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Abstract—In this paper, we propose Code-Bridged Classifier
(CBC), a framework for making a Convolutional Neural Network
(CNNs) robust against adversarial attacks without increasing or
even by decreasing the overall models’ computational complexity.
More specifically, we propose a stacked encoder-convolutional
model, in which the input image is first encoded by the encoder
module of a denoising auto-encoder, and then the resulting
latent representation (without being decoded) is fed to a reduced
complexity CNN for image classification. We illustrate that this
network not only is more robust to adversarial examples but
also has a significantly lower computational complexity when
compared to the prior art defenses.

I. INTRODUCTION

Deep learning is the foundation for many of today’s appli-
cations, such as computer vision, natural language processing,
and speech recognition. After AlexNet [1] made a break-
through in 2012 by significantly outperforming other object
detection solutions, and winning the ISLVRC competition
[2], CNNs gained a well-deserved popularity for computer
vision applications. This energized the research community
to architect models capable of achieving higher accuracy (that
led to development of many higher accuracy models including
GoogleNet [3] and ResNet [4]), increased the demand and
research for hardware platforms capable of fast execution of
these models [5, 6], and created a demand for lower complexity
models [7–9] capable of reaching high levels of accuracy.

Even though the evolution in their model structure and the
improvement in their accuracy have been very promising in
recent years, it is illustrated that convolutional neural networks
are prone to adversarial attacks through simple perturbation of
their input images [10–13]. The algorithms proposed by [10–
13] have demonstrated how easily the normal images can be
perturbed with adding a small noise in order to fool neural
networks. The main idea is to add a noise vector containing
small values to the original image in the opposite or same
direction of the gradient calculated by the target network to
produce adversarial samples [10, 11].

The wide-spread adoption of CNNs in various applications
and their unresolved vulnerability to adversarial samples has
raised many safety and security concerns and has motivated
a new wave of deep learning research. To defend against
adversarial attacks, the concept of adversarial training was
proposed in [10] and was further refined and explored in
[11, 12]. Adversarial training is a data augmentation technique
in which by generating a large number of adversarial samples
and including them with correct labels in the training set, the
robustness of network against adversarial attacks improves.
Training an adversarial classifier to determine if the input is
normal or adversarial and using autoencoder (AE) to remove
the input image noise before classification are some of the
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Fig. 1. The FGSM attack is used to add adversarial noise to the original
image. The adversarial perturbation remains imperceptible to the human eyes
but causes the neural network to misclassify the input image.

other approaches taken by [10] and [14]. Finally, [15] utilizes
distillation as a defense method against adversarial attacks in
which a network with a similar size to the original network is
trained in a way that it hides the gradients between the softmax
layer and its predecessor.

In this work, we combine denoising and classification into a
single solution and propose the code-bridged classifier (CBC).
We illustrate that CBC is 1) more robust against adversarial
attacks compared to a similar CNN solution that is protected
by a denoising AE, and has substantially less computational
complexity compared to such models.

II. BACKGROUND AND RELATED WORK

The vulnerability of deep neural networks to adversarial
examples was first investigated in [14]. Since this early work,
many new algorithms for generating adversarial examples, and
a verity of solutions for defending against these attacks are
proposed. Following is a summary of the attack and defense
models related to our proposed solution:

A. Attack Models

Many effective attacks have been introduced in the litera-
ture. Some of the most notable attacks include Fast Gradi-
ent Sign Method (fgsm) [10], Basic Iterative Method [11],
Momentum Iterative Method [12], DeepFool [13] and Carlini
Wagner [16], the description of each method are as follows.

