknowns, (2) a
part of the configuration is data-dependent and is fed from
the output of the CSTN (stateful), so the values of A and b
are not the same in any two encryptions, without the need of
feeding CSTN with two completely different TRN values, (3)
the substitution box added after the CSTN will eliminate all
linearity/predictability of the CSTN using the algebraic attack.

V. EXPERIMENTAL SETUP AND ANALYSIS

For evaluation, all designs have been implemented using
Verilog HDL, and have been synthesized for both FPGA
and ASIC targets. For ASIC verification, we used Synopsys
generic 32nm process. For FPGA verification, we targeted a
small FPGA board, Digilent Nexys-4 DDR with Xilinx Artix
7 (XC7A100T-1CSG324). In addition, for SAT evaluation,
we employed the Lingling-based SAT attack [35] on a Dell
PowerEdge R620 equipped with Intel Xeon E5-2670 2.6 GHz
and 64GB of RAM. Also, as noted, a run-time limit of 2×106

seconds was set for the SAT solver. For ciphers, we used
two side-channel resistant ciphers (AES-GCM128 as a block
authenticated cipher, and ACORN as a lightweight stream
cipher). We have two modes in ExTru: (1) ExTru with AES-
GCM, compared with its corresponding cipher (AES-GCM),
(2) ExTru with ACORN, compared with its corresponding
cipher (ACORN). All configurations are listed in Table II.

Table III demonstrates the overhead of LOG64,4,1 compared
to both ciphers using Synopsys generic 32nm library, after

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

TABLE III
POWER, AREA, AND DELAY OF LOG64,4,1 COMPARED TO PROTECTED

AES-GCM AND ACORN

Design Power (uW) Area (nm2) Delay (ns)

LOG64,4,1 1625.5 9965.9 1.74
AES-GCM 3587.1 102487.5 2.48
ACORN 880.9 21843.4 2.3

TABLE IV
SAT EXECUTION TIME ON CLOSE TO NON-BLOCKING CSTN,

LOGn,log2(n)−2,1 , FOR DIFFERENT SIZES.

CSTN Area (nm2) Power (uW) Delay (ns) SAT-Resilient

omega32 1013.1 44.8 1.12 �
log(32, 3, 1) 3067.5 213.5 1.33 �
omega64 2285.5 107.1 1.22 �
log(64, 4, 1) 7438.8 845.1 1.73 �
omega128 5081.5 250.3 1.25 �
omega256 11364.9 579.1 1.35 �
omega512 25458.3 2308 1.42 �

post-layout (route) verification (PLS). As it can be seen, PLS
reports show that the power consumption of LOG64,4,1 is
higher than ACORN. However, based on the area utilization,
LOG64,4,1 is considerably smaller than ACORN and AES-
GCM. The main reason is that the switching activity of CSTN
is high due to numerous permutation/toggling + substitution
which leads to have higher power consumption than ACORN.
Additionally, the delay of critical paths in both ciphers is
higher than that of CSTN. Based on Fig. 1, it is obvious that
critical path in ExTru is same as that of its corresponding
cipher. Consequently, we expect that the delay of critical path
in ExTru is approximately equal with that of ciphers.

Also, Table IV depicts area, power, and the delay of CSTNs
in both blocking and near non-blocking mode with different
sizes in the Synopsys generic 32nm process. As shown, it is
evident that using a close to non-blocking CSTN with size 64,
LOG64,4,1, provides the most efficient CSTN structure, which
is resilient against SAT attack. It should be noted that due to
having extra stages in close to non-blocking CSTNs, the delay
of these networks is slightly higher than the blocking CSTNs
with the same n, which is negligible.

Table V depicts resource utilization of ExTru in each mode
of using AES-GCM or ACORN. As we expected, the critical
paths of ExTru in each mode is same as that of corresponding
cipher. In addition, since ExTru consists of both CSTN and
cipher, it is evident that area and power of ExTru in each
mode is approximately equal to summation of total area and
total power of both sub-modules, i.e. CSTN and the cipher.