1) FGSM attack: in [10], a simple method is suggested to
add a small perturbation to the input to make an adversarial
image. The adversarial image is obtained by:

x′ = x+ εsign(∇xJ(θ, x, y)) (1)

in which x is the input image, y is the correct label, θ is
the network parameters, and J is the loss function. ε defines
the magnitude of the noise. The larger the ε, the larger the
possibility of misclassification. Figure 1 illustrates how such
adversarial perturbation can change the classifier’s prediction.
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2) Basic Iterative Method (BIM) attack [11]: Also known
as Iterative-FGSM attack, BIM attack is iterating over the
FGSM attack, increasing the effectiveness of the attack. The
BIM attack can be expressed as:

x′
0
= x, x′

n
= x′

n−1
+ εsign(∇xJ(θ, xn−1, y)) (2)

3) Momentum Iterative attack [12]: In the Momentum
Iterative attack, the momentum is also considered when cal-
culating the adversary perturbation, and is expressed as:

g0 = 0, gn = μgn−1

∇xJ(θ, xn−1, y)

||∇xJ(θ, xn−1, y)||1

x′
n
= x′

n−1
+ εsign(gn)

(3)

in which μ is the momentum, and ||∇xJ(θ, xn−1, y)||1 is the
L1 norm of the gradient.

4) Deepfool [13]: The Deepfool attack is formulated such
that it can find adversarial examples that are more similar
to the original ones. It assumes that neural networks are
completely linear and classes are distinctively separated by
hyper-planes. With these assumptions, it suggests an optimal
solution to find adversarial examples. However, because neural
networks are nonlinear, the step for finding the solution is
repeated. We refer to [13] for details of the algorithm.

5) Carlini & Wagner (CW) [16]: Finding adversarial
examples in the CW attack is an iterative process that is
conducted against multiple defense strategies. The CW attack
uses Adam optimizer and a specific loss function to find
adversarial examples that are less distorted than other attacks.
For this reason, the CW attack is much slower. Adversarial
examples can be generated by employing L0 , L2 and L∞
norms. The objective function in CW attack consider an
auxiliary variable w and is defined as:

δi =
1

2
(tanh(wi) + 1)− xi (4)

Then if we consider the L2 norm, this perturbation is
optimized with respect to w:

minw||δ||
2

2
+ c.f(δ + x) (5)

in which function f is defined as follows:

f(x′) = max(max{Z(x′)i : i �= t} − Z(x′)t,−κ) (6)

in the above equation, Z(x′) is the pre-softmax output for
class i, the parameter t represents the target class, and κ is the
parameter for controlling the confidence of misclassification.

B. Transferability of Adversarial Examples

All previously described attacks are carried out in a white-
box setting in which the attacker knows the architecture,
hyperparameters, and trained weights of the target classifier
as well as the existing defense mechanism (if any). It is very
hard to defend against white-box attacks because the attacker
can always use the information she has to produce new and
working adversarial inputs. However, adversarial attacks can
be considered in two other settings: Gray Box and Black
Box attacks. In gray box attacks, the attacker knows the
architecture but doesn’t have access to the parameters, the

defense mechanism. In black-box setting the attacker does not
know the architecture, the parameters, and the defense method.

Unfortunately, it has been shown that adversarial examples
generalize well across different models. In [14] it was shown
that many of the adversarial examples that are generated
for (and are misclassified by) the original network are also
misclassified on a different network that is trained from scratch
with different hyperparameters or using disjoint training sets.

The findings of [14] are confirmed by the following works,
as in [17], universal perturbations are successfully found that
not only generalize across images but also generalize across
deep neural networks. These perturbations can be added to all
images and the generated adversarial example is transferable
across different models. The work in [18, 19] show that
adversarial examples that can cause a model to misclassify, can
have the same influence on another model that is trained for the
same task. Therefore, an attacker can train her dummy model
to generate the same output, craft/generate adversarial images
on her model, and rely on the transferability of the adversarial
examples, being confident that there is a high chance for the
target classifier to be fooled. We argue that our proposed
solution can effectively defend black-box attacks.

C. Defenses

Several works have investigated defense mechanisms
against adversarial attacks. In [10], adversarial training is
proposed to enhance the robustness of the model. In [20, 21]
autoencoders are employed to remove the adversarial pertur-
bation and reconstruct a clean input. In [15] distillation is used
to hide the gradients of the network from the attacker. Other
approaches are also used as a defense mechanism [22–24].
In this section, we explore the ideas for defending against
adversarial examples.

1) Adversarial Training: The basic idea of the adversarial
training [10] is to train a robust classifier via adding many ad-
versarial examples (that are generated using different attacks)
to the training dataset [12, 13, 25]. The problem with this
approach is that it can only make the network robust against
known (and trained for) attacks for generating adversarial
examples. It also increases the training time significantly.

2) Defensive Distillation: In [15] distilling was originally
proposed to train a smaller student model from a larger teacher
model with the objective that the smaller network predicts the
probability of the bigger network. The distillation technique
takes advantage of the fact that a probability vector contains
more information than only class labels, hence, it is a more
effective mean for training a smaller network. For defensive
distillation, the second network is the same size as the first
network [15]. The main idea is to hide the gradients between
the pre-softmax and softmax layers to make the attacker’s
job more difficult. However, it was illustrated in [16] that
this defense can be beaten by using the pre-softmax layer
outputs in the attack algorithm and/or choosing a different
loss function.

3) Gradient Regularization: Input gradient regularization
was fist introduced by [26] to improve the generalization
of training in neural networks by a double backpropagation
method. [15] mentions the double backpropagation as a de-
fense and [22] evaluate the effectiveness of this idea to train
a more robust neural network. This approach intends to make
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Fig. 2. Magnet defense in [21] is a two stage defense: the first stage tries
to detect the adversarial examples. The images that pass the first stage are
denoised using an AutoEncoder in the second stage and fed to the classifier.

sure that if there is a small change input, the change in KL
divergence between the predictions and the labels also will be
small. However, this approach is sub-optimal because of the
blindness of the gradient regulation.

4) Adversarial Detection: Another approach taken to make
neural networks more robust is to detect adversarial examples
before feeding to the network[23, 27]. [23] tries to find a
decision boundary to separate adversarial and clean inputs.
[27] deploys the fact that the perturbation of pixel values by
adversarial attack alters the dependence between pixels. By
modeling the differences between adjacent pixels in natural
images, deviations due to adversarial attacks can be detected.

5) Autoencoders: [20] analyzes the use of normal and
denoising autoencoders as a defense method. Autoencoders are
neural networks that code the input and then try to reconstruct
the original image as their output. [21], as illustrated in Fig.
2, uses a two-level module and uses autoencoders to detect
and reform adversarial images before feeding to the target
classifier. However, this method may change the clean images
and also add a computational overhead to the whole defense-
classifier module. To improve the method introduced in [21],
[28] presents an efficient auto-encoder with a new loss function
which is learned to preserve the local neighborhood structure
on the data manifold.

III. PROBLEM STATEMENT

An abstract view of a typical Auto-Encoder (AE) and
Denoising Auto-Encoder (DAE) is depicted in Fig. 3. An AE
is comprised of two main components: 1) The encoder, ϕ(X),
that extracts the corresponding latent space for input X , and 2)
the decoder, ζ(ϕ(X)), that reconstructs a representation of the
input image from its compressed latest space representation.
Ideally, the decoder can generate the exact inputs sample from
the latent space, and the relation between the input and output
of an AE can be expressed as ζ(ϕ(X)) = X . However, in
reality, the output of an AE is to some extent different from
the input. This difference is known as reconstruction error and
is defined as ER = |ζ(ϕ(X)) − X| [29]. When training an
AE, the objective is ER.

A DAE is similar to AE, however, it is trained using a
different training process. As illustrated in Fig. 3.b the input
space of DAE are the noisy input samples, X + ε, and their
corresponding latent space is generated by ϕ(X + ε). Unlike
AE (in which the ER is defined as the difference between the
input and output of AE), the ER of DAE is defined as ER =
|ζ(ϕ(X+ε))−X| [29]. In other words, the reconstruction error
is the difference between the output of decoder ζ(ϕ(X + ε))
and the clean input samples. An ideal DAE removes the noise
ε from the noisy input and generates the clean sample X .

This refining property of DAEs, make them an appealing
defense mechanism against adversarial examples. More pre-

Fig. 3. An abstract view of a) a typical Auto-Encoder, and b) a Denoising
Autoencoders. Two major components of both structures are 1) Encoder, ϕ(.),
which extracts the latent space of sample inputs 2) Decoder, ζ(.), which
reconstructs sample inputs from the latent space.