A. Energy/Performance Improvement in ExTru
Although combining CSTN and cipher into ExTru imposes

area and power overhead by almost 24.5% compared to the
corresponding cipher, CSTN can generate {permuted/toggled
+ substituted} data in only one cycle which provides signifi-
cant speed-up compared to especially side-channel resistant
ciphers that require randomness or complex initialization.
Fig. 5 demonstrates the time of preparing data (encryption
or permutation/toggling + substitution) for different message
sizes. Increasing the size of the message, which increases the

TABLE V
ExTru RESOURCE UTILIZATION WITH DIFFERENT CIPHERS [32]

Design Power (uW) Area (nm2) Delay (ns)

ExTru with AES-GCM 4448.9 122457.4 2.48
ExTru with ACORN 1694.6 33344.7 2.3

(a) (b)

Fig. 5. The Time of Preparation Data (Encryption or Permutation/Toggling
+ Substitution) for Different Message Sizes (a) AES-GCM vs. ExTru with
AES-GCM (b) ACORN vs. ExTru with ACORN.

proportion of I to S, significantly (superlinearly) increases
the gap between the execution time of ExTru compared to its
corresponding cipher. As shown, since CSTN prepares each
I in one cycle, increasing the size of the message imposes
no degradation on ExTru performance. The main part of the
execution time of ExTru is dedicated to encrypting and sending
S. On the other hand, all data must be encrypted before
sending it while only a cipher is used. So, it increases the
execution time of ciphers linearly due to encryption time.
Note that based on our SAT-based evaluation, the guaranteed
number of I messages is 32 (Table I). Since we use LOG64,4,1,
each I is 64 bits, so 256B (64×32 = 2Kb = 256B) is the safe
size of sending data through CSTN. The guaranteed speed-up
is 3.4× and 1.3× compared to AES-GCM and ACORN.

It is evident that for small messages, ExTru works slower
than ciphers due to time overhead of sending encrypted TRN.
However, ExTru can accelerate the execution time up to 25×
while the message size is even 2KB. The speed-up gained by
ExTru depends on the structure of the cipher. For instance,
the AES-GCM needs around 300 cycles per each plain data
to be first-order side-channel resistant. However, ACORN as a
stream cipher needs fewer cycles per data. So, ExTru provides
better speed-up while the cipher is not streamed/pipelined.

Table VI depicts energy consumption for different designs,
with different message sizes. Since energy is a function of time
and power, it is obvious that the energy consumption in ExTru
is higher for small message sizes due to the time overhead
of sending encrypted TRN. However, increasing the size of
the network results in significantly less energy consumption
in ExTru compared to corresponding ciphers. As it can be
seen, ExTru reduces energy consumption by 94.5% and 67.8%
compared to GCM and ACORN, respectively.

As mentioned previously, ExTru has been verified on both
ASIC and FPGA. Table VII demonstrates the resource utiliza-
tion of the proposed scheme compared to ciphers on Nexys-4
DDR with Xilinx Artix 7. The results in FPGA are approxi-
mately similar to that of ASIC. As expected, ACORN provides
higher maximum frequency due to its lightweight structure.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
THE ENERGY CONSUMPTION (ENCRYPTION or PERMUTATION/TOGGLING

+ SUBSTITUTION) FOR DIFFERENT MESSAGE SIZES.

Design
Size*

32B 64B 128B 256B 512B 768B 1KB 2KB

ACORN 17.01 18.69 22.06 28.79 42.26 55.73 69.20 123.1
ExTru with ACORN 30.66 30.80 31.09 31.67 32.82 33.98 35.13 39.75

AES-GCM 46.28 93.28 188.2 379.8 756.6 1143 1523 3055
ExTru with AES-GCM 151.1 151.4 152.1 153.3 155.8 158.4 160.9 173.1

* Message Size
TABLE VII

RESOURCE UTILIZATION OF ExTru COMPARED TO CORRESPONDING

CIPHERS IN NEXYS-4 DDR WITH XILINX ARTIX 7
(XC7A100T-1CSG324).