Fig. 4. Reconstruction error (ER) of a decoder can also result in mis-
classification if the features extracted for the reconstructed image X∗ are
pushed outside of the classifier’s learnt decision boundary.

cisely, by placing one or more DAEs at the input of a classifier,
the added adversarial perturbations are removed and a refined
input is fed into the subsequent classifier. The effectiveness
of this approach highly depends on the extent of which the
underlying DAE is close to an ideal DAE (in which the
DAE completely refines the perturbed input). Although a well-
trained DAE refines the perturbed input to some extent, it also
imposes a reconstruction noises to it. As an example, assume
that ε in Fig. 3.b is zero. This means the input X is a clean
image. In this case the output is X + ER. If the size of ER

is large enough, it can move the input X over the classifier’s
decision boundary. This, as illustrated in Fig. 4, will result in
predicting the input X as a X∗ class member. In this scenario,
DAE not only fails to defend against adversarial examples, but
also generates noise that could lead to the misclassification of
the clean input images.

The other problem of using AE or DAE as a pre-processing
unit to refine the image and combat adversarial attacks is their
added computational complexity. Adding an autoencoder as a
pre-processor to a CNN increases 1) the energy consumed per
classification, 2) the latency of each classification and 3the
number of parameters of the overall model.

In the following section, we propose a novel solution for
protecting the model against adversarial attacks that addresses
both the computational complexity problem and the recon-
struction error issue of using an AE as a pre-processor.

IV. PROPOSED METHOD

Using DAEs to refine perturbed input samples before feed-
ing them into the classifier is a typical defense mechanism
against adversarial examples [20, 21]. A general view of such
defense is illustrated in Fig. 5.(top). In this figure, ϕ(.), ζ(.) are
the decoder and encoder of DAE, respectively, ϕ′(.) represents
the first few CONV layers of the CNN classifier, and C(.),
represents the later CONV stages. In this defense, the DAE and
CNN are separately trained. The DAE is trained to minimize
the reconstruction error, while the CNN is trained to reduce
the pre-determined loss function (e.g. L1 or L2 loss). An
improved version of such defense is when the training is
done serially, where in the first stage, the DAE is trained,
and then the CNN classifier is trained using the output of
DAE as input sample. Note that the 2nd solution tends to get
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Fig. 5. (Top) the defense proposed in [21] where a DAE filter the noise in
the input image before feeding it to a classifier. (Bottom) the CBC model in
which the decoder of DAE and the first few conv layers of the base classifier
are removed. Note that the decoder in CBC is only used for training the CBC,
and is removed after training (for evaluation). In this figure X , X′, X′′ are
respectively the clean input sample, noisy input sample and the output of DAE.
The Y is the corresponding ground truth, and ER and EC are reconstruction
error and classification error respectively.

a higher classification accuracy. Regardless of the choice of
training addition of a DAE to the CNN classifier adds to its
complexity. Aside from added computational complexity, the
problem with this defense mechanism is that AEs could act as
a double agent: on one hand refining the adversarial examples
is an effective means to remove the adversarial perturbation
(noise) from the input image and is a valid defense mechanism,
but on the other hand, its reconstruction error, ER, could
force misclassification of clean input images. For correcting
the behavior of the DAE, we propose the concept of Code
Bridge Classifiers (CBC), aiming to 1) eliminating the impact
of reconstruction error of the underlying DAE, and 2) reducing
the computational complexity of the combined DAE and
classifier to widen its applicability.

Fig. 5.(bottom), illustrates our proposed solution where the
encoder ϕ(.) of a trained DAE and a part of original CNN
(C(.)) are combined to form a hybrid yet compressed model.
In this model, the decoder ζ(.) of DAE, and the first few
CONV layers of the CNN model, ϕ′(.), are eliminated. In
CBC ζ(.) and ϕ′(.) are eliminated with the intuition that they
act as an Auto Decoder (AD). As opposed to AE, the AD
translates the latest space to an image and back to another
latent space (intermediate representation of the image in the
CNN captured by output channels of ϕ′(.)). This is, however,
problematic because 1) the decoder ζ(.) is not ideal and
it introduces reconstruction error to the refined image, 2)
decoding and encoding (the first few CONV layers act as an
encoder) of the image only translates the image from one latest
space to another without adding any information to it. This is
when such code translation (latest space to latent space) could
be eliminated and the code at the output of ϕ(.) could be
directly used for classification. This allows us to eliminate
the useless AD (the decoder ζ(.) and first few conv layers of
original CNN that act as an encoder) and not only reduce the
computational complexity the overall model but also improves
the accuracy of the model by eliminating the noise related to

TABLE I
ARCHITECTURE OF THE FASHIONMNIST CLASSIFIERS

Base DAE-CNN CBC
Type Size Type Size Type Size

D
ef

en
se

Conv.ReLU 4× 4× 16 Conv.ReLU 4× 4× 16
Conv.ReLU 4× 4× 48 Conv.ReLU 4× 4× 48
ConvTran.ReLU 4× 4× 48
ConvTran.ReLU 4× 4× 16

C
N

N

Conv.ReLU 3× 3× 32 Conv.ReLU 3× 3× 32 Conv.ReLU 3× 3× 64
Conv.ReLU 3× 3× 32 Conv.ReLU 3× 3× 32 Conv.ReLU 3× 3× 64
Max Pool 2× 2 Max Pool 2× 2 FC.ReLU 4096× 200
Conv.ReLU 3× 3× 64 Conv.ReLU 3× 3× 64 FC.ReLU 200× 200
Conv.ReLU 3× 3× 64 Conv.ReLU 3× 3× 64 Softmax 10
FC.ReLU 4096× 200 FC.ReLU 4096× 200
FC.ReLU 200× 200 FC.ReLU 200× 200
Softmax 10 Softmax 10

image reconstruction of the decoder ζ(.).
The training process for the CBC is serial: We first train a

DAE, the encoder section of the model is separated. Then the
trained decoder is paired with a smaller CNN compare to that
of the original model. One way to build a smaller model is to
remove the first few CONV layers of the original model and
adjust the width of the DAE and the partial CNN to match
the filter sizes. The rule of thumb for the elimination of the
layers is to remove as many CONV layers equal to those in the
encoder of AE. The next step is to train the partial CNN while
fixing the values of the decoder, allowing the propagation to
only alter the weights in the classifier C(.).

V. IMPLEMENTATION DETAILS

In this section, we investigate the effectiveness of our
proposed solution against adversarial examples prepared for
FashionMNIST [30] and CIFAR-10 [31] datasets. To be able
to compare our work with previous work in [21], we build our
CBC solution on top of the CNN models that are described
as Base in tables I and II. In these tables, the DAE columns
represent the solution proposed in [21], in which a full auto-
encoder pre-process the input to the CNN model and finally
the columns CBC described the modified model corresponding
to our proposed solution. The DAE as described in tables I
and II includes 2 convolutional layers for encoding, and 2
convolutional transpose layers for decoding. The input is a
clean image, and the output is an image of the same size
generated by the autoencoder.

To build the CBC classifier, we stacked the trained encoder
of the DAE with an altered version of the target classifier in
which some of the CONV layers are removed. The trade-off
on the number of layers to be removed is discussed in the next
section. Considering that the encoder quickly reduces the size
of the input image to a compressed latent space representation,
the CNN following the latent space is not wide. For this
reason, we also remove the max-pooling layers making sure
that the number of parameters of the CBC classifier, when
it reaches the softmax layer is equal to that of the base
architecture. In our implementation, all the attacks and models
are implemented using PyTorch [32] framework. To train the
models we only use clean samples, and freeze the weights
of the encoder part and train the remaining layers. Training
parameters of the target classifier and the proposed architecture
are listed in table III. We evaluated our proposed solutions
against the FGSM [10], Iterative [11], DeepFool [13], and
Carlini Wagner [16] adversarial attacks.