Design LUTs Registers Maximum Frequency

ACORN 1090 530 178.5 MHz
ExTru with ACORN 1609 1573 172.5 MHz

AES-GCM 3803 4418 158.3 MHz
ExTru with AES-GCM 4376 5461 152.4 MHz

However, using more resources in high-performance AES-
GCM results in better throughput even with lower frequency.

VI. CONCLUSION

In this paper, we proposed ExTru as a dynamic encrypted
high speed communication, which is able to provide a level of
trust using near non-blocking configurable switching and tog-
gling network (CSTN). ExTru uses near non-blocking CSTN
as a transceiver data. Although the configuration of CSTN
will be generated by TRNG, ExTru changes the configuration
based on a time-interval which is identified by the SAT to
guarantee the security of communication. Using this dynami-
cally encrypted mechanism mitigates energy consumption by
94.5% and 67.8% compared to AES-GCM (authenticated) and
ACORN (stream) while security is guaranteed. In addition,
ExTru is able to provide up to 24.4× and 4.3× speed-up for
2KB messages in comparison with AES-GCM and ACORN.

ACKNOWLEDGEMENT

This research is supported by National Science Foundation
(NSF, #1718434).

REFERENCES

[1] S. Li et al., “The Internet of Things: A Survey,” Information Systems
Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[2] M. Frustaci et al., “Evaluating Critical Security Issues of the IoT World:
Present and Future Challenges,” IEEE Internet of things journal, vol. 5,
no. 4, pp. 2483–2495, 2017.

[3] M. Rostami et al., “A Primer on Hardware Security: Models, Methods,
and Metrics,” IEEE Proceedings, vol. 102, no. 8, pp. 1283–1295, 2014.

[4] E. Ronen et al., “IoT Goes Nuclear: Creating a ZigBee Chain Reaction,”
in IEEE Symposium on Security and Privacy (SP), 2017, pp. 195–212.

[5] H. M. Kamali et al., “MUCH-SWIFT: A High-Throughput Multi-Core
HW/SW Co-design K-means Clustering Architecture,” in Great Lakes
Symposium on VLSI (GLSVLSI), 2018, pp. 459–462.

[6] K. Z. Azar et al., “NNgSAT: Neural Network guided SAT Attack on
Logic Locked Complex Structures,” Int’l Conference on Computer-Aided
Design (ICCAD), pp. 1–9, 2020.

[7] J. Yuan et al., “A Reliable and Lightweight Trust Computing Mechanism
for IoT Edge Devices based on Multi-Source Feedback Information
Fusion,” IEEE Access, vol. 6, pp. 23 626–23 638, 2018.

[8] D. Dinu et al., “Triathlon of Lightweight Block Ciphers for the Internet
of Things,” Journal of Cryptographic Engineering, vol. 9, no. 3, pp.
283–302, 2019.

[9] R. Beaulieu et al., “SIMON and SPECK: Block Ciphers for the Internet
of Things,” IACR Cryptology ePrint Archive, vol. 2015, p. 585, 2015.

[10] CAESAR, “Competition for Authenticated Encryption: Security, Appli-
cability, and Robustness,” 2013.

[11] H. Wu, “ACORN: A Lightweight Authenticated Cipher (v3),” Candidate
for the CAESAR Competition. See also https://competitions. cr. yp.
to/round3/acornv3. pdf, 2016.

[12] H. M. Kamali et al., “A fault tolerant parallelism approach for im-
plementing high-throughput pipelined advanced encryption standard,”
JCSC, vol. 25, no. 09, p. 1650113, 2016.

[13] M. J. Dworkin, SP 800-38D. Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC. National
Institute of Standards & Technology, 2007.

[14] L. Marin et al., “Optimized ECC Implementation for Secure Commu-
nication between Heterogeneous IoT Devices,” Sensors, vol. 15, no. 9,
pp. 21 478–21 499, 2015.

[15] U. Chatterjee et al., “A PUF-based Secure Communication Protocol
for IoT,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 16, no. 3, pp. 1–25, 2017.

[16] D. Sehrawat et al., “Lightweight Block Ciphers for IoT based Applica-
tions: A Review,” Int’l Journal of Applied Engineering Research, vol. 13,
no. 5, pp. 2258–2270, 2018.

[17] M. Usman et al., “SIT: A Lightweight Encryption Algorithm for Secure
Internet of Things,” arXiv preprint arXiv:1704.08688, 2017.

[18] C. Manifavas et al., “A Survey of Lightweight Stream Ciphers for
Embedded Systems,” Security and Communication Networks, vol. 9,
no. 10, pp. 1226–1246, 2016.

[19] H. Ahmadi et al., “A Survey of Modern High-Performance Switching
Techniques,” IEEE Journal on Selected Areas in Communications, vol. 7,
no. 7, pp. 1091–1103, 1989.

[20] H. M. Kamali et al., “LUT-lock: A novel LUT-based logic obfuscation
for FPGA-bitstream and ASIC-hardware protection,” in IEEE Sympo-
sium on VLSI (ISVLSI), 2018, pp. 405–410.

[21] L. R. Goke et al., “Banyan networks for partitioning multiprocessor
systems,” in Int’l Symposium on Comp. Arch. (ISCA), 1973, pp. 21–28.

[22] H. M. Kamali et al., “Full-lock: Hard Distributions of SAT Instances
for Obfuscating Circuits using Fully Configurable Logic and Routing
Blocks,” in Design Automation Conference (DAC), 2019, pp. 1–6.

[23] K. Z. Azar et al., “COMA: Communication and Obfuscation Man-
agement Architecture,” in Int’l Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2019, pp. 181–195.

[24] H. M. Kamali et al., “SCRAMBLE: The State, Connectivity and Routing
Augmentation Model for Building Logic Encryption,” IEEE Symposium
on VLSI (ISVLSI), pp. 1–7, 2020.

[25] H. M. Kamali et al., “InterLock: An Intercorrelated Logic and Routing
Locking,” Int’l Conference on Computer-Aided Design (ICCAD), pp.
1–9, 2020.

[26] S. Nikova et al., “Threshold Implementations against Side-Channel
Attacks and Glitches,” in Int’l Conference on Information and Com-
munications Security, 2006, pp. 529–545.

[27] O. Petura et al., “A Survey of AIS-20/31 Compliant TRNG Cores
Suitable for FPGA Devices,” in Int’l Conference on Field Programmable
Logic and Applications (FPL), 2016, pp. 1–10.

[28] P. Barreto et al., “The Khazad Legacy-level Block Cipher,” Primitive
submitted to NESSIE, vol. 97, p. 106, 2000.

[29] J. Daemen, “Cipher and hash function design strategies based on linear
and differential cryptanalysis,” Ph.D. dissertation, Doctoral Dissertation,
March 1995, KU Leuven, 1995.

[30] H. M. Kamali et al., “On Designing Secure and Robust Scan Chain
for Protecting Obfuscated Logic,” Great Lakes Symposium on VLSI
(GLSVLSI), pp. 1–6, 2020.

[31] S. Roshanisefat et al., “DFSSD: Deep Faults and Shallow State Duality,
A Provably Strong Obfuscation Solution for Circuits with Restricted
Access to Scan Chain,” in VLSI Test Symposium (VTS), 2020, pp. 1–6.

[32] W. Diehl et al., “Comparison of Cost of Protection against Differential
Power Analysis of Selected Authenticated Ciphers,” Cryptography,
vol. 2, no. 3, p. 26, 2018.

[33] K. Z. Azar et al., “SMT attack: Next Generation Attack on Obfuscated
Circuits with Capabilities and Performance beyond the SAT Attacks,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 97–122, 2019.

[34] K. Z. Azar et al., “Threats on logic locking: A decade later,” in Great
Lakes Symposium on VLSI (GLSVLSI), 2019, pp. 471–476.

[35] P. Subramanyan et al., “Evaluating the Security of Logic Encryption
Algorithms,” in Int’l Symposium on Hardware Oriented Security and
Trust (HOST), 2015, pp. 137–143.

Authorized licensed use limited to: George Mason University. Downloaded on October 09,2021 at 06:44:03 UTC from IEEE Xplore. Restrictions apply.