VI. EXPERIMENTAL RESULTS

By adopting the training flow described in Table IV, the
top-1 accuracy of the base classifiers (in Tables I and II) that
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TABLE II
ARCHITECTURE OF THE CIFAR-10 CLASSIFIERS

Base DAE-CNN CBC
Type Size Type Size Type Size

D
ef

en
se

Conv.ReLU 4× 4× 48 Conv.ReLU 4× 4× 48
Conv.ReLU 4× 4× 72 Conv.ReLU 4× 4× 72
ConvTran.ReLU 4× 4× 72
ConvTran.ReLU 4× 4× 48

C
N

N

Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 96
Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 192
Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 96 Conv.ReLU 3× 3× 192
Max Pool 2× 2 Max Pool 2× 2 Conv.ReLU 3× 3× 192
Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192
Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192
Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192 Conv.ReLU 1× 1× 192
Max Pool 2× 2 Max Pool 2× 2 Conv.ReLU 1× 1× 192
Conv.ReLU 3× 3× 192 Conv.ReLU 3× 3× 192 Conv.ReLU 1× 1× 192
Conv.ReLU 1× 1× 192 Conv.ReLU 1× 1× 192 Avg Pool
Conv.ReLU 1× 1× 192 Conv.ReLU 1× 1× 192 Softmax 10
Avg Pool Avg Pool
Softmax 10 Softmax 10

TABLE III
TRAINING PARAMETERS

Dataset Optimization Method Learning Rate Batch Size Epochs
FashionMNIST Adam 0.001 128 50
CIFAR-10 Adam 0.0001 128 150

we trained for FashionMNIST and CIFAR10 are 95.1% 90.%
respectively. For the evaluation purpose, we trained denoising
autoencoders with different noise values for both Datasets.
The structure of the DAEs are shown in Table I and II. The
reconstruction error for DAEs was arround 0.24 and 0.54 for
FashionMNIST and CIFAR10 datasets respectively.

A. Selecting altered CNN architecture:

As discussed previously, the removal of the decoder of the
DAE should be paired with removing the first few CONV
layers from the base CNN and training the proceeding CONV
layers to use the code (latent space) that is generated by the
encoder as input. The number of layers to be removed was
determined by a sweeping experiment in which the accuracy
of the resulting model and its robustness against various
attacks was assessed. Figure 6 shows the accuracy of CBC
networks when the number of convolutional layers in the
altered classifier is reduced compared to the base classifier.
The experiment is repeated for both MNIST and CIFAR
datasets, and the robustness of each model against CW [16],
Deepfool [13], and FGSM [10] with ε = 0.5 is assessed.
As illustrated in Fig. 6, the models remain insensitive to the
removal of some of the first few layers (2 in MNIST, and
5 in CIFAR) with negligible (1̃%) change in the accuracy
by complete removal of each CONV layer until they reach a
tipping point. The MNIST model, for being a smaller model,
reaches that tipping point when 2 CONV layers are removed,
whereas the CIFAR model (for being a larger model) is slightly
impacted even after 5 CONV layers are removed.

B. CBC accuracy and comparison with prior art

Fig. 7 captures the result of our simulation, in which the
robustness and the accuracy of the base CNN, the solution
in [21] in which the DAE refines the input for base CNN
model, and our proposed CBC are compared. For the CNN
protected with DAE, we provide two sets of results: 1) DAE-
CNN Model accuracy: DAE and CNN are separately trained
and paired together; 2) Retrained-DAC-CNN model accuracy:
The CNN is incrementally trained using the refined images
produced at the output of the DAE (denoted by Retraind-DAE-
CNN). The comparison is done for the classification of both
original and adversarial images. Results for FGSM, DeepFool,
and CW adversarial attacks are reported. For completeness, we

Fig. 6. The change in the accuracy of the CBC model for a) FashionMNIST
and b) CIFAR-10 classification with respect to the number of removed CONV
layers from the base CNN model.

have captured the robustness of each solution when the DAE
is trained with different noise values.

As illustrated in Fig. 7, the base model is very sensitive
to adversarial examples, and the accuracy of the network in
presence of adversarial examples (depending on the attack
type) drops from over 90% to the range of 0% to 20%. The
DAE-CNN model also performs very poorly even for benign
images. This is because of the reconstruction error introduced
by the decoder which severely affects the accuracy and the
ability of the base CNN model. The Retrained-DAE-CNN
model (representing the solution in [21]) performs well in
classifying benign images and also exhibits robustness against
adversarial images. As illustrated, the robustness improves
when it is paired with a DAE that is trained with high noise.
The best solution, however, is the CBC solution: regardless
of the type of the attack, type of the benchmark, and the
noise of DAE, the CBC model outperforms other solutions
in both classification accuracy of the benign images and also
robustness against adversarial examples. This clearly illustrates
that the CBC model by eliminating the reconstruction error is
a far more robust solution than DAE protected CNN models.

C. Reduction in model size and computational complexity

In a CBC model, the DAE’s decoder and the first few CONV
layers of the base CNN model are removed. Hence, a CBC
model has a significantly smaller flop count (computational
complexity). Table IV captures the number of model Parame-
ters and the Flop count for each of the CBC classifiers which
are described in Tables I and II. Note that the majority of
computation in a CNN model is related to its CONV layers,
while a CONV layer has a small number of parameters. Hence,
removing a few CONV layers may result in a small reduction
in the number of parameters, but the reduction in the FLOP
count of the CBC models is quite significant. As reported in
Table IV, in the FashionMNIST model, the flop count has
reduced by 1.8x and 2.8X compared to the base and DAE
protected model, while the parameter count is respectively
reduced by 0.37% and 2.69% . This saving is more signif-
icant for the CIFAR-10 CBC model, where its computational
complexity has reduced 3.1x and 3.3x compared to the Base
and DAE protected model respectively, while the number
of parameters is respectively reduced by 5.8% and 13.4%.
Reduction in the flop count of the CBC model, as illustrated
in table IV also reduces the model’s execution time. The
execution time reported in table IV is the execution time of
each model over the validation set of each (FashionMNIST
and CIFAR-10) dataset when the model is executed using Dell
PowerEdge R720 with Intel Xeon E5-2670 (16 core CPUs)
processors. As reported in table IV, the execution time of the
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Fig. 7. Comparing the accuracy of the base CNN model, the DAE protected CNN model (with and without retraining), and the CBC model when classifying
bening images and adverserial images generated by different attack models: (left): FashionMNIST models, (right): CIFAR-10 models.

TABLE IV
OF THE NUMBER OF PARAMETERS, COMPUTATIONAL COMPLEXITY AND

EXECUTION TIME OF CBC AND THE BASE MODEL WITH AE AND

WITHOUT AE PROTECTION.

Dataset Model Flops Parameters Execution time

FashionMNIST
Base CNN 9.08 MMac 926.6 K 463.4 s
AE-CNN[21] 14.3 MMac 951.81 K 562.3 s
CBC 5.04 MMac 926.25 K 293.7s

CIFAR-10
Base CNN 0.59 GMac 1.37 M 1673.0 s
AE-CNN [21] 0.63 GMac 1.49 M 1749.7 s
CBC 0.19 GMac 1.29 M 1191.6 s

CBC is even less than the base CNN. Note that the CBC also
results in processing unit energy reduction proportional to the
reduction in the flop count. Hence, the CBC, not only resist
against adversarial attacks, but (for being significantly smaller
than the base model) also reduces the execution time, and
energy consumed for classification.

VII. CONCLUSION

In this paper, we propose the Code-Bridged Classifier
(CBC) as a novel and extremely efficient mean of defense
against adversarial learning attacks. The resiliency and com-
plexity reduction of CBC is the result of directly using the
code generated by the encoder of a DAE for classification. For
this purpose, at the training phase, a decoder is instantiated
in parallel with the model to tune the denoising encoder
by computing and back-propagating the image reconstruction
error. At the same time, the code is used for classification
using a lightweight classifier. Hence, the encoder is trained for
both feature extraction (contributing to the depth of classifier
and low-level feature extraction) and denoising. The parallel
decoder is then removed when the model is fully trained. This
allows the CBC to achieve high accuracy by avoiding the
reconstruction error of the DAE’s decoder, while reducing the
computational complexity of the overall model by eliminating
the decoder and few CONV layers from the trained model.
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